/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "SurfaceTexture" #define ATRACE_TAG ATRACE_TAG_GRAPHICS //#define LOG_NDEBUG 0 #define GL_GLEXT_PROTOTYPES #define EGL_EGLEXT_PROTOTYPES #include #include #include #include #include #include #include #include #include #include #include #include #include #include // This compile option makes SurfaceTexture use the EGL_KHR_fence_sync extension // to synchronize access to the buffers. It will cause dequeueBuffer to stall, // waiting for the GL reads for the buffer being dequeued to complete before // allowing the buffer to be dequeued. #ifdef USE_FENCE_SYNC #ifdef ALLOW_DEQUEUE_CURRENT_BUFFER #error "USE_FENCE_SYNC and ALLOW_DEQUEUE_CURRENT_BUFFER are incompatible" #endif #endif // Macros for including the SurfaceTexture name in log messages #define ST_LOGV(x, ...) qDebug("[V/%s] "x, mName.string(), ##__VA_ARGS__) #define ST_LOGD(x, ...) qDebug("[D/%s] "x, mName.string(), ##__VA_ARGS__) #define ST_LOGI(x, ...) qDebug("[I/%s] "x, mName.string(), ##__VA_ARGS__) #define ST_LOGW(x, ...) qDebug("[W/%s] "x, mName.string(), ##__VA_ARGS__) #define ST_LOGE(x, ...) qDebug("[E/%s] "x, mName.string(), ##__VA_ARGS__) namespace android { // Transform matrices static float mtxIdentity[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, }; static float mtxFlipH[16] = { -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, }; static float mtxFlipV[16] = { 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, }; static float mtxRot90[16] = { 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, }; static float mtxRot180[16] = { -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, }; static float mtxRot270[16] = { 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, }; static void mtxMul(float out[16], const float a[16], const float b[16]); // Get an ID that's unique within this process. static int32_t createProcessUniqueId() { static volatile int32_t globalCounter = 0; return android_atomic_inc(&globalCounter); } SurfaceTexture::SurfaceTexture(GLuint tex, bool allowSynchronousMode, GLenum texTarget, bool useFenceSync, const sp &bufferQueue) : mCurrentTransform(0), mCurrentTimestamp(0), mFilteringEnabled(true), mTexName(tex), #ifdef USE_FENCE_SYNC mUseFenceSync(useFenceSync), #else mUseFenceSync(false), #endif mTexTarget(texTarget), mEglDisplay(EGL_NO_DISPLAY), mEglContext(EGL_NO_CONTEXT), mAbandoned(false), mCurrentTexture(BufferQueue::INVALID_BUFFER_SLOT), mAttached(true) { // Choose a name using the PID and a process-unique ID. mName = String8::format("unnamed-%d-%d", getpid(), createProcessUniqueId()); ST_LOGV("SurfaceTexture"); if (bufferQueue == 0) { ST_LOGV("Creating a new BufferQueue"); mBufferQueue = new BufferQueue(allowSynchronousMode); } else { mBufferQueue = bufferQueue; } memcpy(mCurrentTransformMatrix, mtxIdentity, sizeof(mCurrentTransformMatrix)); // Note that we can't create an sp<...>(this) in a ctor that will not keep a // reference once the ctor ends, as that would cause the refcount of 'this' // dropping to 0 at the end of the ctor. Since all we need is a wp<...