aboutsummaryrefslogtreecommitdiffstats
path: root/src/qml/jit/qv4binop.cpp
blob: 0dce879fa17c1ef4ae9fca342b94e41a86f38e7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
/****************************************************************************
**
** Copyright (C) 2014 Digia Plc and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/legal
**
** This file is part of the QtQml module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL21$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and Digia. For licensing terms and
** conditions see http://qt.digia.com/licensing. For further information
** use the contact form at http://qt.digia.com/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 or version 3 as published by the Free
** Software Foundation and appearing in the file LICENSE.LGPLv21 and
** LICENSE.LGPLv3 included in the packaging of this file. Please review the
** following information to ensure the GNU Lesser General Public License
** requirements will be met: https://www.gnu.org/licenses/lgpl.html and
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Digia gives you certain additional
** rights. These rights are described in the Digia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <qv4binop_p.h>
#include <qv4assembler_p.h>

#if ENABLE(ASSEMBLER)

using namespace QV4;
using namespace JIT;

#define OP(op) \
    { isel_stringIfy(op), op, 0, 0, 0 }
#define OPCONTEXT(op) \
    { isel_stringIfy(op), 0, op, 0, 0 }

#define INLINE_OP(op, memOp, immOp) \
    { isel_stringIfy(op), op, 0, memOp, immOp }
#define INLINE_OPCONTEXT(op, memOp, immOp) \
    { isel_stringIfy(op), 0, op, memOp, immOp }

#define NULL_OP \
    { 0, 0, 0, 0, 0 }

const Binop::OpInfo Binop::operations[IR::LastAluOp + 1] = {
    NULL_OP, // OpInvalid
    NULL_OP, // OpIfTrue
    NULL_OP, // OpNot
    NULL_OP, // OpUMinus
    NULL_OP, // OpUPlus
    NULL_OP, // OpCompl
    NULL_OP, // OpIncrement
    NULL_OP, // OpDecrement

    INLINE_OP(Runtime::bitAnd, &Binop::inline_and32, &Binop::inline_and32), // OpBitAnd
    INLINE_OP(Runtime::bitOr, &Binop::inline_or32, &Binop::inline_or32), // OpBitOr
    INLINE_OP(Runtime::bitXor, &Binop::inline_xor32, &Binop::inline_xor32), // OpBitXor

    INLINE_OPCONTEXT(Runtime::add, &Binop::inline_add32, &Binop::inline_add32), // OpAdd
    INLINE_OP(Runtime::sub, &Binop::inline_sub32, &Binop::inline_sub32), // OpSub
    INLINE_OP(Runtime::mul, &Binop::inline_mul32, &Binop::inline_mul32), // OpMul

    OP(Runtime::div), // OpDiv
    OP(Runtime::mod), // OpMod

    INLINE_OP(Runtime::shl, &Binop::inline_shl32, &Binop::inline_shl32), // OpLShift
    INLINE_OP(Runtime::shr, &Binop::inline_shr32, &Binop::inline_shr32), // OpRShift
    INLINE_OP(Runtime::ushr, &Binop::inline_ushr32, &Binop::inline_ushr32), // OpURShift

    OP(Runtime::greaterThan), // OpGt
    OP(Runtime::lessThan), // OpLt
    OP(Runtime::greaterEqual), // OpGe
    OP(Runtime::lessEqual), // OpLe
    OP(Runtime::equal), // OpEqual
    OP(Runtime::notEqual), // OpNotEqual
    OP(Runtime::strictEqual), // OpStrictEqual
    OP(Runtime::strictNotEqual), // OpStrictNotEqual

    OPCONTEXT(Runtime::instanceof), // OpInstanceof
    OPCONTEXT(Runtime::in), // OpIn

    NULL_OP, // OpAnd
    NULL_OP // OpOr
};



void Binop::generate(IR::Expr *lhs, IR::Expr *rhs, IR::Expr *target)
{
    if (op != IR::OpMod
            && lhs->type == IR::DoubleType && rhs->type == IR::DoubleType) {
        doubleBinop(lhs, rhs, target);
        return;
    }
    if (lhs->type == IR::SInt32Type && rhs->type == IR::SInt32Type) {
        if (int32Binop(lhs, rhs, target))
            return;
    }

