/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtQuick module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qquickshape_p.h" #include "qquickshape_p_p.h" #include "qquickshapegenericrenderer_p.h" #include "qquickshapesoftwarerenderer_p.h" #include #include #include #include #include #include static void initResources() { #if defined(QT_STATIC) Q_INIT_RESOURCE(qtquickshapes); #endif } QT_BEGIN_NAMESPACE Q_LOGGING_CATEGORY(QQSHAPE_LOG_TIME_DIRTY_SYNC, "qt.shape.time.sync") /*! \qmlmodule QtQuick.Shapes 1.\QtMinorVersion \title Qt Quick Shapes QML Types \ingroup qmlmodules \brief Provides QML types for drawing stroked and filled shapes. To use the types in this module, import the module with the following line: \qml import QtQuick.Shapes \endqml */ void QQuickShapes_initializeModule() { QQuickShapesModule::defineModule(); } Q_CONSTRUCTOR_FUNCTION(QQuickShapes_initializeModule) void QQuickShapesModule::defineModule() { initResources(); } QQuickShapeStrokeFillParams::QQuickShapeStrokeFillParams() : strokeColor(Qt::white), strokeWidth(1), fillColor(Qt::white), fillRule(QQuickShapePath::OddEvenFill), joinStyle(QQuickShapePath::BevelJoin), miterLimit(2), capStyle(QQuickShapePath::SquareCap), strokeStyle(QQuickShapePath::SolidLine), dashOffset(0), fillGradient(nullptr) { dashPattern << 4 << 2; // 4 * strokeWidth dash followed by 2 * strokeWidth space } /*! \qmltype ShapePath //! \instantiates QQuickShapePath \inqmlmodule QtQuick.Shapes \ingroup qtquick-paths \ingroup qtquick-views \inherits Path \brief Describes a Path and associated properties for stroking and filling. \since 5.10 A \l Shape contains one or more ShapePath elements. At least one ShapePath is necessary in order to have a Shape output anything visible. A ShapePath itself is a \l Path with additional properties describing the stroking and filling parameters, such as the stroke width and color, the fill color or gradient, join and cap styles, and so on. As with ordinary \l Path objects, ShapePath also contains a list of path elements like \l PathMove, \l PathLine, \l PathCubic, \l PathQuad, \l PathArc, together with a starting position. Any property changes in these data sets will be bubble up and change the output of the Shape. This means that it is simple and easy to change, or even animate, the starting and ending position, control points, or any stroke or fill parameters using the usual QML bindings and animation types like NumberAnimation. In the following example the line join style changes automatically based on the value of joinStyleIndex: \qml ShapePath { strokeColor: "black" strokeWidth: 16 fillColor: "transparent" capStyle: ShapePath.RoundCap property int joinStyleIndex: 0 property variant styles: [ ShapePath.BevelJoin, ShapePath.MiterJoin, ShapePath.RoundJoin ] joinStyle: styles[joinStyleIndex] startX: 30 startY: 30 PathLine { x: 100; y: 100 } PathLine { x: 30; y: 100 } } \endqml Once associated with a Shape, here is the output with a joinStyleIndex of 2 (ShapePath.RoundJoin): \image visualpath-code-example.png \sa {Qt Quick Examples - Shapes}, Shape */ QQuickShapePathPrivate::QQuickShapePathPrivate() : dirty(DirtyAll) { // Set this QQuickPath to be a ShapePath isShapePath = true; } QQuickShapePath::QQuickShapePath(QObject *parent) : QQuickPath(*(new QQuickShapePathPrivate), parent) { // The inherited changed() and the shapePathChanged() signals remain // distinct, and this is intentional. Combining the two is not possible due // to the difference in semantics and the need to act (see dirty flag // below) differently on QQuickPath-related changes. connect(this, &QQuickPath::changed, [this]() { Q_D(QQuickShapePath); d->dirty |= QQuickShapePathPrivate::DirtyPath; emit shapePathChanged(); }); } QQuickShapePath::~QQuickShapePath() { } /*! \qmlproperty color QtQuick.Shapes::ShapePath::strokeColor This property holds the stroking color. When set to \c transparent, no stroking occurs. The default value is \c white. */ QColor QQuickShapePath::strokeColor() const { Q_D(const QQuickShapePath); return d->sfp.strokeColor; } void QQuickShapePath::setStrokeColor(const QColor &color) { Q_D(QQuickShapePath); if (d->sfp.strokeColor != color) { d->sfp.strokeColor = color; d->dirty |= QQuickShapePathPrivate::DirtyStrokeColor; emit strokeColorChanged(); emit shapePathChanged(); } } /*! \qmlproperty real QtQuick.Shapes::ShapePath::strokeWidth This property holds the stroke width. When set to a negative value, no stroking occurs. The default value is 1. */ qreal QQuickShapePath::strokeWidth() const { Q_D(const QQuickShapePath); return d->sfp.strokeWidth; } void QQuickShapePath::setStrokeWidth(qreal w) { Q_D(QQuickShapePath); if (d->sfp.strokeWidth != w) { d->sfp.strokeWidth = w; d->dirty |= QQuickShapePathPrivate::DirtyStrokeWidth; emit strokeWidthChanged(); emit shapePathChanged(); } } /*! \qmlproperty color QtQuick.Shapes::ShapePath::fillColor