aboutsummaryrefslogtreecommitdiffstats
path: root/src/qml/memory/qv4mm.cpp
blob: 6330ef603821d0414aa89bc88e17f4d14b08b937 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtQml module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qv4engine_p.h"
#include "qv4object_p.h"
#include "qv4objectproto_p.h"
#include "qv4mm_p.h"
#include "qv4qobjectwrapper_p.h"
#include <QtCore/qalgorithms.h>
#include <QtCore/private/qnumeric_p.h>
#include <qqmlengine.h>
#include "PageReservation.h"
#include "PageAllocation.h"
#include "PageAllocationAligned.h"
#include "StdLibExtras.h"

#include <QElapsedTimer>
#include <QMap>
#include <QScopedValueRollback>

#include <iostream>
#include <cstdlib>
#include <algorithm>
#include "qv4alloca_p.h"
#include "qv4profiling_p.h"

#define MM_DEBUG 0

#if MM_DEBUG
#define DEBUG qDebug() << "MM:"
#else
#define DEBUG if (1) ; else qDebug() << "MM:"
#endif

#ifdef V4_USE_VALGRIND
#include <valgrind/valgrind.h>
#include <valgrind/memcheck.h>
#endif

#ifdef V4_USE_HEAPTRACK
#include <heaptrack_api.h>
#endif

#if OS(QNX)
#include <sys/storage.h>   // __tls()
#endif

#if USE(PTHREADS) && HAVE(PTHREAD_NP_H)
#include <pthread_np.h>
#endif

#define MIN_UNMANAGED_HEAPSIZE_GC_LIMIT std::size_t(128 * 1024)

using namespace WTF;

QT_BEGIN_NAMESPACE

namespace QV4 {

enum {
    MinSlotsGCLimit = QV4::Chunk::AvailableSlots*16,
    GCOverallocation = 200 /* Max overallocation by the GC in % */
};

struct MemorySegment {
    enum {
        NumChunks = 8*sizeof(quint64),
        SegmentSize = NumChunks*Chunk::ChunkSize,
    };

    MemorySegment(size_t size)
    {
        size += Chunk::ChunkSize; // make sure we can get enough 64k aligment memory
        if (size < SegmentSize)
            size = SegmentSize;

        pageReservation = PageReservation::reserve(size, OSAllocator::JSGCHeapPages);
        base = reinterpret_cast<Chunk *>((reinterpret_cast<quintptr>(pageReservation.base()) + Chunk::ChunkSize - 1) & ~(Chunk::ChunkSize - 1));
        nChunks = NumChunks;
        if (base != pageReservation.base())
            --nChunks;
    }
    MemorySegment(MemorySegment &&other) {
        qSwap(pageReservation, other.pageReservation);
        qSwap(base, other.base);
        qSwap(nChunks, other.nChunks);
        qSwap(allocatedMap, other.allocatedMap);
    }

    ~MemorySegment() {
        if (base)
            pageReservation.deallocate();
    }

    void setBit(size_t index) {
        Q_ASSERT(index < nChunks);
        quint64 bit = static_cast<quint64>(1) << index;
//        qDebug() << "    setBit" << hex << index << (index & (Bits - 1)) << bit;
        allocatedMap |= bit;
    }
    void clearBit(size_t index) {
        Q_ASSERT(index < nChunks);
        quint64 bit = static_cast<quint64>(1) << index;
//        qDebug() << "    setBit" << hex << index << (index & (Bits - 1)) << bit;
        allocatedMap &= ~bit;
    }
    bool testBit(size_t index) const {
        Q_ASSERT(index < nChunks);
        quint64 bit = static_cast<quint64>(1) << index;
        return (allocatedMap & bit);
    }

    Chunk *allocate(size_t size);
    void free(Chunk *chunk, size_t size) {
        DEBUG << "freeing chunk" << chunk;
        size_t index = static_cast<size_t>(chunk - base);
        size_t end = index + (size - 1)/Chunk::ChunkSize + 1;
        while (index < end) {
            Q_ASSERT(testBit(index));
            clearBit(index);
            ++index;
        }

        size_t pageSize = WTF::pageSize();
        size = (size + pageSize - 1) & ~(pageSize - 1);
        pageReservation.decommit(chunk, size);
    }

    bool contains(Chunk *c) const {
        return c >= base && c < base + nChunks;
    }

