summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/dsp
diff options
context:
space:
mode:
authorLiang Qi <liang.qi@digia.com>2014-01-23 11:21:03 +0100
committerThe Qt Project <gerrit-noreply@qt-project.org>2014-02-13 08:41:28 +0100
commitca167cb978d5687067a6f498adb2bd466440360f (patch)
treef0f80c98c019651015786811df521ec6c93226e9 /src/3rdparty/libwebp/src/dsp
parent95b6cf26837dba0ac215db552ce47031f3abfc6e (diff)
Adding libwebp: Adding clean copy of libwebp 0.4.0
This commit imports libwebp 0.4.0, including AUTHORS, COPYING, ChangeLog, NEWS, PATENTS, README and src directories. In src, only includes header and source files. The patches required to build it in Qt will follow in separate commit(s). Task-number: QTBUG-14205 Change-Id: I747918fe2a07716f66cffb795129f7aa5e067759 Reviewed-by: Lars Knoll <lars.knoll@digia.com>
Diffstat (limited to 'src/3rdparty/libwebp/src/dsp')
-rw-r--r--src/3rdparty/libwebp/src/dsp/cpu.c80
-rw-r--r--src/3rdparty/libwebp/src/dsp/dec.c756
-rw-r--r--src/3rdparty/libwebp/src/dsp/dec_neon.c433
-rw-r--r--src/3rdparty/libwebp/src/dsp/dec_sse2.c956
-rw-r--r--src/3rdparty/libwebp/src/dsp/dsp.h224
-rw-r--r--src/3rdparty/libwebp/src/dsp/enc.c753
-rw-r--r--src/3rdparty/libwebp/src/dsp/enc_neon.c632
-rw-r--r--src/3rdparty/libwebp/src/dsp/enc_sse2.c957
-rw-r--r--src/3rdparty/libwebp/src/dsp/lossless.c1532
-rw-r--r--src/3rdparty/libwebp/src/dsp/lossless.h220
-rw-r--r--src/3rdparty/libwebp/src/dsp/upsampling.c366
-rw-r--r--src/3rdparty/libwebp/src/dsp/upsampling_neon.c265
-rw-r--r--src/3rdparty/libwebp/src/dsp/upsampling_sse2.c218
-rw-r--r--src/3rdparty/libwebp/src/dsp/yuv.c207
-rw-r--r--src/3rdparty/libwebp/src/dsp/yuv.h317
15 files changed, 7916 insertions, 0 deletions
diff --git a/src/3rdparty/libwebp/src/dsp/cpu.c b/src/3rdparty/libwebp/src/dsp/cpu.c
new file mode 100644
index 0000000..7a1f417
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/cpu.c
@@ -0,0 +1,80 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// CPU detection
+//
+// Author: Christian Duvivier (cduvivier@google.com)
+
+#include "./dsp.h"
+
+#if defined(__ANDROID__)
+#include <cpu-features.h>
+#endif
+
+//------------------------------------------------------------------------------
+// SSE2 detection.
+//
+
+// apple/darwin gcc-4.0.1 defines __PIC__, but not __pic__ with -fPIC.
+#if (defined(__pic__) || defined(__PIC__)) && defined(__i386__)
+static WEBP_INLINE void GetCPUInfo(int cpu_info[4], int info_type) {
+ __asm__ volatile (
+ "mov %%ebx, %%edi\n"
+ "cpuid\n"
+ "xchg %%edi, %%ebx\n"
+ : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
+ : "a"(info_type));
+}
+#elif defined(__i386__) || defined(__x86_64__)
+static WEBP_INLINE void GetCPUInfo(int cpu_info[4], int info_type) {
+ __asm__ volatile (
+ "cpuid\n"
+ : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
+ : "a"(info_type));
+}
+#elif defined(WEBP_MSC_SSE2)
+#define GetCPUInfo __cpuid
+#endif
+
+#if defined(__i386__) || defined(__x86_64__) || defined(WEBP_MSC_SSE2)
+static int x86CPUInfo(CPUFeature feature) {
+ int cpu_info[4];
+ GetCPUInfo(cpu_info, 1);
+ if (feature == kSSE2) {
+ return 0 != (cpu_info[3] & 0x04000000);
+ }
+ if (feature == kSSE3) {
+ return 0 != (cpu_info[2] & 0x00000001);
+ }
+ return 0;
+}
+VP8CPUInfo VP8GetCPUInfo = x86CPUInfo;
+#elif defined(WEBP_ANDROID_NEON)
+static int AndroidCPUInfo(CPUFeature feature) {
+ const AndroidCpuFamily cpu_family = android_getCpuFamily();
+ const uint64_t cpu_features = android_getCpuFeatures();
+ if (feature == kNEON) {
+ return (cpu_family == ANDROID_CPU_FAMILY_ARM &&
+ 0 != (cpu_features & ANDROID_CPU_ARM_FEATURE_NEON));
+ }
+ return 0;
+}
+VP8CPUInfo VP8GetCPUInfo = AndroidCPUInfo;
+#elif defined(__ARM_NEON__)
+// define a dummy function to enable turning off NEON at runtime by setting
+// VP8DecGetCPUInfo = NULL
+static int armCPUInfo(CPUFeature feature) {
+ (void)feature;
+ return 1;
+}
+VP8CPUInfo VP8GetCPUInfo = armCPUInfo;
+#else
+VP8CPUInfo VP8GetCPUInfo = NULL;
+#endif
+
diff --git a/src/3rdparty/libwebp/src/dsp/dec.c b/src/3rdparty/libwebp/src/dsp/dec.c
new file mode 100644
index 0000000..8b246fa
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/dec.c
@@ -0,0 +1,756 @@
+// Copyright 2010 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// Speed-critical decoding functions.
+//
+// Author: Skal (pascal.massimino@gmail.com)
+
+#include "./dsp.h"
+#include "../dec/vp8i.h"
+
+//------------------------------------------------------------------------------
+// run-time tables (~4k)
+
+static uint8_t abs0[255 + 255 + 1]; // abs(i)
+static uint8_t abs1[255 + 255 + 1]; // abs(i)>>1
+static int8_t sclip1[1020 + 1020 + 1]; // clips [-1020, 1020] to [-128, 127]
+static int8_t sclip2[112 + 112 + 1]; // clips [-112, 112] to [-16, 15]
+static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255]
+
+// We declare this variable 'volatile' to prevent instruction reordering
+// and make sure it's set to true _last_ (so as to be thread-safe)
+static volatile int tables_ok = 0;
+
+static void DspInitTables(void) {
+ if (!tables_ok) {
+ int i;
+ for (i = -255; i <= 255; ++i) {
+ abs0[255 + i] = (i < 0) ? -i : i;
+ abs1[255 + i] = abs0[255 + i] >> 1;
+ }
+ for (i = -1020; i <= 1020; ++i) {
+ sclip1[1020 + i] = (i < -128) ? -128 : (i > 127) ? 127 : i;
+ }
+ for (i = -112; i <= 112; ++i) {
+ sclip2[112 + i] = (i < -16) ? -16 : (i > 15) ? 15 : i;
+ }
+ for (i = -255; i <= 255 + 255; ++i) {
+ clip1[255 + i] = (i < 0) ? 0 : (i > 255) ? 255 : i;
+ }
+ tables_ok = 1;
+ }
+}
+
+static WEBP_INLINE uint8_t clip_8b(int v) {
+ return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255;
+}
+
+//------------------------------------------------------------------------------
+// Transforms (Paragraph 14.4)
+
+#define STORE(x, y, v) \
+ dst[x + y * BPS] = clip_8b(dst[x + y * BPS] + ((v) >> 3))
+
+#define STORE2(y, dc, d, c) do { \
+ const int DC = (dc); \
+ STORE(0, y, DC + (d)); \
+ STORE(1, y, DC + (c)); \
+ STORE(2, y, DC - (c)); \
+ STORE(3, y, DC - (d)); \
+} while (0)
+
+static const int kC1 = 20091 + (1 << 16);
+static const int kC2 = 35468;
+#define MUL(a, b) (((a) * (b)) >> 16)
+
+static void TransformOne(const int16_t* in, uint8_t* dst) {
+ int C[4 * 4], *tmp;
+ int i;
+ tmp = C;
+ for (i = 0; i < 4; ++i) { // vertical pass
+ const int a = in[0] + in[8]; // [-4096, 4094]
+ const int b = in[0] - in[8]; // [-4095, 4095]
+ const int c = MUL(in[4], kC2) - MUL(in[12], kC1); // [-3783, 3783]
+ const int d = MUL(in[4], kC1) + MUL(in[12], kC2); // [-3785, 3781]
+ tmp[0] = a + d; // [-7881, 7875]
+ tmp[1] = b + c; // [-7878, 7878]
+ tmp[2] = b - c; // [-7878, 7878]
+ tmp[3] = a - d; // [-7877, 7879]
+ tmp += 4;
+ in++;
+ }
+ // Each pass is expanding the dynamic range by ~3.85 (upper bound).