    Assembler::Jump done;
    if (lhs->type != IR::StringType && rhs->type != IR::StringType)
        done = genInlineBinop(lhs, rhs, target);

    // TODO: inline var===null and var!==null
    Binop::OpInfo info = Binop::operation(op);

    if (op == IR::OpAdd &&
            (lhs->type == IR::StringType || rhs->type == IR::StringType)) {
        const Binop::OpInfo stringAdd = OPCONTEXT(Runtime::addString);
        info = stringAdd;
    }

    if (info.fallbackImplementation) {
        as->generateFunctionCallImp(target, info.name, info.fallbackImplementation,
                                     Assembler::PointerToValue(lhs),
                                     Assembler::PointerToValue(rhs));
    } else if (info.contextImplementation) {
        as->generateFunctionCallImp(target, info.name, info.contextImplementation,
                                     Assembler::EngineRegister,
                                     Assembler::PointerToValue(lhs),
                                     Assembler::PointerToValue(rhs));
    } else {
        Q_ASSERT(!"unreachable");
    }

    if (done.isSet())
        done.link(as);

}

void Binop::doubleBinop(IR::Expr *lhs, IR::Expr *rhs, IR::Expr *target)
{
    IR::Temp *targetTemp = target->asTemp();
    Assembler::FPRegisterID targetReg;
    if (targetTemp && targetTemp->kind == IR::Temp::PhysicalRegister)
        targetReg = (Assembler::FPRegisterID) targetTemp->index;
    else
        targetReg = Assembler::FPGpr0;

    switch (op) {
    case IR::OpAdd:
        if (lhs->asConst())
            std::swap(lhs, rhs); // Y = constant + X -> Y = X + constant

#if CPU(X86)
        if (IR::Const *c = rhs->asConst()) { // Y = X + constant -> Y = X; Y += [constant-address]
            as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
            Assembler::Address addr = as->constantTable().loadValueAddress(c, Assembler::ScratchRegister);
            as->addDouble(addr, targetReg);
            break;
        }
        if (IR::Temp *t = rhs->asTemp()) { // Y = X + [temp-memory-address] -> Y = X; Y += [temp-memory-address]
            if (t->kind != IR::Temp::PhysicalRegister) {
                as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
                as->addDouble(as->loadTempAddress(t), targetReg);
                break;
            }
        }
#endif
        as->addDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), as->toDoubleRegister(rhs, Assembler::FPGpr1), targetReg);
        break;

    case IR::OpMul:
        if (lhs->asConst())
            std::swap(lhs, rhs); // Y = constant * X -> Y = X * constant

#if CPU(X86)
        if (IR::Const *c = rhs->asConst()) { // Y = X * constant -> Y = X; Y *= [constant-address]
            as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
            Assembler::Address addr = as->constantTable().loadValueAddress(c, Assembler::ScratchRegister);
            as->mulDouble(addr, targetReg);
            break;
        }
        if (IR::Temp *t = rhs->asTemp()) { // Y = X * [temp-memory-address] -> Y = X; Y *= [temp-memory-address]
            if (t->kind != IR::Temp::PhysicalRegister) {
                as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
                as->mulDouble(as->loadTempAddress(t), targetReg);
                break;
            }
        }
#endif
        as->mulDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), as->toDoubleRegister(rhs, Assembler::FPGpr1), targetReg);
        break;

    case IR::OpSub:
#if CPU(X86)
        if (IR::Const *c = rhs->asConst()) { // Y = X - constant -> Y = X; Y -= [constant-address]
            as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
            Assembler::Address addr = as->constantTable().loadValueAddress(c, Assembler::ScratchRegister);
            as->subDouble(addr, targetReg);
            break;
        }
        if (IR::Temp *t = rhs->asTemp()) { // Y = X - [temp-memory-address] -> Y = X; Y -= [temp-memory-address]
            if (t->kind != IR::Temp::PhysicalRegister) {
                as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
                as->subDouble(as->loadTempAddress(t), targetReg);
                break;
            }
        }
#endif
        if (rhs->asTemp() && rhs->asTemp()->kind == IR::Temp::PhysicalRegister
                && targetTemp
                && targetTemp->kind == IR::Temp::PhysicalRegister
                && targetTemp->index == rhs->asTemp()->index) { // Y = X - Y -> Tmp = Y; Y = X - Tmp
            as->moveDouble(as->toDoubleRegister(rhs, Assembler::FPGpr1), Assembler::FPGpr1);
            as->subDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), Assembler::FPGpr1, targetReg);
            break;
        }