    PageReservation pageReservation;
    Chunk *base = 0;
    quint64 allocatedMap = 0;
    uint nChunks = 0;
};

Chunk *MemorySegment::allocate(size_t size)
{
    size_t requiredChunks = (size + sizeof(Chunk) - 1)/sizeof(Chunk);
    uint sequence = 0;
    Chunk *candidate = 0;
    for (uint i = 0; i < nChunks; ++i) {
        if (!testBit(i)) {
            if (!candidate)
                candidate = base + i;
            ++sequence;
        } else {
            candidate = 0;
            sequence = 0;
        }
        if (sequence == requiredChunks) {
            pageReservation.commit(candidate, size);
            for (uint i = 0; i < requiredChunks; ++i)
                setBit(candidate - base + i);
            DEBUG << "allocated chunk " << candidate << hex << size;
            return candidate;
        }
    }
    return 0;
}

struct ChunkAllocator {
    ChunkAllocator() {}

    size_t requiredChunkSize(size_t size) {
        size += Chunk::HeaderSize; // space required for the Chunk header
        size_t pageSize = WTF::pageSize();
        size = (size + pageSize - 1) & ~(pageSize - 1); // align to page sizes
        if (size < Chunk::ChunkSize)
            size = Chunk::ChunkSize;
        return size;
    }

    Chunk *allocate(size_t size = 0);
    void free(Chunk *chunk, size_t size = 0);

    std::vector<MemorySegment> memorySegments;
};

Chunk *ChunkAllocator::allocate(size_t size)
{
    size = requiredChunkSize(size);
    for (auto &m : memorySegments) {
        if (~m.allocatedMap) {
            Chunk *c = m.allocate(size);
            if (c)
                return c;
        }
    }

    // allocate a new segment
    memorySegments.push_back(MemorySegment(size));
    Chunk *c = memorySegments.back().allocate(size);
    Q_ASSERT(c);
    return c;
}

void ChunkAllocator::free(Chunk *chunk, size_t size)
{
    size = requiredChunkSize(size);
    for (auto &m : memorySegments) {
        if (m.contains(chunk)) {
            m.free(chunk, size);
            return;
        }
    }
    Q_ASSERT(false);
}


void Chunk::sweep()
{
    //    DEBUG << "sweeping chunk" << this << (*freeList);
    HeapItem *o = realBase();
    for (uint i = 0; i < Chunk::EntriesInBitmap; ++i) {
        Q_ASSERT((grayBitmap[i] | blackBitmap[i]) == blackBitmap[i]); // check that we don't have gray only objects
        quintptr toFree = objectBitmap[i] ^ blackBitmap[i];
        Q_ASSERT((toFree & objectBitmap[i]) == toFree); // check all black objects are marked as being used
        quintptr e = extendsBitmap[i];
        //        DEBUG << hex << "   index=" << i << toFree;
        while (toFree) {
            uint index = qCountTrailingZeroBits(toFree);
            quintptr bit = (static_cast<quintptr>(1) << index);

            toFree ^= bit; // mask out freed slot
            //            DEBUG << "       index" << hex << index << toFree;

            // remove all extends slots that have been freed
            // this is a bit of bit trickery.
            quintptr mask = (bit << 1) - 1; // create a mask of 1's to the right of and up to the current bit
            quintptr objmask = e | mask; // or'ing mask with e gives all ones until the end of the current object
            quintptr result = objmask + 1;
            Q_ASSERT(qCountTrailingZeroBits(result) - index != 0); // ensure we freed something
            result |= mask; // ensure we don't clear stuff to the right of the current object
            e &= result;