+ // The exact value is (2. + (kC1 + kC2) / 65536).
+ // After the second pass, maximum interval is [-3794, 3794], assuming
+ // an input in [-2048, 2047] interval. We then need to add a dst value
+ // in the [0, 255] range.
+ // In the worst case scenario, the input to clip_8b() can be as large as
+ // [-60713, 60968].
+ tmp = C;
+ for (i = 0; i < 4; ++i) { // horizontal pass
+ const int dc = tmp[0] + 4;
+ const int a = dc + tmp[8];
+ const int b = dc - tmp[8];
+ const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1);
+ const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2);
+ STORE(0, 0, a + d);
+ STORE(1, 0, b + c);
+ STORE(2, 0, b - c);
+ STORE(3, 0, a - d);
+ tmp++;
+ dst += BPS;
+ }
+}
+
+// Simplified transform when only in[0], in[1] and in[4] are non-zero
+static void TransformAC3(const int16_t* in, uint8_t* dst) {
+ const int a = in[0] + 4;
+ const int c4 = MUL(in[4], kC2);
+ const int d4 = MUL(in[4], kC1);
+ const int c1 = MUL(in[1], kC2);
+ const int d1 = MUL(in[1], kC1);
+ STORE2(0, a + d4, d1, c1);
+ STORE2(1, a + c4, d1, c1);
+ STORE2(2, a - c4, d1, c1);
+ STORE2(3, a - d4, d1, c1);
+}
+#undef MUL
+#undef STORE2
+
+static void TransformTwo(const int16_t* in, uint8_t* dst, int do_two) {
+ TransformOne(in, dst);
+ if (do_two) {
+ TransformOne(in + 16, dst + 4);
+ }
+}
+
+static void TransformUV(const int16_t* in, uint8_t* dst) {
+ VP8Transform(in + 0 * 16, dst, 1);
+ VP8Transform(in + 2 * 16, dst + 4 * BPS, 1);
+}
+
+static void TransformDC(const int16_t *in, uint8_t* dst) {
+ const int DC = in[0] + 4;
+ int i, j;
+ for (j = 0; j < 4; ++j) {
+ for (i = 0; i < 4; ++i) {
+ STORE(i, j, DC);
+ }
+ }
+}
+
+static void TransformDCUV(const int16_t* in, uint8_t* dst) {
+ if (in[0 * 16]) TransformDC(in + 0 * 16, dst);
+ if (in[1 * 16]) TransformDC(in + 1 * 16, dst + 4);
+ if (in[2 * 16]) TransformDC(in + 2 * 16, dst + 4 * BPS);
+ if (in[3 * 16]) TransformDC(in + 3 * 16, dst + 4 * BPS + 4);
+}
+
+#undef STORE
+
+//------------------------------------------------------------------------------
+// Paragraph 14.3
+
+static void TransformWHT(const int16_t* in, int16_t* out) {
+ int tmp[16];
+ int i;
+ for (i = 0; i < 4; ++i) {
+ const int a0 = in[0 + i] + in[12 + i];
+ const int a1 = in[4 + i] + in[ 8 + i];
+ const int a2 = in[4 + i] - in[ 8 + i];
+ const int a3 = in[0 + i] - in[12 + i];
+ tmp[0 + i] = a0 + a1;
+ tmp[8 + i] = a0 - a1;
+ tmp[4 + i] = a3 + a2;
+ tmp[12 + i] = a3 - a2;
+ }
+ for (i = 0; i < 4; ++i) {
+ const int dc = tmp[0 + i * 4] + 3; // w/ rounder
+ const int a0 = dc + tmp[3 + i * 4];
+ const int a1 = tmp[1 + i * 4] + tmp[2 + i * 4];
+ const int a2 = tmp[1 + i * 4] - tmp[2 + i * 4];
+ const int a3 = dc - tmp[3 + i * 4];
+ out[ 0] = (a0 + a1) >> 3;
+ out[16] = (a3 + a2) >> 3;
+ out[32] = (a0 - a1) >> 3;
+ out[48] = (a3 - a2) >> 3;
+ out += 64;
+ }
+}
+
+void (*VP8TransformWHT)(const int16_t* in, int16_t* out) = TransformWHT;
+
+//------------------------------------------------------------------------------
+// Intra predictions
+
+#define DST(x, y) dst[(x) + (y) * BPS]
+
+static WEBP_INLINE void TrueMotion(uint8_t *dst, int size) {
+ const uint8_t* top = dst - BPS;
+ const uint8_t* const clip0 = clip1 + 255 - top[-1];
+ int y;
+ for (y = 0; y < size; ++y) {
+ const uint8_t* const clip = clip0 + dst[-1];
+ int x;
+ for (x = 0; x < size; ++x) {
+ dst[x] = clip[top[x]];
+ }
+ dst += BPS;
+ }
+}
+static void TM4(uint8_t *dst) { TrueMotion(dst, 4); }
+static void TM8uv(uint8_t *dst) { TrueMotion(dst, 8); }
+static void TM16(uint8_t *dst) { TrueMotion(dst, 16); }
+
+//------------------------------------------------------------------------------
+// 16x16
+
+static void VE16(uint8_t *dst) { // vertical
+ int j;
+ for (j = 0; j < 16; ++j) {
+ memcpy(dst + j * BPS, dst - BPS, 16);
+ }
+}
+
+static void HE16(uint8_t *dst) { // horizontal
+ int j;
+ for (j = 16; j > 0; --j) {
+ memset(dst, dst[-1], 16);
+ dst += BPS;
+ }
+}
+
+static WEBP_INLINE void Put16(int v, uint8_t* dst) {
+ int j;
+ for (j = 0; j < 16; ++j) {
+ memset(dst + j * BPS, v, 16);
+ }
+}
+
+static void DC16(uint8_t *dst) { // DC
+ int DC = 16;
+ int j;
+ for (j = 0; j < 16; ++j) {
+ DC += dst[-1 + j * BPS] + dst[j - BPS];
+ }
+ Put16(DC >> 5, dst);
+}
+
+static void DC16NoTop(uint8_t *dst) { // DC with top samples not available
+ int DC = 8;
+ int j;
+ for (j = 0; j < 16; ++j) {
+ DC += dst[-1 + j * BPS];
+ }
+ Put16(DC >> 4, dst);
+}
+
+static void DC16NoLeft(uint8_t *dst) { // DC with left samples not available
+ int DC = 8;
+ int i;
+ for (i = 0; i < 16; ++i) {
+ DC += dst[i - BPS];
+ }
+ Put16(DC >> 4, dst);
+}
+
+static void DC16NoTopLeft(uint8_t *dst) { // DC with no top and left samples
+ Put16(0x80, dst);
+}
+
+//------------------------------------------------------------------------------
+// 4x4
+
+#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
+#define AVG2(a, b) (((a) + (b) + 1) >> 1)
+
+static void VE4(uint8_t *dst) { // vertical
+ const uint8_t* top = dst - BPS;
+ const uint8_t vals[4] = {
+ AVG3(top[-1], top[0], top[1]),
+ AVG3(top[ 0], top[1], top[2]),
+ AVG3(top[ 1], top[2], top[3]),
+ AVG3(top[ 2], top[3], top[4])
+ };
+ int i;
