aboutsummaryrefslogtreecommitdiffstats
path: root/src/3rdparty/masm/assembler/MacroAssemblerX86Common.h
blob: 520cf915faabc6895b6965667e1608f0cf9fd041 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
/*
 * Copyright (C) 2008 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#ifndef MacroAssemblerX86Common_h
#define MacroAssemblerX86Common_h

#if ENABLE(ASSEMBLER)

#include "X86Assembler.h"
#include "AbstractMacroAssembler.h"

namespace JSC {

class MacroAssemblerX86Common : public AbstractMacroAssembler<X86Assembler> {
protected:
#if CPU(X86_64)
    static const X86Registers::RegisterID scratchRegister = X86Registers::r11;
#endif

    static const int DoubleConditionBitInvert = 0x10;
    static const int DoubleConditionBitSpecial = 0x20;
    static const int DoubleConditionBits = DoubleConditionBitInvert | DoubleConditionBitSpecial;

public:
    typedef X86Assembler::FPRegisterID FPRegisterID;
    typedef X86Assembler::XMMRegisterID XMMRegisterID;
    
    static bool isCompactPtrAlignedAddressOffset(ptrdiff_t value)
    {
        return value >= -128 && value <= 127;
    }

    enum RelationalCondition {
        Equal = X86Assembler::ConditionE,
        NotEqual = X86Assembler::ConditionNE,
        Above = X86Assembler::ConditionA,
        AboveOrEqual = X86Assembler::ConditionAE,
        Below = X86Assembler::ConditionB,
        BelowOrEqual = X86Assembler::ConditionBE,
        GreaterThan = X86Assembler::ConditionG,
        GreaterThanOrEqual = X86Assembler::ConditionGE,
        LessThan = X86Assembler::ConditionL,
        LessThanOrEqual = X86Assembler::ConditionLE
    };

    enum ResultCondition {
        Overflow = X86Assembler::ConditionO,
        Signed = X86Assembler::ConditionS,
        Zero = X86Assembler::ConditionE,
        NonZero = X86Assembler::ConditionNE
    };

    enum DoubleCondition {
        // These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN.
        DoubleEqual = X86Assembler::ConditionE | DoubleConditionBitSpecial,
        DoubleNotEqual = X86Assembler::ConditionNE,
        DoubleGreaterThan = X86Assembler::ConditionA,
        DoubleGreaterThanOrEqual = X86Assembler::ConditionAE,
        DoubleLessThan = X86Assembler::ConditionA | DoubleConditionBitInvert,
        DoubleLessThanOrEqual = X86Assembler::ConditionAE | DoubleConditionBitInvert,
        // If either operand is NaN, these conditions always evaluate to true.
        DoubleEqualOrUnordered = X86Assembler::ConditionE,
        DoubleNotEqualOrUnordered = X86Assembler::ConditionNE | DoubleConditionBitSpecial,
        DoubleGreaterThanOrUnordered = X86Assembler::ConditionB | DoubleConditionBitInvert,
        DoubleGreaterThanOrEqualOrUnordered = X86Assembler::ConditionBE | DoubleConditionBitInvert,
        DoubleLessThanOrUnordered = X86Assembler::ConditionB,
        DoubleLessThanOrEqualOrUnordered = X86Assembler::ConditionBE,
    };
    COMPILE_ASSERT(
        !((X86Assembler::ConditionE | X86Assembler::ConditionNE | X86Assembler::ConditionA | X86Assembler::ConditionAE | X86Assembler::ConditionB | X86Assembler::ConditionBE) & DoubleConditionBits),
        DoubleConditionBits_should_not_interfere_with_X86Assembler_Condition_codes);

    static const RegisterID stackPointerRegister = X86Registers::esp;

#if ENABLE(JIT_CONSTANT_BLINDING)
    static bool shouldBlindForSpecificArch(uint32_t value) { return value >= 0x00ffffff; }
#if CPU(X86_64)
    static bool shouldBlindForSpecificArch(uint64_t value) { return value >= 0x00ffffff; }
#if OS(DARWIN) // On 64-bit systems other than DARWIN uint64_t and uintptr_t are the same type so overload is prohibited.
    static bool shouldBlindForSpecificArch(uintptr_t value) { return value >= 0x00ffffff; }
#endif
#endif
#endif

    // Integer arithmetic operations:
    //
    // Operations are typically two operand - operation(source, srcDst)
    // For many operations the source may be an TrustedImm32, the srcDst operand
    // may often be a memory location (explictly described using an Address
    // object).