            HeapItem *itemToFree = o + index;
            Heap::Base *b = *itemToFree;
            if (b->vtable()->destroy) {
                b->vtable()->destroy(b);
                b->_checkIsDestroyed();
            }
        }
        objectBitmap[i] = blackBitmap[i];
        blackBitmap[i] = 0;
        extendsBitmap[i] = e;
        o += Chunk::Bits;
    }
    //    DEBUG << "swept chunk" << this << "freed" << slotsFreed << "slots.";
}

void Chunk::freeAll()
{
    //    DEBUG << "sweeping chunk" << this << (*freeList);
    HeapItem *o = realBase();
    for (uint i = 0; i < Chunk::EntriesInBitmap; ++i) {
        quintptr toFree = objectBitmap[i];
        quintptr e = extendsBitmap[i];
        //        DEBUG << hex << "   index=" << i << toFree;
        while (toFree) {
            uint index = qCountTrailingZeroBits(toFree);
            quintptr bit = (static_cast<quintptr>(1) << index);

            toFree ^= bit; // mask out freed slot
            //            DEBUG << "       index" << hex << index << toFree;

            // remove all extends slots that have been freed
            // this is a bit of bit trickery.
            quintptr mask = (bit << 1) - 1; // create a mask of 1's to the right of and up to the current bit
            quintptr objmask = e | mask; // or'ing mask with e gives all ones until the end of the current object
            quintptr result = objmask + 1;
            Q_ASSERT(qCountTrailingZeroBits(result) - index != 0); // ensure we freed something
            result |= mask; // ensure we don't clear stuff to the right of the current object
            e &= result;

            HeapItem *itemToFree = o + index;
            Heap::Base *b = *itemToFree;
            if (b->vtable()->destroy) {
                b->vtable()->destroy(b);
                b->_checkIsDestroyed();
            }
        }
        objectBitmap[i] = 0;
        blackBitmap[i] = 0;
        extendsBitmap[i] = e;
        o += Chunk::Bits;
    }
    //    DEBUG << "swept chunk" << this << "freed" << slotsFreed << "slots.";
}

void Chunk::sortIntoBins(HeapItem **bins, uint nBins)
{
    HeapItem *base = realBase();
#if QT_POINTER_SIZE == 8
    const int start = 0;
#else
    const int start = 1;
#endif
    for (int i = start; i < EntriesInBitmap; ++i) {
        quintptr usedSlots = (objectBitmap[i]|extendsBitmap[i]);
#if QT_POINTER_SIZE == 8
        if (!i)
            usedSlots |= (static_cast<quintptr>(1) << (HeaderSize/SlotSize)) - 1;
#endif
        uint index = qCountTrailingZeroBits(usedSlots + 1);
        if (index == Bits)
            continue;
        uint freeStart = i*Bits + index;
        usedSlots &= ~((static_cast<quintptr>(1) << index) - 1);
        while (i < EntriesInBitmap && !usedSlots) {
            ++i;
            usedSlots = (objectBitmap[i]|extendsBitmap[i]);
        }
        if (i == EntriesInBitmap)
            usedSlots = 1;
        HeapItem *freeItem = base + freeStart;

        uint freeEnd = i*Bits + qCountTrailingZeroBits(usedSlots);
        uint nSlots = freeEnd - freeStart;
        Q_ASSERT(freeEnd > freeStart && freeEnd <= NumSlots);
        freeItem->freeData.availableSlots = nSlots;
        uint bin = qMin(nBins - 1, nSlots);
        freeItem->freeData.next = bins[bin];
        bins[bin] = freeItem;
    //            DEBUG << "binnig item" << freeItem << nSlots << bin << freeItem->freeData.availableSlots;
    }
}


template<typename T>
StackAllocator<T>::StackAllocator(ChunkAllocator *chunkAlloc)
    : chunkAllocator(chunkAlloc)
{
    chunks.push_back(chunkAllocator->allocate());
    firstInChunk = chunks.back()->first();
    nextFree = firstInChunk;
    lastInChunk = firstInChunk + (Chunk::AvailableSlots - 1)/requiredSlots*requiredSlots;
}

