aboutsummaryrefslogtreecommitdiffstats
path: root/src/3rdparty/masm/assembler/MacroAssemblerCodeRef.h
blob: f03254aa385a883a54b4aef1f781b9fb5fb722de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
/*
 * Copyright (C) 2009, 2012 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#ifndef MacroAssemblerCodeRef_h
#define MacroAssemblerCodeRef_h

#include "Disassembler.h"
#include "ExecutableAllocator.h"
#include "LLIntData.h"
#include <wtf/DataLog.h>
#include <wtf/PassRefPtr.h>
#include <wtf/RefPtr.h>
#include <wtf/UnusedParam.h>
#include <qglobal.h>

// ASSERT_VALID_CODE_POINTER checks that ptr is a non-null pointer, and that it is a valid
// instruction address on the platform (for example, check any alignment requirements).
#if CPU(ARM_THUMB2)
// ARM/thumb instructions must be 16-bit aligned, but all code pointers to be loaded
// into the processor are decorated with the bottom bit set, indicating that this is
// thumb code (as oposed to 32-bit traditional ARM).  The first test checks for both
// decorated and undectorated null, and the second test ensures that the pointer is
// decorated.
#define ASSERT_VALID_CODE_POINTER(ptr) \
    ASSERT(reinterpret_cast<intptr_t>(ptr) & ~1);
#define ASSERT_VALID_CODE_OFFSET(offset) \
    ASSERT(!(offset & 1)) // Must be multiple of 2.
#else
#define ASSERT_VALID_CODE_POINTER(ptr) \
    ASSERT(ptr)
#define ASSERT_VALID_CODE_OFFSET(offset) // Anything goes!
#endif

#if CPU(X86) && OS(WINDOWS)
#define CALLING_CONVENTION_IS_STDCALL 1
#ifndef CDECL
#if COMPILER(MSVC)
#define CDECL __cdecl
#else
#define CDECL __attribute__ ((__cdecl))
#endif // COMPILER(MSVC)
#endif // CDECL
#else
#define CALLING_CONVENTION_IS_STDCALL 0
#endif

#if CPU(X86)
#define HAS_FASTCALL_CALLING_CONVENTION 1
#ifndef FASTCALL
#if COMPILER(MSVC)
#define FASTCALL __fastcall
#else
#define FASTCALL  __attribute__ ((fastcall))
#endif // COMPILER(MSVC)
#endif // FASTCALL
#else
#define HAS_FASTCALL_CALLING_CONVENTION 0
#endif // CPU(X86)

namespace JSC {

// FunctionPtr:
//
// FunctionPtr should be used to wrap pointers to C/C++ functions in JSC
// (particularly, the stub functions).
class FunctionPtr {
public:
    FunctionPtr()
        : m_value(0)
    {
    }

    template<typename returnType>
    FunctionPtr(returnType(*value)())
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1>
    FunctionPtr(returnType(*value)(argType1))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1, typename argType2>
    FunctionPtr(returnType(*value)(argType1, argType2))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1, typename argType2, typename argType3>
    FunctionPtr(returnType(*value)(argType1, argType2, argType3))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4>
    FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4, typename argType5>
    FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4, argType5))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4, typename argType5, typename argType6>
    FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4, argType5, argType6))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

// MSVC doesn't seem to treat functions with different calling conventions as
// different types; these methods already defined for fastcall, below.
#if CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS)

    template<typename returnType>
    FunctionPtr(returnType (CDECL *value)())
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1>
    FunctionPtr(returnType (CDECL *value)(argType1))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1, typename argType2>
    FunctionPtr(returnType (CDECL *value)(argType1, argType2))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1, typename argType2, typename argType3>
    FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4>
    FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3, argType4))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }
#endif

#if HAS_FASTCALL_CALLING_CONVENTION

    template<typename returnType>
    FunctionPtr(returnType (FASTCALL *value)())
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1>
    FunctionPtr(returnType (FASTCALL *value)(argType1))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1, typename argType2>
    FunctionPtr(returnType (FASTCALL *value)(argType1, argType2))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1, typename argType2, typename argType3>
    FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4>
    FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3, argType4))
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }
#endif

    template<typename FunctionType>
    explicit FunctionPtr(FunctionType* value)
        // Using a C-ctyle cast here to avoid compiler error on RVTC:
        // Error:  #694: reinterpret_cast cannot cast away const or other type qualifiers
        // (I guess on RVTC function pointers have a different constness to GCC/MSVC?)
        : m_value((void*)value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    void* value() const { return m_value; }
    void* executableAddress() const { return m_value; }


private:
    void* m_value;
};