    void add32(RegisterID src, RegisterID dest)
    {
        m_assembler.addl_rr(src, dest);
    }

    void add32(TrustedImm32 imm, Address address)
    {
        m_assembler.addl_im(imm.m_value, address.offset, address.base);
    }

    void add32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.addl_ir(imm.m_value, dest);
    }
    
    void add32(Address src, RegisterID dest)
    {
        m_assembler.addl_mr(src.offset, src.base, dest);
    }

    void add32(RegisterID src, Address dest)
    {
        m_assembler.addl_rm(src, dest.offset, dest.base);
    }

    void add32(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        m_assembler.leal_mr(imm.m_value, src, dest);
    }
    
    void and32(RegisterID src, RegisterID dest)
    {
        m_assembler.andl_rr(src, dest);
    }

    void and32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.andl_ir(imm.m_value, dest);
    }

    void and32(RegisterID src, Address dest)
    {
        m_assembler.andl_rm(src, dest.offset, dest.base);
    }

    void and32(Address src, RegisterID dest)
    {
        m_assembler.andl_mr(src.offset, src.base, dest);
    }

    void and32(TrustedImm32 imm, Address address)
    {
        m_assembler.andl_im(imm.m_value, address.offset, address.base);
    }

    void and32(RegisterID op1, RegisterID op2, RegisterID dest)
    {
        if (op1 == op2)
            zeroExtend32ToPtr(op1, dest);
        else if (op1 == dest)
            and32(op2, dest);
        else {
            move(op2, dest);
            and32(op1, dest);
        }
    }

    void and32(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        move(src, dest);
        and32(imm, dest);
    }

    void lshift32(RegisterID shift_amount, RegisterID dest)
    {
        ASSERT(shift_amount != dest);

        if (shift_amount == X86Registers::ecx)
            m_assembler.shll_CLr(dest);
        else {
            // On x86 we can only shift by ecx; if asked to shift by another register we'll
            // need rejig the shift amount into ecx first, and restore the registers afterwards.
            // If we dest is ecx, then shift the swapped register!
            swap(shift_amount, X86Registers::ecx);
            m_assembler.shll_CLr(dest == X86Registers::ecx ? shift_amount : dest);
            swap(shift_amount, X86Registers::ecx);
        }
    }

    void lshift32(RegisterID src, RegisterID shift_amount, RegisterID dest)
    {
        ASSERT(shift_amount != dest);

        if (src != dest)
            move(src, dest);
        lshift32(shift_amount, dest);
    }

    void lshift32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.shll_i8r(imm.m_value, dest);
    }
    
    void lshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
    {
        if (src != dest)
            move(src, dest);
        lshift32(imm, dest);
    }
    
    void mul32(RegisterID src, RegisterID dest)
    {
        m_assembler.imull_rr(src, dest);
    }

    void mul32(Address src, RegisterID dest)
    {
        m_assembler.imull_mr(src.offset, src.base, dest);
    }
    
    void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        m_assembler.imull_i32r(src, imm.m_value, dest);
    }

    void neg32(RegisterID srcDest)
    {
        m_assembler.negl_r(srcDest);
    }

    void neg32(Address srcDest)
    {
        m_assembler.negl_m(srcDest.offset, srcDest.base);
    }

    void or32(RegisterID src, RegisterID dest)
    {
        m_assembler.orl_rr(src, dest);
    }

    void or32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.orl_ir(imm.m_value, dest);
    }

    void or32(RegisterID src, Address dest)
    {
        m_assembler.orl_rm(src, dest.offset, dest.base);
    }

    void or32(Address src, RegisterID dest)
    {
        m_assembler.orl_mr(src.offset, src.base, dest);
    }

    void or32(TrustedImm32 imm, Address address)
    {
        m_assembler.orl_im(imm.m_value, address.offset, address.base);
    }

    void or32(RegisterID op1, RegisterID op2, RegisterID dest)
    {
        if (op1 == op2)
            zeroExtend32ToPtr(op1, dest);
        else if (op1 == dest)
            or32(op2, dest);
        else {
            move(op2, dest);
            or32(op1, dest);
        }
    }

    void or32(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        move(src, dest);
        or32(imm, dest);
    }

    void rshift32(RegisterID shift_amount, RegisterID dest)
    {
        ASSERT(shift_amount != dest);

        if (shift_amount == X86Registers::ecx)
            m_assembler.sarl_CLr(dest);
        else {
            // On x86 we can only shift by ecx; if asked to shift by another register we'll
            // need rejig the shift amount into ecx first, and restore the registers afterwards.
            // If we dest is ecx, then shift the swapped register!
            swap(shift_amount, X86Registers::ecx);
            m_assembler.sarl_CLr(dest == X86Registers::ecx ? shift_amount : dest);
            swap(shift_amount, X86Registers::ecx);
        }
    }

    void rshift32(RegisterID src, RegisterID shift_amount, RegisterID dest)
    {
        ASSERT(shift_amount != dest);

        if (src != dest)
            move(src, dest);
        rshift32(shift_amount, dest);
    }

    void rshift32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.sarl_i8r(imm.m_value, dest);
    }

    void rshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
    {
        if (src != dest)
            move(src, dest);
        rshift32(imm, dest);
    }
    
    void urshift32(RegisterID shift_amount, RegisterID dest)
    {
        ASSERT(shift_amount != dest);

        if (shift_amount == X86Registers::ecx)
            m_assembler.shrl_CLr(dest);
        else {
            // On x86 we can only shift by ecx; if asked to shift by another register we'll
            // need rejig the shift amount into ecx first, and restore the registers afterwards.
            // If we dest is ecx, then shift the swapped register!
            swap(shift_amount, X86Registers::ecx);
            m_assembler.shrl_CLr(dest == X86Registers::ecx ? shift_amount : dest);
            swap(shift_amount, X86Registers::ecx);
        }
    }

    void urshift32(RegisterID src, RegisterID shift_amount, RegisterID dest)
    {
        ASSERT(shift_amount != dest);

        if (src != dest)
            move(src, dest);
        urshift32(shift_amount, dest);
    }