+ for (i = 0; i < 4; ++i) {
+ memcpy(dst + i * BPS, vals, sizeof(vals));
+ }
+}
+
+static void HE4(uint8_t *dst) { // horizontal
+ const int A = dst[-1 - BPS];
+ const int B = dst[-1];
+ const int C = dst[-1 + BPS];
+ const int D = dst[-1 + 2 * BPS];
+ const int E = dst[-1 + 3 * BPS];
+ *(uint32_t*)(dst + 0 * BPS) = 0x01010101U * AVG3(A, B, C);
+ *(uint32_t*)(dst + 1 * BPS) = 0x01010101U * AVG3(B, C, D);
+ *(uint32_t*)(dst + 2 * BPS) = 0x01010101U * AVG3(C, D, E);
+ *(uint32_t*)(dst + 3 * BPS) = 0x01010101U * AVG3(D, E, E);
+}
+
+static void DC4(uint8_t *dst) { // DC
+ uint32_t dc = 4;
+ int i;
+ for (i = 0; i < 4; ++i) dc += dst[i - BPS] + dst[-1 + i * BPS];
+ dc >>= 3;
+ for (i = 0; i < 4; ++i) memset(dst + i * BPS, dc, 4);
+}
+
+static void RD4(uint8_t *dst) { // Down-right
+ const int I = dst[-1 + 0 * BPS];
+ const int J = dst[-1 + 1 * BPS];
+ const int K = dst[-1 + 2 * BPS];
+ const int L = dst[-1 + 3 * BPS];
+ const int X = dst[-1 - BPS];
+ const int A = dst[0 - BPS];
+ const int B = dst[1 - BPS];
+ const int C = dst[2 - BPS];
+ const int D = dst[3 - BPS];
+ DST(0, 3) = AVG3(J, K, L);
+ DST(0, 2) = DST(1, 3) = AVG3(I, J, K);
+ DST(0, 1) = DST(1, 2) = DST(2, 3) = AVG3(X, I, J);
+ DST(0, 0) = DST(1, 1) = DST(2, 2) = DST(3, 3) = AVG3(A, X, I);
+ DST(1, 0) = DST(2, 1) = DST(3, 2) = AVG3(B, A, X);
+ DST(2, 0) = DST(3, 1) = AVG3(C, B, A);
+ DST(3, 0) = AVG3(D, C, B);
+}
+
+static void LD4(uint8_t *dst) { // Down-Left
+ const int A = dst[0 - BPS];
+ const int B = dst[1 - BPS];
+ const int C = dst[2 - BPS];
+ const int D = dst[3 - BPS];
+ const int E = dst[4 - BPS];
+ const int F = dst[5 - BPS];
+ const int G = dst[6 - BPS];
+ const int H = dst[7 - BPS];
+ DST(0, 0) = AVG3(A, B, C);
+ DST(1, 0) = DST(0, 1) = AVG3(B, C, D);
+ DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E);
+ DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F);
+ DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G);
+ DST(3, 2) = DST(2, 3) = AVG3(F, G, H);
+ DST(3, 3) = AVG3(G, H, H);
+}
+
+static void VR4(uint8_t *dst) { // Vertical-Right
+ const int I = dst[-1 + 0 * BPS];
+ const int J = dst[-1 + 1 * BPS];
+ const int K = dst[-1 + 2 * BPS];
+ const int X = dst[-1 - BPS];
+ const int A = dst[0 - BPS];
+ const int B = dst[1 - BPS];
+ const int C = dst[2 - BPS];
+ const int D = dst[3 - BPS];
+ DST(0, 0) = DST(1, 2) = AVG2(X, A);
+ DST(1, 0) = DST(2, 2) = AVG2(A, B);
+ DST(2, 0) = DST(3, 2) = AVG2(B, C);
+ DST(3, 0) = AVG2(C, D);
+
+ DST(0, 3) = AVG3(K, J, I);
+ DST(0, 2) = AVG3(J, I, X);
+ DST(0, 1) = DST(1, 3) = AVG3(I, X, A);
+ DST(1, 1) = DST(2, 3) = AVG3(X, A, B);
+ DST(2, 1) = DST(3, 3) = AVG3(A, B, C);
+ DST(3, 1) = AVG3(B, C, D);
+}
+
+static void VL4(uint8_t *dst) { // Vertical-Left
+ const int A = dst[0 - BPS];
+ const int B = dst[1 - BPS];
+ const int C = dst[2 - BPS];
+ const int D = dst[3 - BPS];
+ const int E = dst[4 - BPS];
+ const int F = dst[5 - BPS];
+ const int G = dst[6 - BPS];
+ const int H = dst[7 - BPS];
+ DST(0, 0) = AVG2(A, B);
+ DST(1, 0) = DST(0, 2) = AVG2(B, C);
+ DST(2, 0) = DST(1, 2) = AVG2(C, D);
+ DST(3, 0) = DST(2, 2) = AVG2(D, E);
+
+ DST(0, 1) = AVG3(A, B, C);
+ DST(1, 1) = DST(0, 3) = AVG3(B, C, D);
+ DST(2, 1) = DST(1, 3) = AVG3(C, D, E);
+ DST(3, 1) = DST(2, 3) = AVG3(D, E, F);
+ DST(3, 2) = AVG3(E, F, G);
+ DST(3, 3) = AVG3(F, G, H);
+}
+
+static void HU4(uint8_t *dst) { // Horizontal-Up
+ const int I = dst[-1 + 0 * BPS];
+ const int J = dst[-1 + 1 * BPS];
+ const int K = dst[-1 + 2 * BPS];
+ const int L = dst[-1 + 3 * BPS];
+ DST(0, 0) = AVG2(I, J);
+ DST(2, 0) = DST(0, 1) = AVG2(J, K);
+ DST(2, 1) = DST(0, 2) = AVG2(K, L);
+ DST(1, 0) = AVG3(I, J, K);
+ DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
+ DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
+ DST(3, 2) = DST(2, 2) =
+ DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
+}
+
+static void HD4(uint8_t *dst) { // Horizontal-Down
+ const int I = dst[-1 + 0 * BPS];
+ const int J = dst[-1 + 1 * BPS];
+ const int K = dst[-1 + 2 * BPS];
+ const int L = dst[-1 + 3 * BPS];
+ const int X = dst[-1 - BPS];
+ const int A = dst[0 - BPS];
+ const int B = dst[1 - BPS];
+ const int C = dst[2 - BPS];
+
+ DST(0, 0) = DST(2, 1) = AVG2(I, X);
+ DST(0, 1) = DST(2, 2) = AVG2(J, I);
+ DST(0, 2) = DST(2, 3) = AVG2(K, J);
+ DST(0, 3) = AVG2(L, K);
+
+ DST(3, 0) = AVG3(A, B, C);
+ DST(2, 0) = AVG3(X, A, B);
+ DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
+ DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
+ DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
+ DST(1, 3) = AVG3(L, K, J);
+}
+
+#undef DST
+#undef AVG3
+#undef AVG2
+
+//------------------------------------------------------------------------------
+// Chroma
+
+static void VE8uv(uint8_t *dst) { // vertical
+ int j;
+ for (j = 0; j < 8; ++j) {
+ memcpy(dst + j * BPS, dst - BPS, 8);
+ }
+}
+
+static void HE8uv(uint8_t *dst) { // horizontal
+ int j;
+ for (j = 0; j < 8; ++j) {
+ memset(dst, dst[-1], 8);
+ dst += BPS;
+ }
+}
+
+// helper for chroma-DC predictions
+static WEBP_INLINE void Put8x8uv(uint8_t value, uint8_t* dst) {
+ int j;
+#ifndef WEBP_REFERENCE_IMPLEMENTATION
+ const uint64_t v = (uint64_t)value * 0x0101010101010101ULL;