template<typename T>
void StackAllocator<T>::freeAll()
{
    for (auto c : chunks)
        chunkAllocator->free(c);
}

template<typename T>
void StackAllocator<T>::nextChunk() {
    Q_ASSERT(nextFree == lastInChunk);
    ++currentChunk;
    if (currentChunk >= chunks.size()) {
        Chunk *newChunk = chunkAllocator->allocate();
        chunks.push_back(newChunk);
    }
    firstInChunk = chunks.at(currentChunk)->first();
    nextFree = firstInChunk;
    lastInChunk = firstInChunk + (Chunk::AvailableSlots - 1)/requiredSlots*requiredSlots;
}

template<typename T>
void QV4::StackAllocator<T>::prevChunk() {
    Q_ASSERT(nextFree == firstInChunk);
    Q_ASSERT(chunks.at(currentChunk) == nextFree->chunk());
    Q_ASSERT(currentChunk > 0);
    --currentChunk;
    firstInChunk = chunks.at(currentChunk)->first();
    lastInChunk = firstInChunk + (Chunk::AvailableSlots - 1)/requiredSlots*requiredSlots;
    nextFree = lastInChunk;
}

template struct StackAllocator<Heap::CallContext>;


HeapItem *BlockAllocator::allocate(size_t size, bool forceAllocation) {
    Q_ASSERT((size % Chunk::SlotSize) == 0);
    size_t slotsRequired = size >> Chunk::SlotSizeShift;
#if MM_DEBUG
    ++allocations[bin];
#endif

    HeapItem **last;

    HeapItem *m;

    if (slotsRequired < NumBins - 1) {
        m = freeBins[slotsRequired];
        if (m) {
            freeBins[slotsRequired] = m->freeData.next;
            goto done;
        }
    }
#if 0
    for (uint b = bin + 1; b < NumBins - 1; ++b) {
        if ((m = freeBins[b])) {
            Q_ASSERT(binForSlots(m->freeData.availableSlots) == b);
            freeBins[b] = m->freeData.next;
            //                DEBUG << "looking for empty bin" << bin << "size" << size << "found" << b;
            uint remainingSlots = m->freeData.availableSlots - slotsRequired;
            //                DEBUG << "found free slots of size" << m->freeData.availableSlots << m << "remaining" << remainingSlots;
            if (remainingSlots < 2) {
                // avoid too much fragmentation and rather mark the memory as used
                size += remainingSlots*Chunk::SlotSize;
                goto done;
            }
            HeapItem *remainder = m + slotsRequired;
            remainder->freeData.availableSlots = remainingSlots;
            uint binForRemainder = binForSlots(remainingSlots);
            remainder->freeData.next = freeBins[binForRemainder];
            freeBins[binForRemainder] = remainder;
            goto done;
        }
    }
#endif
    if (nFree >= slotsRequired) {
        // use bump allocation
        Q_ASSERT(nextFree);
        m = nextFree;
        nextFree += slotsRequired;
        nFree -= slotsRequired;
        goto done;
    }

    //        DEBUG << "No matching bin found for item" << size << bin;
    // search last bin for a large enough item
    last = &freeBins[NumBins - 1];
    while ((m = *last)) {
        if (m->freeData.availableSlots >= slotsRequired) {
            *last = m->freeData.next; // take it out of the list

            size_t remainingSlots = m->freeData.availableSlots - slotsRequired;
            //                DEBUG << "found large free slots of size" << m->freeData.availableSlots << m << "remaining" << remainingSlots;
            if (remainingSlots < 2) {
                // avoid too much fragmentation and rather mark the memory as used
                size += remainingSlots*Chunk::SlotSize;
                goto done;
            }
            HeapItem *remainder = m + slotsRequired;
            if (remainingSlots >= 2*NumBins) {
                if (nFree) {
                    size_t bin = binForSlots(nFree);
                    nextFree->freeData.next = freeBins[bin];
                    nextFree->freeData.availableSlots = nFree;
                    freeBins[bin] = nextFree;
                }
                nextFree = remainder;
                nFree = remainingSlots;
            } else {
                remainder->freeData.availableSlots = remainingSlots;
                size_t binForRemainder = binForSlots(remainingSlots);
                remainder->freeData.next = freeBins[binForRemainder];
                freeBins[binForRemainder] = remainder;
            }
            goto done;
        }
        last = &m->freeData.next;
    }