        as->subDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), as->toDoubleRegister(rhs, Assembler::FPGpr1), targetReg);
        break;

    case IR::OpDiv:
#if CPU(X86)
        if (IR::Const *c = rhs->asConst()) { // Y = X / constant -> Y = X; Y /= [constant-address]
            as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
            Assembler::Address addr = as->constantTable().loadValueAddress(c, Assembler::ScratchRegister);
            as->divDouble(addr, targetReg);
            break;
        }
        if (IR::Temp *t = rhs->asTemp()) { // Y = X / [temp-memory-address] -> Y = X; Y /= [temp-memory-address]
            if (t->kind != IR::Temp::PhysicalRegister) {
                as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
                as->divDouble(as->loadTempAddress(t), targetReg);
                break;
            }
        }
#endif

        if (rhs->asTemp() && rhs->asTemp()->kind == IR::Temp::PhysicalRegister
                && targetTemp
                && targetTemp->kind == IR::Temp::PhysicalRegister
                && targetTemp->index == rhs->asTemp()->index) { // Y = X / Y -> Tmp = Y; Y = X / Tmp
            as->moveDouble(as->toDoubleRegister(rhs, Assembler::FPGpr1), Assembler::FPGpr1);
            as->divDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), Assembler::FPGpr1, targetReg);
            break;
        }

        as->divDouble(as->toDoubleRegister(lhs, Assembler::FPGpr0), as->toDoubleRegister(rhs, Assembler::FPGpr1), targetReg);
        break;

    default: {
        Q_ASSERT(target->type == IR::BoolType);
        Assembler::Jump trueCase = as->branchDouble(false, op, lhs, rhs);
        as->storeBool(false, target);
        Assembler::Jump done = as->jump();
        trueCase.link(as);
        as->storeBool(true, target);
        done.link(as);
    } return;
    }

    if (!targetTemp || targetTemp->kind != IR::Temp::PhysicalRegister)
        as->storeDouble(targetReg, target);
}


bool Binop::int32Binop(IR::Expr *leftSource, IR::Expr *rightSource, IR::Expr *target)
{
    Q_ASSERT(leftSource->type == IR::SInt32Type);
    Q_ASSERT(rightSource->type == IR::SInt32Type);

    switch (op) {
    case IR::OpBitAnd:
    case IR::OpBitOr:
    case IR::OpBitXor:
    case IR::OpAdd:
    case IR::OpMul:
        if (leftSource->asConst()) // X = Const op Y -> X = Y op Const
            std::swap(leftSource, rightSource);
        else if (IR::Temp *t = leftSource->asTemp()) {
            if (t->kind != IR::Temp::PhysicalRegister) // X = [address] op Y -> X = Y op [address]
                std::swap(leftSource, rightSource);
        }
        break;

    case IR::OpLShift:
    case IR::OpRShift:
    case IR::OpURShift:
    case IR::OpSub:
        // handled by this method, but we can't flip operands.
        break;

    default:
        return false; // not handled by this method, stop here.
    }

    bool inplaceOpWithAddress = false;

    IR::Temp *targetTemp = target->asTemp();
    Assembler::RegisterID targetReg = Assembler::ReturnValueRegister;
    if (targetTemp && targetTemp->kind == IR::Temp::PhysicalRegister) {
        IR::Temp *rhs = rightSource->asTemp();
        if (!rhs || rhs->kind != IR::Temp::PhysicalRegister || rhs->index != targetTemp->index) {
            // We try to load leftSource into the target's register, but we can't do that if
            // the target register is the same as rightSource.
            targetReg = (Assembler::RegisterID) targetTemp->index;
        } else if (rhs && rhs->kind == IR::Temp::PhysicalRegister && targetTemp->index == rhs->index) {
            // However, if the target register is the same as the rightSource register, we can flip
            // the operands for certain operations.
            switch (op) {
            case IR::OpBitAnd:
            case IR::OpBitOr:
            case IR::OpBitXor:
            case IR::OpAdd:
            case IR::OpMul:
                // X = Y op X -> X = X op Y (or rephrased: X op= Y (so an in-place operation))
                std::swap(leftSource, rightSource);
                targetReg = (Assembler::RegisterID) targetTemp->index;
                break;

            case IR::OpLShift:
            case IR::OpRShift:
            case IR::OpURShift:
            case IR::OpSub:
                break;

            default:
                Q_UNREACHABLE();
                return false;
            }
        }

