summaryrefslogtreecommitdiffstats
path: root/src/imports/nativemedia/SurfaceTexture_4_1.h
blob: 33aac7fd1cfe4c04657c02e4ab9746c12758ba6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ANDROID_GUI_SURFACETEXTURE_H
#define ANDROID_GUI_SURFACETEXTURE_H

#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>

#include <gui/ISurfaceTexture.h>
#include <BufferQueue.h>

#include <ui/GraphicBuffer.h>

#include <utils/String8.h>
#include <utils/Vector.h>
#include <utils/threads.h>

#define ANDROID_GRAPHICS_SURFACETEXTURE_JNI_ID "mSurfaceTexture"

namespace android {
// ----------------------------------------------------------------------------


class String8;

class SurfaceTexture : public virtual RefBase,
        protected BufferQueue::ConsumerListener {
public:
    struct FrameAvailableListener : public virtual RefBase {
        // onFrameAvailable() is called each time an additional frame becomes
        // available for consumption. This means that frames that are queued
        // while in asynchronous mode only trigger the callback if no previous
        // frames are pending. Frames queued while in synchronous mode always
        // trigger the callback.
        //
        // This is called without any lock held and can be called concurrently
        // by multiple threads.
        virtual void onFrameAvailable() = 0;
    };

    // SurfaceTexture constructs a new SurfaceTexture object. tex indicates the
    // name of the OpenGL ES texture to which images are to be streamed.
    // allowSynchronousMode specifies whether or not synchronous mode can be
    // enabled. texTarget specifies the OpenGL ES texture target to which the
    // texture will be bound in updateTexImage. useFenceSync specifies whether
    // fences should be used to synchronize access to buffers if that behavior
    // is enabled at compile-time. A custom bufferQueue can be specified
    // if behavior for queue/dequeue/connect etc needs to be customized.
    // Otherwise a default BufferQueue will be created and used.
    //
    // For legacy reasons, the SurfaceTexture is created in a state where it is
    // considered attached to an OpenGL ES context for the purposes of the
    // attachToContext and detachFromContext methods. However, despite being
    // considered "attached" to a context, the specific OpenGL ES context
    // doesn't get latched until the first call to updateTexImage. After that
    // point, all calls to updateTexImage must be made with the same OpenGL ES
    // context current.
    //
    // A SurfaceTexture may be detached from one OpenGL ES context and then
    // attached to a different context using the detachFromContext and
    // attachToContext methods, respectively. The intention of these methods is
    // purely to allow a SurfaceTexture to be transferred from one consumer
    // context to another. If such a transfer is not needed there is no
    // requirement that either of these methods be called.
    SurfaceTexture(GLuint tex, bool allowSynchronousMode = true,
            GLenum texTarget = GL_TEXTURE_EXTERNAL_OES, bool useFenceSync = true,
            const sp<BufferQueue> &bufferQueue = 0);

    virtual ~SurfaceTexture();

    // updateTexImage sets the image contents of the target texture to that of
    // the most recently queued buffer.
    //
    // This call may only be made while the OpenGL ES context to which the
    // target texture belongs is bound to the calling thread.
    status_t updateTexImage();

    // setBufferCountServer set the buffer count. If the client has requested
    // a buffer count using setBufferCount, the server-buffer count will
    // take effect once the client sets the count back to zero.
    status_t setBufferCountServer(int bufferCount);

    // getTransformMatrix retrieves the 4x4 texture coordinate transform matrix
    // associated with the texture image set by the most recent call to
    // updateTexImage.
    //
    // This transform matrix maps 2D homogeneous texture coordinates of the form
    // (s, t, 0, 1) with s and t in the inclusive range [0, 1] to the texture
    // coordinate that should be used to sample that location from the texture.
    // Sampling the texture outside of the range of this transform is undefined.
    //
    // This transform is necessary to compensate for transforms that the stream
    // content producer may implicitly apply to the content. By forcing users of
    // a SurfaceTexture to apply this transform we avoid performing an extra
    // copy of the data that would be needed to hide the transform from the
    // user.
    //
    // The matrix is stored in column-major order so that it may be passed
    // directly to OpenGL ES via the glLoadMatrixf or glUniformMatrix4fv
    // functions.
    void getTransformMatrix(float mtx[16]);