    if (!m) {
        if (!forceAllocation)
            return 0;
        Chunk *newChunk = chunkAllocator->allocate();
        chunks.push_back(newChunk);
        nextFree = newChunk->first();
        nFree = Chunk::AvailableSlots;
        m = nextFree;
        nextFree += slotsRequired;
        nFree -= slotsRequired;
    }

done:
    m->setAllocatedSlots(slotsRequired);
    //        DEBUG << "   " << hex << m->chunk() << m->chunk()->objectBitmap[0] << m->chunk()->extendsBitmap[0] << (m - m->chunk()->realBase());
    return m;
}

void BlockAllocator::sweep()
{
    nextFree = 0;
    nFree = 0;
    memset(freeBins, 0, sizeof(freeBins));

//    qDebug() << "BlockAlloc: sweep";
    usedSlotsAfterLastSweep = 0;
    for (auto c : chunks) {
        c->sweep();
        c->sortIntoBins(freeBins, NumBins);
//        qDebug() << "used slots in chunk" << c << ":" << c->nUsedSlots();
        usedSlotsAfterLastSweep += c->nUsedSlots();
    }
}

void BlockAllocator::freeAll()
{
    for (auto c : chunks) {
        c->freeAll();
        chunkAllocator->free(c);
    }
}

#if MM_DEBUG
void BlockAllocator::stats() {
    DEBUG << "MM stats:";
    QString s;
    for (int i = 0; i < 10; ++i) {
        uint c = 0;
        HeapItem *item = freeBins[i];
        while (item) {
            ++c;
            item = item->freeData.next;
        }
        s += QString::number(c) + QLatin1String(", ");
    }
    HeapItem *item = freeBins[NumBins - 1];
    uint c = 0;
    while (item) {
        ++c;
        item = item->freeData.next;
    }
    s += QLatin1String("..., ") + QString::number(c);
    DEBUG << "bins:" << s;
    QString a;
    for (int i = 0; i < 10; ++i)
        a += QString::number(allocations[i]) + QLatin1String(", ");
    a += QLatin1String("..., ") + QString::number(allocations[NumBins - 1]);
    DEBUG << "allocs:" << a;
    memset(allocations, 0, sizeof(allocations));
}
#endif


HeapItem *HugeItemAllocator::allocate(size_t size) {
    Chunk *c = chunkAllocator->allocate(size);
    chunks.push_back(HugeChunk{c, size});
    Chunk::setBit(c->objectBitmap, c->first() - c->realBase());
    return c->first();
}

static void freeHugeChunk(ChunkAllocator *chunkAllocator, const HugeItemAllocator::HugeChunk &c)
{
    HeapItem *itemToFree = c.chunk->first();
    Heap::Base *b = *itemToFree;
    if (b->vtable()->destroy) {
        b->vtable()->destroy(b);
        b->_checkIsDestroyed();
    }
    chunkAllocator->free(c.chunk, c.size);
}

void HugeItemAllocator::sweep() {
    auto isBlack = [this] (const HugeChunk &c) {
        bool b = c.chunk->first()->isBlack();
        Chunk::clearBit(c.chunk->blackBitmap, c.chunk->first() - c.chunk->realBase());
        if (!b)
            freeHugeChunk(chunkAllocator, c);
        return !b;
    };

    auto newEnd = std::remove_if(chunks.begin(), chunks.end(), isBlack);
    chunks.erase(newEnd, chunks.end());
}

void HugeItemAllocator::freeAll()
{
    for (auto &c : chunks) {
        freeHugeChunk(chunkAllocator, c);
    }
}