+ for (j = 0; j < 8; ++j) {
+ *(uint64_t*)(dst + j * BPS) = v;
+ }
+#else
+ for (j = 0; j < 8; ++j) memset(dst + j * BPS, value, 8);
+#endif
+}
+
+static void DC8uv(uint8_t *dst) { // DC
+ int dc0 = 8;
+ int i;
+ for (i = 0; i < 8; ++i) {
+ dc0 += dst[i - BPS] + dst[-1 + i * BPS];
+ }
+ Put8x8uv(dc0 >> 4, dst);
+}
+
+static void DC8uvNoLeft(uint8_t *dst) { // DC with no left samples
+ int dc0 = 4;
+ int i;
+ for (i = 0; i < 8; ++i) {
+ dc0 += dst[i - BPS];
+ }
+ Put8x8uv(dc0 >> 3, dst);
+}
+
+static void DC8uvNoTop(uint8_t *dst) { // DC with no top samples
+ int dc0 = 4;
+ int i;
+ for (i = 0; i < 8; ++i) {
+ dc0 += dst[-1 + i * BPS];
+ }
+ Put8x8uv(dc0 >> 3, dst);
+}
+
+static void DC8uvNoTopLeft(uint8_t *dst) { // DC with nothing
+ Put8x8uv(0x80, dst);
+}
+
+//------------------------------------------------------------------------------
+// default C implementations
+
+const VP8PredFunc VP8PredLuma4[NUM_BMODES] = {
+ DC4, TM4, VE4, HE4, RD4, VR4, LD4, VL4, HD4, HU4
+};
+
+const VP8PredFunc VP8PredLuma16[NUM_B_DC_MODES] = {
+ DC16, TM16, VE16, HE16,
+ DC16NoTop, DC16NoLeft, DC16NoTopLeft
+};
+
+const VP8PredFunc VP8PredChroma8[NUM_B_DC_MODES] = {
+ DC8uv, TM8uv, VE8uv, HE8uv,
+ DC8uvNoTop, DC8uvNoLeft, DC8uvNoTopLeft
+};
+
+//------------------------------------------------------------------------------
+// Edge filtering functions
+
+// 4 pixels in, 2 pixels out
+static WEBP_INLINE void do_filter2(uint8_t* p, int step) {
+ const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
+ const int a = 3 * (q0 - p0) + sclip1[1020 + p1 - q1];
+ const int a1 = sclip2[112 + ((a + 4) >> 3)];
+ const int a2 = sclip2[112 + ((a + 3) >> 3)];
+ p[-step] = clip1[255 + p0 + a2];
+ p[ 0] = clip1[255 + q0 - a1];
+}
+
+// 4 pixels in, 4 pixels out
+static WEBP_INLINE void do_filter4(uint8_t* p, int step) {
+ const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
+ const int a = 3 * (q0 - p0);
+ const int a1 = sclip2[112 + ((a + 4) >> 3)];
+ const int a2 = sclip2[112 + ((a + 3) >> 3)];
+ const int a3 = (a1 + 1) >> 1;
+ p[-2*step] = clip1[255 + p1 + a3];
+ p[- step] = clip1[255 + p0 + a2];
+ p[ 0] = clip1[255 + q0 - a1];
+ p[ step] = clip1[255 + q1 - a3];
+}
+
+// 6 pixels in, 6 pixels out
+static WEBP_INLINE void do_filter6(uint8_t* p, int step) {
+ const int p2 = p[-3*step], p1 = p[-2*step], p0 = p[-step];
+ const int q0 = p[0], q1 = p[step], q2 = p[2*step];
+ const int a = sclip1[1020 + 3 * (q0 - p0) + sclip1[1020 + p1 - q1]];
+ const int a1 = (27 * a + 63) >> 7; // eq. to ((3 * a + 7) * 9) >> 7
+ const int a2 = (18 * a + 63) >> 7; // eq. to ((2 * a + 7) * 9) >> 7
+ const int a3 = (9 * a + 63) >> 7; // eq. to ((1 * a + 7) * 9) >> 7
+ p[-3*step] = clip1[255 + p2 + a3];
+ p[-2*step] = clip1[255 + p1 + a2];
+ p[- step] = clip1[255 + p0 + a1];
+ p[ 0] = clip1[255 + q0 - a1];
+ p[ step] = clip1[255 + q1 - a2];
+ p[ 2*step] = clip1[255 + q2 - a3];
+}
+
+static WEBP_INLINE int hev(const uint8_t* p, int step, int thresh) {
+ const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
+ return (abs0[255 + p1 - p0] > thresh) || (abs0[255 + q1 - q0] > thresh);
+}
+
+static WEBP_INLINE int needs_filter(const uint8_t* p, int step, int thresh) {
+ const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
+ return (2 * abs0[255 + p0 - q0] + abs1[255 + p1 - q1]) <= thresh;
+}
+
+static WEBP_INLINE int needs_filter2(const uint8_t* p,
+ int step, int t, int it) {
+ const int p3 = p[-4*step], p2 = p[-3*step], p1 = p[-2*step], p0 = p[-step];
+ const int q0 = p[0], q1 = p[step], q2 = p[2*step], q3 = p[3*step];
+ if ((2 * abs0[255 + p0 - q0] + abs1[255 + p1 - q1]) > t)
+ return 0;
+ return abs0[255 + p3 - p2] <= it && abs0[255 + p2 - p1] <= it &&
+ abs0[255 + p1 - p0] <= it && abs0[255 + q3 - q2] <= it &&
+ abs0[255 + q2 - q1] <= it && abs0[255 + q1 - q0] <= it;
+}
+
+//------------------------------------------------------------------------------
+// Simple In-loop filtering (Paragraph 15.2)
+
+static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
+ int i;
+ for (i = 0; i < 16; ++i) {
+ if (needs_filter(p + i, stride, thresh)) {
+ do_filter2(p + i, stride);
+ }
+ }
+}
+
+static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
+ int i;
+ for (i = 0; i < 16; ++i) {
+ if (needs_filter(p + i * stride, 1, thresh)) {
+ do_filter2(p + i * stride, 1);
+ }
+ }
+}
+
+static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
+ int k;
+ for (k = 3; k > 0; --k) {
+ p += 4 * stride;
+ SimpleVFilter16(p, stride, thresh);
+ }
+}
+
+static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
+ int k;
+ for (k = 3; k > 0; --k) {
+ p += 4;
+ SimpleHFilter16(p, stride, thresh);
+ }
+}
+
+//------------------------------------------------------------------------------
+// Complex In-loop filtering (Paragraph 15.3)
+
+static WEBP_INLINE void FilterLoop26(uint8_t* p,
+ int hstride, int vstride, int size,
+ int thresh, int ithresh, int hev_thresh) {
+ while (size-- > 0) {
+ if (needs_filter2(p, hstride, thresh, ithresh)) {
+ if (hev(p, hstride, hev_thresh)) {
+ do_filter2(p, hstride);
+ } else {
+ do_filter6(p, hstride);
+ }
+ }
+ p += vstride;
+ }
+}
+
