aboutsummaryrefslogtreecommitdiffstats
path: root/tests/auto/declarative/parserstress/tests/ecma/Expressions/11.5.3.js
blob: 9558b63a9631f67b324ebe2d1e5c65df96a987a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is Mozilla Communicator client code, released
 * March 31, 1998.
 *
 * The Initial Developer of the Original Code is
 * Netscape Communications Corporation.
 * Portions created by the Initial Developer are Copyright (C) 1998
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

gTestfile = '11.5.3.js';

/**
   File Name:          11.5.3.js
   ECMA Section:       11.5.3 Applying the % operator
   Description:

   The binary % operator is said to yield the remainder of its operands from
   an implied division; the left operand is the dividend and the right operand
   is the divisor. In C and C++, the remainder operator accepts only integral
   operands, but in ECMAScript, it also accepts floating-point operands.

   The result of a floating-point remainder operation as computed by the %
   operator is not the same as the "remainder" operation defined by IEEE 754.
   The IEEE 754 "remainder" operation computes the remainder from a rounding
   division, not a truncating division, and so its behavior is not analogous
   to that of the usual integer remainder operator. Instead the ECMAScript
   language defines % on floating-point operations to behave in a manner
   analogous to that of the Java integer remainder operator; this may be
   compared with the C library function fmod.

   The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:

   If either operand is NaN, the result is NaN.
   The sign of the result equals the sign of the dividend.
   If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
   If the dividend is finite and the divisor is an infinity, the result equals the dividend.
   If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
   In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
   from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
   is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
   possible without exceeding the magnitude of the true mathematical quotient of n and d.

   Author:             christine@netscape.com
   Date:               12 november 1997
*/
var SECTION = "11.5.3";
var VERSION = "ECMA_1";
var BUGNUMBER="111202";
startTest();


writeHeaderToLog( SECTION + " Applying the % operator");

// if either operand is NaN, the result is NaN.

new TestCase( SECTION,    "Number.NaN % Number.NaN",    Number.NaN,     Number.NaN % Number.NaN );
new TestCase( SECTION,    "Number.NaN % 1",             Number.NaN,     Number.NaN % 1 );
new TestCase( SECTION,    "1 % Number.NaN",             Number.NaN,     1 % Number.NaN );

new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NaN",    Number.NaN,     Number.POSITIVE_INFINITY % Number.NaN );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NaN",    Number.NaN,     Number.NEGATIVE_INFINITY % Number.NaN );

//  If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
//  dividend is an infinity

new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );

new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 0",   Number.NaN,     Number.POSITIVE_INFINITY % 0 );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 0",   Number.NaN,     Number.NEGATIVE_INFINITY % 0 );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -0",  Number.NaN,     Number.POSITIVE_INFINITY % -0 );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -0",  Number.NaN,     Number.NEGATIVE_INFINITY % -0 );

new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 1 ",  Number.NaN,     Number.NEGATIVE_INFINITY % 1 );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -1 ", Number.NaN,     Number.NEGATIVE_INFINITY % -1 );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 1 ",  Number.NaN,     Number.POSITIVE_INFINITY % 1 );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -1 ", Number.NaN,     Number.POSITIVE_INFINITY % -1 );

new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.POSITIVE_INFINITY % Number.MAX_VALUE );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.POSITIVE_INFINITY % -Number.MAX_VALUE );

// divisor is 0
new TestCase( SECTION,    "0 % -0",                         Number.NaN,     0 % -0 );
new TestCase( SECTION,    "-0 % 0",                         Number.NaN,     -0 % 0 );
new TestCase( SECTION,    "-0 % -0",                        Number.NaN,     -0 % -0 );
new TestCase( SECTION,    "0 % 0",                          Number.NaN,     0 % 0 );

new TestCase( SECTION,    "1 % 0",                          Number.NaN,   1%0 );
new TestCase( SECTION,    "1 % -0",                         Number.NaN,   1%-0 );
new TestCase( SECTION,    "-1 % 0",                         Number.NaN,   -1%0 );
new TestCase( SECTION,    "-1 % -0",                        Number.NaN,   -1%-0 );

new TestCase( SECTION,    "Number.MAX_VALUE % 0",           Number.NaN,   Number.MAX_VALUE%0 );
new TestCase( SECTION,    "Number.MAX_VALUE % -0",          Number.NaN,   Number.MAX_VALUE%-0 );
new TestCase( SECTION,    "-Number.MAX_VALUE % 0",          Number.NaN,   -Number.MAX_VALUE%0 );
new TestCase( SECTION,    "-Number.MAX_VALUE % -0",         Number.NaN,   -Number.MAX_VALUE%-0 );

// If the dividend is finite and the divisor is an infinity, the result equals the dividend.

new TestCase( SECTION,    "1 % Number.NEGATIVE_INFINITY",   1,              1 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION,    "1 % Number.POSITIVE_INFINITY",   1,              1 % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "-1 % Number.POSITIVE_INFINITY",  -1,             -1 % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "-1 % Number.NEGATIVE_INFINITY",  -1,             -1 % Number.NEGATIVE_INFINITY );

new TestCase( SECTION,    "Number.MAX_VALUE % Number.NEGATIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
new TestCase( SECTION,    "Number.MAX_VALUE % Number.POSITIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "-Number.MAX_VALUE % Number.POSITIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );

new TestCase( SECTION,    "0 % Number.POSITIVE_INFINITY",   0, 0 % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "0 % Number.NEGATIVE_INFINITY",   0, 0 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION,    "-0 % Number.POSITIVE_INFINITY",  -0,   -0 % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "-0 % Number.NEGATIVE_INFINITY",  -0,   -0 % Number.NEGATIVE_INFINITY );

// If the dividend is a zero and the divisor is finite, the result is the same as the dividend.

new TestCase( SECTION,    "0 % 1",                          0,              0 % 1 );
new TestCase( SECTION,    "0 % -1",                        -0,              0 % -1 );
new TestCase( SECTION,    "-0 % 1",                        -0,              -0 % 1 );
new TestCase( SECTION,    "-0 % -1",                       0,               -0 % -1 );

//        In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
//      from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
//      is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
//      possible without exceeding the magnitude of the true mathematical quotient of n and d.

test();