    // getTimestamp retrieves the timestamp associated with the texture image
    // set by the most recent call to updateTexImage.
    //
    // The timestamp is in nanoseconds, and is monotonically increasing. Its
    // other semantics (zero point, etc) are source-dependent and should be
    // documented by the source.
    int64_t getTimestamp();

    // setFrameAvailableListener sets the listener object that will be notified
    // when a new frame becomes available.
    void setFrameAvailableListener(const sp<FrameAvailableListener>& listener);

    // getAllocator retrieves the binder object that must be referenced as long
    // as the GraphicBuffers dequeued from this SurfaceTexture are referenced.
    // Holding this binder reference prevents SurfaceFlinger from freeing the
    // buffers before the client is done with them.
    sp<IBinder> getAllocator();

    // setDefaultBufferSize is used to set the size of buffers returned by
    // requestBuffers when a with and height of zero is requested.
    // A call to setDefaultBufferSize() may trigger requestBuffers() to
    // be called from the client.
    // The width and height parameters must be no greater than the minimum of
    // GL_MAX_VIEWPORT_DIMS and GL_MAX_TEXTURE_SIZE (see: glGetIntegerv).
    // An error due to invalid dimensions might not be reported until
    // updateTexImage() is called.
    status_t setDefaultBufferSize(uint32_t width, uint32_t height);

    // setFilteringEnabled sets whether the transform matrix should be computed
    // for use with bilinear filtering.
    void setFilteringEnabled(bool enabled);

    // getCurrentBuffer returns the buffer associated with the current image.
    sp<GraphicBuffer> getCurrentBuffer() const;

    // getCurrentTextureTarget returns the texture target of the current
    // texture as returned by updateTexImage().
    GLenum getCurrentTextureTarget() const;

    // getCurrentCrop returns the cropping rectangle of the current buffer.
    Rect getCurrentCrop() const;

    // getCurrentTransform returns the transform of the current buffer.
    uint32_t getCurrentTransform() const;

    // getCurrentScalingMode returns the scaling mode of the current buffer.
    uint32_t getCurrentScalingMode() const;

    // isSynchronousMode returns whether the SurfaceTexture is currently in
    // synchronous mode.
    bool isSynchronousMode() const;

    // abandon frees all the buffers and puts the SurfaceTexture into the
    // 'abandoned' state.  Once put in this state the SurfaceTexture can never
    // leave it.  When in the 'abandoned' state, all methods of the
    // ISurfaceTexture interface will fail with the NO_INIT error.
    //
    // Note that while calling this method causes all the buffers to be freed
    // from the perspective of the the SurfaceTexture, if there are additional
    // references on the buffers (e.g. if a buffer is referenced by a client or
    // by OpenGL ES as a texture) then those buffer will remain allocated.
    void abandon();

    // set the name of the SurfaceTexture that will be used to identify it in
    // log messages.
    void setName(const String8& name);

    // These functions call the corresponding BufferQueue implementation
    // so the refactoring can proceed smoothly
    status_t setDefaultBufferFormat(uint32_t defaultFormat);
    status_t setConsumerUsageBits(uint32_t usage);
    status_t setTransformHint(uint32_t hint);
    virtual status_t setSynchronousMode(bool enabled);

    // getBufferQueue returns the BufferQueue object to which this
    // SurfaceTexture is connected.
    sp<BufferQueue> getBufferQueue() const;

    // detachFromContext detaches the SurfaceTexture from the calling thread's
    // current OpenGL ES context.  This context must be the same as the context
    // that was current for previous calls to updateTexImage.
    //
    // Detaching a SurfaceTexture from an OpenGL ES context will result in the
    // deletion of the OpenGL ES texture object into which the images were being
    // streamed.  After a SurfaceTexture has been detached from the OpenGL ES
    // context calls to updateTexImage will fail returning INVALID_OPERATION
    // until the SurfaceTexture is attached to a new OpenGL ES context using the
    // attachToContext method.
    status_t detachFromContext();

    // attachToContext attaches a SurfaceTexture that is currently in the
    // 'detached' state to the current OpenGL ES context.  A SurfaceTexture is
    // in the 'detached' state iff detachFromContext has successfully been
    // called and no calls to attachToContext have succeeded since the last
    // detachFromContext call.  Calls to attachToContext made on a
    // SurfaceTexture that is not in the 'detached' state will result in an
    // INVALID_OPERATION error.
    //
    // The tex argument specifies the OpenGL ES texture object name in the
    // new context into which the image contents will be streamed.  A successful
    // call to attachToContext will result in this texture object being bound to
    // the texture target and populated with the image contents that were
    // current at the time of the last call to detachFromContext.
    status_t attachToContext(GLuint tex);