// ReturnAddressPtr:
//
// ReturnAddressPtr should be used to wrap return addresses generated by processor
// 'call' instructions exectued in JIT code.  We use return addresses to look up
// exception and optimization information, and to repatch the call instruction
// that is the source of the return address.
class ReturnAddressPtr {
public:
    ReturnAddressPtr()
        : m_value(0)
    {
    }

    explicit ReturnAddressPtr(void* value)
        : m_value(value)
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    explicit ReturnAddressPtr(FunctionPtr function)
        : m_value(function.value())
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    void* value() const { return m_value; }

private:
    void* m_value;
};

// MacroAssemblerCodePtr:
//
// MacroAssemblerCodePtr should be used to wrap pointers to JIT generated code.
class MacroAssemblerCodePtr {
public:
    MacroAssemblerCodePtr()
        : m_value(0)
    {
    }

    explicit MacroAssemblerCodePtr(void* value)
#if CPU(ARM_THUMB2)
        // Decorate the pointer as a thumb code pointer.
        : m_value(reinterpret_cast<char*>(value) + 1)
#else
        : m_value(value)
#endif
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }
    
    static MacroAssemblerCodePtr createFromExecutableAddress(void* value)
    {
        ASSERT_VALID_CODE_POINTER(value);
        MacroAssemblerCodePtr result;
        result.m_value = value;
        return result;
    }

#if ENABLE(LLINT)
    static MacroAssemblerCodePtr createLLIntCodePtr(LLIntCode codeId)
    {
        return createFromExecutableAddress(LLInt::getCodePtr(codeId));
    }
#endif

    explicit MacroAssemblerCodePtr(ReturnAddressPtr ra)
        : m_value(ra.value())
    {
        ASSERT_VALID_CODE_POINTER(m_value);
    }

    void* executableAddress() const { return m_value; }
#if CPU(ARM_THUMB2)
    // To use this pointer as a data address remove the decoration.
    void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return reinterpret_cast<char*>(m_value) - 1; }
#else
    void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return m_value; }
#endif

    bool operator!() const
    {
        return !m_value;
    }

private:
    void* m_value;
};

// MacroAssemblerCodeRef:
//
// A reference to a section of JIT generated code.  A CodeRef consists of a
// pointer to the code, and a ref pointer to the pool from within which it
// was allocated.
class MacroAssemblerCodeRef {
private:
    // This is private because it's dangerous enough that we want uses of it
    // to be easy to find - hence the static create method below.
    explicit MacroAssemblerCodeRef(MacroAssemblerCodePtr codePtr)
        : m_codePtr(codePtr)
    {
        ASSERT(m_codePtr);
    }

public:
    MacroAssemblerCodeRef()
    {
    }

    MacroAssemblerCodeRef(PassRefPtr<ExecutableMemoryHandle> executableMemory)
        : m_codePtr(executableMemory->start())
        , m_executableMemory(executableMemory)
    {
        ASSERT(m_executableMemory->isManaged());
        ASSERT(m_executableMemory->start());
        ASSERT(m_codePtr);
    }
    
    // Use this only when you know that the codePtr refers to code that is
    // already being kept alive through some other means. Typically this means
    // that codePtr is immortal.
    static MacroAssemblerCodeRef createSelfManagedCodeRef(MacroAssemblerCodePtr codePtr)
    {
        return MacroAssemblerCodeRef(codePtr);
    }
    
#if ENABLE(LLINT)
    // Helper for creating self-managed code refs from LLInt.
    static MacroAssemblerCodeRef createLLIntCodeRef(LLIntCode codeId)
    {
        return createSelfManagedCodeRef(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(codeId)));
    }
#endif

    ExecutableMemoryHandle* executableMemory() const
    {
        return m_executableMemory.get();
    }
    
    MacroAssemblerCodePtr code() const
    {
        return m_codePtr;
    }
    
    size_t size() const
    {
        if (!m_executableMemory)
            return 0;
        return m_executableMemory->sizeInBytes();
    }
    
    bool tryToDisassemble(const char* prefix) const
    {
        return JSC::tryToDisassemble(m_codePtr, size(), prefix, WTF::dataFile());
    }
    
    bool operator!() const { return !m_codePtr; }

private:
    MacroAssemblerCodePtr m_codePtr;
    RefPtr<ExecutableMemoryHandle> m_executableMemory;
};

} // namespace JSC

#endif // MacroAssemblerCodeRef_h