    void urshift32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.shrl_i8r(imm.m_value, dest);
    }
    
    void urshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
    {
        if (src != dest)
            move(src, dest);
        urshift32(imm, dest);
    }

    void sub32(RegisterID src, RegisterID dest)
    {
        m_assembler.subl_rr(src, dest);
    }
    
    void sub32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.subl_ir(imm.m_value, dest);
    }
    
    void sub32(TrustedImm32 imm, Address address)
    {
        m_assembler.subl_im(imm.m_value, address.offset, address.base);
    }

    void sub32(Address src, RegisterID dest)
    {
        m_assembler.subl_mr(src.offset, src.base, dest);
    }

    void sub32(RegisterID src, Address dest)
    {
        m_assembler.subl_rm(src, dest.offset, dest.base);
    }

    void xor32(RegisterID src, RegisterID dest)
    {
        m_assembler.xorl_rr(src, dest);
    }

    void xor32(TrustedImm32 imm, Address dest)
    {
        if (imm.m_value == -1)
            m_assembler.notl_m(dest.offset, dest.base);
        else
            m_assembler.xorl_im(imm.m_value, dest.offset, dest.base);
    }

    void xor32(TrustedImm32 imm, RegisterID dest)
    {
        if (imm.m_value == -1)
        m_assembler.notl_r(dest);
        else
        m_assembler.xorl_ir(imm.m_value, dest);
    }

    void xor32(RegisterID src, Address dest)
    {
        m_assembler.xorl_rm(src, dest.offset, dest.base);
    }

    void xor32(Address src, RegisterID dest)
    {
        m_assembler.xorl_mr(src.offset, src.base, dest);
    }
    
    void xor32(RegisterID op1, RegisterID op2, RegisterID dest)
    {
        if (op1 == op2)
            move(TrustedImm32(0), dest);
        else if (op1 == dest)
            xor32(op2, dest);
        else {
            move(op2, dest);
            xor32(op1, dest);
        }
    }

    void xor32(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        move(src, dest);
        xor32(imm, dest);
    }

    void sqrtDouble(FPRegisterID src, FPRegisterID dst)
    {
        m_assembler.sqrtsd_rr(src, dst);
    }

    void absDouble(FPRegisterID src, FPRegisterID dst)
    {
        ASSERT(src != dst);
        static const double negativeZeroConstant = -0.0;
        loadDouble(&negativeZeroConstant, dst);
        m_assembler.andnpd_rr(src, dst);
    }

    void negateDouble(FPRegisterID src, FPRegisterID dst)
    {
        ASSERT(src != dst);
        static const double negativeZeroConstant = -0.0;
        loadDouble(&negativeZeroConstant, dst);
        m_assembler.xorpd_rr(src, dst);
    }


    // Memory access operations:
    //
    // Loads are of the form load(address, destination) and stores of the form
    // store(source, address).  The source for a store may be an TrustedImm32.  Address
    // operand objects to loads and store will be implicitly constructed if a
    // register is passed.

    void load32(ImplicitAddress address, RegisterID dest)
    {
        m_assembler.movl_mr(address.offset, address.base, dest);
    }

    void load32(BaseIndex address, RegisterID dest)
    {
        m_assembler.movl_mr(address.offset, address.base, address.index, address.scale, dest);
    }

    void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest)
    {
        load32(address, dest);
    }

    void load16Unaligned(BaseIndex address, RegisterID dest)
    {
        load16(address, dest);
    }

    DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movl_mr_disp32(address.offset, address.base, dest);
        return DataLabel32(this);
    }
    
    DataLabelCompact load32WithCompactAddressOffsetPatch(Address address, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movl_mr_disp8(address.offset, address.base, dest);
        return DataLabelCompact(this);
    }
    
    static void repatchCompact(CodeLocationDataLabelCompact dataLabelCompact, int32_t value)
    {
        ASSERT(isCompactPtrAlignedAddressOffset(value));
        AssemblerType_T::repatchCompact(dataLabelCompact.dataLocation(), value);
    }
    
    DataLabelCompact loadCompactWithAddressOffsetPatch(Address address, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movl_mr_disp8(address.offset, address.base, dest);
        return DataLabelCompact(this);
    }

    void load8(BaseIndex address, RegisterID dest)
    {
        m_assembler.movzbl_mr(address.offset, address.base, address.index, address.scale, dest);
    }

    void load8(ImplicitAddress address, RegisterID dest)
    {
        m_assembler.movzbl_mr(address.offset, address.base, dest);
    }
    
    void load8Signed(BaseIndex address, RegisterID dest)
    {
        m_assembler.movsbl_mr(address.offset, address.base, address.index, address.scale, dest);
    }

    void load8Signed(ImplicitAddress address, RegisterID dest)
    {
        m_assembler.movsbl_mr(address.offset, address.base, dest);
    }
    
    void load16(BaseIndex address, RegisterID dest)
    {
        m_assembler.movzwl_mr(address.offset, address.base, address.index, address.scale, dest);
    }
    
    void load16(Address address, RegisterID dest)
    {
        m_assembler.movzwl_mr(address.offset, address.base, dest);
    }

    void load16Signed(BaseIndex address, RegisterID dest)
    {
        m_assembler.movswl_mr(address.offset, address.base, address.index, address.scale, dest);
    }
    
    void load16Signed(Address address, RegisterID dest)
    {
        m_assembler.movswl_mr(address.offset, address.base, dest);
    }

    DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address)
    {
        padBeforePatch();
        m_assembler.movl_rm_disp32(src, address.offset, address.base);
        return DataLabel32(this);
    }

    void store32(RegisterID src, ImplicitAddress address)
    {
        m_assembler.movl_rm(src, address.offset, address.base);
    }

    void store32(RegisterID src, BaseIndex address)
    {
        m_assembler.movl_rm(src, address.offset, address.base, address.index, address.scale);
    }

    void store32(TrustedImm32 imm, ImplicitAddress address)
    {
        m_assembler.movl_i32m(imm.m_value, address.offset, address.base);
    }
    
    void store32(TrustedImm32 imm, BaseIndex address)
    {
        m_assembler.movl_i32m(imm.m_value, address.offset, address.base, address.index, address.scale);
    }

    void store8(TrustedImm32 imm, Address address)
    {
        ASSERT(-128 <= imm.m_value && imm.m_value < 128);
        m_assembler.movb_i8m(imm.m_value, address.offset, address.base);
    }

    void store8(TrustedImm32 imm, BaseIndex address)
    {
        ASSERT(-128 <= imm.m_value && imm.m_value < 128);
        m_assembler.movb_i8m(imm.m_value, address.offset, address.base, address.index, address.scale);
    }
    
    void store8(RegisterID src, BaseIndex address)
    {
#if CPU(X86)
        // On 32-bit x86 we can only store from the first 4 registers;
        // esp..edi are mapped to the 'h' registers!
        if (src >= 4) {
            // Pick a temporary register.
            RegisterID temp;
            if (address.base != X86Registers::eax && address.index != X86Registers::eax)
                temp = X86Registers::eax;
            else if (address.base != X86Registers::ebx && address.index != X86Registers::ebx)
                temp = X86Registers::ebx;
            else {
                ASSERT(address.base != X86Registers::ecx && address.index != X86Registers::ecx);
                temp = X86Registers::ecx;
            }

            // Swap to the temporary register to perform the store.
            swap(src, temp);
            m_assembler.movb_rm(temp, address.offset, address.base, address.index, address.scale);
            swap(src, temp);
            return;
        }
#endif
        m_assembler.movb_rm(src, address.offset, address.base, address.index, address.scale);
    }

    void store16(RegisterID src, BaseIndex address)
    {
#if CPU(X86)
        // On 32-bit x86 we can only store from the first 4 registers;
        // esp..edi are mapped to the 'h' registers!
        if (src >= 4) {
            // Pick a temporary register.
            RegisterID temp;
            if (address.base != X86Registers::eax && address.index != X86Registers::eax)
                temp = X86Registers::eax;
            else if (address.base != X86Registers::ebx && address.index != X86Registers::ebx)
                temp = X86Registers::ebx;
            else {
                ASSERT(address.base != X86Registers::ecx && address.index != X86Registers::ecx);
                temp = X86Registers::ecx;
            }
            
            // Swap to the temporary register to perform the store.
            swap(src, temp);
            m_assembler.movw_rm(temp, address.offset, address.base, address.index, address.scale);
            swap(src, temp);
            return;
        }
#endif
        m_assembler.movw_rm(src, address.offset, address.base, address.index, address.scale);
    }


    // Floating-point operation:
    //
    // Presently only supports SSE, not x87 floating point.

    void moveDouble(FPRegisterID src, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        if (src != dest)
            m_assembler.movsd_rr(src, dest);
    }

    void loadDouble(const void* address, FPRegisterID dest)
    {
#if CPU(X86)
        ASSERT(isSSE2Present());
        m_assembler.movsd_mr(address, dest);
#else
        move(TrustedImmPtr(address), scratchRegister);
        loadDouble(scratchRegister, dest);
#endif
    }

    void loadDouble(ImplicitAddress address, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.movsd_mr(address.offset, address.base, dest);
    }
    
    void loadDouble(BaseIndex address, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.movsd_mr(address.offset, address.base, address.index, address.scale, dest);
    }
    void loadFloat(BaseIndex address, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.movss_mr(address.offset, address.base, address.index, address.scale, dest);
    }

    void storeDouble(FPRegisterID src, ImplicitAddress address)
    {
        ASSERT(isSSE2Present());
        m_assembler.movsd_rm(src, address.offset, address.base);
    }
    
    void storeDouble(FPRegisterID src, BaseIndex address)
    {
        ASSERT(isSSE2Present());
        m_assembler.movsd_rm(src, address.offset, address.base, address.index, address.scale);
    }
    
    void storeFloat(FPRegisterID src, BaseIndex address)
    {
        ASSERT(isSSE2Present());
        m_assembler.movss_rm(src, address.offset, address.base, address.index, address.scale);
    }
    
    void convertDoubleToFloat(FPRegisterID src, FPRegisterID dst)
    {
        ASSERT(isSSE2Present());
        m_assembler.cvtsd2ss_rr(src, dst);
    }

    void convertFloatToDouble(FPRegisterID src, FPRegisterID dst)
    {
        ASSERT(isSSE2Present());
        m_assembler.cvtss2sd_rr(src, dst);
    }

