/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtQml module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #ifndef QV4GC_H #define QV4GC_H // // W A R N I N G // ------------- // // This file is not part of the Qt API. It exists purely as an // implementation detail. This header file may change from version to // version without notice, or even be removed. // // We mean it. // #include #include #include #include #include #include //#define DETAILED_MM_STATS #define QV4_MM_MAXBLOCK_SHIFT "QV4_MM_MAXBLOCK_SHIFT" #define QV4_MM_MAX_CHUNK_SIZE "QV4_MM_MAX_CHUNK_SIZE" #define QV4_MM_STATS "QV4_MM_STATS" #define MM_DEBUG 0 QT_BEGIN_NAMESPACE namespace QV4 { struct ChunkAllocator; template struct StackAllocator { Q_STATIC_ASSERT(sizeof(T) < Chunk::DataSize); static const uint requiredSlots = (sizeof(T) + sizeof(HeapItem) - 1)/sizeof(HeapItem); StackAllocator(ChunkAllocator *chunkAlloc); T *allocate() { HeapItem *m = nextFree; if (Q_UNLIKELY(nextFree == lastInChunk)) { nextChunk(); } else { nextFree += requiredSlots; } #if MM_DEBUG || !defined(QT_NO_DEBUG) || defined(QT_FORCE_ASSERTS) Chunk *c = m->chunk(); Chunk::setBit(c->objectBitmap, m - c->realBase()); #endif return m->as(); } void free() { if (Q_UNLIKELY(nextFree == firstInChunk)) { prevChunk(); } else { nextFree -= requiredSlots; } #if MM_DEBUG || !defined(QT_NO_DEBUG) || defined(QT_FORCE_ASSERTS) Chunk *c = nextFree->chunk(); Chunk::clearBit(c->objectBitmap, nextFree - c->realBase()); #endif } void nextChunk(); void prevChunk(); void freeAll(); ChunkAllocator *chunkAllocator; HeapItem *nextFree = 0; HeapItem *firstInChunk = 0; HeapItem *lastInChunk = 0; std::vector chunks; uint currentChunk = 0; }; struct BlockAllocator { BlockAllocator(ChunkAllocator *chunkAllocator) : chunkAllocator(chunkAllocator) { memset(freeBins, 0, sizeof(freeBins)); #if MM_DEBUG memset(allocations, 0, sizeof(allocations)); #endif } enum { NumBins = 8 }; static inline size_t binForSlots(size_t nSlots) { return nSlots >= NumBins ? NumBins - 1 : nSlots; } #if MM_DEBUG void stats(); #endif HeapItem *allocate(size_t size, bool forceAllocation = false); size_t totalSlots() const { return Chunk::AvailableSlots*chunks.size(); } size_t allocatedMem() const { return chunks.size()*Chunk::DataSize; } size_t usedMem() const { uint used = 0; for (auto c : chunks) used += c->nUsedSlots()*Chunk::SlotSize; return used; } void sweep(ClassDestroyStatsCallback classCountPtr); void freeAll(); void resetBlackBits(); void collectGrayItems(MarkStack *markStack); // bump allocations HeapItem *nextFree = 0; size_t nFree = 0; size_t usedSlotsAfterLastSweep = 0; HeapItem *freeBins[NumBins]; ChunkAllocator *chunkAllocator; std::vector chunks; #if MM_DEBUG uint allocations[NumBins]; #endif }; struct HugeItemAllocator { HugeItemAllocator(ChunkAllocator *chunkAllocator) : chunkAllocator(chunkAllocator) {} HeapItem *allocate(size_t size); void sweep(ClassDestroyStatsCallback classCountPtr); void freeAll(); void resetBlackBits(); void collectGrayItems(MarkStack *markStack); size_t usedMem() const { size_t used = 0; for (const auto &c : chunks) used += c.size; return used; } ChunkAllocator *chunkAllocator; struct HugeChunk { Chunk *chunk; size_t size; }; std::vector chunks; }; class Q_QML_EXPORT MemoryManager { Q_DISABLE_COPY(MemoryManager); public: MemoryManager(ExecutionEngine *engine); ~MemoryManager(); // TODO: this is only for 64bit (and x86 with SSE/AVX), so exend it for other architectures to be slightly more efficient (meaning, align on 8-byte boundaries). // Note: all occurrences of "16" in alloc/dealloc are also due to the alignment. Q_DECL_CONSTEXPR static inline