This property holds the fill color. When set to \c transparent, no filling occurs. The default value is \c white. */ QColor QQuickShapePath::fillColor() const { Q_D(const QQuickShapePath); return d->sfp.fillColor; } void QQuickShapePath::setFillColor(const QColor &color) { Q_D(QQuickShapePath); if (d->sfp.fillColor != color) { d->sfp.fillColor = color; d->dirty |= QQuickShapePathPrivate::DirtyFillColor; emit fillColorChanged(); emit shapePathChanged(); } } /*! \qmlproperty enumeration QtQuick.Shapes::ShapePath::fillRule This property holds the fill rule. The default value is \c ShapePath.OddEvenFill. For an explanation on fill rules, see QPainterPath::setFillRule(). \value ShapePath.OddEvenFill Odd-even fill rule. \value ShapePath.WindingFill Non-zero winding fill rule. */ QQuickShapePath::FillRule QQuickShapePath::fillRule() const { Q_D(const QQuickShapePath); return d->sfp.fillRule; } void QQuickShapePath::setFillRule(FillRule fillRule) { Q_D(QQuickShapePath); if (d->sfp.fillRule != fillRule) { d->sfp.fillRule = fillRule; d->dirty |= QQuickShapePathPrivate::DirtyFillRule; emit fillRuleChanged(); emit shapePathChanged(); } } /*! \qmlproperty enumeration QtQuick.Shapes::ShapePath::joinStyle This property defines how joins between two connected lines are drawn. The default value is \c ShapePath.BevelJoin. \value ShapePath.MiterJoin The outer edges of the lines are extended to meet at an angle, and this area is filled. \value ShapePath.BevelJoin The triangular notch between the two lines is filled. \value ShapePath.RoundJoin A circular arc between the two lines is filled. */ QQuickShapePath::JoinStyle QQuickShapePath::joinStyle() const { Q_D(const QQuickShapePath); return d->sfp.joinStyle; } void QQuickShapePath::setJoinStyle(JoinStyle style) { Q_D(QQuickShapePath); if (d->sfp.joinStyle != style) { d->sfp.joinStyle = style; d->dirty |= QQuickShapePathPrivate::DirtyStyle; emit joinStyleChanged(); emit shapePathChanged(); } } /*! \qmlproperty int QtQuick.Shapes::ShapePath::miterLimit When joinStyle is set to \c ShapePath.MiterJoin, this property specifies how far the miter join can extend from the join point. The default value is 2. */ int QQuickShapePath::miterLimit() const { Q_D(const QQuickShapePath); return d->sfp.miterLimit; } void QQuickShapePath::setMiterLimit(int limit) { Q_D(QQuickShapePath); if (d->sfp.miterLimit != limit) { d->sfp.miterLimit = limit; d->dirty |= QQuickShapePathPrivate::DirtyStyle; emit miterLimitChanged(); emit shapePathChanged(); } } /*! \qmlproperty enumeration QtQuick.Shapes::ShapePath::capStyle This property defines how the end points of lines are drawn. The default value is \c ShapePath.SquareCap. \value ShapePath.FlatCap A square line end that does not cover the end point of the line. \value ShapePath.SquareCap A square line end that covers the end point and extends beyond it by half the line width. \value ShapePath.RoundCap A rounded line end. */ QQuickShapePath::CapStyle QQuickShapePath::capStyle() const { Q_D(const QQuickShapePath); return d->sfp.capStyle; } void QQuickShapePath::setCapStyle(CapStyle style) { Q_D(QQuickShapePath); if (d->sfp.capStyle != style) { d->sfp.capStyle = style; d->dirty |= QQuickShapePathPrivate::DirtyStyle; emit capStyleChanged(); emit shapePathChanged(); } } /*! \qmlproperty enumeration QtQuick.Shapes::ShapePath::strokeStyle This property defines the style of stroking. The default value is ShapePath.SolidLine. \list \li ShapePath.SolidLine - A plain line. \li ShapePath.DashLine - Dashes separated by a few pixels. \endlist */ QQuickShapePath::StrokeStyle QQuickShapePath::strokeStyle() const { Q_D(const QQuickShapePath); return d->sfp.strokeStyle; } void QQuickShapePath::setStrokeStyle(StrokeStyle style) { Q_D(QQuickShapePath); if (d->sfp.strokeStyle != style) { d->sfp.strokeStyle = style; d->dirty |= QQuickShapePathPrivate::DirtyDash; emit strokeStyleChanged(); emit shapePathChanged(); } } /*! \qmlproperty real QtQuick.Shapes::ShapePath::dashOffset This property defines the starting point on the dash pattern, measured in units used to specify the dash pattern. The default value is 0. \sa QPen::setDashOffset() */ qreal QQuickShapePath::dashOffset() const { Q_D(const QQuickShapePath); return d->sfp.dashOffset; } void QQuickShapePath::setDashOffset(qreal offset) { Q_D(QQuickShapePath); if (d->sfp.dashOffset != offset) { d->sfp.dashOffset = offset; d->dirty |= QQuickShapePathPrivate::DirtyDash; emit dashOffsetChanged(); emit shapePathChanged(); } } /*! \qmlproperty list QtQuick.Shapes::ShapePath::dashPattern This property defines the dash pattern when ShapePath.strokeStyle is set to ShapePath.DashLine. The pattern must be specified as an even number of positive entries where the entries 1, 3, 5... are the dashes and 2, 4, 6... are the spaces. The pattern is specified in units of the pen's width. The default value is (4, 