/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtQuick module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #include #include #include #include #include #include "qquickshadereffectmesh_p.h" QT_BEGIN_NAMESPACE /*! \qmltype ShaderEffect \instantiates QQuickShaderEffect \inqmlmodule QtQuick \inherits Item \ingroup qtquick-effects \brief Applies custom shaders to a rectangle. The ShaderEffect type applies a custom \l{vertexShader}{vertex} and \l{fragmentShader}{fragment (pixel)} shader to a rectangle. It allows adding effects such as drop shadow, blur, colorize and page curl into the QML scene. \note Depending on the Qt Quick scenegraph backend in use, the ShaderEffect type may not be supported. For example, with the \c software backend effects will not be rendered at all. \section1 Shaders In Qt 5, effects were provided in form of GLSL (OpenGL Shading Language) source code, often embedded as strings into QML. Starting with Qt 5.8, referring to files, either local ones or in the Qt resource system, became possible as well. In Qt 6, Qt Quick has support for graphics APIs, such as Vulkan, Metal, and Direct3D 11 as well. Therefore, working with GLSL source strings is no longer feasible. Rather, the new shader pipeline is based on compiling Vulkan-compatible GLSL code into \l{https://www.khronos.org/spir/}{SPIR-V}, followed by gathering reflection information and translating into other shading languages, such as HLSL, the Metal Shading Language, and various GLSL versions. The resulting assets are packed together into a single package, typically stored in files with an extension of \c{.qsb}. This process is done offline or at application build time at latest. At run time, the scene graph and the underlying graphics abstraction consumes these \c{.qsb} files. Therefore, ShaderEffect expects file (local or qrc) references in Qt 6 in place of inline shader code. The \l vertexShader and \l fragmentShader properties are URLs in Qt 6, and work very similarly to \l{Image::source}{Image.source}, for example. Only the \c file and \c qrc schemes are supported with ShaderEffect, however. It is also possible to omit the \c file scheme, allowing to specify a relative path in a convenient way. Such a path is resolved relative to the component's (the \c{.qml} file's) location. \section1 Shader Inputs and Resources There are two types of input to the \l vertexShader: uniforms and vertex inputs. The following inputs are predefined: \list \li vec4 qt_Vertex - vertex position, the top-left vertex has position (0, 0), the bottom-right (\l{Item::width}{width}, \l{Item::height}{height}). \li vec2 qt_MultiTexCoord0 - texture coordinate, the top-left coordinate is (0, 0), the bottom-right (1, 1). If \l supportsAtlasTextures is true, coordinates will be based on position in the atlas instead. \endlist The following uniforms are predefined: \list \li mat4 qt_Matrix - combined transformation matrix, the product of the matrices from the root item to this ShaderEffect, and an orthogonal projection. \li float qt_Opacity - combined opacity, the product of the opacities from the root item to this ShaderEffect. \endlist \note Vulkan-style GLSL has no separate uniform variables. Instead, shaders must always use a uniform block with a binding point of \c 0. \note The uniform block layout qualifier must always be \c std140. In addition, any property that can be mapped to a GLSL type can be made available to the shaders. The following list shows how properties are mapped: \list \li bool, int, qreal -> bool, int, float - If the type in the shader is not the same as in QML, the value is converted automatically. \li QColor -> vec4 - When colors are passed to the shader, they are first premultiplied. Thus Qt.rgba(0.2, 0.6, 1.0, 0.5) becomes vec4(0.1, 0.3, 0.5, 0.5) in the shader, for example. \li QRect, QRectF -> vec4 - Qt.rect(x, y, w, h) becomes vec4(x, y, w, h) in the shader. \li QPoint, QPointF, QSize, QSizeF -> vec2 \li QVector3D -> vec3 \li QVector4D -> vec4 \li QTransform -> mat3 \li QMatrix4x4 -> mat4 \li QQuaternion -> vec4, scalar value is \c w. \li \l Image -> sampler2D - Origin is in the top-left corner, and the color values are premultiplied. The texture is provided as is, excluding the Image item's fillMode. To include fillMode, use a ShaderEffectSource or Image::layer::enabled. \li \l ShaderEffectSource -> sampler2D - Origin is in the top-left corner, and the color values are premultiplied. \endlist Samplers are still declared as separate uniform variables in the shader code. The shaders are free to choose any binding point for these, except for \c 0 because that is reserved for the uniform block. Some shading languages and APIs have a concept of separate image and sampler objects. Qt Quick always works with combined image sampler objects in shaders, as supported by SPIR-V. Therefore shaders supplied for ShaderEffect should always use \c{layout(binding = 1) uniform sampler2D tex;} style sampler declarations. The underlying abstraction layer and the shader pipeline takes care of making this work for all the supported APIs and shading languages, transparently to the applications. The QML scene graph back-end may choose to allocate textures in texture atlases. If a texture allocated in an atlas is passed to a ShaderEffect, it is by default copied from the texture atlas into a stand-alone texture so that the texture coordinates span from 