+static WEBP_INLINE void FilterLoop24(uint8_t* p,
+ int hstride, int vstride, int size,
+ int thresh, int ithresh, int hev_thresh) {
+ while (size-- > 0) {
+ if (needs_filter2(p, hstride, thresh, ithresh)) {
+ if (hev(p, hstride, hev_thresh)) {
+ do_filter2(p, hstride);
+ } else {
+ do_filter4(p, hstride);
+ }
+ }
+ p += vstride;
+ }
+}
+
+// on macroblock edges
+static void VFilter16(uint8_t* p, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ FilterLoop26(p, stride, 1, 16, thresh, ithresh, hev_thresh);
+}
+
+static void HFilter16(uint8_t* p, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ FilterLoop26(p, 1, stride, 16, thresh, ithresh, hev_thresh);
+}
+
+// on three inner edges
+static void VFilter16i(uint8_t* p, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ int k;
+ for (k = 3; k > 0; --k) {
+ p += 4 * stride;
+ FilterLoop24(p, stride, 1, 16, thresh, ithresh, hev_thresh);
+ }
+}
+
+static void HFilter16i(uint8_t* p, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ int k;
+ for (k = 3; k > 0; --k) {
+ p += 4;
+ FilterLoop24(p, 1, stride, 16, thresh, ithresh, hev_thresh);
+ }
+}
+
+// 8-pixels wide variant, for chroma filtering
+static void VFilter8(uint8_t* u, uint8_t* v, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ FilterLoop26(u, stride, 1, 8, thresh, ithresh, hev_thresh);
+ FilterLoop26(v, stride, 1, 8, thresh, ithresh, hev_thresh);
+}
+
+static void HFilter8(uint8_t* u, uint8_t* v, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ FilterLoop26(u, 1, stride, 8, thresh, ithresh, hev_thresh);
+ FilterLoop26(v, 1, stride, 8, thresh, ithresh, hev_thresh);
+}
+
+static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ FilterLoop24(u + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh);
+ FilterLoop24(v + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh);
+}
+
+static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ FilterLoop24(u + 4, 1, stride, 8, thresh, ithresh, hev_thresh);
+ FilterLoop24(v + 4, 1, stride, 8, thresh, ithresh, hev_thresh);
+}
+
+//------------------------------------------------------------------------------
+
+VP8DecIdct2 VP8Transform;
+VP8DecIdct VP8TransformAC3;
+VP8DecIdct VP8TransformUV;
+VP8DecIdct VP8TransformDC;
+VP8DecIdct VP8TransformDCUV;
+
+VP8LumaFilterFunc VP8VFilter16;
+VP8LumaFilterFunc VP8HFilter16;
+VP8ChromaFilterFunc VP8VFilter8;
+VP8ChromaFilterFunc VP8HFilter8;
+VP8LumaFilterFunc VP8VFilter16i;
+VP8LumaFilterFunc VP8HFilter16i;
+VP8ChromaFilterFunc VP8VFilter8i;
+VP8ChromaFilterFunc VP8HFilter8i;
+VP8SimpleFilterFunc VP8SimpleVFilter16;
+VP8SimpleFilterFunc VP8SimpleHFilter16;
+VP8SimpleFilterFunc VP8SimpleVFilter16i;
+VP8SimpleFilterFunc VP8SimpleHFilter16i;
+
+extern void VP8DspInitSSE2(void);
+extern void VP8DspInitNEON(void);
+
+void VP8DspInit(void) {
+ DspInitTables();
+
+ VP8Transform = TransformTwo;
+ VP8TransformUV = TransformUV;
+ VP8TransformDC = TransformDC;
+ VP8TransformDCUV = TransformDCUV;
+ VP8TransformAC3 = TransformAC3;
+
+ VP8VFilter16 = VFilter16;
+ VP8HFilter16 = HFilter16;
+ VP8VFilter8 = VFilter8;
+ VP8HFilter8 = HFilter8;
+ VP8VFilter16i = VFilter16i;
+ VP8HFilter16i = HFilter16i;
+ VP8VFilter8i = VFilter8i;
+ VP8HFilter8i = HFilter8i;
+ VP8SimpleVFilter16 = SimpleVFilter16;
+ VP8SimpleHFilter16 = SimpleHFilter16;
+ VP8SimpleVFilter16i = SimpleVFilter16i;
+ VP8SimpleHFilter16i = SimpleHFilter16i;
+
+ // If defined, use CPUInfo() to overwrite some pointers with faster versions.
+ if (VP8GetCPUInfo) {
+#if defined(WEBP_USE_SSE2)
+ if (VP8GetCPUInfo(kSSE2)) {
+ VP8DspInitSSE2();
+ }
+#elif defined(WEBP_USE_NEON)
+ if (VP8GetCPUInfo(kNEON)) {
+ VP8DspInitNEON();
+ }
+#endif
+ }
+}
+
diff --git a/src/3rdparty/libwebp/src/dsp/dec_neon.c b/src/3rdparty/libwebp/src/dsp/dec_neon.c
new file mode 100644
index 0000000..9c3d8cc
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/dec_neon.c
@@ -0,0 +1,433 @@
+// Copyright 2012 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// ARM NEON version of dsp functions and loop filtering.
+//
+// Authors: Somnath Banerjee (somnath@google.com)
+// Johann Koenig (johannkoenig@google.com)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_NEON)
+
+#include "../dec/vp8i.h"
+
+#define QRegs "q0", "q1", "q2", "q3", \
+ "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15"
+
+#define FLIP_SIGN_BIT2(a, b, s) \
+ "veor " #a "," #a "," #s " \n" \
+ "veor " #b "," #b "," #s " \n" \
+
+#define FLIP_SIGN_BIT4(a, b, c, d, s) \
+ FLIP_SIGN_BIT2(a, b, s) \
+ FLIP_SIGN_BIT2(c, d, s) \
+
+#define NEEDS_FILTER(p1, p0, q0, q1, thresh, mask) \
+ "vabd.u8 q15," #p0 "," #q0 " \n" /* abs(p0 - q0) */ \
+ "vabd.u8 q14," #p1 "," #q1 " \n" /* abs(p1 - q1) */ \
+ "vqadd.u8 q15, q15, q15 \n" /* abs(p0 - q0) * 2 */ \
+ "vshr.u8 q14, q14, #1 \n" /* abs(p1 - q1) / 2 */ \
+ "vqadd.u8 q15, q15, q14 \n" /* abs(p0 - q0) * 2 + abs(p1 - q1) / 2 */ \
+ "vdup.8 q14, " #thresh " \n" \
+ "vcge.u8 " #mask ", q14, q15 \n" /* mask <= thresh */
+
+#define GET_BASE_DELTA(p1, p0, q0, q1, o) \
+ "vqsub.s8 q15," #q0 "," #p0 " \n" /* (q0 - p0) */ \
+ "vqsub.s8 " #o "," #p1 "," #q1 " \n" /* (p1 - q1) */ \
+ "vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 1 * (p0 - q0) */ \