2), meaning a dash of 4 * ShapePath.strokeWidth pixels followed by a space of 2 * ShapePath.strokeWidth pixels. \sa QPen::setDashPattern() */ QVector QQuickShapePath::dashPattern() const { Q_D(const QQuickShapePath); return d->sfp.dashPattern; } void QQuickShapePath::setDashPattern(const QVector &array) { Q_D(QQuickShapePath); if (d->sfp.dashPattern != array) { d->sfp.dashPattern = array; d->dirty |= QQuickShapePathPrivate::DirtyDash; emit dashPatternChanged(); emit shapePathChanged(); } } /*! \qmlproperty ShapeGradient QtQuick.Shapes::ShapePath::fillGradient This property defines the fill gradient. By default no gradient is enabled and the value is \c null. In this case the fill uses a solid color based on the value of ShapePath.fillColor. When set, ShapePath.fillColor is ignored and filling is done using one of the ShapeGradient subtypes. \note The Gradient type cannot be used here. Rather, prefer using one of the advanced subtypes, like LinearGradient. */ QQuickShapeGradient *QQuickShapePath::fillGradient() const { Q_D(const QQuickShapePath); return d->sfp.fillGradient; } void QQuickShapePath::setFillGradient(QQuickShapeGradient *gradient) { Q_D(QQuickShapePath); if (d->sfp.fillGradient != gradient) { if (d->sfp.fillGradient) qmlobject_disconnect(d->sfp.fillGradient, QQuickShapeGradient, SIGNAL(updated()), this, QQuickShapePath, SLOT(_q_fillGradientChanged())); d->sfp.fillGradient = gradient; if (d->sfp.fillGradient) qmlobject_connect(d->sfp.fillGradient, QQuickShapeGradient, SIGNAL(updated()), this, QQuickShapePath, SLOT(_q_fillGradientChanged())); d->dirty |= QQuickShapePathPrivate::DirtyFillGradient; emit shapePathChanged(); } } void QQuickShapePathPrivate::_q_fillGradientChanged() { Q_Q(QQuickShapePath); dirty |= DirtyFillGradient; emit q->shapePathChanged(); } void QQuickShapePath::resetFillGradient() { setFillGradient(nullptr); } /*! \qmltype Shape //! \instantiates QQuickShape \inqmlmodule QtQuick.Shapes \ingroup qtquick-paths \ingroup qtquick-views \inherits Item \brief Renders a path. \since 5.10 Renders a path either by generating geometry via QPainterPath and manual triangulation or by using a GPU vendor extension like \c{GL_NV_path_rendering}. This approach is different from rendering shapes via QQuickPaintedItem or the 2D Canvas because the path never gets rasterized in software. Therefore Shape is suitable for creating shapes spreading over larger areas of the screen, avoiding the performance penalty for texture uploads or framebuffer blits. In addition, the declarative API allows manipulating, binding to, and even animating the path element properties like starting and ending position, the control points, and so on. The types for specifying path elements are shared between \l PathView and Shape. However, not all Shape implementations support all path element types, while some may not make sense for PathView. Shape's currently supported subset is: PathMove, PathLine, PathQuad, PathCubic, PathArc, and PathSvg. See \l Path for a detailed overview of the supported path elements. \qml Shape { width: 200 height: 150 anchors.centerIn: parent ShapePath { strokeWidth: 4 strokeColor: "red" fillGradient: LinearGradient { x1: 20; y1: 20 x2: 180; y2: 130 GradientStop { position: 0; color: "blue" } GradientStop { position: 0.2; color: "green" } GradientStop { position: 0.4; color: "red" } GradientStop { position: 0.6; color: "yellow" } GradientStop { position: 1; color: "cyan" } } strokeStyle: ShapePath.DashLine dashPattern: [ 1, 4 ] startX: 20; startY: 20 PathLine { x: 180; y: 130 } PathLine { x: 20; y: 130 } PathLine { x: 20; y: 20 } } } \endqml \image pathitem-code-example.png Like \l Item, Shape also allows any visual or non-visual objects to be declared as children. ShapePath objects are handled specially. This is useful since it allows adding visual items, like \l Rectangle or \l Image, and non-visual objects, like \l Timer directly as children of Shape. The following list summarizes the available Shape rendering approaches: \list \li When running with the OpenGL backend of Qt Quick, both the generic, triangulation-based and the NVIDIA-specific \c{GL_NV_path_rendering} methods are available. By default only the generic approach is used. Setting Shape.vendorExtensionsEnabled property to \c true leads to using NV_path_rendering on NVIDIA systems when running directly on OpenGL, and the generic method on others. When OpenGL is not used directly by the scene graph, for example because it is using the graphics abstraction layer (QRhi), only the generic shape renderer is available. \li The \c software backend is fully supported. The path is rendered via QPainter::strokePath() and QPainter::fillPath() in this case. \li The OpenVG backend is not currently supported. \endlist When using Shape, it is important to be aware of potential performance implications: \list \li When the application is