> // that's what we create. wp listener; sp proxy; listener = static_cast(this); proxy = new BufferQueue::ProxyConsumerListener(listener); status_t err = mBufferQueue->consumerConnect(proxy); if (err != NO_ERROR) { ST_LOGE("SurfaceTexture: error connecting to BufferQueue: %s (%d)", strerror(-err), err); } else { mBufferQueue->setConsumerName(mName); mBufferQueue->setConsumerUsageBits(DEFAULT_USAGE_FLAGS); } } SurfaceTexture::~SurfaceTexture() { ST_LOGV("~SurfaceTexture"); abandon(); } status_t SurfaceTexture::setBufferCountServer(int bufferCount) { Mutex::Autolock lock(mMutex); return mBufferQueue->setBufferCountServer(bufferCount); } status_t SurfaceTexture::setDefaultBufferSize(uint32_t w, uint32_t h) { Mutex::Autolock lock(mMutex); mDefaultWidth = w; mDefaultHeight = h; return mBufferQueue->setDefaultBufferSize(w, h); } status_t SurfaceTexture::updateTexImage() { return SurfaceTexture::updateTexImage(NULL); } status_t SurfaceTexture::updateTexImage(BufferRejecter* rejecter) { ATRACE_CALL(); ST_LOGV("updateTexImage"); Mutex::Autolock lock(mMutex); status_t err = NO_ERROR; if (mAbandoned) { ST_LOGE("updateTexImage: SurfaceTexture is abandoned!"); return NO_INIT; } if (!mAttached) { ST_LOGE("updateTexImage: SurfaceTexture is not attached to an OpenGL " "ES context"); return INVALID_OPERATION; } EGLDisplay dpy = eglGetCurrentDisplay(); EGLContext ctx = eglGetCurrentContext(); if ((mEglDisplay != dpy && mEglDisplay != EGL_NO_DISPLAY) || dpy == EGL_NO_DISPLAY) { ST_LOGE("updateTexImage: invalid current EGLDisplay"); return INVALID_OPERATION; } if ((mEglContext != ctx && mEglContext != EGL_NO_CONTEXT) || ctx == EGL_NO_CONTEXT) { ST_LOGE("updateTexImage: invalid current EGLContext"); return INVALID_OPERATION; } mEglDisplay = dpy; mEglContext = ctx; BufferQueue::BufferItem item; // In asynchronous mode the list is guaranteed to be one buffer // deep, while in synchronous mode we use the oldest buffer. err = mBufferQueue->acquireBuffer(&item); if (err == NO_ERROR) { int buf = item.mBuf; // This buffer was newly allocated, so we need to clean up on our side if (item.mGraphicBuffer != NULL) { mEGLSlots[buf].mGraphicBuffer = 0; if (mEGLSlots[buf].mEglImage != EGL_NO_IMAGE_KHR) { eglDestroyImageKHR(dpy, mEGLSlots[buf].mEglImage); mEGLSlots[buf].mEglImage = EGL_NO_IMAGE_KHR; } mEGLSlots[buf].mGraphicBuffer = item.mGraphicBuffer; } // we call the rejecter here, in case the caller has a reason to // not accept this buffer. this is used by SurfaceFlinger to // reject buffers which have the wrong size if (rejecter && rejecter->reject(mEGLSlots[buf].mGraphicBuffer, item)) { mBufferQueue->releaseBuffer(buf, dpy, mEGLSlots[buf].mFence); mEGLSlots[buf].mFence = EGL_NO_SYNC_KHR; glBindTexture(mTexTarget, mTexName); return NO_ERROR; } // Update the GL texture object. We may have to do this even when // item.mGraphicBuffer == NULL, if we destroyed the EGLImage when // detaching from a context but the buffer has not been re-allocated. EGLImageKHR image = mEGLSlots[buf].mEglImage; if (image == EGL_NO_IMAGE_KHR) { if (mEGLSlots[buf].mGraphicBuffer == NULL) { ST_LOGE("updateTexImage: buffer at slot %d is null", buf); err = BAD_VALUE; } else { image = createImage(dpy, mEGLSlots[buf].mGraphicBuffer); mEGLSlots[buf].mEglImage = image; if (image == EGL_NO_IMAGE_KHR) { // NOTE: if dpy was invalid, createImage() is guaranteed to // fail. so we'd end up here. err = UNKNOWN_ERROR; } } } if (err == NO_ERROR) { GLint error; while ((error = glGetError()) != GL_NO_ERROR) { ST_LOGW("updateTexImage: clearing GL error: %#04x", error); } glBindTexture(mTexTarget, mTexName); glEGLImageTargetTexture2DOES(mTexTarget, (GLeglImageOES)image); while ((error = glGetError()) != GL_NO_ERROR) { ST_LOGE("updateTexImage: error binding external texture image %p " "(slot %d): %#04x", image, buf, error); err = UNKNOWN_ERROR; } if (err == NO_ERROR) { err = syncForReleaseLocked(dpy); } } if (err != NO_ERROR) { // Release the buffer we just acquired. It's not safe to // release the old buffer, so instead we just drop the new frame. mBufferQueue->releaseBuffer(buf, dpy, mEGLSlots[buf].mFence); mEGLSlots[buf].mFence = EGL_NO_SYNC_KHR; return err; } ST_LOGV("updateTexImage: (slot=%d buf=%p) -> (slot=%d buf=%p)", mCurrentTexture, mCurrentTextureBuf != NULL ? mCurrentTextureBuf->handle : 0, buf, item.mGraphicBuffer != NULL ? item.mGraphicBuffer->handle : 0); // release old buffer if (mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) { status_t status = mBufferQueue->releaseBuffer(mCurrentTexture, dpy, mEGLSlots[mCurrentTexture].mFence); mEGLSlots[mCurrentTexture].mFence = EGL_NO_SYNC_KHR; if (status == BufferQueue::STALE_BUFFER_SLOT) { freeBufferLocked(mCurrentTexture); } else if (status != NO_ERROR) { ST_LOGE("updateTexImage: released invalid buffer"); err = status; } } // Update the SurfaceTexture state. mCurrentTexture = buf; mCurrentTextureBuf = mEGLSlots[buf].mGraphicBuffer; mCurrentCrop = item.mCrop; mCurrentTransform = item.mTransform; mCurrentScalingMode = item.mScalingMode; mCurrentTimestamp = item.mTimestamp; computeCurrentTransformMatrix(); } else { if (err < 0) { ALOGE("updateTexImage failed on acquire %d", err); } // We always bind the texture even if we don't update its contents. glBindTexture(mTexTarget, mTexName); return OK; } return err; } status_t SurfaceTexture::detachFromContext() { ATRACE_CALL(); ST_LOGV("detachFromContext"); Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("detachFromContext: abandoned SurfaceTexture"); return NO_INIT; } if (!mAttached) { ST_LOGE("detachFromContext: SurfaceTexture is not attached to a " "context"); return INVALID_OPERATION; } EGLDisplay dpy = eglGetCurrentDisplay(); EGLContext ctx = eglGetCurrentContext(); if (mEglDisplay != dpy && mEglDisplay != EGL_NO_DISPLAY) { ST_LOGE("detachFromContext: invalid current EGLDisplay"); return INVALID_OPERATION; } if (mEglContext != ctx && mEglContext != EGL_NO_CONTEXT) { ST_LOGE("detachFromContext: invalid current EGLContext"); return INVALID_OPERATION; } if (dpy != EGL_NO_DISPLAY && ctx != EGL_NO_CONTEXT) { status_t err = syncForReleaseLocked(dpy); if (err != OK) { return err; } glDeleteTextures(1, &mTexName); } // Because we're giving up the EGLDisplay we need to free all the EGLImages // that are associated with it. They'll be recreated when the // SurfaceTexture gets attached to a new OpenGL ES context (and thus gets a // new EGLDisplay). for (int i =0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) { EGLImageKHR img = mEGLSlots[i].mEglImage; if (img != EGL_NO_IMAGE_KHR) { eglDestroyImageKHR(mEglDisplay, img); mEGLSlots[i].mEglImage = EGL_NO_IMAGE_KHR; } } mEglDisplay = EGL_NO_DISPLAY; mEglContext = EGL_NO_CONTEXT; mAttached = false; return OK; } status_t SurfaceTexture::attachToContext(GLuint tex) { ATRACE_CALL(); ST_LOGV("attachToContext"); Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("attachToContext: abandoned SurfaceTexture"); return NO_INIT; } if (mAttached) { ST_LOGE("attachToContext: SurfaceTexture is already attached to a " "context"); return INVALID_OPERATION; } EGLDisplay dpy = eglGetCurrentDisplay(); EGLContext ctx = eglGetCurrentContext(); if (dpy == EGL_NO_DISPLAY) { ST_LOGE("attachToContext: invalid current EGLDisplay"); return INVALID_OPERATION; } if (ctx == EGL_NO_CONTEXT) { ST_LOGE("attachToContext: invalid current EGLContext"); return INVALID_OPERATION; } // We need to bind the texture regardless of whether there's a current // buffer. glBindTexture(mTexTarget, tex); if (mCurrentTextureBuf != NULL) { // The EGLImageKHR that was associated with the slot was destroyed when // the SurfaceTexture was detached from the old context, so we need to // recreate it here. EGLImageKHR image = createImage(dpy, mCurrentTextureBuf); if (image == EGL_NO_IMAGE_KHR) { return UNKNOWN_ERROR; } // Attach the current buffer to the GL texture. glEGLImageTargetTexture2DOES(mTexTarget, (GLeglImageOES)image); GLint error; status_t err = OK; while ((error = glGetError()) != GL_NO_ERROR) { ST_LOGE("attachToContext: error binding external texture image %p " "(slot %d): %#04x", image, mCurrentTexture, error); err = UNKNOWN_ERROR; } // We destroy the EGLImageKHR here because the current buffer may no // longer be associated with one of the buffer slots, so we have // nowhere to to store it. If the buffer is still associated with a // slot then another EGLImageKHR will be created next time that buffer // gets acquired in updateTexImage. eglDestroyImageKHR(dpy, image); if (err != OK) { return err; } } mEglDisplay = dpy; mEglContext = ctx; mTexName = tex; mAttached = true; return OK; } status_t SurfaceTexture::syncForReleaseLocked(EGLDisplay dpy) { ST_LOGV("syncForReleaseLocked"); if (mUseFenceSync && mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) { EGLSyncKHR fence = mEGLSlots[mCurrentTexture].mFence; if (fence != EGL_NO_SYNC_KHR) { // There is already a fence for the current slot. We need to wait // on that before replacing it with another fence to ensure that all // outstanding buffer accesses have completed before the producer // accesses it. EGLint result = eglClientWaitSyncKHR(dpy, fence, 0, 1000000000); if (result == EGL_FALSE) { ST_LOGE("syncForReleaseLocked: error waiting for previous " "fence: %#x", eglGetError()); return UNKNOWN_ERROR; } else if (result == EGL_TIMEOUT_EXPIRED_KHR) { ST_LOGE("syncForReleaseLocked: timeout waiting for previous " "fence"); return TIMED_OUT; } eglDestroySyncKHR(dpy, fence); } // Create a fence for the outstanding accesses in the current OpenGL ES // context. fence = eglCreateSyncKHR(dpy, EGL_SYNC_FENCE_KHR, NULL); if (fence == EGL_NO_SYNC_KHR) { ST_LOGE("syncForReleaseLocked: error creating fence: %#x", eglGetError()); return UNKNOWN_ERROR; } glFlush(); mEGLSlots[mCurrentTexture].mFence = fence; } return OK; } bool SurfaceTexture::isExternalFormat(uint32_t format) { switch (format) { // supported YUV formats case HAL_PIXEL_FORMAT_YV12: // Legacy/deprecated YUV formats case HAL_PIXEL_FORMAT_YCbCr_422_SP: case HAL_PIXEL_FORMAT_YCrCb_420_SP: case HAL_PIXEL_FORMAT_YCbCr_422_I: return true; } // Any OEM format needs to be considered if (format>=0x100 && format<=0x1FF) return true; return false; } GLenum SurfaceTexture::getCurrentTextureTarget() const { return mTexTarget; } void SurfaceTexture::getTransformMatrix(float mtx[16]) { Mutex::Autolock lock(mMutex); memcpy(mtx, mCurrentTransformMatrix, sizeof(mCurrentTransformMatrix)); } void SurfaceTexture::setFilteringEnabled(bool enabled) { Mutex::Autolock lock(mMutex); bool needsRecompute = mFilteringEnabled != enabled; mFilteringEnabled = enabled; if (needsRecompute) { computeCurrentTransformMatrix(); } } void SurfaceTexture::computeCurrentTransformMatrix() { ST_LOGV("computeCurrentTransformMatrix"); float xform[16]; for (int i = 0; i < 16; i++) { xform[i] = mtxIdentity[i]; } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { float result[16]; mtxMul(result, xform, mtxFlipH); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { float result[16]; mtxMul(result, xform, mtxFlipV); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { float result[16]; mtxMul(result, xform, mtxRot90); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } sp& buf(mCurrentTextureBuf); Rect cropRect = mCurrentCrop; float tx = 0.0f, ty = 0.0f, sx = 1.0f, sy = 1.0f; float bufferWidth = buf->getWidth(); float bufferHeight = buf->getHeight(); if (!cropRect.isEmpty()) { float shrinkAmount = 0.0f; if (mFilteringEnabled) { // In order to prevent bilinear sampling beyond the edge of the // crop rectangle we may need to shrink it by 2 texels in each // dimension. Normally this would just need to take 1/2 a texel // off each end, but because the chroma channels of YUV420 images // are subsampled we may need to shrink the crop region by a whole // texel on each side. switch (buf->getPixelFormat()) { case PIXEL_FORMAT_RGBA_8888: case PIXEL_FORMAT_RGBX_8888: case PIXEL_FORMAT_RGB_888: case PIXEL_FORMAT_RGB_565: case PIXEL_FORMAT_BGRA_8888: case PIXEL_FORMAT_RGBA_5551: case PIXEL_FORMAT_RGBA_4444: // We know there's no subsampling of any channels, so we // only need to shrink by a half a pixel. shrinkAmount = 0.5; default: // If we don't recognize the format, we must assume the // worst case (that we care about), which is YUV420. shrinkAmount = 1.0; } } // Only shrink the dimensions that are not the size of the buffer. if (cropRect.width() < bufferWidth) { tx = (float(cropRect.left) + shrinkAmount) / bufferWidth; sx = (float(cropRect.width()) - (2.0f * shrinkAmount)) / bufferWidth; } if (cropRect.height() < bufferHeight) { ty = (float(bufferHeight - cropRect.bottom) + shrinkAmount) / bufferHeight; sy = (float(cropRect.height()) - (2.0f * shrinkAmount)) / bufferHeight; } } float crop[16] = { sx, 0, 0, 0, 0, sy, 0, 0, 0, 0, 1, 0, tx, ty, 0, 1, }; float mtxBeforeFlipV[16]; mtxMul(mtxBeforeFlipV, crop, xform); // SurfaceFlinger expects the top of its window textures to be at a Y // coordinate of 0, so SurfaceTexture must behave the same way. We don't // want to expose this to applications, however, so we must add an // additional vertical flip to the transform after all the other