aboutsummaryrefslogtreecommitdiffstats
path: root/src/3rdparty/masm/assembler/MacroAssemblerX86.h
blob: 5ae3e5efd99cb26e532202a35327c71bf3785b40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
 * Copyright (C) 2008 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#ifndef MacroAssemblerX86_h
#define MacroAssemblerX86_h

#if ENABLE(ASSEMBLER) && CPU(X86)

#include "MacroAssemblerX86Common.h"

namespace JSC {

class MacroAssemblerX86 : public MacroAssemblerX86Common {
public:
    static const Scale ScalePtr = TimesFour;

    using MacroAssemblerX86Common::add32;
    using MacroAssemblerX86Common::and32;
    using MacroAssemblerX86Common::branchAdd32;
    using MacroAssemblerX86Common::branchSub32;
    using MacroAssemblerX86Common::sub32;
    using MacroAssemblerX86Common::or32;
    using MacroAssemblerX86Common::load32;
    using MacroAssemblerX86Common::store32;
    using MacroAssemblerX86Common::store8;
    using MacroAssemblerX86Common::branch32;
    using MacroAssemblerX86Common::call;
    using MacroAssemblerX86Common::jump;
    using MacroAssemblerX86Common::addDouble;
    using MacroAssemblerX86Common::loadDouble;
    using MacroAssemblerX86Common::storeDouble;
    using MacroAssemblerX86Common::convertInt32ToDouble;
    using MacroAssemblerX86Common::branchTest8;

    void add32(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        m_assembler.leal_mr(imm.m_value, src, dest);
    }

    void add32(TrustedImm32 imm, AbsoluteAddress address)
    {
        m_assembler.addl_im(imm.m_value, address.m_ptr);
    }
    
    void add32(AbsoluteAddress address, RegisterID dest)
    {
        m_assembler.addl_mr(address.m_ptr, dest);
    }
    
    void add64(TrustedImm32 imm, AbsoluteAddress address)
    {
        m_assembler.addl_im(imm.m_value, address.m_ptr);
        m_assembler.adcl_im(imm.m_value >> 31, reinterpret_cast<const char*>(address.m_ptr) + sizeof(int32_t));
    }

    void and32(TrustedImm32 imm, AbsoluteAddress address)
    {
        m_assembler.andl_im(imm.m_value, address.m_ptr);
    }
    
    void or32(TrustedImm32 imm, AbsoluteAddress address)
    {
        m_assembler.orl_im(imm.m_value, address.m_ptr);
    }
    
    void or32(RegisterID reg, AbsoluteAddress address)
    {
        m_assembler.orl_rm(reg, address.m_ptr);
    }
    
    void sub32(TrustedImm32 imm, AbsoluteAddress address)
    {
        m_assembler.subl_im(imm.m_value, address.m_ptr);
    }

    void load32(const void* address, RegisterID dest)
    {
        m_assembler.movl_mr(address, dest);
    }

    ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest)
    {
        ConvertibleLoadLabel result = ConvertibleLoadLabel(this);
        m_assembler.movl_mr(address.offset, address.base, dest);
        return result;
    }

    void addDouble(AbsoluteAddress address, FPRegisterID dest)
    {
        m_assembler.addsd_mr(address.m_ptr, dest);
    }

    void storeDouble(FPRegisterID src, const void* address)
    {
        ASSERT(isSSE2Present());
        m_assembler.movsd_rm(src, address);
    }

    void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest)
    {
        m_assembler.cvtsi2sd_mr(src.m_ptr, dest);
    }

    void convertUInt32ToDouble(RegisterID src, FPRegisterID dest, RegisterID scratch)
    {
        Jump intRange = branch32(GreaterThanOrEqual, src, TrustedImm32(0));
        and32(TrustedImm32(INT_MAX), src, scratch);
        convertInt32ToDouble(scratch, dest);
        static const double magic = double(INT_MAX) + 1;
        addDouble(AbsoluteAddress(&magic), dest);
        Jump done = jump();
        intRange.link(this);
        convertInt32ToDouble(src, dest);
        done.link(this);
    }

    void store32(TrustedImm32 imm, void* address)
    {
        m_assembler.movl_i32m(imm.m_value, address);
    }

    void store32(RegisterID src, void* address)
    {
        m_assembler.movl_rm(src, address);
    }

    void store8(TrustedImm32 imm, void* address)
    {
        ASSERT(-128 <= imm.m_value && imm.m_value < 128);
        m_assembler.movb_i8m(imm.m_value, address);
    }
    