        // determine if we have X op= [address]
        if (IR::Temp *lhs = leftSource->asTemp()) {
            if (lhs->kind == IR::Temp::PhysicalRegister && lhs->index == targetTemp->index) {
                if (IR::Temp *rhs = rightSource->asTemp()) {
                    if (rhs->kind != IR::Temp::PhysicalRegister) {
                        switch (op) {
                        case IR::OpBitAnd:
                        case IR::OpBitOr:
                        case IR::OpBitXor:
                        case IR::OpAdd:
                        case IR::OpMul:
                            break;
                            inplaceOpWithAddress = true;
                        default:
                            break;
                        }
                    }
                }
            }
        }
    }

    if (op == IR::OpSub) {
        if (rightSource->asTemp() && rightSource->asTemp()->kind == IR::Temp::PhysicalRegister
                && targetTemp
                && targetTemp->kind == IR::Temp::PhysicalRegister
                && targetTemp->index == rightSource->asTemp()->index) {
            // X = Y - X -> Tmp = X; X = Y; X -= Tmp
            targetReg = (Assembler::RegisterID) targetTemp->index;
            as->move(targetReg, Assembler::ScratchRegister);
            as->move(as->toInt32Register(leftSource, targetReg), targetReg);
            as->sub32(Assembler::ScratchRegister, targetReg);
        } else {
            as->move(as->toInt32Register(leftSource, targetReg), targetReg);
            as->sub32(as->toInt32Register(rightSource, Assembler::ScratchRegister), targetReg);
        }
        as->storeInt32(targetReg, target);
        return true;
    }

    Assembler::RegisterID l = as->toInt32Register(leftSource, targetReg);
    if (IR::Const *c = rightSource->asConst()) { // All cases of Y = X op Const
        Assembler::TrustedImm32 r(int(c->value));

        switch (op) {
        case IR::OpBitAnd: as->and32(r, l, targetReg); break;
        case IR::OpBitOr:  as->or32 (r, l, targetReg); break;
        case IR::OpBitXor: as->xor32(r, l, targetReg); break;
        case IR::OpAdd:    as->add32(r, l, targetReg); break;
        case IR::OpMul:    as->mul32(r, l, targetReg); break;

        case IR::OpLShift:  r.m_value &= 0x1f; as->lshift32(l, r, targetReg); break;
        case IR::OpRShift:  r.m_value &= 0x1f; as->rshift32(l, r, targetReg); break;
        case IR::OpURShift: r.m_value &= 0x1f; as->urshift32(l, r, targetReg);
            as->storeUInt32(targetReg, target); // IMPORTANT: do NOT do a break here! The stored type of an urshift is different from the other binary operations!
            return true;

        case IR::OpSub: // already handled before
        default: // not handled by this method:
            Q_UNREACHABLE();
            return false;
        }
    } else if (inplaceOpWithAddress) { // All cases of X = X op [address-of-Y]
        Assembler::Pointer rhsAddr = as->loadAddress(Assembler::ScratchRegister, rightSource);
        switch (op) {
        case IR::OpBitAnd: as->and32(rhsAddr, targetReg); break;
        case IR::OpBitOr:  as->or32 (rhsAddr, targetReg); break;
        case IR::OpBitXor: as->xor32(rhsAddr, targetReg); break;
        case IR::OpAdd:    as->add32(rhsAddr, targetReg); break;
        case IR::OpMul:    as->mul32(rhsAddr, targetReg); break;
            break;

        default: // not handled by this method:
            Q_UNREACHABLE();
            return false;
        }
    } else { // All cases of Z = X op Y
        Assembler::RegisterID r = as->toInt32Register(rightSource, Assembler::ScratchRegister);
        switch (op) {
        case IR::OpBitAnd: as->and32(l, r, targetReg); break;
        case IR::OpBitOr:  as->or32 (l, r, targetReg); break;
        case IR::OpBitXor: as->xor32(l, r, targetReg); break;
        case IR::OpAdd:    as->add32(l, r, targetReg); break;
        case IR::OpMul:    as->mul32(l, r, targetReg); break;