0 to 1, and you get the expected wrap modes. However, this will increase the memory usage. To avoid the texture copy, set \l supportsAtlasTextures for simple shaders using qt_MultiTexCoord0, or for each "uniform sampler2D " declare a "uniform vec4 qt_SubRect_" which will be assigned the texture's normalized source rectangle. For stand-alone textures, the source rectangle is [0, 1]x[0, 1]. For textures in an atlas, the source rectangle corresponds to the part of the texture atlas where the texture is stored. The correct way to calculate the texture coordinate for a texture called "source" within a texture atlas is "qt_SubRect_source.xy + qt_SubRect_source.zw * qt_MultiTexCoord0". The output from the \l fragmentShader should be premultiplied. If \l blending is enabled, source-over blending is used. However, additive blending can be achieved by outputting zero in the alpha channel. \table 70% \row \li \image declarative-shadereffectitem.png \li \qml import QtQuick 2.0 Rectangle { width: 200; height: 100 Row { Image { id: img; sourceSize { width: 100; height: 100 } source: "qt-logo.png" } ShaderEffect { width: 100; height: 100 property variant src: img vertexShader: "myeffect.vert.qsb" fragmentShader: "myeffect.frag.qsb" } } } \endqml \endtable The example assumes \c{myeffect.vert} and \c{myeffect.frag} contain Vulkan-style GLSL code, processed by the \c qsb tool in order to generate the \c{.qsb} files. \badcode #version 440 layout(location = 0) in vec4 qt_Vertex; layout(location = 1) in vec2 qt_MultiTexCoord0; layout(location = 0) out vec2 coord; layout(std140, binding = 0) uniform buf { mat4 qt_Matrix; float qt_Opacity; }; out gl_PerVertex { vec4 gl_Position; }; void main() { coord = qt_MultiTexCoord0; gl_Position = qt_Matrix * qt_Vertex; } \endcode \badcode #version 440 layout(location = 0) in vec2 coord; layout(location = 0) out vec4 fragColor; layout(std140, binding = 0) uniform buf { mat4 qt_Matrix; float qt_Opacity; }; layout(binding = 1) uniform sampler2D src; void main() { vec4 tex = texture(src, coord); fragColor = vec4(vec3(dot(tex.rgb, vec3(0.344, 0.5, 0.156))), tex.a) * qt_Opacity; } \endcode \note Scene Graph textures have origin in the top-left corner rather than bottom-left which is common in OpenGL. \section1 Having One Shader Only Specifying both \l vertexShader and \l fragmentShader is not mandatory. Many ShaderEffect implementations will want to provide a fragment shader only in practice, while relying on the default, built-in vertex shader. The default vertex shader passes the texture coordinate along to the fragment shader as \c{vec2 qt_TexCoord0} at location \c 0. The default fragment shader expects the texture coordinate to be passed from the vertex shader as \c{vec2 qt_TexCoord0} at location \c 0, and it samples from a sampler2D named \c source at binding point \c 1. \warning When only one of the shaders is specified, the writer of the shader must be aware of the uniform block layout expected by the default shaders: qt_Matrix must always be at offset 0, followed by qt_Opacity at offset 64. Any custom uniforms must be placed after these two. This is mandatory even when the application-provided shader does not use the matrix or the opacity, because at run time there is one single uniform buffer that is exposed to both the vertex and fragment shader. \section1 ShaderEffect and Item Layers The ShaderEffect type can be combined with \l {Item Layers} {layered items}. \table \row \li \b {Layer with effect disabled} \inlineimage qml-shadereffect-nolayereffect.png \li \b {Layer with effect enabled} \inlineimage qml-shadereffect-layereffect.png \row \li \qml Item { id: layerRoot layer.enabled: true layer.effect: ShaderEffect { fragmentShader: "effect.frag.qsb" } \endqml \badcode #version 440 layout(location = 0) in vec2 qt_TexCoord0; layout(location = 0) out vec4 fragColor; layout(std140, binding = 0) uniform buf { mat4 qt_Matrix; float qt_Opacity; }; layout(binding = 1) uniform sampler2D source; void main() { vec4 p = texture(source, qt_TexCoord0); float g = dot(p.xyz, vec3(0.344, 0.5, 0.156)); fragColor = vec4(g, g, g, p.a) * qt_Opacity; } \endcode \endtable It is also possible to combine multiple layered items: \table \row \li \inlineimage qml-shadereffect-opacitymask.png \row \li \qml Rectangle { id: gradientRect; width: 10 height: 10 gradient: Gradient { GradientStop { position: 0; color: "white" } GradientStop { position: 1; color: "steelblue" } } visible: false; // should not be visible on screen. layer.enabled: true; layer.smooth: true } Text { id: textItem font.pixelSize: 48 text: "Gradient Text" anchors.centerIn: parent layer.enabled: true // This item should be used as the 'mask' layer.samplerName: "maskSource" layer.effect: ShaderEffect { property var colorSource: gradientRect; fragmentShader: "mask.frag.qsb" } } \endqml \badcode #version 440 layout(location = 0) in vec2 qt_TexCoord0; layout(location = 0) out vec4 fragColor; layout(std140, binding = 0) uniform buf { mat4 qt_Matrix; float qt_Opacity; }; layout(binding = 1) uniform sampler2D colorSource; layout(binding = 2) uniform sampler2D maskSource; void main() { fragColor = texture(colorSource, qt_TexCoord0) * texture(maskSource, qt_TexCoord0).a * qt_Opacity; } \endcode \endtable \section1 Other Notes By default, the ShaderEffect consists of four vertices, one for each corner. For non-linear vertex transformations, like page curl, you