aboutsummaryrefslogtreecommitdiffstats
path: root/src/3rdparty/masm/assembler/MacroAssemblerX86_64.h
blob: 64df58d1219dba292ff19cf2370d9fea9a9fa4c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/*
 * Copyright (C) 2008, 2012 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#ifndef MacroAssemblerX86_64_h
#define MacroAssemblerX86_64_h

#if ENABLE(ASSEMBLER) && CPU(X86_64)

#include "MacroAssemblerX86Common.h"

#define REPTACH_OFFSET_CALL_R11 3

namespace JSC {

class MacroAssemblerX86_64 : public MacroAssemblerX86Common {
public:
    static const Scale ScalePtr = TimesEight;
    static const int PointerSize = 8;

    using MacroAssemblerX86Common::add32;
    using MacroAssemblerX86Common::and32;
    using MacroAssemblerX86Common::branchAdd32;
    using MacroAssemblerX86Common::or32;
    using MacroAssemblerX86Common::sub32;
    using MacroAssemblerX86Common::load32;
    using MacroAssemblerX86Common::store32;
    using MacroAssemblerX86Common::store8;
    using MacroAssemblerX86Common::call;
    using MacroAssemblerX86Common::jump;
    using MacroAssemblerX86Common::addDouble;
    using MacroAssemblerX86Common::loadDouble;
    using MacroAssemblerX86Common::convertInt32ToDouble;

#if defined(V4_BOOTSTRAP)
    void loadPtr(ImplicitAddress address, RegisterID dest)
    {
        load64(address, dest);
    }

    void subPtr(TrustedImm32 imm, RegisterID dest)
    {
        sub64(imm, dest);
    }

    void addPtr(TrustedImm32 imm, RegisterID dest)
    {
        add64(imm, dest);
    }

    void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        add64(imm, src, dest);
    }

    void storePtr(RegisterID src, ImplicitAddress address)
    {
        store64(src, address);
    }
#endif

    void add32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        add32(imm, Address(scratchRegister));
    }
    
    void and32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        and32(imm, Address(scratchRegister));
    }
    
    void add32(AbsoluteAddress address, RegisterID dest)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        add32(Address(scratchRegister), dest);
    }
    
    void or32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        or32(imm, Address(scratchRegister));
    }

    void or32(RegisterID reg, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        or32(reg, Address(scratchRegister));
    }

    void sub32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        sub32(imm, Address(scratchRegister));
    }

    void load16(ExtendedAddress address, RegisterID dest)
    {
        TrustedImmPtr addr(reinterpret_cast<void*>(address.offset));
        MacroAssemblerX86Common::move(addr, scratchRegister);
        MacroAssemblerX86Common::load16(BaseIndex(scratchRegister, address.base, TimesTwo), dest);
    }

    void load16(BaseIndex address, RegisterID dest)
    {
        MacroAssemblerX86Common::load16(address, dest);
    }

    void load16(Address address, RegisterID dest)
    {
        MacroAssemblerX86Common::load16(address, dest);
    }

    void load32(const void* address, RegisterID dest)
    {
        if (dest == X86Registers::eax)
            m_assembler.movl_mEAX(address);
        else {
            move(TrustedImmPtr(address), dest);
            load32(dest, dest);
        }
    }

    void addDouble(AbsoluteAddress address, FPRegisterID dest)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        m_assembler.addsd_mr(0, scratchRegister, dest);
    }

    void convertInt32ToDouble(TrustedImm32 imm, FPRegisterID dest)
    {
        move(imm, scratchRegister);
        m_assembler.cvtsi2sd_rr(scratchRegister, dest);
    }

    void convertUInt32ToDouble(RegisterID src, FPRegisterID dest, RegisterID /*scratch*/)
    {
        zeroExtend32ToPtr(src, src);
        m_assembler.cvtsiq2sd_rr(src, dest);
    }

    void store32(TrustedImm32 imm, void* address)
    {
        move(TrustedImmPtr(address), scratchRegister);
        store32(imm, scratchRegister);
    }
    
    void store8(TrustedImm32 imm, void* address)
    {
        move(TrustedImmPtr(address), scratchRegister);
        store8(imm, Address(scratchRegister));
    }