MemoryManager::MemoryManager(ExecutionEngine *engine)
    : engine(engine)
    , chunkAllocator(new ChunkAllocator)
    , stackAllocator(chunkAllocator)
    , blockAllocator(chunkAllocator)
    , hugeItemAllocator(chunkAllocator)
    , m_persistentValues(new PersistentValueStorage(engine))
    , m_weakValues(new PersistentValueStorage(engine))
    , unmanagedHeapSizeGCLimit(MIN_UNMANAGED_HEAPSIZE_GC_LIMIT)
    , aggressiveGC(!qEnvironmentVariableIsEmpty("QV4_MM_AGGRESSIVE_GC"))
    , gcStats(!qEnvironmentVariableIsEmpty(QV4_MM_STATS))
{
#ifdef V4_USE_VALGRIND
    VALGRIND_CREATE_MEMPOOL(this, 0, true);
#endif
}

Heap::Base *MemoryManager::allocString(std::size_t unmanagedSize)
{
    if (aggressiveGC)
        runGC();

    const size_t stringSize = align(sizeof(Heap::String));
    unmanagedHeapSize += unmanagedSize;
    bool didGCRun = false;
    if (unmanagedHeapSize > unmanagedHeapSizeGCLimit) {
        runGC();

        if (3*unmanagedHeapSizeGCLimit <= 4*unmanagedHeapSize)
            // more than 75% full, raise limit
            unmanagedHeapSizeGCLimit = std::max(unmanagedHeapSizeGCLimit, unmanagedHeapSize) * 2;
        else if (unmanagedHeapSize * 4 <= unmanagedHeapSizeGCLimit)
            // less than 25% full, lower limit
            unmanagedHeapSizeGCLimit = qMax(MIN_UNMANAGED_HEAPSIZE_GC_LIMIT, unmanagedHeapSizeGCLimit/2);
        didGCRun = true;
    }

    HeapItem *m = blockAllocator.allocate(stringSize);
    if (!m) {
        if (!didGCRun && shouldRunGC())
            runGC();
        m = blockAllocator.allocate(stringSize, true);
    }

    memset(m, 0, stringSize);
    return *m;
}

Heap::Base *MemoryManager::allocData(std::size_t size)
{
    if (aggressiveGC)
        runGC();
#ifdef DETAILED_MM_STATS
    willAllocate(size);
#endif // DETAILED_MM_STATS

    Q_ASSERT(size >= Chunk::SlotSize);
    Q_ASSERT(size % Chunk::SlotSize == 0);

//    qDebug() << "unmanagedHeapSize:" << unmanagedHeapSize << "limit:" << unmanagedHeapSizeGCLimit << "unmanagedSize:" << unmanagedSize;

    if (size > Chunk::DataSize)
        return *hugeItemAllocator.allocate(size);

    HeapItem *m = blockAllocator.allocate(size);
    if (!m) {
        if (shouldRunGC())
            runGC();
        m = blockAllocator.allocate(size, true);
    }

    memset(m, 0, size);
    return *m;
}

Heap::Object *MemoryManager::allocObjectWithMemberData(std::size_t size, uint nMembers)
{
    Heap::Object *o = static_cast<Heap::Object *>(allocData(size));

    // ### Could optimize this and allocate both in one go through the block allocator
    if (nMembers) {
        std::size_t memberSize = align(sizeof(Heap::MemberData) + (nMembers - 1)*sizeof(Value));
//        qDebug() << "allocating member data for" << o << nMembers << memberSize;
        Heap::Base *m;
        if (memberSize > Chunk::DataSize)
            m = *hugeItemAllocator.allocate(memberSize);
        else
            m = *blockAllocator.allocate(memberSize, true);
        memset(m, 0, memberSize);
        o->memberData = static_cast<Heap::MemberData *>(m);
        o->memberData->setVtable(MemberData::staticVTable());
        o->memberData->size = static_cast<uint>((memberSize - sizeof(Heap::MemberData) + sizeof(Value))/sizeof(Value));
        o->memberData->init();
//        qDebug() << "    got" << o->memberData << o->memberData->size;
    }
    return o;
}

static void drainMarkStack(QV4::ExecutionEngine *engine, Value *markBase)
{
    while (engine->jsStackTop > markBase) {
        Heap::Base *h = engine->popForGC();
        Q_ASSERT(h); // at this point we should only have Heap::Base objects in this area on the stack. If not, weird things might happen.
        Q_ASSERT (h->vtable()->markObjects);
        h->vtable()->markObjects(h, engine);
    }
}

void MemoryManager::mark()
{
    Value *markBase = engine->jsStackTop;

    engine->markObjects();

    collectFromJSStack();

    m_persistentValues->mark(engine);