    void addDouble(FPRegisterID src, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.addsd_rr(src, dest);
    }

    void addDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        if (op1 == dest)
            addDouble(op2, dest);
        else {
            moveDouble(op2, dest);
            addDouble(op1, dest);
        }
    }

    void addDouble(Address src, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.addsd_mr(src.offset, src.base, dest);
    }

    void divDouble(FPRegisterID src, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.divsd_rr(src, dest);
    }

    void divDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
    {
        // B := A / B is invalid.
        ASSERT(op1 == dest || op2 != dest);

        moveDouble(op1, dest);
        divDouble(op2, dest);
    }

    void divDouble(Address src, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.divsd_mr(src.offset, src.base, dest);
    }

    void subDouble(FPRegisterID src, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.subsd_rr(src, dest);
    }

    void subDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
    {
        // B := A - B is invalid.
        ASSERT(op1 == dest || op2 != dest);

        moveDouble(op1, dest);
        subDouble(op2, dest);
    }

    void subDouble(Address src, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.subsd_mr(src.offset, src.base, dest);
    }

    void mulDouble(FPRegisterID src, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.mulsd_rr(src, dest);
    }

    void mulDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        if (op1 == dest)
            mulDouble(op2, dest);
        else {
            moveDouble(op2, dest);
            mulDouble(op1, dest);
        }
    }

    void mulDouble(Address src, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.mulsd_mr(src.offset, src.base, dest);
    }

    void convertInt32ToDouble(RegisterID src, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.cvtsi2sd_rr(src, dest);
    }

    void convertInt32ToDouble(Address src, FPRegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.cvtsi2sd_mr(src.offset, src.base, dest);
    }

    Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right)
    {
        ASSERT(isSSE2Present());

        if (cond & DoubleConditionBitInvert)
            m_assembler.ucomisd_rr(left, right);
        else
            m_assembler.ucomisd_rr(right, left);

        if (cond == DoubleEqual) {
            if (left == right)
                return Jump(m_assembler.jnp());
            Jump isUnordered(m_assembler.jp());
            Jump result = Jump(m_assembler.je());
            isUnordered.link(this);
            return result;
        } else if (cond == DoubleNotEqualOrUnordered) {
            if (left == right)
                return Jump(m_assembler.jp());
            Jump isUnordered(m_assembler.jp());
            Jump isEqual(m_assembler.je());
            isUnordered.link(this);
            Jump result = jump();
            isEqual.link(this);
            return result;
        }

        ASSERT(!(cond & DoubleConditionBitSpecial));
        return Jump(m_assembler.jCC(static_cast<X86Assembler::Condition>(cond & ~DoubleConditionBits)));
    }

    // Truncates 'src' to an integer, and places the resulting 'dest'.
    // If the result is not representable as a 32 bit value, branch.
    // May also branch for some values that are representable in 32 bits
    // (specifically, in this case, INT_MIN).
    enum BranchTruncateType { BranchIfTruncateFailed, BranchIfTruncateSuccessful };
    Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed)
    {
        ASSERT(isSSE2Present());
        m_assembler.cvttsd2si_rr(src, dest);
        return branch32(branchType ? NotEqual : Equal, dest, TrustedImm32(0x80000000));
    }

    Jump branchTruncateDoubleToUint32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed)
    {
        ASSERT(isSSE2Present());
        m_assembler.cvttsd2si_rr(src, dest);
        return branch32(branchType ? GreaterThanOrEqual : LessThan, dest, TrustedImm32(0));
    }

    void truncateDoubleToInt32(FPRegisterID src, RegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.cvttsd2si_rr(src, dest);
    }
    
#if CPU(X86_64)
    void truncateDoubleToUint32(FPRegisterID src, RegisterID dest)
    {
        ASSERT(isSSE2Present());
        m_assembler.cvttsd2siq_rr(src, dest);
    }
#endif
    
    // Convert 'src' to an integer, and places the resulting 'dest'.
    // If the result is not representable as a 32 bit value, branch.
    // May also branch for some values that are representable in 32 bits
    // (specifically, in this case, 0).
    void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID fpTemp)
    {
        ASSERT(isSSE2Present());
        m_assembler.cvttsd2si_rr(src, dest);

        // If the result is zero, it might have been -0.0, and the double comparison won't catch this!
        failureCases.append(branchTest32(Zero, dest));

        // Convert the integer result back to float & compare to the original value - if not equal or unordered (NaN) then jump.
        convertInt32ToDouble(dest, fpTemp);
        m_assembler.ucomisd_rr(fpTemp, src);
        failureCases.append(m_assembler.jp());
        failureCases.append(m_assembler.jne());
    }

    Jump branchDoubleNonZero(FPRegisterID reg, FPRegisterID scratch)
    {
        ASSERT(isSSE2Present());
        m_assembler.xorpd_rr(scratch, scratch);
        return branchDouble(DoubleNotEqual, reg, scratch);
    }