can specify a fine grid of vertices by specifying a \l mesh resolution. \sa {Item Layers} */ namespace QtPrivate { class EffectSlotMapper: public QtPrivate::QSlotObjectBase { public: typedef std::function PropChangedFunc; explicit EffectSlotMapper(PropChangedFunc func) : QSlotObjectBase(&impl), _signalIndex(-1), func(func) { ref(); } void setSignalIndex(int idx) { _signalIndex = idx; } int signalIndex() const { return _signalIndex; } private: int _signalIndex; PropChangedFunc func; static void impl(int which, QSlotObjectBase *this_, QObject *, void **a, bool *ret) { auto thiz = static_cast(this_); switch (which) { case Destroy: delete thiz; break; case Call: thiz->func(); break; case Compare: *ret = thiz == reinterpret_cast(a[0]); break; case NumOperations: ; } } }; } // namespace QtPrivate class QQuickShaderEffectImpl : public QObject { Q_OBJECT public: QQuickShaderEffectImpl(QQuickShaderEffect *item); ~QQuickShaderEffectImpl(); QUrl fragmentShader() const { return m_fragShader; } void setFragmentShader(const QUrl &fileUrl); QUrl vertexShader() const { return m_vertShader; } void setVertexShader(const QUrl &fileUrl); bool blending() const { return m_blending; } void setBlending(bool enable); QVariant mesh() const; void setMesh(const QVariant &mesh); QQuickShaderEffect::CullMode cullMode() const { return m_cullMode; } void setCullMode(QQuickShaderEffect::CullMode face); QString log() const; QQuickShaderEffect::Status status() const; bool supportsAtlasTextures() const { return m_supportsAtlasTextures; } void setSupportsAtlasTextures(bool supports); QString parseLog(); void handleEvent(QEvent *); void handleGeometryChanged(const QRectF &newGeometry, const QRectF &oldGeometry); QSGNode *handleUpdatePaintNode(QSGNode *, QQuickItem::UpdatePaintNodeData *); void handleComponentComplete(); void handleItemChange(QQuickItem::ItemChange change, const QQuickItem::ItemChangeData &value); void maybeUpdateShaders(); bool updateUniformValue(const QByteArray &name, const QVariant &value, QSGShaderEffectNode *node); private slots: void propertyChanged(int mappedId); void sourceDestroyed(QObject *object); void markGeometryDirtyAndUpdate(); void markGeometryDirtyAndUpdateIfSupportsAtlas(); void shaderCodePrepared(bool ok, QSGGuiThreadShaderEffectManager::ShaderInfo::Type typeHint, const QUrl &loadUrl, QSGGuiThreadShaderEffectManager::ShaderInfo *result); private: QSGGuiThreadShaderEffectManager *shaderEffectManager() const; enum Shader { Vertex, Fragment, NShader }; bool updateShader(Shader shaderType, const QUrl &fileUrl); void updateShaderVars(Shader shaderType); void disconnectSignals(Shader shaderType); void clearMappers(Shader shaderType); bool sourceIsUnique(QQuickItem *source, Shader typeToSkip, int indexToSkip) const; std::optional findMappedShaderVariableId(const QByteArray &name) const; QQuickShaderEffect *m_item; const QMetaObject *m_itemMetaObject = nullptr; QSize m_meshResolution; QQuickShaderEffectMesh *m_mesh; QQuickGridMesh m_defaultMesh; QQuickShaderEffect::CullMode m_cullMode; bool m_blending; bool m_supportsAtlasTextures; mutable QSGGuiThreadShaderEffectManager *m_mgr; QUrl m_fragShader; bool m_fragNeedsUpdate; QUrl m_vertShader; bool m_vertNeedsUpdate; QSGShaderEffectNode::ShaderData m_shaders[NShader]; QSGShaderEffectNode::DirtyShaderFlags m_dirty; QSet m_dirtyConstants[NShader]; QSet m_dirtyTextures[NShader]; QSGGuiThreadShaderEffectManager::ShaderInfo *m_inProgress[NShader]; QVector m_mappers[NShader]; }; class QQuickShaderEffectPrivate : public QQuickItemPrivate { Q_DECLARE_PUBLIC(QQuickShaderEffect) public: void updatePolish() override; }; QQuickShaderEffect::QQuickShaderEffect(QQuickItem *parent) : QQuickItem(*new QQuickShaderEffectPrivate, parent), m_impl(nullptr) { setFlag(QQuickItem::ItemHasContents); m_impl = new QQuickShaderEffectImpl(this); } QQuickShaderEffect::~QQuickShaderEffect() { // Delete the implementations now, while they still have have // valid references back to us. auto *impl = m_impl; m_impl = nullptr; delete impl; } /*! \qmlproperty url QtQuick::ShaderEffect::fragmentShader This property contains a reference to a file with the preprocessed fragment shader package, typically with an extension of \c{.qsb}. The value is treated as a \l{QUrl}{URL}, similarly to other QML types, such as Image. It must either be a local file or use the qrc scheme to access files embedded via the Qt resource system. The URL may be absolute, or relative to the URL of the component. \sa vertexShader */ QUrl QQuickShaderEffect::fragmentShader() const { return m_impl->fragmentShader(); } void QQuickShaderEffect::setFragmentShader(const QUrl &fileUrl) { m_impl->setFragmentShader(fileUrl); } /*! \qmlproperty url QtQuick::ShaderEffect::vertexShader This property contains a reference to a file with the preprocessed vertex shader package, typically with an extension of \c{.qsb}. The value is treated as a \l{QUrl}{URL}, similarly to other QML types, such as Image. It must either be a local file or use the qrc scheme to access files embedded via the Qt resource system. The URL may be absolute, or relative to the URL of the component. \sa fragmentShader */ QUrl QQuickShaderEffect::vertexShader() const { return m_impl->vertexShader(); } void QQuickShaderEffect::setVertexShader(const QUrl &fileUrl) { m_impl->setVertexShader(fileUrl); } /*! \qmlproperty bool QtQuick::ShaderEffect::blending If this property is true, the