+ "vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 2 * (p0 - q0) */ \
+ "vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 3 * (p0 - q0) */
+
+#define DO_SIMPLE_FILTER(p0, q0, fl) \
+ "vmov.i8 q15, #0x03 \n" \
+ "vqadd.s8 q15, q15, " #fl " \n" /* filter1 = filter + 3 */ \
+ "vshr.s8 q15, q15, #3 \n" /* filter1 >> 3 */ \
+ "vqadd.s8 " #p0 "," #p0 ", q15 \n" /* p0 += filter1 */ \
+ \
+ "vmov.i8 q15, #0x04 \n" \
+ "vqadd.s8 q15, q15, " #fl " \n" /* filter1 = filter + 4 */ \
+ "vshr.s8 q15, q15, #3 \n" /* filter2 >> 3 */ \
+ "vqsub.s8 " #q0 "," #q0 ", q15 \n" /* q0 -= filter2 */
+
+// Applies filter on 2 pixels (p0 and q0)
+#define DO_FILTER2(p1, p0, q0, q1, thresh) \
+ NEEDS_FILTER(p1, p0, q0, q1, thresh, q9) /* filter mask in q9 */ \
+ "vmov.i8 q10, #0x80 \n" /* sign bit */ \
+ FLIP_SIGN_BIT4(p1, p0, q0, q1, q10) /* convert to signed value */ \
+ GET_BASE_DELTA(p1, p0, q0, q1, q11) /* get filter level */ \
+ "vand q9, q9, q11 \n" /* apply filter mask */ \
+ DO_SIMPLE_FILTER(p0, q0, q9) /* apply filter */ \
+ FLIP_SIGN_BIT2(p0, q0, q10)
+
+// Load/Store vertical edge
+#define LOAD8x4(c1, c2, c3, c4, b1, b2, stride) \
+ "vld4.8 {" #c1"[0], " #c2"[0], " #c3"[0], " #c4"[0]}," #b1 "," #stride"\n" \
+ "vld4.8 {" #c1"[1], " #c2"[1], " #c3"[1], " #c4"[1]}," #b2 "," #stride"\n" \
+ "vld4.8 {" #c1"[2], " #c2"[2], " #c3"[2], " #c4"[2]}," #b1 "," #stride"\n" \
+ "vld4.8 {" #c1"[3], " #c2"[3], " #c3"[3], " #c4"[3]}," #b2 "," #stride"\n" \
+ "vld4.8 {" #c1"[4], " #c2"[4], " #c3"[4], " #c4"[4]}," #b1 "," #stride"\n" \
+ "vld4.8 {" #c1"[5], " #c2"[5], " #c3"[5], " #c4"[5]}," #b2 "," #stride"\n" \
+ "vld4.8 {" #c1"[6], " #c2"[6], " #c3"[6], " #c4"[6]}," #b1 "," #stride"\n" \
+ "vld4.8 {" #c1"[7], " #c2"[7], " #c3"[7], " #c4"[7]}," #b2 "," #stride"\n"
+
+#define STORE8x2(c1, c2, p, stride) \
+ "vst2.8 {" #c1"[0], " #c2"[0]}," #p "," #stride " \n" \
+ "vst2.8 {" #c1"[1], " #c2"[1]}," #p "," #stride " \n" \
+ "vst2.8 {" #c1"[2], " #c2"[2]}," #p "," #stride " \n" \
+ "vst2.8 {" #c1"[3], " #c2"[3]}," #p "," #stride " \n" \
+ "vst2.8 {" #c1"[4], " #c2"[4]}," #p "," #stride " \n" \
+ "vst2.8 {" #c1"[5], " #c2"[5]}," #p "," #stride " \n" \
+ "vst2.8 {" #c1"[6], " #c2"[6]}," #p "," #stride " \n" \
+ "vst2.8 {" #c1"[7], " #c2"[7]}," #p "," #stride " \n"
+
+//-----------------------------------------------------------------------------
+// Simple In-loop filtering (Paragraph 15.2)
+
+static void SimpleVFilter16NEON(uint8_t* p, int stride, int thresh) {
+ __asm__ volatile (
+ "sub %[p], %[p], %[stride], lsl #1 \n" // p -= 2 * stride
+
+ "vld1.u8 {q1}, [%[p]], %[stride] \n" // p1
+ "vld1.u8 {q2}, [%[p]], %[stride] \n" // p0
+ "vld1.u8 {q3}, [%[p]], %[stride] \n" // q0
+ "vld1.u8 {q12}, [%[p]] \n" // q1
+
+ DO_FILTER2(q1, q2, q3, q12, %[thresh])
+
+ "sub %[p], %[p], %[stride], lsl #1 \n" // p -= 2 * stride
+
+ "vst1.u8 {q2}, [%[p]], %[stride] \n" // store op0
+ "vst1.u8 {q3}, [%[p]] \n" // store oq0
+ : [p] "+r"(p)
+ : [stride] "r"(stride), [thresh] "r"(thresh)
+ : "memory", QRegs
+ );
+}
+
+static void SimpleHFilter16NEON(uint8_t* p, int stride, int thresh) {
+ __asm__ volatile (
+ "sub r4, %[p], #2 \n" // base1 = p - 2
+ "lsl r6, %[stride], #1 \n" // r6 = 2 * stride
+ "add r5, r4, %[stride] \n" // base2 = base1 + stride
+
+ LOAD8x4(d2, d3, d4, d5, [r4], [r5], r6)
+ LOAD8x4(d24, d25, d26, d27, [r4], [r5], r6)
+ "vswp d3, d24 \n" // p1:q1 p0:q3
+ "vswp d5, d26 \n" // q0:q2 q1:q4
+ "vswp q2, q12 \n" // p1:q1 p0:q2 q0:q3 q1:q4
+
+ DO_FILTER2(q1, q2, q12, q13, %[thresh])
+
+ "sub %[p], %[p], #1 \n" // p - 1
+
+ "vswp d5, d24 \n"
+ STORE8x2(d4, d5, [%[p]], %[stride])
+ STORE8x2(d24, d25, [%[p]], %[stride])
+
+ : [p] "+r"(p)
+ : [stride] "r"(stride), [thresh] "r"(thresh)
+ : "memory", "r4", "r5", "r6", QRegs
+ );
+}
+
+static void SimpleVFilter16iNEON(uint8_t* p, int stride, int thresh) {
+ int k;
+ for (k = 3; k > 0; --k) {
+ p += 4 * stride;
+ SimpleVFilter16NEON(p, stride, thresh);
+ }
+}
+
+static void SimpleHFilter16iNEON(uint8_t* p, int stride, int thresh) {
+ int k;
+ for (k = 3; k > 0; --k) {
+ p += 4;
+ SimpleHFilter16NEON(p, stride, thresh);
+ }
+}
+
+//-----------------------------------------------------------------------------
+// Inverse transforms (Paragraph 14.4)
+
+static void TransformOne(const int16_t* in, uint8_t* dst) {
+ const int kBPS = BPS;
+ const int16_t constants[] = {20091, 17734, 0, 0};
+ /* kC1, kC2. Padded because vld1.16 loads 8 bytes
+ * Technically these are unsigned but vqdmulh is only available in signed.
+ * vqdmulh returns high half (effectively >> 16) but also doubles the value,
+ * changing the >> 16 to >> 15 and requiring an additional >> 1.
+ * We use this to our advantage with kC2. The canonical value is 35468.
+ * However, the high bit is set so treating it as signed will give incorrect
+ * results. We avoid this by down shifting by 1 here to clear the highest bit.
+ * Combined with the doubling effect of vqdmulh we get >> 16.
+ * This can not be applied to kC1 because the lowest bit is set. Down shifting
+ * the constant would reduce precision.
+ */
+
+ /* libwebp uses a trick to avoid some extra addition that libvpx does.