    Jump branchDoubleZeroOrNaN(FPRegisterID reg, FPRegisterID scratch)
    {
        ASSERT(isSSE2Present());
        m_assembler.xorpd_rr(scratch, scratch);
        return branchDouble(DoubleEqualOrUnordered, reg, scratch);
    }

    void lshiftPacked(TrustedImm32 imm, XMMRegisterID reg)
    {
        ASSERT(isSSE2Present());
        m_assembler.psllq_i8r(imm.m_value, reg);
    }

    void rshiftPacked(TrustedImm32 imm, XMMRegisterID reg)
    {
        ASSERT(isSSE2Present());
        m_assembler.psrlq_i8r(imm.m_value, reg);
    }

    void orPacked(XMMRegisterID src, XMMRegisterID dst)
    {
        ASSERT(isSSE2Present());
        m_assembler.por_rr(src, dst);
    }

    void moveInt32ToPacked(RegisterID src, XMMRegisterID dst)
    {
        ASSERT(isSSE2Present());
        m_assembler.movd_rr(src, dst);
    }

    void movePackedToInt32(XMMRegisterID src, RegisterID dst)
    {
        ASSERT(isSSE2Present());
        m_assembler.movd_rr(src, dst);
    }

    // Stack manipulation operations:
    //
    // The ABI is assumed to provide a stack abstraction to memory,
    // containing machine word sized units of data.  Push and pop
    // operations add and remove a single register sized unit of data
    // to or from the stack.  Peek and poke operations read or write
    // values on the stack, without moving the current stack position.
    
    void pop(RegisterID dest)
    {
        m_assembler.pop_r(dest);
    }

    void push(RegisterID src)
    {
        m_assembler.push_r(src);
    }

    void push(Address address)
    {
        m_assembler.push_m(address.offset, address.base);
    }

    void push(TrustedImm32 imm)
    {
        m_assembler.push_i32(imm.m_value);
    }


    // Register move operations:
    //
    // Move values in registers.

    void move(TrustedImm32 imm, RegisterID dest)
    {
        // Note: on 64-bit the TrustedImm32 value is zero extended into the register, it
        // may be useful to have a separate version that sign extends the value?
        if (!imm.m_value)
            m_assembler.xorl_rr(dest, dest);
        else
            m_assembler.movl_i32r(imm.m_value, dest);
    }

#if CPU(X86_64)
    void move(RegisterID src, RegisterID dest)
    {
        // Note: on 64-bit this is is a full register move; perhaps it would be
        // useful to have separate move32 & movePtr, with move32 zero extending?
        if (src != dest)
            m_assembler.movq_rr(src, dest);
    }

    void move(TrustedImmPtr imm, RegisterID dest)
    {
        m_assembler.movq_i64r(imm.asIntptr(), dest);
    }

    void move(TrustedImm64 imm, RegisterID dest)
    {
        m_assembler.movq_i64r(imm.m_value, dest);
    }

    void swap(RegisterID reg1, RegisterID reg2)
    {
        if (reg1 != reg2)
            m_assembler.xchgq_rr(reg1, reg2);
    }

    void signExtend32ToPtr(RegisterID src, RegisterID dest)
    {
        m_assembler.movsxd_rr(src, dest);
    }

    void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
    {
        m_assembler.movl_rr(src, dest);
    }
#else
    void move(RegisterID src, RegisterID dest)
    {
        if (src != dest)
            m_assembler.movl_rr(src, dest);
    }

    void move(TrustedImmPtr imm, RegisterID dest)
    {
        m_assembler.movl_i32r(imm.asIntptr(), dest);
    }

    void swap(RegisterID reg1, RegisterID reg2)
    {
        if (reg1 != reg2)
            m_assembler.xchgl_rr(reg1, reg2);
    }

    void signExtend32ToPtr(RegisterID src, RegisterID dest)
    {
        move(src, dest);
    }

    void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
    {
        move(src, dest);
    }
#endif


    // Forwards / external control flow operations:
    //
    // This set of jump and conditional branch operations return a Jump
    // object which may linked at a later point, allow forwards jump,
    // or jumps that will require external linkage (after the code has been
    // relocated).
    //
    // For branches, signed <, >, <= and >= are denoted as l, g, le, and ge
    // respecitvely, for unsigned comparisons the names b, a, be, and ae are
    // used (representing the names 'below' and 'above').
    //
    // Operands to the comparision are provided in the expected order, e.g.
    // jle32(reg1, TrustedImm32(5)) will branch if the value held in reg1, when
    // treated as a signed 32bit value, is less than or equal to 5.
    //
    // jz and jnz test whether the first operand is equal to zero, and take
    // an optional second operand of a mask under which to perform the test.

public:
    Jump branch8(RelationalCondition cond, Address left, TrustedImm32 right)
    {
        m_assembler.cmpb_im(right.m_value, left.offset, left.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch32(RelationalCondition cond, RegisterID left, RegisterID right)
    {
        m_assembler.cmpl_rr(right, left);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch32(RelationalCondition cond, RegisterID left, TrustedImm32 right)
    {
        if (((cond == Equal) || (cond == NotEqual)) && !right.m_value)
            m_assembler.testl_rr(left, left);
        else
            m_assembler.cmpl_ir(right.m_value, left);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }
    
    Jump branch32(RelationalCondition cond, RegisterID left, Address right)
    {
        m_assembler.cmpl_mr(right.offset, right.base, left);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }
    