    Call call()
    {
        DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
        Call result = Call(m_assembler.call(scratchRegister), Call::Linkable);
        ASSERT_UNUSED(label, differenceBetween(label, result) == REPTACH_OFFSET_CALL_R11);
        return result;
    }

    void callToRetrieveIP()
    {
        m_assembler.call();
    }

    // Address is a memory location containing the address to jump to
    void jump(AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        jump(Address(scratchRegister));
    }

    Call tailRecursiveCall()
    {
        DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
        Jump newJump = Jump(m_assembler.jmp_r(scratchRegister));
        ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11);
        return Call::fromTailJump(newJump);
    }

    Call makeTailRecursiveCall(Jump oldJump)
    {
        oldJump.link(this);
        DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
        Jump newJump = Jump(m_assembler.jmp_r(scratchRegister));
        ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11);
        return Call::fromTailJump(newJump);
    }

    Jump branchAdd32(ResultCondition cond, TrustedImm32 src, AbsoluteAddress dest)
    {
        move(TrustedImmPtr(dest.m_ptr), scratchRegister);
        add32(src, Address(scratchRegister));
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    void add64(RegisterID src, RegisterID dest)
    {
        m_assembler.addq_rr(src, dest);
    }
    
    void add64(Address src, RegisterID dest)
    {
        m_assembler.addq_mr(src.offset, src.base, dest);
    }

    void add64(AbsoluteAddress src, RegisterID dest)
    {
        move(TrustedImmPtr(src.m_ptr), scratchRegister);
        add64(Address(scratchRegister), dest);
    }

    void add64(TrustedImm32 imm, RegisterID srcDest)
    {
        m_assembler.addq_ir(imm.m_value, srcDest);
    }

    void add64(TrustedImm64 imm, RegisterID dest)
    {
        move(imm, scratchRegister);
        add64(scratchRegister, dest);
    }

    void add64(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        m_assembler.leaq_mr(imm.m_value, src, dest);
    }

    void add64(TrustedImm32 imm, Address address)
    {
        m_assembler.addq_im(imm.m_value, address.offset, address.base);
    }

    void add64(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        add64(imm, Address(scratchRegister));
    }

    void x86Lea64(BaseIndex index, RegisterID dest)
    {
        if (!index.scale && !index.offset) {
            if (index.base == dest) {
                add64(index.index, dest);
                return;
            }
            if (index.index == dest) {
                add64(index.base, dest);
                return;
            }
        }
        m_assembler.leaq_mr(index.offset, index.base, index.index, index.scale, dest);
    }

    void getEffectiveAddress(BaseIndex address, RegisterID dest)
    {
        return x86Lea64(address, dest);
    }

    void and64(RegisterID src, RegisterID dest)
    {
        m_assembler.andq_rr(src, dest);
    }

    void and64(TrustedImm32 imm, RegisterID srcDest)
    {
        m_assembler.andq_ir(imm.m_value, srcDest);
    }
    
    void neg64(RegisterID dest)
    {
        m_assembler.negq_r(dest);
    }

    void or64(RegisterID src, RegisterID dest)
    {
        m_assembler.orq_rr(src, dest);
    }

    void or64(TrustedImm64 imm, RegisterID dest)
    {
        move(imm, scratchRegister);
        or64(scratchRegister, dest);
    }

    void or64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.orq_ir(imm.m_value, dest);
    }

    void or64(RegisterID op1, RegisterID op2, RegisterID dest)
    {
        if (op1 == op2)
            move(op1, dest);
        else if (op1 == dest)
            or64(op2, dest);
        else {
            move(op2, dest);
            or64(op1, dest);
        }
    }