running with the generic, triangulation-based Shape implementation, the geometry generation happens entirely on the CPU. This is potentially expensive. Changing the set of path elements, changing the properties of these elements, or changing certain properties of the Shape itself all lead to retriangulation of the affected paths on every change. Therefore, applying animation to such properties can affect performance on less powerful systems. \li However, the data-driven, declarative nature of the Shape API often means better cacheability for the underlying CPU and GPU resources. A property change in one ShapePath will only lead to reprocessing the affected ShapePath, leaving other parts of the Shape unchanged. Therefore, a frequently changing property can still result in a lower overall system load than with imperative painting approaches (for example, QPainter). \li If animating properties other than stroke and fill colors is a must, it is recommended to target systems providing \c{GL_NV_path_rendering} where the cost of property changes is smaller. \li At the same time, attention must be paid to the number of Shape elements in the scene, in particular when using this special accelerated approach for \c{GL_NV_path_rendering}. The way such a Shape item is represented in the scene graph is different from an ordinary geometry-based item, and incurs a certain cost when it comes to OpenGL state changes. \li As a general rule, scenes should avoid using separate Shape items when it is not absolutely necessary. Prefer using one Shape item with multiple ShapePath elements over multiple Shape items. \endlist \sa {Qt Quick Examples - Shapes}, Path, PathMove, PathLine, PathQuad, PathCubic, PathArc, PathSvg */ QQuickShapePrivate::QQuickShapePrivate() : effectRefCount(0) { } QQuickShapePrivate::~QQuickShapePrivate() { delete renderer; } void QQuickShapePrivate::_q_shapePathChanged() { Q_Q(QQuickShape); spChanged = true; q->polish(); } void QQuickShapePrivate::setStatus(QQuickShape::Status newStatus) { Q_Q(QQuickShape); if (status != newStatus) { status = newStatus; emit q->statusChanged(); } } QQuickShape::QQuickShape(QQuickItem *parent) : QQuickItem(*(new QQuickShapePrivate), parent) { setFlag(ItemHasContents); } QQuickShape::~QQuickShape() { } /*! \qmlproperty enumeration QtQuick.Shapes::Shape::rendererType This property determines which path rendering backend is active. \value Shape.UnknownRenderer The renderer is unknown. \value Shape.GeometryRenderer The generic, driver independent solution for OpenGL. Uses the same CPU-based triangulation approach as QPainter's OpenGL 2 paint engine. This is the default on non-NVIDIA hardware when the default, OpenGL Qt Quick scenegraph backend is in use. \value Shape.SoftwareRenderer Pure QPainter drawing using the raster paint engine. This is the default, and only, option when the Qt Quick scenegraph is running with the \c software backend. */ QQuickShape::RendererType QQuickShape::rendererType() const { Q_D(const QQuickShape); return d->rendererType; } /*! \qmlproperty bool QtQuick.Shapes::Shape::asynchronous When rendererType is \c Shape.GeometryRenderer, the input path is triangulated on the CPU during the polishing phase of the Shape. This is potentially expensive. To offload this work to separate worker threads, set this property to \c true. When enabled, making a Shape visible will not wait for the content to become available. Instead, the GUI/main thread is not blocked and the results of the path rendering are shown only when all the asynchronous work has been finished. The default value is \c false. */ bool QQuickShape::asynchronous() const { Q_D(const QQuickShape); return d->async; } void QQuickShape::setAsynchronous(bool async) { Q_D(QQuickShape); if (d->async != async) { d->async = async; emit asynchronousChanged(); if (d->componentComplete) d->_q_shapePathChanged(); } } /*! \qmlproperty bool QtQuick.Shapes::Shape::vendorExtensionsEnabled This property controls the usage of non-standard OpenGL extensions like \c GL_NV_path_rendering. The default value is \c false. As of Qt 5.12 Shape.NvprRenderer is disabled by default and a uniform behavior, based on triangulating the path and generating QSGGeometryNode instances, is used regardless of the graphics card and drivers. As of Qt 6.0 there are no vendor-specific rendering paths implemented. */ bool QQuickShape::vendorExtensionsEnabled() const { Q_D(const QQuickShape); return d->enableVendorExts; } void QQuickShape::setVendorExtensionsEnabled(bool enable) { Q_D(QQuickShape); if (d->enableVendorExts != enable) { d->enableVendorExts = enable; emit vendorExtensionsEnabledChanged(); } } /*! \qmlproperty enumeration QtQuick.Shapes::Shape::status This property determines the status of the Shape and is relevant when Shape.asynchronous is set to \c true. \value Shape.Null Not yet initialized. \value Shape.Ready The