std::size_t align(std::size_t size) { return (size + Chunk::SlotSize - 1) & ~(Chunk::SlotSize - 1); } QV4::Heap::CallContext *allocSimpleCallContext() { Heap::CallContext *ctxt = stackAllocator.allocate(); memset(ctxt, 0, sizeof(Heap::SimpleCallContext)); ctxt->internalClass = SimpleCallContext::defaultInternalClass(engine); Q_ASSERT(ctxt->internalClass && ctxt->internalClass->vtable); ctxt->init(); return ctxt; } void freeSimpleCallContext() { stackAllocator.free(); } template inline typename ManagedType::Data *allocManaged(std::size_t size) { V4_ASSERT_IS_TRIVIAL(typename ManagedType::Data) size = align(size); Heap::Base *o = allocData(size); InternalClass *ic = ManagedType::defaultInternalClass(engine); ic = ic->changeVTable(ManagedType::staticVTable()); o->internalClass = ic; Q_ASSERT(o->internalClass && o->internalClass->vtable); return static_cast(o); } template typename ObjectType::Data *allocateObject(InternalClass *ic) { Heap::Object *o = allocObjectWithMemberData(ObjectType::staticVTable(), ic->size); o->internalClass = ic; Q_ASSERT(o->internalClass && o->internalClass->vtable); Q_ASSERT(ic->vtable == ObjectType::staticVTable()); return static_cast(o); } template typename ObjectType::Data *allocateObject() { InternalClass *ic = ObjectType::defaultInternalClass(engine); ic = ic->changeVTable(ObjectType::staticVTable()); ic = ic->changePrototype(ObjectType::defaultPrototype(engine)->d()); Heap::Object *o = allocObjectWithMemberData(ObjectType::staticVTable(), ic->size); o->internalClass = ic; Q_ASSERT(o->internalClass && o->internalClass->vtable); Q_ASSERT(o->internalClass->prototype == ObjectType::defaultPrototype(engine)->d()); return static_cast(o); } template typename ManagedType::Data *allocWithStringData(std::size_t unmanagedSize, Arg1 arg1) { typename ManagedType::Data *o = reinterpret_cast(allocString(unmanagedSize)); o->internalClass = ManagedType::defaultInternalClass(engine); Q_ASSERT(o->internalClass && o->internalClass->vtable); o->init(arg1); return o; } template typename ObjectType::Data *allocObject(InternalClass *ic) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); t->d_unchecked()->init(); return t->d(); } template typename ObjectType::Data *allocObject(InternalClass *ic, Object *prototype) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); Q_ASSERT(t->internalClass()->prototype == (prototype ? prototype->d() : 0)); Q_UNUSED(prototype); t->d_unchecked()->init(); return t->d(); } template typename ObjectType::Data *allocObject(InternalClass *ic, Object *prototype, Arg1 arg1) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); Q_ASSERT(t->internalClass()->prototype == (prototype ? prototype->d() : 0)); Q_UNUSED(prototype); t->d_unchecked()->init(arg1); return t->d(); } template typename ObjectType::Data *allocObject(InternalClass *ic, Object *prototype, Arg1 arg1, Arg2 arg2) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); Q_ASSERT(t->internalClass()->prototype == (prototype ? prototype->d() : 0)); Q_UNUSED(prototype); t->d_unchecked()->init(arg1, arg2); return t->d(); } template typename ObjectType::Data *allocObject(InternalClass *ic, Object *prototype, Arg1 arg1, Arg2 arg2, Arg3 arg3) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); Q_ASSERT(t->internalClass()->prototype == (prototype ? prototype->d() : 0)); Q_UNUSED(prototype); t->d_unchecked()->init(arg1, arg2, arg3); return t->d(); } template typename ObjectType::Data *allocObject(InternalClass *ic, Object *prototype, Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4) { Scope scope(engine); Scoped t(scope, allocateObject(ic)); Q_ASSERT(t->internalClass()->prototype == (prototype ? prototype->d() : 0)); Q_UNUSED(prototype); t->d_unchecked()->init(arg1, arg2, arg3, arg4); return t->d(); } template typename ObjectType::Data *allocObject() { Scope scope(engine); Scoped t(scope, allocateObject()); t->d_unchecked()->init(); return t->d(); } template typename ObjectType::Data *allocObject(Arg1 arg1) { Scope scope(engine); Scoped t(scope, allocateObject()); t->d_unchecked()->init(arg1); return t->d(); } template typename ObjectType::Data *allocObject(Arg1 arg1, Arg2 arg2) { Scope scope(engine); Scoped t(scope, allocateObject()); t->d_unchecked()->init(arg1, arg2); return t->d(); } template typename ObjectType::Data *allocObject(Arg1 arg1, Arg2 arg2, Arg3 arg3) { Scope scope(engine); Scoped t(scope, allocateObject()); t->d_unchecked()->init(arg1, arg2, arg3); return t->d(); } template typename ObjectType::Data *allocObject(Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4) { Scope scope(engine); Scoped t(scope, allocateObject()); t->d_unchecked()->init(arg1, arg2, arg3, arg4); return t->d(); } template typename ManagedType::Data *alloc() { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); t->d_unchecked()->init(); return t->d(); } template typename ManagedType::Data *alloc(Arg1 arg1) { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); t->d_unchecked()->init(arg1); return t->d(); } template typename ManagedType::Data *alloc(Arg1 arg1, Arg2 arg2) { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); t->d_unchecked()->init(arg1, arg2); return t->d(); } template typename ManagedType::Data *alloc(Arg1 arg1, Arg2 arg2, Arg3 arg3) { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); t->d_unchecked()->init(arg1, arg2, arg3); return t->d(); } template typename ManagedType::Data *alloc(Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4) { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); t->d_unchecked()->init(arg1, arg2, arg3, arg4); return t->d(); } template typename ManagedType::Data *alloc(Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5) { Scope scope(engine); Scoped t(scope, allocManaged(sizeof(typename ManagedType::Data))); t->d_unchecked()->init(arg1, arg2, arg3, arg4, arg5); return t->d(); } void runGC(); void dumpStats() const; size_t getUsedMem() const; size_t getAllocatedMem() const; size_t getLargeItemsMem() const; // called when a JS object grows itself. Specifically: Heap::String::append void changeUnmanagedHeapSizeUsage(qptrdiff delta) { unmanagedHeapSize += delta; } protected: /// expects size to be aligned Heap::Base *allocString(std::size_t unmanagedSize); Heap::Base *allocData(std::size_t size); Heap::Object *allocObjectWithMemberData(const QV4::VTable *vtable, uint nMembers); #ifdef DETAILED_MM_STATS void willAllocate(std::size_t size); #endif // DETAILED_MM_STATS private: void collectFromJSStack(MarkStack *markStack) const; void mark(); void sweep(bool lastSweep = false, ClassDestroyStatsCallback classCountPtr = nullptr); bool shouldRunGC() const; void collectRoots(MarkStack *markStack); public: QV4::ExecutionEngine *engine; ChunkAllocator *chunkAllocator; StackAllocator stackAllocator; BlockAllocator blockAllocator; HugeItemAllocator hugeItemAllocator; PersistentValueStorage *m_persistentValues; PersistentValueStorage *m_weakValues; QVector m_pendingFreedObjectWrapperValue; std::size_t unmanagedHeapSize = 0; // the amount of bytes of heap that is not managed by the memory manager, but which is held onto by managed items. std::size_t unmanagedHeapSizeGCLimit; std::size_t usedSlotsAfterLastFullSweep = 0; bool gcBlocked = false; bool aggressiveGC = false; bool gcStats = false; }; } QT_END_NAMESPACE #endif // QV4GC_H