    Jump branch32(RelationalCondition cond, Address left, RegisterID right)
    {
        m_assembler.cmpl_rm(right, left.offset, left.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch32(RelationalCondition cond, Address left, TrustedImm32 right)
    {
        m_assembler.cmpl_im(right.m_value, left.offset, left.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch32(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
    {
        m_assembler.cmpl_im(right.m_value, left.offset, left.base, left.index, left.scale);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch32WithUnalignedHalfWords(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
    {
        return branch32(cond, left, right);
    }

    Jump branchTest32(ResultCondition cond, RegisterID reg, RegisterID mask)
    {
        m_assembler.testl_rr(reg, mask);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
    {
        // if we are only interested in the low seven bits, this can be tested with a testb
        if (mask.m_value == -1)
            m_assembler.testl_rr(reg, reg);
        else
            m_assembler.testl_i32r(mask.m_value, reg);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchTest32(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
    {
        if (mask.m_value == -1)
            m_assembler.cmpl_im(0, address.offset, address.base);
        else
            m_assembler.testl_i32m(mask.m_value, address.offset, address.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchTest32(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
    {
        if (mask.m_value == -1)
            m_assembler.cmpl_im(0, address.offset, address.base, address.index, address.scale);
        else
            m_assembler.testl_i32m(mask.m_value, address.offset, address.base, address.index, address.scale);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }
    
    Jump branchTest8(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
    {
        // Byte in TrustedImm32 is not well defined, so be a little permisive here, but don't accept nonsense values.
        ASSERT(mask.m_value >= -128 && mask.m_value <= 255);
        if (mask.m_value == -1)
            m_assembler.cmpb_im(0, address.offset, address.base);
        else
            m_assembler.testb_im(mask.m_value, address.offset, address.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }
    
    Jump branchTest8(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
    {
        // Byte in TrustedImm32 is not well defined, so be a little permisive here, but don't accept nonsense values.
        ASSERT(mask.m_value >= -128 && mask.m_value <= 255);
        if (mask.m_value == -1)
            m_assembler.cmpb_im(0, address.offset, address.base, address.index, address.scale);
        else
            m_assembler.testb_im(mask.m_value, address.offset, address.base, address.index, address.scale);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch8(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
    {
        ASSERT(!(right.m_value & 0xFFFFFF00));

        m_assembler.cmpb_im(right.m_value, left.offset, left.base, left.index, left.scale);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump jump()
    {
        return Jump(m_assembler.jmp());
    }

    void jump(RegisterID target)
    {
        m_assembler.jmp_r(target);
    }

    // Address is a memory location containing the address to jump to
    void jump(Address address)
    {
        m_assembler.jmp_m(address.offset, address.base);
    }


    // Arithmetic control flow operations:
    //
    // This set of conditional branch operations branch based
    // on the result of an arithmetic operation.  The operation
    // is performed as normal, storing the result.
    //
    // * jz operations branch if the result is zero.
    // * jo operations branch if the (signed) arithmetic
    //   operation caused an overflow to occur.
    
    Jump branchAdd32(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        add32(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
    {
        add32(imm, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }
    
    Jump branchAdd32(ResultCondition cond, TrustedImm32 src, Address dest)
    {
        add32(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchAdd32(ResultCondition cond, RegisterID src, Address dest)
    {
        add32(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchAdd32(ResultCondition cond, Address src, RegisterID dest)
    {
        add32(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchAdd32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
    {
        if (src1 == dest)
            return branchAdd32(cond, src2, dest);
        move(src2, dest);
        return branchAdd32(cond, src1, dest);
    }

    Jump branchAdd32(ResultCondition cond, RegisterID src, TrustedImm32 imm, RegisterID dest)
    {
        move(src, dest);
        return branchAdd32(cond, imm, dest);
    }

    Jump branchMul32(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        mul32(src, dest);
        if (cond != Overflow)
            m_assembler.testl_rr(dest, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchMul32(ResultCondition cond, Address src, RegisterID dest)
    {
        mul32(src, dest);
        if (cond != Overflow)
            m_assembler.testl_rr(dest, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }
    
    Jump branchMul32(ResultCondition cond, TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        mul32(imm, src, dest);
        if (cond != Overflow)
            m_assembler.testl_rr(dest, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }
    
    Jump branchMul32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
    {
        if (src1 == dest)
            return branchMul32(cond, src2, dest);
        move(src2, dest);
        return branchMul32(cond, src1, dest);
    }

    Jump branchSub32(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        sub32(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }
    
    Jump branchSub32(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
    {
        sub32(imm, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub32(ResultCondition cond, TrustedImm32 imm, Address dest)
    {
        sub32(imm, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub32(ResultCondition cond, RegisterID src, Address dest)
    {
        sub32(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub32(ResultCondition cond, Address src, RegisterID dest)
    {
        sub32(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
    {
        // B := A - B is invalid.
        ASSERT(src1 == dest || src2 != dest);

        move(src1, dest);
        return branchSub32(cond, src2, dest);
    }

    Jump branchSub32(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest)
    {
        move(src1, dest);
        return branchSub32(cond, src2, dest);
    }

    Jump branchNeg32(ResultCondition cond, RegisterID srcDest)
    {
        neg32(srcDest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchOr32(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        or32(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }


    // Miscellaneous operations:

    void breakpoint()
    {
        m_assembler.int3();
    }

    Call nearCall()
    {
        return Call(m_assembler.call(), Call::LinkableNear);
    }