    void or64(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        move(src, dest);
        or64(imm, dest);
    }
    
    void or64(TrustedImm64 imm, RegisterID src, RegisterID dest)
    {
        move(src, dest);
        or64(imm, dest);
    }

    void rotateRight64(TrustedImm32 imm, RegisterID srcDst)
    {
        m_assembler.rorq_i8r(imm.m_value, srcDst);
    }

    void sub64(RegisterID src, RegisterID dest)
    {
        m_assembler.subq_rr(src, dest);
    }
    
    void sub64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.subq_ir(imm.m_value, dest);
    }
    
    void sub64(TrustedImm64 imm, RegisterID dest)
    {
        move(imm, scratchRegister);
        sub64(scratchRegister, dest);
    }

    void xor64(RegisterID src, RegisterID dest)
    {
        m_assembler.xorq_rr(src, dest);
    }
    
    void xor64(RegisterID src, Address dest)
    {
        m_assembler.xorq_rm(src, dest.offset, dest.base);
    }

    void xor64(TrustedImm32 imm, RegisterID srcDest)
    {
        m_assembler.xorq_ir(imm.m_value, srcDest);
    }

    void lshift64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.shlq_i8r(imm.m_value, dest);
    }

    void lshift64(RegisterID src, RegisterID dest)
    {
        if (src == X86Registers::ecx)
            m_assembler.shlq_CLr(dest);
        else {
            ASSERT(src != dest);

            // Can only shift by ecx, so we do some swapping if we see anything else.
            swap(src, X86Registers::ecx);
            m_assembler.shlq_CLr(dest == X86Registers::ecx ? src : dest);
            swap(src, X86Registers::ecx);
        }
    }

    void rshift64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.sarq_i8r(imm.m_value, dest);
    }

    void rshift64(RegisterID src, RegisterID dest)
    {
        if (src == X86Registers::ecx)
            m_assembler.sarq_CLr(dest);
        else {
            ASSERT(src != dest);

            // Can only shift by ecx, so we do some swapping if we see anything else.
            swap(src, X86Registers::ecx);
            m_assembler.sarq_CLr(dest == X86Registers::ecx ? src : dest);
            swap(src, X86Registers::ecx);
        }
    }

    void urshift64(RegisterID src, TrustedImm32 imm, RegisterID dest)
    {
        if (src != dest)
            move(src, dest);
        urshift64(imm, dest);
    }

    void urshift64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.shrq_i8r(imm.m_value, dest);
    }

    void urshift64(RegisterID src, RegisterID dest)
    {
        if (src == X86Registers::ecx)
            m_assembler.shrq_CLr(dest);
        else {
            ASSERT(src != dest);

            // Can only shift by ecx, so we do some swapping if we see anything else.
            swap(src, X86Registers::ecx);
            m_assembler.shrq_CLr(dest == X86Registers::ecx ? src : dest);
            swap(src, X86Registers::ecx);
        }
    }

    void load64(ImplicitAddress address, RegisterID dest)
    {
        m_assembler.movq_mr(address.offset, address.base, dest);
    }

    void load64(BaseIndex address, RegisterID dest)
    {
        m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest);
    }

    void load64(const void* address, RegisterID dest)
    {
        if (dest == X86Registers::eax)
            m_assembler.movq_mEAX(address);
        else {
            move(TrustedImmPtr(address), dest);
            load64(dest, dest);
        }
    }

    DataLabel32 load64WithAddressOffsetPatch(Address address, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movq_mr_disp32(address.offset, address.base, dest);
        return DataLabel32(this);
    }
    