Shape has finished processing. \value Shape.Processing The path is being processed. */ QQuickShape::Status QQuickShape::status() const { Q_D(const QQuickShape); return d->status; } /*! \qmlproperty enumeration QtQuick.Shapes::Shape::containsMode \since QtQuick.Shapes 1.11 This property determines the definition of \l {QQuickItem::contains()}{contains()} for the Shape. It is useful in case you add \l {Qt Quick Input Handlers} and you want to react only when the mouse or touchpoint is fully inside the Shape. \value Shape.BoundingRectContains The default implementation of \l QQuickItem::contains() checks only whether the given point is inside the rectangular bounding box. This is the most efficient implementation, which is why it's the default. \value Shape.FillContains Check whether the interior (the part that would be filled if you are rendering it with fill) of any \l ShapePath that makes up this Shape contains the given point. The more complex and numerous ShapePaths you add, the less efficient this is to check, which can potentially slow down event delivery in your application. So it should be used with care. One way to speed up the \c FillContains check is to generate an approximate outline with as few points as possible, place that in a transparent Shape on top, and add your Pointer Handlers to that, so that the containment check is cheaper during event delivery. */ QQuickShape::ContainsMode QQuickShape::containsMode() const { Q_D(const QQuickShape); return d->containsMode; } void QQuickShape::setContainsMode(QQuickShape::ContainsMode containsMode) { Q_D(QQuickShape); if (d->containsMode == containsMode) return; d->containsMode = containsMode; emit containsModeChanged(); } bool QQuickShape::contains(const QPointF &point) const { Q_D(const QQuickShape); switch (d->containsMode) { case BoundingRectContains: return QQuickItem::contains(point); case FillContains: for (QQuickShapePath *path : d->sp) { if (path->path().contains(point)) return true; } } return false; } static void vpe_append(QQmlListProperty *property, QObject *obj) { QQuickShape *item = static_cast(property->object); QQuickShapePrivate *d = QQuickShapePrivate::get(item); QQuickShapePath *path = qobject_cast(obj); if (path) d->sp.append(path); QQuickItemPrivate::data_append(property, obj); if (path && d->componentComplete) { QObject::connect(path, SIGNAL(shapePathChanged()), item, SLOT(_q_shapePathChanged())); d->_q_shapePathChanged(); } } static void vpe_clear(QQmlListProperty *property) { QQuickShape *item = static_cast(property->object); QQuickShapePrivate *d = QQuickShapePrivate::get(item); for (QQuickShapePath *p : d->sp) QObject::disconnect(p, SIGNAL(shapePathChanged()), item, SLOT(_q_shapePathChanged())); d->sp.clear(); QQuickItemPrivate::data_clear(property); if (d->componentComplete) d->_q_shapePathChanged(); } /*! \qmlproperty list QtQuick.Shapes::Shape::data This property holds the ShapePath objects that define the contents of the Shape. It can also contain any other type of objects, since Shape, like Item, allows adding any visual or non-visual objects as children. \default */ QQmlListProperty QQuickShape::data() { return QQmlListProperty(this, nullptr, vpe_append, QQuickItemPrivate::data_count, QQuickItemPrivate::data_at, vpe_clear); } void QQuickShape::classBegin() { QQuickItem::classBegin(); } void QQuickShape::componentComplete() { Q_D(QQuickShape); QQuickItem::componentComplete(); for (QQuickShapePath *p : d->sp) connect(p, SIGNAL(shapePathChanged()), this, SLOT(_q_shapePathChanged())); d->_q_shapePathChanged(); } void QQuickShape::updatePolish() { Q_D(QQuickShape); const int currentEffectRefCount = d->extra.isAllocated() ? d->extra->recursiveEffectRefCount : 0; if (!d->spChanged && currentEffectRefCount <= d->effectRefCount) return; d->spChanged = false; d->effectRefCount = currentEffectRefCount; if (!d->renderer) { d->createRenderer(); if (!d->renderer) return; emit rendererChanged(); } // endSync() is where expensive calculations may happen (or get kicked off // on worker threads), depending on the backend. Therefore do this only // when the item is visible. if (isVisible() || d->effectRefCount > 0) d->sync(); } void QQuickShape::itemChange(ItemChange change, const ItemChangeData &data) { Q_D(QQuickShape); // sync may have been deferred; do it now if the item became visible if (change == ItemVisibleHasChanged && data.boolValue) d->_q_shapePathChanged(); else if (change == QQuickItem::ItemSceneChange) { for (int i = 0; i < d->sp.count(); ++i) QQuickShapePathPrivate::get(d->sp[i])->dirty = QQuickShapePathPrivate::DirtyAll; d->_q_shapePathChanged(); } QQuickItem::itemChange(change, data); } QSGNode *QQuickShape::updatePaintNode(QSGNode *node, UpdatePaintNodeData *) { // Called on the render thread, with the gui thread blocked. We can now // safely access gui thread data. Q_D(QQuickShape); if (d->renderer) { if (!node) node = d->createNode(); d->renderer->updateNode(); } return node; } // the renderer object lives on the gui thread void QQuickShapePrivate::createRenderer() { Q_Q(QQuickShape); QSGRendererInterface *ri = q->window()->rendererInterface(); if (!ri) return; switch (ri->graphicsApi()) { case QSGRendererInterface::Software: rendererType = QQuickShape::SoftwareRenderer; renderer = new QQuickShapeSoftwareRenderer; break; default: if (QSGRendererInterface::isApiRhiBased(ri->graphicsApi())) { rendererType = QQuickShape::GeometryRenderer; renderer = new QQuickShapeGenericRenderer(q); } else { qWarning("No path backend for this graphics API yet"); } break; } } // the node lives on the render thread QSGNode *QQuickShapePrivate::createNode() { Q_Q(QQuickShape); QSGNode *node = nullptr; if (!q->window()) return node; QSGRendererInterface *ri = q->window()->rendererInterface(); if (!ri) return node; switch (ri->graphicsApi()) { case QSGRendererInterface::Software: node = new QQuickShapeSoftwareRenderNode(q); static_cast(renderer)->setNode( static_cast(node)); break; default: if (QSGRendererInterface::isApiRhiBased(ri->graphicsApi())) { node = new QQuickShapeGenericNode; static_cast(renderer)->setRootNode( static_cast(node)); } else { qWarning("No path backend for this graphics API yet"); } break; } return node; } void QQuickShapePrivate::asyncShapeReady(void *data) { QQuickShapePrivate *self = static_cast(data); self->setStatus(QQuickShape::Ready); if (self->syncTimingActive) qDebug("[Shape %p] [%d] [dirty=0x%x] async update took %lld ms", self->q_func(), self->syncTimeCounter, self->syncTimingTotalDirty, self->syncTimer.elapsed()); } void QQuickShapePrivate::sync() { int totalDirty = 0; syncTimingActive = QQSHAPE_LOG_TIME_DIRTY_SYNC().isDebugEnabled(); if (syncTimingActive) syncTimer.start(); const bool useAsync = async && renderer->flags().testFlag(QQuickAbstractPathRenderer::SupportsAsync); if (useAsync) { setStatus(QQuickShape::Processing); renderer->setAsyncCallback(asyncShapeReady, this); } const int count = sp.count(); bool countChanged = false; renderer->beginSync(count, &countChanged); for (int i = 0; i < count; ++i) { QQuickShapePath *p = sp[i]; int &dirty(QQuickShapePathPrivate::get(p)->dirty); totalDirty |= dirty; if (dirty & QQuickShapePathPrivate::DirtyPath) renderer->setPath(i, p); if (dirty & QQuickShapePathPrivate::DirtyStrokeColor) renderer->setStrokeColor(i, p->strokeColor()); if (dirty & QQuickShapePathPrivate::DirtyStrokeWidth) renderer->setStrokeWidth(i, p->strokeWidth()); if (dirty & QQuickShapePathPrivate::DirtyFillColor) renderer->setFillColor(i, p->fillColor()); if (dirty & QQuickShapePathPrivate::DirtyFillRule) renderer->setFillRule(i, p->fillRule()); if (dirty & QQuickShapePathPrivate::DirtyStyle) { renderer->setJoinStyle(i, p->joinStyle(), p->miterLimit()); renderer->setCapStyle(i, p->capStyle()); } if (dirty & QQuickShapePathPrivate::DirtyDash) renderer->setStrokeStyle(i, p->strokeStyle(), p->dashOffset(), p->dashPattern()); if (dirty & QQuickShapePathPrivate::DirtyFillGradient) renderer->setFillGradient(i, p->fillGradient()); dirty = 0; } syncTimingTotalDirty = totalDirty; if (syncTimingTotalDirty) ++syncTimeCounter; else syncTimingActive = false; renderer->endSync(useAsync); if (!useAsync) { setStatus(QQuickShape::Ready); if (syncTimingActive) qDebug("[Shape %p] [%d] [dirty=0x%x] update took %lld ms", q_func(), syncTimeCounter, syncTimingTotalDirty, syncTimer.elapsed()); } // Must dirty the QQuickItem if something got changed, nothing // else does this for us. Q_Q(QQuickShape); if (totalDirty || countChanged) q->update(); } // ***** gradient support ***** /*! \qmltype ShapeGradient //! \instantiates QQuickShapeGradient \inqmlmodule QtQuick.Shapes \ingroup qtquick-paths \ingroup qtquick-views \inherits Gradient \brief Base type of Shape fill gradients. \since 5.10 This is an abstract base class for gradients like LinearGradient and cannot be created directly. It extends \l Gradient with properties like the spread mode. */ QQuickShapeGradient::QQuickShapeGradient(QObject *parent) : QQuickGradient(parent), m_spread(PadSpread) { } /*! \qmlproperty enumeration QtQuick.Shapes::ShapeGradient::spread Specifies how the area outside the gradient area should be filled. The default value is \c ShapeGradient.PadSpread. \value ShapeGradient.PadSpread The area is filled with the closest stop color. \value ShapeGradient.RepeatSpread The gradient is repeated outside the gradient area. \value ShapeGradient.ReflectSpread The gradient is reflected outside the gradient area. */ QQuickShapeGradient::SpreadMode QQuickShapeGradient::spread() const { return m_spread; } void QQuickShapeGradient::setSpread(SpreadMode mode) { if (m_spread != mode) { m_spread = mode; emit spreadChanged(); emit updated(); } } /*! \qmltype LinearGradient //! \instantiates QQuickShapeLinearGradient \inqmlmodule