#if CPU(ARM) || CPU(X86) || CPU(X86_64)
            // The ARM assembler will generate an and with 0x1f for us, and Intel will do it on the CPU.

        case IR::OpLShift:  as->lshift32(l, r, targetReg); break;
        case IR::OpRShift:  as->rshift32(l, r, targetReg); break;
        case IR::OpURShift: as->urshift32(l, r, targetReg);
            as->storeUInt32(targetReg, target); // IMPORTANT: do NOT do a break here! The stored type of an urshift is different from the other binary operations!
            return true;
#else
        case IR::OpLShift:
            as->move(r, Assembler::ScratchRegister);
            as->and32(Assembler::TrustedImm32(0x1f), Assembler::ScratchRegister);
            as->lshift32(l, Assembler::ScratchRegister, targetReg);
            break;

        case IR::OpLShift:
            as->move(r, Assembler::ScratchRegister);
            as->and32(Assembler::TrustedImm32(0x1f), Assembler::ScratchRegister);
            as->rshift32(l, Assembler::ScratchRegister, targetReg);
            break;

        case IR::OpLShift:
            as->move(r, Assembler::ScratchRegister);
            as->and32(Assembler::TrustedImm32(0x1f), Assembler::ScratchRegister);
            as->storeUInt32(targetReg, target); // IMPORTANT: do NOT do a break here! The stored type of an urshift is different from the other binary operations!
            return true;
#endif

        case IR::OpSub: // already handled before
        default: // not handled by this method:
            Q_UNREACHABLE();
            return false;
        }
    }

    as->storeInt32(targetReg, target);
    return true;
}

static inline Assembler::FPRegisterID getFreeFPReg(IR::Expr *shouldNotOverlap, unsigned hint)
{
    if (IR::Temp *t = shouldNotOverlap->asTemp())
        if (t->type == IR::DoubleType)
            if (t->kind == IR::Temp::PhysicalRegister)
                if (t->index == hint)
                    return Assembler::FPRegisterID(hint + 1);
    return Assembler::FPRegisterID(hint);
}

Assembler::Jump Binop::genInlineBinop(IR::Expr *leftSource, IR::Expr *rightSource, IR::Expr *target)
{
    Assembler::Jump done;

    // Try preventing a call for a few common binary operations. This is used in two cases:
    // - no register allocation was performed (not available for the platform, or the IR was
    //   not transformed into SSA)
    // - type inference found that either or both operands can be of non-number type, and the
    //   register allocator will have prepared for a call (meaning: all registers that do not
    //   hold operands are spilled to the stack, which makes them available here)
    // Note: FPGPr0 can still not be used, because uint32->double conversion uses it as a scratch
    //       register.
    switch (op) {
    case IR::OpAdd: {
        Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2);
        Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4);
        Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg);
        Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg);

        as->addDouble(rReg, lReg);
        as->storeDouble(lReg, target);
        done = as->jump();

        if (leftIsNoDbl.isSet())
            leftIsNoDbl.link(as);
        if (rightIsNoDbl.isSet())
            rightIsNoDbl.link(as);
    } break;
    case IR::OpMul: {
        Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2);
        Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4);
        Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg);
        Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg);

        as->mulDouble(rReg, lReg);
        as->storeDouble(lReg, target);
        done = as->jump();

        if (leftIsNoDbl.isSet())
            leftIsNoDbl.link(as);
        if (rightIsNoDbl.isSet())
            rightIsNoDbl.link(as);
    } break;
    case IR::OpSub: {
        Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2);
        Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4);
        Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg);
        Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg);

        as->subDouble(rReg, lReg);
        as->storeDouble(lReg, target);
        done = as->jump();

        if (leftIsNoDbl.isSet())
            leftIsNoDbl.link(as);
        if (rightIsNoDbl.isSet())
            rightIsNoDbl.link(as);
    } break;
    case IR::OpDiv: {
        Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2);
        Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4);
        Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg);
        Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg);

        as->divDouble(rReg, lReg);
        as->storeDouble(lReg, target);
        done = as->jump();

        if (leftIsNoDbl.isSet())
            leftIsNoDbl.link(as);
        if (rightIsNoDbl.isSet())
            rightIsNoDbl.link(as);
    } break;
    default:
        break;
    }

    return done;
}

#endif