    DataLabelCompact load64WithCompactAddressOffsetPatch(Address address, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movq_mr_disp8(address.offset, address.base, dest);
        return DataLabelCompact(this);
    }

    void store64(RegisterID src, ImplicitAddress address)
    {
        m_assembler.movq_rm(src, address.offset, address.base);
    }

    void store64(RegisterID src, BaseIndex address)
    {
        m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale);
    }
    
    void store64(RegisterID src, void* address)
    {
        if (src == X86Registers::eax)
            m_assembler.movq_EAXm(address);
        else {
            move(TrustedImmPtr(address), scratchRegister);
            store64(src, scratchRegister);
        }
    }

    void store64(TrustedImm64 imm, ImplicitAddress address)
    {
        move(imm, scratchRegister);
        store64(scratchRegister, address);
    }

    void store64(TrustedImm64 imm, BaseIndex address)
    {
        move(imm, scratchRegister);
        m_assembler.movq_rm(scratchRegister, address.offset, address.base, address.index, address.scale);
    }
    
    DataLabel32 store64WithAddressOffsetPatch(RegisterID src, Address address)
    {
        padBeforePatch();
        m_assembler.movq_rm_disp32(src, address.offset, address.base);
        return DataLabel32(this);
    }

    void move64ToDouble(RegisterID src, FPRegisterID dest)
    {
        m_assembler.movq_rr(src, dest);
    }

    void moveDoubleTo64(FPRegisterID src, RegisterID dest)
    {
        m_assembler.movq_rr(src, dest);
    }

    void compare64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
    {
        if (((cond == Equal) || (cond == NotEqual)) && !right.m_value)
            m_assembler.testq_rr(left, left);
        else
            m_assembler.cmpq_ir(right.m_value, left);
        m_assembler.setCC_r(x86Condition(cond), dest);
        m_assembler.movzbl_rr(dest, dest);
    }
    
    void compare64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
    {
        m_assembler.cmpq_rr(right, left);
        m_assembler.setCC_r(x86Condition(cond), dest);
        m_assembler.movzbl_rr(dest, dest);
    }
    
    Jump branch64(RelationalCondition cond, RegisterID left, RegisterID right)
    {
        m_assembler.cmpq_rr(right, left);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm64 right)
    {
        if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) {
            m_assembler.testq_rr(left, left);
            return Jump(m_assembler.jCC(x86Condition(cond)));
        }
        move(right, scratchRegister);
        return branch64(cond, left, scratchRegister);
    }

    Jump branch64(RelationalCondition cond, RegisterID left, Address right)
    {
        m_assembler.cmpq_mr(right.offset, right.base, left);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch64(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
    {
        move(TrustedImmPtr(left.m_ptr), scratchRegister);
        return branch64(cond, Address(scratchRegister), right);
    }

    Jump branch64(RelationalCondition cond, Address left, RegisterID right)
    {
        m_assembler.cmpq_rm(right, left.offset, left.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch64(RelationalCondition cond, Address left, TrustedImm64 right)
    {
        move(right, scratchRegister);
        return branch64(cond, left, scratchRegister);
    }

    Jump branchTest64(ResultCondition cond, RegisterID reg, RegisterID mask)
    {
        m_assembler.testq_rr(reg, mask);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }
    
    Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
    {
        // if we are only interested in the low seven bits, this can be tested with a testb
        if (mask.m_value == -1)
            m_assembler.testq_rr(reg, reg);
        else if ((mask.m_value & ~0x7f) == 0)
            m_assembler.testb_i8r(mask.m_value, reg);
        else
            m_assembler.testq_i32r(mask.m_value, reg);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    void test64(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest)
    {
        if (mask.m_value == -1)
            m_assembler.testq_rr(reg, reg);
        else if ((mask.m_value & ~0x7f) == 0)
            m_assembler.testb_i8r(mask.m_value, reg);
        else
            m_assembler.testq_i32r(mask.m_value, reg);
        set32(x86Condition(cond), dest);
    }

    void test64(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest)
    {
        m_assembler.testq_rr(reg, mask);
        set32(x86Condition(cond), dest);
    }

    Jump branchTest64(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
    {
        load64(address.m_ptr, scratchRegister);
        return branchTest64(cond, scratchRegister, mask);
    }

