/**************************************************************************** ** ** Copyright (C) 2015 The Qt Company Ltd. ** Contact: http://www.qt.io/licensing/ ** ** This file is part of the QtQml module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL21$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see http://www.qt.io/terms-conditions. For further ** information use the contact form at http://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 or version 3 as published by the Free ** Software Foundation and appearing in the file LICENSE.LGPLv21 and ** LICENSE.LGPLv3 included in the packaging of this file. Please review the ** following information to ensure the GNU Lesser General Public License ** requirements will be met: https://www.gnu.org/licenses/lgpl.html and ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** As a special exception, The Qt Company gives you certain additional ** rights. These rights are described in The Qt Company LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #ifndef QV4GC_H #define QV4GC_H #include #include #include #include //#define DETAILED_MM_STATS QT_BEGIN_NAMESPACE namespace QV4 { struct GCDeletable; class Q_QML_EXPORT MemoryManager { Q_DISABLE_COPY(MemoryManager); public: struct Data; class GCBlocker { public: GCBlocker(MemoryManager *mm) : mm(mm) , wasBlocked(mm->isGCBlocked()) { mm->setGCBlocked(true); } ~GCBlocker() { mm->setGCBlocked(wasBlocked); } private: MemoryManager *mm; bool wasBlocked; }; public: MemoryManager(ExecutionEngine *engine); ~MemoryManager(); // TODO: this is only for 64bit (and x86 with SSE/AVX), so exend it for other architectures to be slightly more efficient (meaning, align on 8-byte boundaries). // Note: all occurrences of "16" in alloc/dealloc are also due to the alignment. static inline std::size_t align(std::size_t size) { return (size + 15) & ~0xf; } template inline typename ManagedType::Data *allocManaged(std::size_t size, std::size_t unmanagedSize = 0) { size = align(size); Heap::Base *o = allocData(size, unmanagedSize); o->setVtable(ManagedType::staticVTable()); return static_cast(o); } template typename ObjectType::Data *allocateObject(InternalClass *ic) { const int size = (sizeof(typename ObjectType::Data) + (sizeof(Value) - 1)) & ~(sizeof(Value) - 1); typename ObjectType::Data *o = allocManaged(size + ic->size*sizeof(Value)); o->internalClass = ic; o->inlineMemberSize = ic->size; o->inlineMemberOffset = size/sizeof(Value); return o; } template typename ObjectType::Data *allocateObject() { InternalClass *ic = ObjectType::defaultInternalClass(engine); const int size = (sizeof(typename ObjectType::Data) + (sizeof(Value) - 1)) & ~(sizeof(Value) - 1); typename ObjectType::Data *o = allocManaged(size + ic->size*sizeof(Value)); Object *prototype = ObjectType::defaultPrototype(engine); o->internalClass = ic; o->prototype = prototype->d(); o->inlineMemberSize = ic->size; o->inlineMemberOffset = size/sizeof(Value); return o; } template typename ManagedType::Data *allocWithStringData(std::size_t unmanagedSize, Arg1 arg1) { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data), unmanagedSize)); (void)new (t->d()) typename ManagedType::Data(this, arg1); return t->d(); } template typename ObjectType::Data *allocObject(InternalClass *ic) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); (void)new (t->d()) typename ObjectType::Data(); return t->d(); } template typename ObjectType::Data *allocObject(InternalClass *ic, Object *prototype) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); t->d()->prototype = prototype->d(); (void)new (t->d()) typename ObjectType::Data(); return t->d(); } template typename ObjectType::Data *allocObject(InternalClass *ic, Object *prototype, Arg1 arg1) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); t->d()->prototype = prototype->d(); (void)new (t->d()) typename ObjectType::Data(arg1); return t->d(); } template typename ObjectType::Data *allocObject(InternalClass *ic, Object *prototype, Arg1 arg1, Arg2 arg2) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); t->d()->prototype = prototype->d(); (void)new (t->d()) typename ObjectType::Data(arg1, arg2); return t->d(); } template typename ObjectType::Data *allocObject(InternalClass *ic, Object *prototype, Arg1 arg1, Arg2 arg2, Arg3 arg3) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); t->d()->prototype = prototype->d(); (void)new (t->d()) typename ObjectType::Data(arg1, arg2, arg3); return t->d(); } template typename ObjectType::Data *allocObject(InternalClass *ic, Object *prototype, Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); t->d()->prototype = prototype->d(); (void)new (t->d()) typename ObjectType::Data(arg1, arg2, arg3, arg4); return t->d(); } template typename ObjectType::Data *allocObject() { Scope scope(engine); Scoped t(scope, allocateObject()); (void)new (t->d()) typename ObjectType::Data(); return t->d(); } template typename ObjectType::Data *allocObject(Arg1 arg1) { Scope scope(engine); Scoped t(scope, allocateObject()); (void)new (t->d()) typename ObjectType::Data(arg1); return t->d(); } template typename ObjectType::Data *allocObject(Arg1 arg1, Arg2 arg2) { Scope scope(engine); Scoped t(scope, allocateObject()); (void)new (t->d()) typename ObjectType::Data(arg1, arg2); return t->d(); } template typename ObjectType::Data *allocObject(Arg1 arg1, Arg2 arg2, Arg3 arg3) { Scope scope(engine); Scoped t(scope, allocateObject()); (void)new (t->d()) typename ObjectType::Data(arg1, arg2, arg3); return t->d(); } template typename ObjectType::Data *allocObject(Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4) { Scope scope(engine); Scoped t(scope, allocateObject()); (void)new (t->d()) typename ObjectType::Data(arg1, arg2, arg3, arg4); return t->d(); } template typename ManagedType::Data *alloc() { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); (void)new (t->d()) typename ManagedType::Data(); return t->d(); } template typename ManagedType::Data *alloc(Arg1 arg1) { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); (void)new (t->d()) typename ManagedType::Data(arg1); return t->d(); } template typename ManagedType::Data *alloc(Arg1 arg1, Arg2 arg2) { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); (void)new (t->d()) typename ManagedType::Data(arg1, arg2); return t->d(); } template typename ManagedType::Data *alloc(Arg1 arg1, Arg2 arg2, Arg3 arg3) { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); (void)new (t->d()) typename ManagedType::Data(arg1, arg2, arg3); return t->d(); } template typename ManagedType::Data *alloc(Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4) { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); (void)new (t->d()) typename ManagedType::Data(arg1, arg2, arg3, arg4); return t->d(); } template typename ManagedType::Data *alloc(Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5) { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); (void)new (t->d()) typename ManagedType::Data(arg1, arg2, arg3, arg4, arg5); return t->d(); } bool isGCBlocked() const; void setGCBlocked(bool blockGC); void runGC(); void dumpStats() const; size_t getUsedMem() const; size_t getAllocatedMem() const; size_t getLargeItemsMem() const; void growUnmanagedHeapSizeUsage(size_t delta); // called when a JS object grows itself. Specifically: Heap::String::append protected: /// expects size to be aligned // TODO: try to inline Heap::Base *allocData(std::size_t size, std::size_t unmanagedSize); #ifdef DETAILED_MM_STATS void willAllocate(std::size_t size); #endif // DETAILED_MM_STATS private: void collectFromJSStack() const; void mark(); void sweep(bool lastSweep = false); public: QV4::ExecutionEngine *engine; QScopedPointer m_d; PersistentValueStorage *m_persistentValues; PersistentValueStorage *m_weakValues; }; } QT_END_NAMESPACE #endif // QV4GC_H