+ * Instead of:
+ * temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16);
+ * libwebp adds 1 << 16 to cospi8sqrt2minus1 (kC1). However, this causes the
+ * same issue with kC1 and vqdmulh that we work around by down shifting kC2
+ */
+
+ /* Adapted from libvpx: vp8/common/arm/neon/shortidct4x4llm_neon.asm */
+ __asm__ volatile (
+ "vld1.16 {q1, q2}, [%[in]] \n"
+ "vld1.16 {d0}, [%[constants]] \n"
+
+ /* d2: in[0]
+ * d3: in[8]
+ * d4: in[4]
+ * d5: in[12]
+ */
+ "vswp d3, d4 \n"
+
+ /* q8 = {in[4], in[12]} * kC1 * 2 >> 16
+ * q9 = {in[4], in[12]} * kC2 >> 16
+ */
+ "vqdmulh.s16 q8, q2, d0[0] \n"
+ "vqdmulh.s16 q9, q2, d0[1] \n"
+
+ /* d22 = a = in[0] + in[8]
+ * d23 = b = in[0] - in[8]
+ */
+ "vqadd.s16 d22, d2, d3 \n"
+ "vqsub.s16 d23, d2, d3 \n"
+
+ /* The multiplication should be x * kC1 >> 16
+ * However, with vqdmulh we get x * kC1 * 2 >> 16
+ * (multiply, double, return high half)
+ * We avoided this in kC2 by pre-shifting the constant.
+ * q8 = in[4]/[12] * kC1 >> 16
+ */
+ "vshr.s16 q8, q8, #1 \n"
+
+ /* Add {in[4], in[12]} back after the multiplication. This is handled by
+ * adding 1 << 16 to kC1 in the libwebp C code.
+ */
+ "vqadd.s16 q8, q2, q8 \n"
+
+ /* d20 = c = in[4]*kC2 - in[12]*kC1
+ * d21 = d = in[4]*kC1 + in[12]*kC2
+ */
+ "vqsub.s16 d20, d18, d17 \n"
+ "vqadd.s16 d21, d19, d16 \n"
+
+ /* d2 = tmp[0] = a + d
+ * d3 = tmp[1] = b + c
+ * d4 = tmp[2] = b - c
+ * d5 = tmp[3] = a - d
+ */
+ "vqadd.s16 d2, d22, d21 \n"
+ "vqadd.s16 d3, d23, d20 \n"
+ "vqsub.s16 d4, d23, d20 \n"
+ "vqsub.s16 d5, d22, d21 \n"
+
+ "vzip.16 q1, q2 \n"
+ "vzip.16 q1, q2 \n"
+
+ "vswp d3, d4 \n"
+
+ /* q8 = {tmp[4], tmp[12]} * kC1 * 2 >> 16
+ * q9 = {tmp[4], tmp[12]} * kC2 >> 16
+ */
+ "vqdmulh.s16 q8, q2, d0[0] \n"
+ "vqdmulh.s16 q9, q2, d0[1] \n"
+
+ /* d22 = a = tmp[0] + tmp[8]
+ * d23 = b = tmp[0] - tmp[8]
+ */
+ "vqadd.s16 d22, d2, d3 \n"
+ "vqsub.s16 d23, d2, d3 \n"
+
+ /* See long winded explanations prior */
+ "vshr.s16 q8, q8, #1 \n"
+ "vqadd.s16 q8, q2, q8 \n"
+
+ /* d20 = c = in[4]*kC2 - in[12]*kC1
+ * d21 = d = in[4]*kC1 + in[12]*kC2
+ */
+ "vqsub.s16 d20, d18, d17 \n"
+ "vqadd.s16 d21, d19, d16 \n"
+
+ /* d2 = tmp[0] = a + d
+ * d3 = tmp[1] = b + c
+ * d4 = tmp[2] = b - c
+ * d5 = tmp[3] = a - d
+ */
+ "vqadd.s16 d2, d22, d21 \n"
+ "vqadd.s16 d3, d23, d20 \n"
+ "vqsub.s16 d4, d23, d20 \n"
+ "vqsub.s16 d5, d22, d21 \n"
+
+ "vld1.32 d6[0], [%[dst]], %[kBPS] \n"
+ "vld1.32 d6[1], [%[dst]], %[kBPS] \n"
+ "vld1.32 d7[0], [%[dst]], %[kBPS] \n"
+ "vld1.32 d7[1], [%[dst]], %[kBPS] \n"
+
+ "sub %[dst], %[dst], %[kBPS], lsl #2 \n"
+
+ /* (val) + 4 >> 3 */
+ "vrshr.s16 d2, d2, #3 \n"
+ "vrshr.s16 d3, d3, #3 \n"
+ "vrshr.s16 d4, d4, #3 \n"
+ "vrshr.s16 d5, d5, #3 \n"
+
+ "vzip.16 q1, q2 \n"
+ "vzip.16 q1, q2 \n"
+
+ /* Must accumulate before saturating */
+ "vmovl.u8 q8, d6 \n"
+ "vmovl.u8 q9, d7 \n"
+
+ "vqadd.s16 q1, q1, q8 \n"
+ "vqadd.s16 q2, q2, q9 \n"
+
+ "vqmovun.s16 d0, q1 \n"
+ "vqmovun.s16 d1, q2 \n"
+
+ "vst1.32 d0[0], [%[dst]], %[kBPS] \n"
+ "vst1.32 d0[1], [%[dst]], %[kBPS] \n"
+ "vst1.32 d1[0], [%[dst]], %[kBPS] \n"
+ "vst1.32 d1[1], [%[dst]] \n"
+
+ : [in] "+r"(in), [dst] "+r"(dst) /* modified registers */
+ : [kBPS] "r"(kBPS), [constants] "r"(constants) /* constants */
+ : "memory", "q0", "q1", "q2", "q8", "q9", "q10", "q11" /* clobbered */
+ );
+}
+
+static void TransformTwo(const int16_t* in, uint8_t* dst, int do_two) {
+ TransformOne(in, dst);
+ if (do_two) {
+ TransformOne(in + 16, dst + 4);
+ }
+}
+
+static void TransformDC(const int16_t* in, uint8_t* dst) {
+ const int DC = (in[0] + 4) >> 3;
+ const int kBPS = BPS;
+ __asm__ volatile (
+ "vdup.16 q1, %[DC] \n"
+
+ "vld1.32 d0[0], [%[dst]], %[kBPS] \n"
+ "vld1.32 d1[0], [%[dst]], %[kBPS] \n"
+ "vld1.32 d0[1], [%[dst]], %[kBPS] \n"
+ "vld1.32 d1[1], [%[dst]], %[kBPS] \n"
+
+ "sub %[dst], %[dst], %[kBPS], lsl #2 \n"
+
+ // add DC and convert to s16.
+ "vaddw.u8 q2, q1, d0 \n"
+ "vaddw.u8 q3, q1, d1 \n"
+ // convert back to u8 with saturation
+ "vqmovun.s16 d0, q2 \n"
+ "vqmovun.s16 d1, q3 \n"
+
+ "vst1.32 d0[0], [%[dst]], %[kBPS] \n"
+ "vst1.32 d1[0], [%[dst]], %[kBPS] \n"
+ "vst1.32 d0[1], [%[dst]], %[kBPS] \n"
+ "vst1.32 d1[1], [%[dst]] \n"
+ : [in] "+r"(in), [dst] "+r"(dst) /* modified registers */
+ : [kBPS] "r"(kBPS), /* constants */
+ [DC] "r"(DC)
+ : "memory", "q0", "q1", "q2", "q3" /* clobbered */
+ );
+}
+
+static void TransformWHT(const int16_t* in, int16_t* out) {
+ const int kStep = 32; // The store is only incrementing the pointer as if we
+ // had stored a single byte.