    Jump branchTest64(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
    {
        if (mask.m_value == -1)
            m_assembler.cmpq_im(0, address.offset, address.base);
        else
            m_assembler.testq_i32m(mask.m_value, address.offset, address.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchTest64(ResultCondition cond, Address address, RegisterID reg)
    {
        m_assembler.testq_rm(reg, address.offset, address.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchTest64(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
    {
        if (mask.m_value == -1)
            m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale);
        else
            m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }


    Jump branchAdd64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
    {
        add64(imm, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchAdd64(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        add64(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
    {
        sub64(imm, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub64(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        sub64(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub64(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest)
    {
        move(src1, dest);
        return branchSub64(cond, src2, dest);
    }

    ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest)
    {
        ConvertibleLoadLabel result = ConvertibleLoadLabel(this);
        m_assembler.movq_mr(address.offset, address.base, dest);
        return result;
    }

    DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movq_i64r(initialValue.asIntptr(), dest);
        return DataLabelPtr(this);
    }

    Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
    {
        dataLabel = moveWithPatch(initialRightValue, scratchRegister);
        return branch64(cond, left, scratchRegister);
    }

    Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
    {
        dataLabel = moveWithPatch(initialRightValue, scratchRegister);
        return branch64(cond, left, scratchRegister);
    }

    DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
    {
        DataLabelPtr label = moveWithPatch(initialValue, scratchRegister);
        store64(scratchRegister, address);
        return label;
    }
    
    using MacroAssemblerX86Common::branchTest8;
    Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1))
    {
        TrustedImmPtr addr(reinterpret_cast<void*>(address.offset));
        MacroAssemblerX86Common::move(addr, scratchRegister);
        return MacroAssemblerX86Common::branchTest8(cond, BaseIndex(scratchRegister, address.base, TimesOne), mask);
    }
    
    Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
    {
        MacroAssemblerX86Common::move(TrustedImmPtr(address.m_ptr), scratchRegister);
        return MacroAssemblerX86Common::branchTest8(cond, Address(scratchRegister), mask);
    }

    static bool supportsFloatingPoint() { return true; }
    // See comment on MacroAssemblerARMv7::supportsFloatingPointTruncate()
    static bool supportsFloatingPointTruncate() { return true; }
    static bool supportsFloatingPointSqrt() { return true; }
    static bool supportsFloatingPointAbs() { return true; }
    
    static FunctionPtr readCallTarget(CodeLocationCall call)
    {
        return FunctionPtr(X86Assembler::readPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation()));
    }

    static RegisterID scratchRegisterForBlinding() { return scratchRegister; }

    static bool canJumpReplacePatchableBranchPtrWithPatch() { return true; }
    
    static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label)
    {
        const int rexBytes = 1;
        const int opcodeBytes = 1;
        const int immediateBytes = 8;
        const int totalBytes = rexBytes + opcodeBytes + immediateBytes;
        ASSERT(totalBytes >= maxJumpReplacementSize());
        return label.labelAtOffset(-totalBytes);
    }
    
    static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr label)
    {
        return startOfBranchPtrWithPatchOnRegister(label);
    }
    
    static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel instructionStart, Address, void* initialValue)
    {
        X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), scratchRegister);
    }

    static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID, void* initialValue)
    {
        X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), scratchRegister);
    }

private:
    template <typename, template <typename> class> friend class LinkBufferBase;
    friend class RepatchBuffer;

    static void linkCall(void* code, Call call, FunctionPtr function)
    {
        if (!call.isFlagSet(Call::Near))
            X86Assembler::linkPointer(code, call.m_label.labelAtOffset(-REPTACH_OFFSET_CALL_R11), function.value());
        else
            X86Assembler::linkCall(code, call.m_label, function.value());
    }

    static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
    {
        X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
    }

    static void repatchCall(CodeLocationCall call, FunctionPtr destination)
    {
        X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
    }

};

} // namespace JSC

#endif // ENABLE(ASSEMBLER)

#endif // MacroAssemblerX86_64_h