    // Possibly clobbers src.
    void moveDoubleToInts(FPRegisterID src, RegisterID dest1, RegisterID dest2)
    {
        movePackedToInt32(src, dest1);
        rshiftPacked(TrustedImm32(32), src);
        movePackedToInt32(src, dest2);
    }

    void moveIntsToDouble(RegisterID src1, RegisterID src2, FPRegisterID dest, FPRegisterID scratch)
    {
        moveInt32ToPacked(src1, dest);
        moveInt32ToPacked(src2, scratch);
        lshiftPacked(TrustedImm32(32), scratch);
        orPacked(scratch, dest);
    }

    Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, AbsoluteAddress dest)
    {
        m_assembler.addl_im(imm.m_value, dest.m_ptr);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub32(ResultCondition cond, TrustedImm32 imm, AbsoluteAddress dest)
    {
        m_assembler.subl_im(imm.m_value, dest.m_ptr);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch32(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
    {
        m_assembler.cmpl_rm(right, left.m_ptr);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch32(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
    {
        m_assembler.cmpl_im(right.m_value, left.m_ptr);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Call call()
    {
        return Call(m_assembler.call(), Call::Linkable);
    }

    void callToRetrieveIP()
    {
        m_assembler.call();
    }

    // Address is a memory location containing the address to jump to
    void jump(AbsoluteAddress address)
    {
        m_assembler.jmp_m(address.m_ptr);
    }

    Call tailRecursiveCall()
    {
        return Call::fromTailJump(jump());
    }

    Call makeTailRecursiveCall(Jump oldJump)
    {
        return Call::fromTailJump(oldJump);
    }


    DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movl_i32r(initialValue.asIntptr(), dest);
        return DataLabelPtr(this);
    }
    
    Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
    {
        ASSERT(mask.m_value >= -128 && mask.m_value <= 255);
        if (mask.m_value == -1)
            m_assembler.cmpb_im(0, address.m_ptr);
        else
            m_assembler.testb_im(mask.m_value, address.m_ptr);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
    {
        padBeforePatch();
        m_assembler.cmpl_ir_force32(initialRightValue.asIntptr(), left);
        dataLabel = DataLabelPtr(this);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
    {
        padBeforePatch();
        m_assembler.cmpl_im_force32(initialRightValue.asIntptr(), left.offset, left.base);
        dataLabel = DataLabelPtr(this);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
    {
        padBeforePatch();
        m_assembler.movl_i32m(initialValue.asIntptr(), address.offset, address.base);
        return DataLabelPtr(this);
    }

    static bool supportsFloatingPoint() { return isSSE2Present(); }
    // See comment on MacroAssemblerARMv7::supportsFloatingPointTruncate()
    static bool supportsFloatingPointTruncate() { return isSSE2Present(); }
    static bool supportsFloatingPointSqrt() { return isSSE2Present(); }
    static bool supportsFloatingPointAbs() { return isSSE2Present(); }
    
    static FunctionPtr readCallTarget(CodeLocationCall call)
    {
        intptr_t offset = reinterpret_cast<int32_t*>(call.dataLocation())[-1];
        return FunctionPtr(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(call.dataLocation()) + offset));
    }

    static bool canJumpReplacePatchableBranchPtrWithPatch() { return true; }
    
    static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label)
    {
        const int opcodeBytes = 1;
        const int modRMBytes = 1;
        const int immediateBytes = 4;
        const int totalBytes = opcodeBytes + modRMBytes + immediateBytes;
        ASSERT(totalBytes >= maxJumpReplacementSize());
        return label.labelAtOffset(-totalBytes);
    }
    
    static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr label)
    {
        const int opcodeBytes = 1;
        const int modRMBytes = 1;
        const int offsetBytes = 0;
        const int immediateBytes = 4;
        const int totalBytes = opcodeBytes + modRMBytes + offsetBytes + immediateBytes;
        ASSERT(totalBytes >= maxJumpReplacementSize());
        return label.labelAtOffset(-totalBytes);
    }
    
    static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID reg, void* initialValue)
    {
        X86Assembler::revertJumpTo_cmpl_ir_force32(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), reg);
    }

    static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel instructionStart, Address address, void* initialValue)
    {
        ASSERT(!address.offset);
        X86Assembler::revertJumpTo_cmpl_im_force32(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), 0, address.base);
    }

private:
    template <typename>  friend class LinkBuffer;
    friend class RepatchBuffer;

    static void linkCall(void* code, Call call, FunctionPtr function)
    {
        X86Assembler::linkCall(code, call.m_label, function.value());
    }

    static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
    {
        X86Assembler::relinkCall(call.dataLocation(), destination.executableAddress());
    }

    static void repatchCall(CodeLocationCall call, FunctionPtr destination)
    {
        X86Assembler::relinkCall(call.dataLocation(), destination.executableAddress());
    }
};

} // namespace JSC

#endif // ENABLE(ASSEMBLER)

#endif // MacroAssemblerX86_h