    // dump our state in a String
    virtual void dump(String8& result) const;
    virtual void dump(String8& result, const char* prefix, char* buffer, size_t SIZE) const;

protected:

    // Implementation of the BufferQueue::ConsumerListener interface.  These
    // calls are used to notify the SurfaceTexture of asynchronous events in the
    // BufferQueue.
    virtual void onFrameAvailable();
    virtual void onBuffersReleased();

    static bool isExternalFormat(uint32_t format);

private:
    // this version of updateTexImage() takes a functor used to reject or not
    // the newly acquired buffer.
    // this API is TEMPORARY and intended to be used by SurfaceFlinger only,
    // which is why class Layer is made a friend of SurfaceTexture below.
    class BufferRejecter {
        friend class SurfaceTexture;
        virtual bool reject(const sp<GraphicBuffer>& buf,
                const BufferQueue::BufferItem& item) = 0;
    protected:
        virtual ~BufferRejecter() { }
    };
    friend class Layer;
    status_t updateTexImage(BufferRejecter* rejecter);

    // createImage creates a new EGLImage from a GraphicBuffer.
    EGLImageKHR createImage(EGLDisplay dpy,
            const sp<GraphicBuffer>& graphicBuffer);

    // freeBufferLocked frees up the given buffer slot.  If the slot has been
    // initialized this will release the reference to the GraphicBuffer in that
    // slot and destroy the EGLImage in that slot.  Otherwise it has no effect.
    //
    // This method must be called with mMutex locked.
    void freeBufferLocked(int slotIndex);

    // computeCurrentTransformMatrix computes the transform matrix for the
    // current texture.  It uses mCurrentTransform and the current GraphicBuffer
    // to compute this matrix and stores it in mCurrentTransformMatrix.
    void computeCurrentTransformMatrix();

    // syncForReleaseLocked performs the synchronization needed to release the
    // current slot from an OpenGL ES context.  If needed it will set the
    // current slot's fence to guard against a producer accessing the buffer
    // before the outstanding accesses have completed.
    status_t syncForReleaseLocked(EGLDisplay dpy);

    // The default consumer usage flags that SurfaceTexture always sets on its
    // BufferQueue instance; these will be OR:d with any additional flags passed
    // from the SurfaceTexture user. In particular, SurfaceTexture will always
    // consume buffers as hardware textures.
    static const uint32_t DEFAULT_USAGE_FLAGS = GraphicBuffer::USAGE_HW_TEXTURE;

    // mCurrentTextureBuf is the graphic buffer of the current texture. It's
    // possible that this buffer is not associated with any buffer slot, so we
    // must track it separately in order to support the getCurrentBuffer method.
    sp<GraphicBuffer> mCurrentTextureBuf;

    // mCurrentCrop is the crop rectangle that applies to the current texture.
    // It gets set each time updateTexImage is called.
    Rect mCurrentCrop;

    // mCurrentTransform is the transform identifier for the current texture. It
    // gets set each time updateTexImage is called.
    uint32_t mCurrentTransform;

    // mCurrentScalingMode is the scaling mode for the current texture. It gets
    // set to each time updateTexImage is called.
    uint32_t mCurrentScalingMode;

    // mCurrentTransformMatrix is the transform matrix for the current texture.
    // It gets computed by computeTransformMatrix each time updateTexImage is
    // called.
    float mCurrentTransformMatrix[16];

    // mCurrentTimestamp is the timestamp for the current texture. It
    // gets set each time updateTexImage is called.
    int64_t mCurrentTimestamp;

    uint32_t mDefaultWidth, mDefaultHeight;

    // mFilteringEnabled indicates whether the transform matrix is computed for
    // use with bilinear filtering. It defaults to true and is changed by
    // setFilteringEnabled().
    bool mFilteringEnabled;

    // mTexName is the name of the OpenGL texture to which streamed images will
    // be bound when updateTexImage is called. It is set at construction time
    // and can be changed with a call to attachToContext.
    GLuint mTexName;

    // mUseFenceSync indicates whether creation of the EGL_KHR_fence_sync
    // extension should be used to prevent buffers from being dequeued before
    // it's safe for them to be written. It gets set at construction time and
    // never changes.
    const bool mUseFenceSync;