QtQuick.Shapes \ingroup qtquick-paths \ingroup qtquick-views \inherits ShapeGradient \brief Linear gradient. \since 5.10 Linear gradients interpolate colors between start and end points in Shape items. Outside these points the gradient is either padded, reflected or repeated depending on the spread type. \note LinearGradient is only supported in combination with Shape items. It is not compatible with \l Rectangle, as that only supports \l Gradient. \sa QLinearGradient */ QQuickShapeLinearGradient::QQuickShapeLinearGradient(QObject *parent) : QQuickShapeGradient(parent) { } /*! \qmlproperty real QtQuick.Shapes::LinearGradient::x1 \qmlproperty real QtQuick.Shapes::LinearGradient::y1 \qmlproperty real QtQuick.Shapes::LinearGradient::x2 \qmlproperty real QtQuick.Shapes::LinearGradient::y2 These properties define the start and end points between which color interpolation occurs. By default both points are set to (0, 0). */ qreal QQuickShapeLinearGradient::x1() const { return m_start.x(); } void QQuickShapeLinearGradient::setX1(qreal v) { if (m_start.x() != v) { m_start.setX(v); emit x1Changed(); emit updated(); } } qreal QQuickShapeLinearGradient::y1() const { return m_start.y(); } void QQuickShapeLinearGradient::setY1(qreal v) { if (m_start.y() != v) { m_start.setY(v); emit y1Changed(); emit updated(); } } qreal QQuickShapeLinearGradient::x2() const { return m_end.x(); } void QQuickShapeLinearGradient::setX2(qreal v) { if (m_end.x() != v) { m_end.setX(v); emit x2Changed(); emit updated(); } } qreal QQuickShapeLinearGradient::y2() const { return m_end.y(); } void QQuickShapeLinearGradient::setY2(qreal v) { if (m_end.y() != v) { m_end.setY(v); emit y2Changed(); emit updated(); } } /*! \qmltype RadialGradient //! \instantiates QQuickShapeRadialGradient \inqmlmodule QtQuick.Shapes \ingroup qtquick-paths \ingroup qtquick-views \inherits ShapeGradient \brief Radial gradient. \since 5.10 Radial gradients interpolate colors between a focal circle and a center circle in Shape items. Points outside the cone defined by the two circles will be transparent. Outside the end points the gradient is either padded, reflected or repeated depending on the spread type. Below is an example of a simple radial gradient. Here the colors are interpolated between the specified point and the end points on a circle specified by the radius: \code fillGradient: RadialGradient { centerX: 50; centerY: 50 centerRadius: 100 focalX: centerX; focalY: centerY GradientStop { position: 0; color: "blue" } GradientStop { position: 0.2; color: "green" } GradientStop { position: 0.4; color: "red" } GradientStop { position: 0.6; color: "yellow" } GradientStop { position: 1; color: "cyan" } } \endcode \image shape-radial-gradient.png Extended radial gradients, where a separate focal circle is specified, are also supported. \note RadialGradient is only supported in combination with Shape items. It is not compatible with \l Rectangle, as that only supports \l Gradient. \sa QRadialGradient */ QQuickShapeRadialGradient::QQuickShapeRadialGradient(QObject *parent) : QQuickShapeGradient(parent) { } /*! \qmlproperty real QtQuick.Shapes::RadialGradient::centerX \qmlproperty real QtQuick.Shapes::RadialGradient::centerY \qmlproperty real QtQuick.Shapes::RadialGradient::focalX \qmlproperty real QtQuick.Shapes::RadialGradient::focalY These properties define the center and focal points. To specify a simple radial gradient, set focalX and focalY to the value of centerX and centerY, respectively. */ qreal QQuickShapeRadialGradient::centerX() const { return m_centerPoint.x(); } void QQuickShapeRadialGradient::setCenterX(qreal v) { if (m_centerPoint.x() != v) { m_centerPoint.setX(v); emit centerXChanged(); emit updated(); } } qreal QQuickShapeRadialGradient::centerY() const { return m_centerPoint.y(); } void QQuickShapeRadialGradient::setCenterY(qreal v) { if (m_centerPoint.y() != v) { m_centerPoint.setY(v); emit centerYChanged(); emit updated(); } } /*! \qmlproperty real QtQuick.Shapes::RadialGradient::centerRadius \qmlproperty real QtQuick.Shapes::RadialGradient::focalRadius These properties define the center and focal radius. For simple radial gradients, focalRadius should be set to \c 0 (the default value). */ qreal QQuickShapeRadialGradient::centerRadius() const { return m_centerRadius; } void QQuickShapeRadialGradient::setCenterRadius(qreal v) { if (m_centerRadius != v) { m_centerRadius = v; emit centerRadiusChanged(); emit updated(); } } qreal QQuickShapeRadialGradient::focalX() const { return m_focalPoint.x(); } void QQuickShapeRadialGradient::setFocalX(qreal v) { if (m_focalPoint.x() != v) { m_focalPoint.setX(v); emit focalXChanged(); emit updated(); } } qreal QQuickShapeRadialGradient::focalY() const { return m_focalPoint.y(); } void QQuickShapeRadialGradient::setFocalY(qreal v) { if (m_focalPoint.y() != v) { m_focalPoint.setY(v); emit focalYChanged(); emit