transforms. mtxMul(mCurrentTransformMatrix, mtxFlipV, mtxBeforeFlipV); } nsecs_t SurfaceTexture::getTimestamp() { ST_LOGV("getTimestamp"); Mutex::Autolock lock(mMutex); return mCurrentTimestamp; } void SurfaceTexture::setFrameAvailableListener( const sp& listener) { ST_LOGV("setFrameAvailableListener"); Mutex::Autolock lock(mMutex); mFrameAvailableListener = listener; } EGLImageKHR SurfaceTexture::createImage(EGLDisplay dpy, const sp& graphicBuffer) { EGLClientBuffer cbuf = (EGLClientBuffer)graphicBuffer->getNativeBuffer(); EGLint attrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE, }; EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, cbuf, attrs); if (image == EGL_NO_IMAGE_KHR) { EGLint error = eglGetError(); ST_LOGE("error creating EGLImage: %#x", error); } return image; } sp SurfaceTexture::getCurrentBuffer() const { Mutex::Autolock lock(mMutex); return mCurrentTextureBuf; } Rect SurfaceTexture::getCurrentCrop() const { Mutex::Autolock lock(mMutex); Rect outCrop = mCurrentCrop; if (mCurrentScalingMode == NATIVE_WINDOW_SCALING_MODE_SCALE_CROP) { int32_t newWidth = mCurrentCrop.width(); int32_t newHeight = mCurrentCrop.height(); if (newWidth * mDefaultHeight > newHeight * mDefaultWidth) { newWidth = newHeight * mDefaultWidth / mDefaultHeight; ST_LOGV("too wide: newWidth = %d", newWidth); } else if (newWidth * mDefaultHeight < newHeight * mDefaultWidth) { newHeight = newWidth * mDefaultHeight / mDefaultWidth; ST_LOGV("too tall: newHeight = %d", newHeight); } // The crop is too wide if (newWidth < mCurrentCrop.width()) { int32_t dw = (newWidth - mCurrentCrop.width())/2; outCrop.left -=dw; outCrop.right += dw; // The crop is too tall } else if (newHeight < mCurrentCrop.height()) { int32_t dh = (newHeight - mCurrentCrop.height())/2; outCrop.top -= dh; outCrop.bottom += dh; } ST_LOGV("getCurrentCrop final crop [%d,%d,%d,%d]", outCrop.left, outCrop.top, outCrop.right,outCrop.bottom); } return outCrop; } uint32_t SurfaceTexture::getCurrentTransform() const { Mutex::Autolock lock(mMutex); return mCurrentTransform; } uint32_t SurfaceTexture::getCurrentScalingMode() const { Mutex::Autolock lock(mMutex); return mCurrentScalingMode; } bool SurfaceTexture::isSynchronousMode() const { Mutex::Autolock lock(mMutex); return mBufferQueue->isSynchronousMode(); } void SurfaceTexture::freeBufferLocked(int slotIndex) { ST_LOGV("freeBufferLocked: slotIndex=%d", slotIndex); mEGLSlots[slotIndex].mGraphicBuffer = 0; if (slotIndex == mCurrentTexture) { mCurrentTexture = BufferQueue::INVALID_BUFFER_SLOT; } EGLImageKHR img = mEGLSlots[slotIndex].mEglImage; if (img != EGL_NO_IMAGE_KHR) { ST_LOGV("destroying EGLImage dpy=%p img=%p", mEglDisplay, img); eglDestroyImageKHR(mEglDisplay, img); } mEGLSlots[slotIndex].mEglImage = EGL_NO_IMAGE_KHR; } void SurfaceTexture::abandon() { ST_LOGV("abandon"); Mutex::Autolock lock(mMutex); if (!mAbandoned) { mAbandoned = true; mCurrentTextureBuf.clear(); // destroy all egl buffers for (int i =0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) { freeBufferLocked(i); } // disconnect from the BufferQueue mBufferQueue->consumerDisconnect(); mBufferQueue.clear(); } } void SurfaceTexture::setName(const String8& name) { Mutex::Autolock _l(mMutex); mName = name; mBufferQueue->setConsumerName(name); } status_t