    // Preserve QObject ownership rules within JavaScript: A parent with c++ ownership
    // keeps all of its children alive in JavaScript.

    // Do this _after_ collectFromStack to ensure that processing the weak
    // managed objects in the loop down there doesn't make then end up as leftovers
    // on the stack and thus always get collected.
    for (PersistentValueStorage::Iterator it = m_weakValues->begin(); it != m_weakValues->end(); ++it) {
        QObjectWrapper *qobjectWrapper = (*it).as<QObjectWrapper>();
        if (!qobjectWrapper)
            continue;
        QObject *qobject = qobjectWrapper->object();
        if (!qobject)
            continue;
        bool keepAlive = QQmlData::keepAliveDuringGarbageCollection(qobject);

        if (!keepAlive) {
            if (QObject *parent = qobject->parent()) {
                while (parent->parent())
                    parent = parent->parent();

                keepAlive = QQmlData::keepAliveDuringGarbageCollection(parent);
            }
        }

        if (keepAlive)
            qobjectWrapper->mark(engine);

        if (engine->jsStackTop >= engine->jsStackLimit)
            drainMarkStack(engine, markBase);
    }

    drainMarkStack(engine, markBase);
}

void MemoryManager::sweep(bool lastSweep)
{
    for (PersistentValueStorage::Iterator it = m_weakValues->begin(); it != m_weakValues->end(); ++it) {
        Managed *m = (*it).managed();
        if (!m || m->markBit())
            continue;
        // we need to call destroyObject on qobjectwrappers now, so that they can emit the destroyed
        // signal before we start sweeping the heap
        if (QObjectWrapper *qobjectWrapper = (*it).as<QObjectWrapper>())
            qobjectWrapper->destroyObject(lastSweep);

        (*it) = Primitive::undefinedValue();
    }

    // onDestruction handlers may have accessed other QObject wrappers and reset their value, so ensure
    // that they are all set to undefined.
    for (PersistentValueStorage::Iterator it = m_weakValues->begin(); it != m_weakValues->end(); ++it) {
        Managed *m = (*it).managed();
        if (!m || m->markBit())
            continue;
        (*it) = Primitive::undefinedValue();
    }

    // Now it is time to free QV4::QObjectWrapper Value, we must check the Value's tag to make sure its object has been destroyed
    const int pendingCount = m_pendingFreedObjectWrapperValue.count();
    if (pendingCount) {
        QVector<Value *> remainingWeakQObjectWrappers;
        remainingWeakQObjectWrappers.reserve(pendingCount);
        for (int i = 0; i < pendingCount; ++i) {
            Value *v = m_pendingFreedObjectWrapperValue.at(i);
            if (v->isUndefined() || v->isEmpty())
                PersistentValueStorage::free(v);
            else
                remainingWeakQObjectWrappers.append(v);
        }
        m_pendingFreedObjectWrapperValue = remainingWeakQObjectWrappers;
    }

    if (MultiplyWrappedQObjectMap *multiplyWrappedQObjects = engine->m_multiplyWrappedQObjects) {
        for (MultiplyWrappedQObjectMap::Iterator it = multiplyWrappedQObjects->begin(); it != multiplyWrappedQObjects->end();) {
            if (!it.value().isNullOrUndefined())
                it = multiplyWrappedQObjects->erase(it);
            else
                ++it;
        }
    }

    blockAllocator.sweep();
    hugeItemAllocator.sweep();
}

bool MemoryManager::shouldRunGC() const
{
    size_t total = blockAllocator.totalSlots();
    size_t usedSlots = blockAllocator.usedSlotsAfterLastSweep;
    if (total > MinSlotsGCLimit && usedSlots * GCOverallocation < total * 100)
        return true;
    return false;
}


void MemoryManager::runGC()
{
    if (gcBlocked) {
//        qDebug() << "Not running GC.";
        return;
    }