updated(); } } qreal QQuickShapeRadialGradient::focalRadius() const { return m_focalRadius; } void QQuickShapeRadialGradient::setFocalRadius(qreal v) { if (m_focalRadius != v) { m_focalRadius = v; emit focalRadiusChanged(); emit updated(); } } /*! \qmltype ConicalGradient //! \instantiates QQuickShapeConicalGradient \inqmlmodule QtQuick.Shapes \ingroup qtquick-paths \ingroup qtquick-views \inherits ShapeGradient \brief Conical gradient. \since 5.10 Conical gradients interpolate colors counter-clockwise around a center point in Shape items. \note The \l{ShapeGradient::spread}{spread mode} setting has no effect for conical gradients. \note ConicalGradient is only supported in combination with Shape items. It is not compatible with \l Rectangle, as that only supports \l Gradient. \sa QConicalGradient */ QQuickShapeConicalGradient::QQuickShapeConicalGradient(QObject *parent) : QQuickShapeGradient(parent) { } /*! \qmlproperty real QtQuick.Shapes::ConicalGradient::centerX \qmlproperty real QtQuick.Shapes::ConicalGradient::centerY These properties define the center point of the conical gradient. */ qreal QQuickShapeConicalGradient::centerX() const { return m_centerPoint.x(); } void QQuickShapeConicalGradient::setCenterX(qreal v) { if (m_centerPoint.x() != v) { m_centerPoint.setX(v); emit centerXChanged(); emit updated(); } } qreal QQuickShapeConicalGradient::centerY() const { return m_centerPoint.y(); } void QQuickShapeConicalGradient::setCenterY(qreal v) { if (m_centerPoint.y() != v) { m_centerPoint.setY(v); emit centerYChanged(); emit updated(); } } /*! \qmlproperty real QtQuick.Shapes::ConicalGradient::angle This property defines the start angle for the conical gradient. The value is in degrees (0-360). */ qreal QQuickShapeConicalGradient::angle() const { return m_angle; } void QQuickShapeConicalGradient::setAngle(qreal v) { if (m_angle != v) { m_angle = v; emit angleChanged(); emit updated(); } } static void generateGradientColorTable(const QQuickShapeGradientCacheKey &gradient, uint *colorTable, int size, float opacity) { int pos = 0; const QGradientStops &s = gradient.stops; const bool colorInterpolation = true; uint alpha = qRound(opacity * 256); uint current_color = ARGB_COMBINE_ALPHA(s[0].second.rgba(), alpha); qreal incr = 1.0 / qreal(size); qreal fpos = 1.5 * incr; colorTable[pos++] = ARGB2RGBA(qPremultiply(current_color)); while (fpos <= s.first().first) { colorTable[pos] = colorTable[pos - 1]; pos++; fpos += incr; } if (colorInterpolation) current_color = qPremultiply(current_color); const int sLast = s.size() - 1; for (int i = 0; i < sLast; ++i) { qreal delta = 1/(s[i+1].first - s[i].first); uint next_color = ARGB_COMBINE_ALPHA(s[i + 1].second.rgba(), alpha); if (colorInterpolation) next_color = qPremultiply(next_color); while (fpos < s[i+1].first && pos < size) { int dist = int(256 * ((fpos - s[i].first) * delta)); int idist = 256 - dist; if (colorInterpolation) colorTable[pos] = ARGB2RGBA(INTERPOLATE_PIXEL_256(current_color, idist, next_color, dist)); else colorTable[pos] = ARGB2RGBA(qPremultiply(INTERPOLATE_PIXEL_256(current_color, idist, next_color, dist))); ++pos; fpos += incr; } current_color = next_color; } Q_ASSERT(s.size() > 0); uint last_color = ARGB2RGBA(qPremultiply(ARGB_COMBINE_ALPHA(s[sLast].second.rgba(), alpha))); for ( ; pos < size; ++pos) colorTable[pos] = last_color; colorTable[size-1] = last_color; } QQuickShapeGradientCache::~QQuickShapeGradientCache() { qDeleteAll(m_textures); } QQuickShapeGradientCache *QQuickShapeGradientCache::cacheForRhi(QRhi *rhi) { static QHash caches; auto it = caches.constFind(rhi); if (it != caches.constEnd()) return *it; QQuickShapeGradientCache *cache = new QQuickShapeGradientCache; rhi->addCleanupCallback([cache](QRhi *rhi) { caches.remove(rhi); delete cache; }); caches.insert(rhi, cache); return cache; } QSGTexture *QQuickShapeGradientCache::get(const QQuickShapeGradientCacheKey &grad) { QSGPlainTexture *tx = m_textures[grad]; if (!tx) { static const int W = 1024; // texture size is 1024x1 QImage gradTab(W, 1, QImage::Format_RGBA8888_Premultiplied); generateGradientColorTable(grad, reinterpret_cast(gradTab.bits()), W, 1.0f); tx = new QSGPlainTexture; tx->setImage(gradTab); switch (grad.spread) { case QQuickShapeGradient::PadSpread: tx->setHorizontalWrapMode(QSGTexture::ClampToEdge); tx->setVerticalWrapMode(QSGTexture::ClampToEdge); break; case QQuickShapeGradient::RepeatSpread: tx->setHorizontalWrapMode(QSGTexture::Repeat); tx->setVerticalWrapMode(QSGTexture::Repeat); break; case QQuickShapeGradient::ReflectSpread: tx->setHorizontalWrapMode(QSGTexture::MirroredRepeat); tx->setVerticalWrapMode(QSGTexture::MirroredRepeat); break; default: qWarning("Unknown gradient spread mode %d", grad.spread); break; } tx->setFiltering(QSGTexture::Linear); m_textures[grad] = tx; } return tx; } QT_END_NAMESPACE #include "moc_qquickshape_p.cpp"