output from the \l fragmentShader is blended with the background using source-over blend mode. If false, the background is disregarded. Blending decreases the performance, so you should set this property to false when blending is not needed. The default value is true. */ bool QQuickShaderEffect::blending() const { return m_impl->blending(); } void QQuickShaderEffect::setBlending(bool enable) { m_impl->setBlending(enable); } /*! \qmlproperty variant QtQuick::ShaderEffect::mesh This property defines the mesh used to draw the ShaderEffect. It can hold any \l GridMesh object. If a size value is assigned to this property, the ShaderEffect implicitly uses a \l GridMesh with the value as \l{GridMesh::resolution}{mesh resolution}. By default, this property is the size 1x1. \sa GridMesh */ QVariant QQuickShaderEffect::mesh() const { return m_impl->mesh(); } void QQuickShaderEffect::setMesh(const QVariant &mesh) { m_impl->setMesh(mesh); } /*! \qmlproperty enumeration QtQuick::ShaderEffect::cullMode This property defines which sides of the item should be visible. \list \li ShaderEffect.NoCulling - Both sides are visible \li ShaderEffect.BackFaceCulling - only front side is visible \li ShaderEffect.FrontFaceCulling - only back side is visible \endlist The default is NoCulling. */ QQuickShaderEffect::CullMode QQuickShaderEffect::cullMode() const { return m_impl->cullMode(); } void QQuickShaderEffect::setCullMode(CullMode face) { return m_impl->setCullMode(face); } /*! \qmlproperty bool QtQuick::ShaderEffect::supportsAtlasTextures Set this property true to confirm that your shader code doesn't rely on qt_MultiTexCoord0 ranging from (0,0) to (1,1) relative to the mesh. In this case the range of qt_MultiTexCoord0 will rather be based on the position of the texture within the atlas. This property currently has no effect if there is less, or more, than one sampler uniform used as input to your shader. This differs from providing qt_SubRect_ uniforms in that the latter allows drawing one or more textures from the atlas in a single ShaderEffect item, while supportsAtlasTextures allows multiple instances of a ShaderEffect component using a different source image from the atlas to be batched in a single draw. Both prevent a texture from being copied out of the atlas when referenced by a ShaderEffect. The default value is false. \since 5.4 \since QtQuick 2.4 */ bool QQuickShaderEffect::supportsAtlasTextures() const { return m_impl->supportsAtlasTextures(); } void QQuickShaderEffect::setSupportsAtlasTextures(bool supports) { m_impl->setSupportsAtlasTextures(supports); } /*! \qmlproperty enumeration QtQuick::ShaderEffect::status This property tells the current status of the shaders. \list \li ShaderEffect.Compiled - the shader program was successfully compiled and linked. \li ShaderEffect.Uncompiled - the shader program has not yet been compiled. \li ShaderEffect.Error - the shader program failed to compile or link. \endlist When setting the fragment or vertex shader source code, the status will become Uncompiled. The first time the ShaderEffect is rendered with new shader source code, the shaders are compiled and linked, and the status is updated to Compiled or Error. When runtime compilation is not in use and the shader properties refer to files with bytecode, the status is always Compiled. The contents of the shader is not examined (apart from basic reflection to discover vertex input elements and constant buffer data) until later in the rendering pipeline so potential errors (like layout or root signature mismatches) will only be detected at a later point. \sa log */ /*! \qmlproperty string QtQuick::ShaderEffect::log This property holds a log of warnings and errors from the latest attempt at compiling the shaders. It is updated at the same time \l status is set to Compiled or Error. \note In Qt 6, the shader pipeline promotes compiling and translating the Vulkan-style GLSL shaders offline, or at build time at latest. This does not necessarily mean there is no shader compilation happening at run time, but even if there is, ShaderEffect is not involved in that, and syntax and similar errors should not occur anymore at that stage. Therefore the value of this property is typically empty. \sa status */ QString QQuickShaderEffect::log() const { return m_impl->log(); } QQuickShaderEffect::Status QQuickShaderEffect::status() const { return m_impl->status(); } bool QQuickShaderEffect::event(QEvent *e) { if (m_impl) m_impl->handleEvent(e); return QQuickItem::event(e); } void QQuickShaderEffect::geometryChange(const QRectF &newGeometry, const QRectF &oldGeometry) { m_impl->handleGeometryChanged(newGeometry, oldGeometry); QQuickItem::geometryChange(newGeometry, oldGeometry); } QSGNode *QQuickShaderEffect::updatePaintNode(QSGNode *oldNode, UpdatePaintNodeData *updatePaintNodeData) { return m_impl->handleUpdatePaintNode(oldNode, updatePaintNodeData); } void QQuickShaderEffect::componentComplete() { m_impl->maybeUpdateShaders(); QQuickItem::componentComplete(); } void QQuickShaderEffect::itemChange(ItemChange change, const ItemChangeData &value) { // It's possible for itemChange to be called during destruction when deleting // the QQuickShaderEffectImpl. We nullify m_impl before deleting it via another pointer // to it, so we must check that it's not null before trying to use it here. if (m_impl) m_impl->handleItemChange(change, value); QQuickItem::itemChange(change, value); } bool