    QScopedValueRollback<bool> gcBlocker(gcBlocked, true);

    if (!gcStats) {
//        uint oldUsed = allocator.usedMem();
        mark();
        sweep();
//        DEBUG << "RUN GC: allocated:" << allocator.allocatedMem() << "used before" << oldUsed << "used now" << allocator.usedMem();
    } else {
        const size_t totalMem = getAllocatedMem();

        QElapsedTimer t;
        t.start();
        mark();
        qint64 markTime = t.restart();
        const size_t usedBefore = getUsedMem();
        const size_t largeItemsBefore = getLargeItemsMem();
        sweep();
        const size_t usedAfter = getUsedMem();
        const size_t largeItemsAfter = getLargeItemsMem();
        qint64 sweepTime = t.elapsed();

        qDebug() << "========== GC ==========";
        qDebug() << "Marked object in" << markTime << "ms.";
        qDebug() << "Sweeped object in" << sweepTime << "ms.";
        qDebug() << "Allocated" << totalMem << "bytes";
        qDebug() << "Used memory before GC:" << usedBefore;
        qDebug() << "Used memory after GC:" << usedAfter;
        qDebug() << "Freed up bytes:" << (usedBefore - usedAfter);
        qDebug() << "Large item memory before GC:" << largeItemsBefore;
        qDebug() << "Large item memory after GC:" << largeItemsAfter;
        qDebug() << "Large item memory freed up:" << (largeItemsBefore - largeItemsAfter);
        qDebug() << "======== End GC ========";
    }
}

size_t MemoryManager::getUsedMem() const
{
    return blockAllocator.usedMem();
}

size_t MemoryManager::getAllocatedMem() const
{
    return blockAllocator.allocatedMem() + hugeItemAllocator.usedMem();
}

size_t MemoryManager::getLargeItemsMem() const
{
    return hugeItemAllocator.usedMem();
}

MemoryManager::~MemoryManager()
{
    delete m_persistentValues;

    sweep(/*lastSweep*/true);
    blockAllocator.freeAll();
    hugeItemAllocator.freeAll();
    stackAllocator.freeAll();

    delete m_weakValues;
#ifdef V4_USE_VALGRIND
    VALGRIND_DESTROY_MEMPOOL(this);
#endif
    delete chunkAllocator;
}


void MemoryManager::dumpStats() const
{
#ifdef DETAILED_MM_STATS
    std::cerr << "=================" << std::endl;
    std::cerr << "Allocation stats:" << std::endl;
    std::cerr << "Requests for each chunk size:" << std::endl;
    for (int i = 0; i < allocSizeCounters.size(); ++i) {
        if (unsigned count = allocSizeCounters[i]) {
            std::cerr << "\t" << (i << 4) << " bytes chunks: " << count << std::endl;
        }
    }
#endif // DETAILED_MM_STATS
}

#ifdef DETAILED_MM_STATS
void MemoryManager::willAllocate(std::size_t size)
{
    unsigned alignedSize = (size + 15) >> 4;
    QVector<unsigned> &counters = allocSizeCounters;
    if ((unsigned) counters.size() < alignedSize + 1)
        counters.resize(alignedSize + 1);
    counters[alignedSize]++;
}

#endif // DETAILED_MM_STATS

void MemoryManager::collectFromJSStack() const
{
    Value *v = engine->jsStackBase;
    Value *top = engine->jsStackTop;
    while (v < top) {
        Managed *m = v->managed();
        if (m && m->inUse())
            // Skip pointers to already freed objects, they are bogus as well
            m->mark(engine);
        ++v;
    }
}

} // namespace QV4

QT_END_NAMESPACE