    Call call(RegisterID target)
    {
        return Call(m_assembler.call(target), Call::None);
    }

    void call(Address address)
    {
        m_assembler.call_m(address.offset, address.base);
    }

    void ret()
    {
        m_assembler.ret();
    }

    void compare8(RelationalCondition cond, Address left, TrustedImm32 right, RegisterID dest)
    {
        m_assembler.cmpb_im(right.m_value, left.offset, left.base);
        set32(x86Condition(cond), dest);
    }
    
    void compare32(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
    {
        m_assembler.cmpl_rr(right, left);
        set32(x86Condition(cond), dest);
    }

    void compare32(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
    {
        if (((cond == Equal) || (cond == NotEqual)) && !right.m_value)
            m_assembler.testl_rr(left, left);
        else
            m_assembler.cmpl_ir(right.m_value, left);
        set32(x86Condition(cond), dest);
    }

    // FIXME:
    // The mask should be optional... perhaps the argument order should be
    // dest-src, operations always have a dest? ... possibly not true, considering
    // asm ops like test, or pseudo ops like pop().

    void test8(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest)
    {
        if (mask.m_value == -1)
            m_assembler.cmpb_im(0, address.offset, address.base);
        else
            m_assembler.testb_im(mask.m_value, address.offset, address.base);
        set32(x86Condition(cond), dest);
    }

    void test32(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest)
    {
        if (mask.m_value == -1)
            m_assembler.cmpl_im(0, address.offset, address.base);
        else
            m_assembler.testl_i32m(mask.m_value, address.offset, address.base);
        set32(x86Condition(cond), dest);
    }

    // Invert a relational condition, e.g. == becomes !=, < becomes >=, etc.
    static RelationalCondition invert(RelationalCondition cond)
    {
        return static_cast<RelationalCondition>(cond ^ 1);
    }

    void nop()
    {
        m_assembler.nop();
    }

    static void replaceWithJump(CodeLocationLabel instructionStart, CodeLocationLabel destination)
    {
        X86Assembler::replaceWithJump(instructionStart.executableAddress(), destination.executableAddress());
    }
    
    static ptrdiff_t maxJumpReplacementSize()
    {
        return X86Assembler::maxJumpReplacementSize();
    }

protected:
    X86Assembler::Condition x86Condition(RelationalCondition cond)
    {
        return static_cast<X86Assembler::Condition>(cond);
    }

    X86Assembler::Condition x86Condition(ResultCondition cond)
    {
        return static_cast<X86Assembler::Condition>(cond);
    }

    void set32(X86Assembler::Condition cond, RegisterID dest)
    {
#if CPU(X86)
        // On 32-bit x86 we can only set the first 4 registers;
        // esp..edi are mapped to the 'h' registers!
        if (dest >= 4) {
            m_assembler.xchgl_rr(dest, X86Registers::eax);
            m_assembler.setCC_r(cond, X86Registers::eax);
            m_assembler.movzbl_rr(X86Registers::eax, X86Registers::eax);
            m_assembler.xchgl_rr(dest, X86Registers::eax);
            return;
        }
#endif
        m_assembler.setCC_r(cond, dest);
        m_assembler.movzbl_rr(dest, dest);
    }

private:
    // Only MacroAssemblerX86 should be using the following method; SSE2 is always available on
    // x86_64, and clients & subclasses of MacroAssembler should be using 'supportsFloatingPoint()'.
    friend class MacroAssemblerX86;

#if CPU(X86)
#if OS(MAC_OS_X)

    // All X86 Macs are guaranteed to support at least SSE2,
    static bool isSSE2Present()
    {
        return true;
    }

#else // OS(MAC_OS_X)

    enum SSE2CheckState {
        NotCheckedSSE2,
        HasSSE2,
        NoSSE2
    };

    static bool isSSE2Present()
    {
        if (s_sse2CheckState == NotCheckedSSE2) {
            // Default the flags value to zero; if the compiler is
            // not MSVC or GCC we will read this as SSE2 not present.
            int flags = 0;
#if COMPILER(MSVC)
            _asm {
                mov eax, 1 // cpuid function 1 gives us the standard feature set
                cpuid;
                mov flags, edx;
            }
#elif COMPILER(GCC)
            asm (
                 "movl $0x1, %%eax;"
                 "pushl %%ebx;"
                 "cpuid;"
                 "popl %%ebx;"
                 "movl %%edx, %0;"
                 : "=g" (flags)
                 :
                 : "%eax", "%ecx", "%edx"
                 );
#endif
            static const int SSE2FeatureBit = 1 << 26;
            s_sse2CheckState = (flags & SSE2FeatureBit) ? HasSSE2 : NoSSE2;
        }
        // Only check once.
        ASSERT(s_sse2CheckState != NotCheckedSSE2);

        return s_sse2CheckState == HasSSE2;
    }
    
    static SSE2CheckState s_sse2CheckState;

#endif // OS(MAC_OS_X)
#elif !defined(NDEBUG) // CPU(X86)

    // On x86-64 we should never be checking for SSE2 in a non-debug build,
    // but non debug add this method to keep the asserts above happy.
    static bool isSSE2Present()
    {
        return true;
    }

#endif
};

} // namespace JSC

#endif // ENABLE(ASSEMBLER)

#endif // MacroAssemblerX86Common_h