SurfaceTexture::setDefaultBufferFormat(uint32_t defaultFormat) { Mutex::Autolock lock(mMutex); return mBufferQueue->setDefaultBufferFormat(defaultFormat); } status_t SurfaceTexture::setConsumerUsageBits(uint32_t usage) { Mutex::Autolock lock(mMutex); usage |= DEFAULT_USAGE_FLAGS; return mBufferQueue->setConsumerUsageBits(usage); } status_t SurfaceTexture::setTransformHint(uint32_t hint) { Mutex::Autolock lock(mMutex); return mBufferQueue->setTransformHint(hint); } // Used for refactoring BufferQueue from SurfaceTexture // Should not be in final interface once users of SurfaceTexture are clean up. status_t SurfaceTexture::setSynchronousMode(bool enabled) { Mutex::Autolock lock(mMutex); return mBufferQueue->setSynchronousMode(enabled); } // Used for refactoring, should not be in final interface sp SurfaceTexture::getBufferQueue() const { Mutex::Autolock lock(mMutex); return mBufferQueue; } void SurfaceTexture::onFrameAvailable() { ST_LOGV("onFrameAvailable"); sp listener; { // scope for the lock Mutex::Autolock lock(mMutex); listener = mFrameAvailableListener; } if (listener != NULL) { ST_LOGV("actually calling onFrameAvailable"); listener->onFrameAvailable(); } } void SurfaceTexture::onBuffersReleased() { ST_LOGV("onBuffersReleased"); Mutex::Autolock lock(mMutex); if (mAbandoned) { // Nothing to do if we're already abandoned. return; } uint32_t mask = 0; mBufferQueue->getReleasedBuffers(&mask); for (int i = 0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) { if (mask & (1 << i)) { freeBufferLocked(i); } } } void SurfaceTexture::dump(String8& result) const { char buffer[1024]; dump(result, "", buffer, 1024); } void SurfaceTexture::dump(String8& result, const char* prefix, char* buffer, size_t SIZE) const { Mutex::Autolock _l(mMutex); snprintf(buffer, SIZE, "%smTexName=%d, mAbandoned=%d\n", prefix, mTexName, int(mAbandoned)); result.append(buffer); snprintf(buffer, SIZE, "%snext : {crop=[%d,%d,%d,%d], transform=0x%02x, current=%d}\n", prefix, mCurrentCrop.left, mCurrentCrop.top, mCurrentCrop.right, mCurrentCrop.bottom, mCurrentTransform, mCurrentTexture ); result.append(buffer); if (!mAbandoned) { mBufferQueue->dump(result, prefix, buffer, SIZE); } } static void mtxMul(float out[16], const float a[16], const float b[16]) { out[0] = a[0]*b[0] + a[4]*b[1] + a[8]*b[2] + a[12]*b[3]; out[1] = a[1]*b[0] + a[5]*b[1] + a[9]*b[2] + a[13]*b[3]; out[2] = a[2]*b[0] + a[6]*b[1] + a[10]*b[2] + a[14]*b[3]; out[3] = a[3]*b[0] + a[7]*b[1] + a[11]*b[2] + a[15]*b[3]; out[4] = a[0]*b[4] + a[4]*b[5] + a[8]*b[6] + a[12]*b[7]; out[5] = a[1]*b[4] + a[5]*b[5] + a[9]*b[6] + a[13]*b[7]; out[6] = a[2]*b[4] + a[6]*b[5] + a[10]*b[6] + a[14]*b[7]; out[7] = a[3]*b[4] + a[7]*b[5] + a[11]*b[6] + a[15]*b[7]; out[8] = a[0]*b[8] + a[4]*b[9] + a[8]*b[10] + a[12]*b[11]; out[9] = a[1]*b[8] + a[5]*b[9] + a[9]*b[10] + a[13]*b[11]; out[10] = a[2]*b[8] + a[6]*b[9] + a[10]*b[10] + a[14]*b[11]; out[11] = a[3]*b[8] + a[7]*b[9] + a[11]*b[10] + a[15]*b[11]; out[12] = a[0]*b[12] + a[4]*b[13] + a[8]*b[14] + a[12]*b[15]; out[13] = a[1]*b[12] + a[5]*b[13] + a[9]*b[14] + a[13]*b[15]; out[14] = a[2]*b[12] + a[6]*b[13] + a[10]*b[14] + a[14]*b[15]; out[15] = a[3]*b[12] + a[7]*b[13] + a[11]*b[14] + a[15]*b[15]; } }; // namespace android