    // mTexTarget is the GL texture target with which the GL texture object is
    // associated.  It is set in the constructor and never changed.  It is
    // almost always GL_TEXTURE_EXTERNAL_OES except for one use case in Android
    // Browser.  In that case it is set to GL_TEXTURE_2D to allow
    // glCopyTexSubImage to read from the texture.  This is a hack to work
    // around a GL driver limitation on the number of FBO attachments, which the
    // browser's tile cache exceeds.
    const GLenum mTexTarget;

    // EGLSlot contains the information and object references that
    // SurfaceTexture maintains about a BufferQueue buffer slot.
    struct EGLSlot {
        EGLSlot()
        : mEglImage(EGL_NO_IMAGE_KHR),
          mFence(EGL_NO_SYNC_KHR) {
        }

        sp<GraphicBuffer> mGraphicBuffer;

        // mEglImage is the EGLImage created from mGraphicBuffer.
        EGLImageKHR mEglImage;

        // mFence is the EGL sync object that must signal before the buffer
        // associated with this buffer slot may be dequeued. It is initialized
        // to EGL_NO_SYNC_KHR when the buffer is created and (optionally, based
        // on a compile-time option) set to a new sync object in updateTexImage.
        EGLSyncKHR mFence;
    };

    // mEglDisplay is the EGLDisplay with which this SurfaceTexture is currently
    // associated.  It is intialized to EGL_NO_DISPLAY and gets set to the
    // current display when updateTexImage is called for the first time and when
    // attachToContext is called.
    EGLDisplay mEglDisplay;

    // mEglContext is the OpenGL ES context with which this SurfaceTexture is
    // currently associated.  It is initialized to EGL_NO_CONTEXT and gets set
    // to the current GL context when updateTexImage is called for the first
    // time and when attachToContext is called.
    EGLContext mEglContext;

    // mEGLSlots stores the buffers that have been allocated by the BufferQueue
    // for each buffer slot.  It is initialized to null pointers, and gets
    // filled in with the result of BufferQueue::acquire when the
    // client dequeues a buffer from a
    // slot that has not yet been used. The buffer allocated to a slot will also
    // be replaced if the requested buffer usage or geometry differs from that
    // of the buffer allocated to a slot.
    EGLSlot mEGLSlots[BufferQueue::NUM_BUFFER_SLOTS];

    // mAbandoned indicates that the BufferQueue will no longer be used to
    // consume images buffers pushed to it using the ISurfaceTexture interface.
    // It is initialized to false, and set to true in the abandon method.  A
    // BufferQueue that has been abandoned will return the NO_INIT error from
    // all ISurfaceTexture methods capable of returning an error.
    bool mAbandoned;

    // mName is a string used to identify the SurfaceTexture in log messages.
    // It can be set by the setName method.
    String8 mName;

    // mFrameAvailableListener is the listener object that will be called when a
    // new frame becomes available. If it is not NULL it will be called from
    // queueBuffer.
    sp<FrameAvailableListener> mFrameAvailableListener;

    // mCurrentTexture is the buffer slot index of the buffer that is currently
    // bound to the OpenGL texture. It is initialized to INVALID_BUFFER_SLOT,
    // indicating that no buffer slot is currently bound to the texture. Note,
    // however, that a value of INVALID_BUFFER_SLOT does not necessarily mean
    // that no buffer is bound to the texture. A call to setBufferCount will
    // reset mCurrentTexture to INVALID_BUFFER_SLOT.
    int mCurrentTexture;

    // The SurfaceTexture has-a BufferQueue and is responsible for creating this object
    // if none is supplied
    sp<BufferQueue> mBufferQueue;

    // mAttached indicates whether the SurfaceTexture is currently attached to
    // an OpenGL ES context.  For legacy reasons, this is initialized to true,
    // indicating that the SurfaceTexture is considered to be attached to
    // whatever context is current at the time of the first updateTexImage call.
    // It is set to false by detachFromContext, and then set to true again by
    // attachToContext.
    bool mAttached;

    // mMutex is the mutex used to prevent concurrent access to the member
    // variables of SurfaceTexture objects. It must be locked whenever the
    // member variables are accessed.
    mutable Mutex mMutex;
};

// ----------------------------------------------------------------------------
}; // namespace android

#endif // ANDROID_GUI_SURFACETEXTURE_H