QQuickShaderEffect::isComponentComplete() const { return QQuickItem::isComponentComplete(); } QString QQuickShaderEffect::parseLog() // for OpenGL-based autotests { return m_impl->parseLog(); } bool QQuickShaderEffect::updateUniformValue(const QByteArray &name, const QVariant &value) { auto node = static_cast(QQuickItemPrivate::get(this)->paintNode); if (!node) return false; return m_impl->updateUniformValue(name, value, node); } void QQuickShaderEffectPrivate::updatePolish() { Q_Q(QQuickShaderEffect); if (!qmlEngine(q)) return; q->m_impl->maybeUpdateShaders(); } constexpr int indexToMappedId(const int shaderType, const int idx) { return idx | (shaderType << 16); } constexpr int mappedIdToIndex(const int mappedId) { return mappedId & 0xFFFF; } constexpr int mappedIdToShaderType(const int mappedId) { return mappedId >> 16; } QQuickShaderEffectImpl::QQuickShaderEffectImpl(QQuickShaderEffect *item) : QObject(item) , m_item(item) , m_meshResolution(1, 1) , m_mesh(nullptr) , m_cullMode(QQuickShaderEffect::NoCulling) , m_blending(true) , m_supportsAtlasTextures(false) , m_mgr(nullptr) , m_fragNeedsUpdate(true) , m_vertNeedsUpdate(true) { qRegisterMetaType("ShaderInfo::Type"); for (int i = 0; i < NShader; ++i) m_inProgress[i] = nullptr; } QQuickShaderEffectImpl::~QQuickShaderEffectImpl() { for (int i = 0; i < NShader; ++i) { disconnectSignals(Shader(i)); clearMappers(Shader(i)); } delete m_mgr; } void QQuickShaderEffectImpl::setFragmentShader(const QUrl &fileUrl) { if (m_fragShader == fileUrl) return; m_fragShader = fileUrl; m_fragNeedsUpdate = true; if (m_item->isComponentComplete()) maybeUpdateShaders(); emit m_item->fragmentShaderChanged(); } void QQuickShaderEffectImpl::setVertexShader(const QUrl &fileUrl) { if (m_vertShader == fileUrl) return; m_vertShader = fileUrl; m_vertNeedsUpdate = true; if (m_item->isComponentComplete()) maybeUpdateShaders(); emit m_item->vertexShaderChanged(); } void QQuickShaderEffectImpl::setBlending(bool enable) { if (m_blending == enable) return; m_blending = enable; m_item->update(); emit m_item->blendingChanged(); } QVariant QQuickShaderEffectImpl::mesh() const { return m_mesh ? QVariant::fromValue(static_cast(m_mesh)) : QVariant::fromValue(m_meshResolution); } void QQuickShaderEffectImpl::setMesh(const QVariant &mesh) { QQuickShaderEffectMesh *newMesh = qobject_cast(qvariant_cast(mesh)); if (newMesh && newMesh == m_mesh) return; if (m_mesh) disconnect(m_mesh, SIGNAL(geometryChanged()), this, nullptr); m_mesh = newMesh; if (m_mesh) { connect(m_mesh, SIGNAL(geometryChanged()), this, SLOT(markGeometryDirtyAndUpdate())); } else { if (mesh.canConvert()) { m_meshResolution = mesh.toSize(); } else { QList res = mesh.toByteArray().split('x'); bool ok = res.size() == 2; if (ok) { int w = res.at(0).toInt(&ok); if (ok) { int h = res.at(1).toInt(&ok); if (ok) m_meshResolution = QSize(w, h); } } if (!ok) qWarning("ShaderEffect: mesh property must be a size or an object deriving from QQuickShaderEffectMesh"); } m_defaultMesh.setResolution(m_meshResolution); } m_dirty |= QSGShaderEffectNode::DirtyShaderMesh; m_item->update(); emit m_item->meshChanged(); } void QQuickShaderEffectImpl::setCullMode(QQuickShaderEffect::CullMode face) { if (m_cullMode == face) return; m_cullMode = face; m_item->update(); emit m_item->cullModeChanged(); } void QQuickShaderEffectImpl::setSupportsAtlasTextures(bool supports) { if (m_supportsAtlasTextures == supports) return; m_supportsAtlasTextures = supports; markGeometryDirtyAndUpdate(); emit m_item->supportsAtlasTexturesChanged(); } QString QQuickShaderEffectImpl::parseLog() { maybeUpdateShaders(); return log(); } QString QQuickShaderEffectImpl::log() const { QSGGuiThreadShaderEffectManager *mgr = shaderEffectManager(); if (!mgr) return QString(); return mgr->log(); } QQuickShaderEffect::Status QQuickShaderEffectImpl::status() const { QSGGuiThreadShaderEffectManager *mgr = shaderEffectManager(); if (!mgr) return QQuickShaderEffect::Uncompiled; return QQuickShaderEffect::Status(mgr->status()); } void QQuickShaderEffectImpl::handleEvent(QEvent *event) { if (event->type() == QEvent::DynamicPropertyChange) { const auto propertyName = static_cast(event)->propertyName(); const auto mappedId = findMappedShaderVariableId(propertyName); if (mappedId) propertyChanged(*mappedId); } } void QQuickShaderEffectImpl::handleGeometryChanged(const QRectF &, const QRectF &) { m_dirty |= QSGShaderEffectNode::DirtyShaderGeometry; } QSGNode *QQuickShaderEffectImpl::handleUpdatePaintNode(QSGNode *oldNode, QQuickItem::UpdatePaintNodeData *) { QSGShaderEffectNode *node = static_cast(oldNode); if (m_item->width() <= 0 || m_item->height() <= 0) { delete node; return nullptr; } // Do not change anything while a new shader is being reflected or compiled. if (m_inProgress[Vertex] || m_inProgress[Fragment]) return node; // The manager should be already created on the gui thread. Just take that instance. QSGGuiThreadShaderEffectManager *mgr = shaderEffectManager(); if (!mgr) { delete node; return nullptr; } if (!node) { QSGRenderContext *rc = QQuickWindowPrivate::get(m_item->window())->context; node = rc->sceneGraphContext()->createShaderEffectNode(rc); if (!node) { qWarning("No shader effect node"); return nullptr; } m_dirty = QSGShaderEffectNode::DirtyShaderAll; connect(node, &QSGShaderEffectNode::textureChanged, this, &QQuickShaderEffectImpl::markGeometryDirtyAndUpdateIfSupportsAtlas); } QSGShaderEffectNode::SyncData sd; sd.dirty = m_dirty; sd.cullMode = QSGShaderEffectNode::CullMode(m_cullMode); sd.blending = m_blending; sd.vertex.shader = &m_shaders[Vertex]; sd.vertex.dirtyConstants = &m_dirtyConstants[Vertex]; sd.vertex.dirtyTextures = &m_dirtyTextures[Vertex]; sd.fragment.shader = &m_shaders[Fragment]; sd.fragment.dirtyConstants = &m_dirtyConstants[Fragment]; sd.fragment.dirtyTextures = &m_dirtyTextures[Fragment]; node->syncMaterial(&sd); if (m_dirty & QSGShaderEffectNode::DirtyShaderMesh) { node->setGeometry(nullptr); m_dirty &= ~QSGShaderEffectNode::DirtyShaderMesh; m_dirty |= QSGShaderEffectNode::DirtyShaderGeometry; } if (m_dirty & QSGShaderEffectNode::DirtyShaderGeometry) { const QRectF rect(0, 0, m_item->width(), m_item->height()); QQuickShaderEffectMesh *mesh = m_mesh ? m_mesh : &m_defaultMesh; QSGGeometry *geometry = node->geometry(); const QRectF srcRect = node->updateNormalizedTextureSubRect(m_supportsAtlasTextures); geometry = mesh->updateGeometry(geometry, 2, 0, srcRect, rect); node->setFlag(QSGNode::OwnsGeometry, false); node->setGeometry(geometry); node->setFlag(QSGNode::OwnsGeometry, true); m_dirty &= ~QSGShaderEffectNode::DirtyShaderGeometry; } m_dirty = {}; for (int i = 0; i < NShader; ++i) { m_dirtyConstants[i].clear(); m_dirtyTextures[i].clear(); } return node; } void QQuickShaderEffectImpl::maybeUpdateShaders() { if (m_vertNeedsUpdate) m_vertNeedsUpdate = !updateShader(Vertex, m_vertShader); if (m_fragNeedsUpdate) m_fragNeedsUpdate = !updateShader(Fragment, m_fragShader); if (m_vertNeedsUpdate || m_fragNeedsUpdate) { // This function is invoked either from componentComplete or in a // response to a previous invocation's polish() request. If this is // case #1 then updateShader can fail due to not having a window or // scenegraph ready. Schedule the polish to try again later. In case #2 // the backend probably does not have shadereffect support so there is // nothing to do for us here. if (!m_item->window() || !m_item->window()->isSceneGraphInitialized()) m_item->polish(); } } bool QQuickShaderEffectImpl::updateUniformValue(const QByteArray &name, const QVariant &value, QSGShaderEffectNode *node) { const auto mappedId = findMappedShaderVariableId(name); if (!mappedId) return false; const Shader type = Shader(mappedIdToShaderType(*mappedId)); const int idx = mappedIdToIndex(*mappedId); // Update value m_shaders[type].varData[idx].value = value; // Insert dirty uniform QSet dirtyConstants[NShader]; dirtyConstants[type].insert(idx); // Sync material change QSGShaderEffectNode::SyncData sd; sd.dirty = QSGShaderEffectNode::DirtyShaderConstant; sd.cullMode = QSGShaderEffectNode::CullMode(m_cullMode); sd.blending = m_blending; sd.vertex.shader = &m_shaders[Vertex]; sd.vertex.dirtyConstants = &dirtyConstants[Vertex]; sd.vertex.dirtyTextures = {}; sd.fragment.shader = &m_shaders[Fragment]; sd.fragment.dirtyConstants = &dirtyConstants[Fragment]; sd.fragment.dirtyTextures = {}; node->syncMaterial(&sd); return true; } void QQuickShaderEffectImpl::handleItemChange(QQuickItem::ItemChange change, const QQuickItem::ItemChangeData &value) { // Move the window ref. if (change == QQuickItem::ItemSceneChange) { for (int shaderType = 0; shaderType < NShader; ++shaderType) { for (const auto &vd : qAsConst(m_shaders[shaderType].varData)) { if (vd.specialType == QSGShaderEffectNode::VariableData::Source) { QQuickItem *source = qobject_cast(qvariant_cast(vd.value)); if (source) { if (value.window) QQuickItemPrivate::get(source)->refWindow(value.window); else QQuickItemPrivate::get(source)->derefWindow(); } } } } } } QSGGuiThreadShaderEffectManager *QQuickShaderEffectImpl::shaderEffectManager() const { if (!m_mgr) { // return null if this is not the gui thread and not already created if (QThread::currentThread() != m_item->thread()) return m_mgr; QQuickWindow *w = m_item->window(); if (w) { // note: just the window, don't care about isSceneGraphInitialized() here m_mgr = QQuickWindowPrivate::get(w)->context->sceneGraphContext()->createGuiThreadShaderEffectManager(); if (m_mgr) { connect(m_mgr, SIGNAL(logAndStatusChanged()), m_item, SIGNAL(logChanged())); connect(m_mgr, SIGNAL(logAndStatusChanged()), m_item, SIGNAL(statusChanged())); connect(m_mgr, &QSGGuiThreadShaderEffectManager::shaderCodePrepared, this, &QQuickShaderEffectImpl::shaderCodePrepared); } } } return m_mgr; } void QQuickShaderEffectImpl::disconnectSignals(Shader shaderType) { for (auto *mapper : m_mappers[shaderType]) { void *a = mapper; if (mapper) QObjectPrivate::disconnect(m_item, mapper->signalIndex(), &a); } for (const auto &vd : qAsConst(m_shaders[shaderType].varData)) { if (vd.specialType == QSGShaderEffectNode::VariableData::Source) { QQuickItem *source = qobject_cast(qvariant_cast(vd.value)); if (source) { if (m_item->window()) QQuickItemPrivate::get(source)->derefWindow(); QObject::disconnect(source, SIGNAL(destroyed(QObject*)), this, SLOT(sourceDestroyed(QObject*))); } } } } void QQuickShaderEffectImpl::clearMappers(QQuickShaderEffectImpl::Shader shaderType) { for (auto *mapper : qAsConst(m_mappers[shaderType])) { if (mapper) mapper->destroyIfLastRef(); } m_mappers[shaderType].clear(); } static inline QVariant getValueFromProperty(QObject *item, const QMetaObject *itemMetaObject, const QByteArray &name, int propertyIndex) { QVariant value; if (propertyIndex == -1) { value = item->property(name); } else { value = itemMetaObject->property(propertyIndex).read(item); } return value; } using QQuickShaderInfoCache = QHash; Q_GLOBAL_STATIC(QQuickShaderInfoCache, shaderInfoCache) void qtquick_shadereffect_purge_gui_thread_shader_cache() { shaderInfoCache()->clear(); } bool QQuickShaderEffectImpl::updateShader(Shader shaderType, const QUrl &fileUrl) { QSGGuiThreadShaderEffectManager *mgr = shaderEffectManager(); if (!mgr) return false; const bool texturesSeparate = mgr->hasSeparateSamplerAndTextureObjects(); disconnectSignals(shaderType); m_shaders[shaderType].shaderInfo = QSGGuiThreadShaderEffectManager::ShaderInfo(); m_shaders[shaderType].varData.clear(); if (!fileUrl.isEmpty()) { const QQmlContext *context = qmlContext(m_item); const QUrl loadUrl = context ? context->resolvedUrl(fileUrl) : fileUrl; auto it = shaderInfoCache()->constFind(loadUrl); if (it != shaderInfoCache()->cend()) { m_shaders[shaderType].shaderInfo = *it; m_shaders[shaderType].hasShaderCode = true; } else { // Each prepareShaderCode call needs its own work area, hence the // dynamic alloc. If there are calls in progress, let those run to // finish, their results can then simply be ignored because // m_inProgress indicates what we care about. m_inProgress[shaderType] = new QSGGuiThreadShaderEffectManager::ShaderInfo; const QSGGuiThreadShaderEffectManager::ShaderInfo::Type typeHint = shaderType == Vertex ? QSGGuiThreadShaderEffectManager::ShaderInfo::TypeVertex : QSGGuiThreadShaderEffectManager::ShaderInfo::TypeFragment; // Figure out what input parameters and variables are used in the // shader. This is where the data is pulled in from the file. // (however, if there is compilation involved, that happens at a // later stage, up to the QRhi backend) mgr->prepareShaderCode(typeHint, loadUrl, m_inProgress[shaderType]); // the rest is handled in shaderCodePrepared() return true; } } else { m_shaders[shaderType].hasShaderCode = false; if (shaderType == Fragment) { // With built-in shaders hasShaderCode is set to false and all // metadata is empty, as it is left up to the node to provide a // built-in default shader and its metadata. However, in case of // the built-in fragment shader the value for 'source' has to be // provided and monitored like with an application-provided shader. QSGGuiThreadShaderEffectManager::ShaderInfo::Variable v; v.name = QByteArrayLiteral("source"); v.bindPoint = 0; // fake v.type = texturesSeparate ? QSGGuiThreadShaderEffectManager::ShaderInfo::Texture : QSGGuiThreadShaderEffectManager::ShaderInfo::Sampler; m_shaders[shaderType].shaderInfo.variables.append(v); } } updateShaderVars(shaderType); m_dirty |= QSGShaderEffectNode::DirtyShaders; m_item->update(); return true; } void QQuickShaderEffectImpl::shaderCodePrepared(bool ok, QSGGuiThreadShaderEffectManager::ShaderInfo::Type typeHint, const QUrl &loadUrl, QSGGuiThreadShaderEffectManager::ShaderInfo *result) { const Shader shaderType = typeHint == QSGGuiThreadShaderEffectManager::ShaderInfo::TypeVertex ? Vertex : Fragment; // If another call was made to updateShader() for the same shader type in // the meantime then our results are useless, just drop them. if (result != m_inProgress[shaderType]) { delete result; return; } m_shaders[shaderType].shaderInfo = *result; delete result; m_inProgress[shaderType] = nullptr; if (!ok) { qWarning("ShaderEffect: shader preparation failed for %s\n%s\n", qPrintable(loadUrl.toString()), qPrintable(log())); m_shaders[shaderType].hasShaderCode = false; return; } m_shaders[shaderType].hasShaderCode = true; shaderInfoCache()->insert(loadUrl, m_shaders[shaderType].shaderInfo); updateShaderVars(shaderType); m_dirty |= QSGShaderEffectNode::DirtyShaders; m_item->update(); } void QQuickShaderEffectImpl::updateShaderVars(Shader shaderType) { QSGGuiThreadShaderEffectManager *mgr = shaderEffectManager(); if (!mgr) return; const bool texturesSeparate = mgr->hasSeparateSamplerAndTextureObjects(); const int varCount = m_shaders[shaderType].shaderInfo.variables.count(); m_shaders[shaderType].varData.resize(varCount); // Reuse signal mappers as much as possible since the mapping is based on // the index and shader type which are both constant. if (m_mappers[shaderType].count() < varCount) m_mappers[shaderType].resize(varCount); auto *engine = qmlEngine(m_item); QQmlPropertyCache *propCache = engine ? QQmlData::ensurePropertyCache(engine, m_item) : nullptr; if (!m_itemMetaObject) m_itemMetaObject = m_item->metaObject(); // Hook up the signals to get notified about changes for properties that // correspond to variables in the shader. Store also the values. for (int i = 0; i < varCount; ++i) { const auto &v(m_shaders[shaderType].shaderInfo.variables.at(i)); QSGShaderEffectNode::VariableData &vd(m_shaders[shaderType].varData[i]); const bool isSpecial = v.name.startsWith("qt_"); // special names not mapped to properties if (isSpecial) { if (v.name == "qt_Opacity") vd.specialType = QSGShaderEffectNode::VariableData::Opacity; else if (v.name == "qt_Matrix") vd.specialType = QSGShaderEffectNode::VariableData::Matrix; else if (v.name.startsWith("qt_SubRect_")) vd.specialType = QSGShaderEffectNode::VariableData::SubRect; continue; } // The value of a property corresponding to a sampler is the source // item ref, unless there are separate texture objects in which case // the sampler is ignored (here). if (v.type == QSGGuiThreadShaderEffectManager::ShaderInfo::Sampler) { if (texturesSeparate) { vd.specialType = QSGShaderEffectNode::VariableData::Unused; continue; } else { vd.specialType = QSGShaderEffectNode::VariableData::Source; } } else if (v.type == QSGGuiThreadShaderEffectManager::ShaderInfo::Texture) { Q_ASSERT(texturesSeparate); vd.specialType = QSGShaderEffectNode::VariableData::Source; } else { vd.specialType = QSGShaderEffectNode::VariableData::None; } // Find the property on the ShaderEffect item. int propIdx = -1; QQmlPropertyData *pd = nullptr; if (propCache) { pd = propCache->property(QLatin1String(v.name), nullptr, nullptr); if (pd) { if (!pd->isFunction()) propIdx = pd->coreIndex(); } } if (propIdx >= 0) { if (pd && !pd->isFunction()) { if (pd->notifyIndex() == -1) { qWarning("QQuickShaderEffect: property '%s' does not have notification method!", v.name.constData()); } else { auto *&mapper = m_mappers[shaderType][i]; if (!mapper) { const int mappedId = indexToMappedId(shaderType, i); mapper = new QtPrivate::EffectSlotMapper([this, mappedId](){ this->propertyChanged(mappedId); }); } mapper->setSignalIndex(m_itemMetaObject->property(propIdx).notifySignal().methodIndex()); Q_ASSERT(m_item->metaObject() == m_itemMetaObject); bool ok = QObjectPrivate::connectImpl(m_item, pd->notifyIndex(), m_item, nullptr, mapper, Qt::AutoConnection, nullptr, m_itemMetaObject); if (!ok) qWarning() << "Failed to connect to property" << m_itemMetaObject->property(propIdx).name() << "(" << propIdx << ", signal index" << pd->notifyIndex() << ") of item" << m_item; } } } else { // Do not warn for dynamic properties. if (!m_item->property(v.name.constData()).isValid()) qWarning("ShaderEffect: '%s' does not have a matching property", v.name.constData()); } vd.propertyIndex = propIdx; vd.value = getValueFromProperty(m_item, m_itemMetaObject, v.name, vd.propertyIndex); if (vd.specialType == QSGShaderEffectNode::VariableData::Source) { QQuickItem *source = qobject_cast(qvariant_cast(vd.value)); if (source) { if (m_item->window()) QQuickItemPrivate::get(source)->refWindow(m_item->window()); QObject::connect(source, SIGNAL(destroyed(QObject*)), this, SLOT(sourceDestroyed(QObject*))); } } } } bool QQuickShaderEffectImpl::sourceIsUnique(QQuickItem *source, Shader typeToSkip, int indexToSkip) const { for (int shaderType = 0; shaderType < NShader; ++shaderType) { for (int idx = 0; idx < m_shaders[shaderType].varData.count(); ++idx) { if (shaderType != typeToSkip || idx != indexToSkip) { const auto &vd(m_shaders[shaderType].varData[idx]); if (vd.specialType == QSGShaderEffectNode::VariableData::Source && qvariant_cast(vd.value) == source) return false; } } } return true; } std::optional QQuickShaderEffectImpl::findMappedShaderVariableId(const QByteArray &name) const { for (int shaderType = 0; shaderType < NShader; ++shaderType) { const auto &vars = m_shaders[shaderType].shaderInfo.variables; for (int idx = 0; idx < vars.count(); ++idx) { if (vars[idx].name == name) return indexToMappedId(shaderType, idx); } } return {}; } void QQuickShaderEffectImpl::propertyChanged(int mappedId) { const Shader type = Shader(mappedIdToShaderType(mappedId)); const int idx = mappedIdToIndex(mappedId); const auto &v(m_shaders[type].shaderInfo.variables[idx]); auto &vd(m_shaders[type].varData[idx]); vd.value = getValueFromProperty(m_item, m_itemMetaObject, v.name, vd.propertyIndex); if (vd.specialType == QSGShaderEffectNode::VariableData::Source) { QQuickItem *source = qobject_cast(qvariant_cast(vd.value)); if (source) { if (m_item->window()) QQuickItemPrivate::get(source)->derefWindow(); // QObject::disconnect() will disconnect all matching connections. // If the same source has been attached to two separate // textures/samplers, then changing one of them would trigger both // to be disconnected. So check first. if (sourceIsUnique(source, type, idx)) QObject::disconnect(source, SIGNAL(destroyed(QObject*)), this, SLOT(sourceDestroyed(QObject*))); } source = qobject_cast(qvariant_cast(vd.value)); if (source) { // 'source' needs a window to get a scene graph node. It usually gets one through its // parent, but if the source item is "inline" rather than a reference -- i.e. // "property variant source: Image { }" instead of "property variant source: foo" -- it // will not get a parent. In those cases, 'source' should get the window from 'item'. if (m_item->window()) QQuickItemPrivate::get(source)->refWindow(m_item->window()); QObject::connect(source, SIGNAL(destroyed(QObject*)), this, SLOT(sourceDestroyed(QObject*))); } m_dirty |= QSGShaderEffectNode::DirtyShaderTexture; m_dirtyTextures[type].insert(idx); } else { m_dirty |= QSGShaderEffectNode::DirtyShaderConstant; m_dirtyConstants[type].insert(idx); } m_item->update(); } void QQuickShaderEffectImpl::sourceDestroyed(QObject *object) { for (int shaderType = 0; shaderType < NShader; ++shaderType) { for (auto &vd : m_shaders[shaderType].varData) { if (vd.specialType == QSGShaderEffectNode::VariableData::Source && vd.value.canConvert()) { if (qvariant_cast(vd.value) == object) vd.value = QVariant(); } } } } void QQuickShaderEffectImpl::markGeometryDirtyAndUpdate() { m_dirty |= QSGShaderEffectNode::DirtyShaderGeometry; m_item->update(); } void QQuickShaderEffectImpl::markGeometryDirtyAndUpdateIfSupportsAtlas() { if (m_supportsAtlasTextures) markGeometryDirtyAndUpdate(); } QT_END_NAMESPACE #include "moc_qquickshadereffect_p.cpp" #include "qquickshadereffect.moc"