+ __asm__ volatile (
+ // part 1
+ // load data into q0, q1
+ "vld1.16 {q0, q1}, [%[in]] \n"
+
+ "vaddl.s16 q2, d0, d3 \n" // a0 = in[0] + in[12]
+ "vaddl.s16 q3, d1, d2 \n" // a1 = in[4] + in[8]
+ "vsubl.s16 q10, d1, d2 \n" // a2 = in[4] - in[8]
+ "vsubl.s16 q11, d0, d3 \n" // a3 = in[0] - in[12]
+
+ "vadd.s32 q0, q2, q3 \n" // tmp[0] = a0 + a1
+ "vsub.s32 q2, q2, q3 \n" // tmp[8] = a0 - a1
+ "vadd.s32 q1, q11, q10 \n" // tmp[4] = a3 + a2
+ "vsub.s32 q3, q11, q10 \n" // tmp[12] = a3 - a2
+
+ // Transpose
+ // q0 = tmp[0, 4, 8, 12], q1 = tmp[2, 6, 10, 14]
+ // q2 = tmp[1, 5, 9, 13], q3 = tmp[3, 7, 11, 15]
+ "vswp d1, d4 \n" // vtrn.64 q0, q2
+ "vswp d3, d6 \n" // vtrn.64 q1, q3
+ "vtrn.32 q0, q1 \n"
+ "vtrn.32 q2, q3 \n"
+
+ "vmov.s32 q10, #3 \n" // dc = 3
+ "vadd.s32 q0, q0, q10 \n" // dc = tmp[0] + 3
+ "vadd.s32 q12, q0, q3 \n" // a0 = dc + tmp[3]
+ "vadd.s32 q13, q1, q2 \n" // a1 = tmp[1] + tmp[2]
+ "vsub.s32 q8, q1, q2 \n" // a2 = tmp[1] - tmp[2]
+ "vsub.s32 q9, q0, q3 \n" // a3 = dc - tmp[3]
+
+ "vadd.s32 q0, q12, q13 \n"
+ "vshrn.s32 d0, q0, #3 \n" // (a0 + a1) >> 3
+ "vadd.s32 q1, q9, q8 \n"
+ "vshrn.s32 d1, q1, #3 \n" // (a3 + a2) >> 3
+ "vsub.s32 q2, q12, q13 \n"
+ "vshrn.s32 d2, q2, #3 \n" // (a0 - a1) >> 3
+ "vsub.s32 q3, q9, q8 \n"
+ "vshrn.s32 d3, q3, #3 \n" // (a3 - a2) >> 3
+
+ // set the results to output
+ "vst1.16 d0[0], [%[out]], %[kStep] \n"
+ "vst1.16 d1[0], [%[out]], %[kStep] \n"
+ "vst1.16 d2[0], [%[out]], %[kStep] \n"
+ "vst1.16 d3[0], [%[out]], %[kStep] \n"
+ "vst1.16 d0[1], [%[out]], %[kStep] \n"
+ "vst1.16 d1[1], [%[out]], %[kStep] \n"
+ "vst1.16 d2[1], [%[out]], %[kStep] \n"
+ "vst1.16 d3[1], [%[out]], %[kStep] \n"
+ "vst1.16 d0[2], [%[out]], %[kStep] \n"
+ "vst1.16 d1[2], [%[out]], %[kStep] \n"
+ "vst1.16 d2[2], [%[out]], %[kStep] \n"
+ "vst1.16 d3[2], [%[out]], %[kStep] \n"
+ "vst1.16 d0[3], [%[out]], %[kStep] \n"
+ "vst1.16 d1[3], [%[out]], %[kStep] \n"
+ "vst1.16 d2[3], [%[out]], %[kStep] \n"
+ "vst1.16 d3[3], [%[out]], %[kStep] \n"
+
+ : [out] "+r"(out) // modified registers
+ : [in] "r"(in), [kStep] "r"(kStep) // constants
+ : "memory", "q0", "q1", "q2", "q3",
+ "q8", "q9", "q10", "q11", "q12", "q13" // clobbered
+ );
+}
+
+#endif // WEBP_USE_NEON
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void VP8DspInitNEON(void);
+
+void VP8DspInitNEON(void) {
+#if defined(WEBP_USE_NEON)
+ VP8Transform = TransformTwo;
+ VP8TransformAC3 = TransformOne; // no special code here
+ VP8TransformDC = TransformDC;
+ VP8TransformWHT = TransformWHT;
+
+ VP8SimpleVFilter16 = SimpleVFilter16NEON;
+ VP8SimpleHFilter16 = SimpleHFilter16NEON;
+ VP8SimpleVFilter16i = SimpleVFilter16iNEON;
+ VP8SimpleHFilter16i = SimpleHFilter16iNEON;
+#endif // WEBP_USE_NEON
+}
+
diff --git a/src/3rdparty/libwebp/src/dsp/dec_sse2.c b/src/3rdparty/libwebp/src/dsp/dec_sse2.c
new file mode 100644
index 0000000..150c559
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/dec_sse2.c
@@ -0,0 +1,956 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// SSE2 version of some decoding functions (idct, loop filtering).
+//
+// Author: somnath@google.com (Somnath Banerjee)
+// cduvivier@google.com (Christian Duvivier)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_SSE2)
+
+// The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
+// one it seems => disable it by default. Uncomment the following to enable:
+// #define USE_TRANSFORM_AC3
+
+#include <emmintrin.h>
+#include "../dec/vp8i.h"
+
+//------------------------------------------------------------------------------
+// Transforms (Paragraph 14.4)
+
+static void TransformSSE2(const int16_t* in, uint8_t* dst, int do_two) {
+ // This implementation makes use of 16-bit fixed point versions of two
+ // multiply constants:
+ // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
+ // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
+ //
+ // To be able to use signed 16-bit integers, we use the following trick to
+ // have constants within range:
+ // - Associated constants are obtained by subtracting the 16-bit fixed point
+ // version of one:
+ // k = K - (1 << 16) => K = k + (1 << 16)
+ // K1 = 85267 => k1 = 20091
+ // K2 = 35468 => k2 = -30068
+ // - The multiplication of a variable by a constant become the sum of the
+ // variable and the multiplication of that variable by the associated
+ // constant:
+ // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
+ const __m128i k1 = _mm_set1_epi16(20091);
+ const __m128i k2 = _mm_set1_epi16(-30068);
+ __m128i T0, T1, T2, T3;
+
+ // Load and concatenate the transform coefficients (we'll do two transforms
+ // in parallel). In the case of only one transform, the second half of the
+ // vectors will just contain random value we'll never use nor store.
+ __m128i in0, in1, in2, in3;
+ {
+ in0 = _mm_loadl_epi64((__m128i*)&in[0]);
+ in1 = _mm_loadl_epi64((__m128i*)&in[4]);
+ in2 = _mm_loadl_epi64((__m128i*)&in[8]);
+ in3 = _mm_loadl_epi64((__m128i*)&in[12]);
+ // a00 a10 a20 a30 x x x x
+ // a01 a11 a21 a31 x x x x
+ // a02 a12 a22 a32 x x x x
+ // a03 a13 a23 a33 x x x x
+ if (do_two) {
+ const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
+ const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
+ const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
+ const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
+ in0 = _mm_unpacklo_epi64(in0, inB0);
+ in1 = _mm_unpacklo_epi64(in1, inB1);
+ in2 = _mm_unpacklo_epi64(in2, inB2);
+ in3 = _mm_unpacklo_epi64(in3, inB3);
+ // a00 a10 a20 a30 b00 b10 b20 b30
+ // a01 a11 a21 a31 b01 b11 b21 b31
+ // a02 a12 a22 a32 b02 b12 b22 b32
+ // a03 a13 a23 a33 b03 b13 b23 b33
+ }
+ }
+
+ // Vertical pass and subsequent transpose.
+ {
+ // First pass, c and d calculations are longer because of the "trick"
+ // multiplications.
+ const __m128i a = _mm_add_epi16(in0, in2);
+ const __m128i b = _mm_sub_epi16(in0, in2);
+ // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
+ const __m128i c1 = _mm_mulhi_epi16(in1, k2);
+ const __m128i c2 = _mm_mulhi_epi16(in3, k1);
+ const __m128i c3 = _mm_sub_epi16(in1, in3);
+ const __m128i c4 = _mm_sub_epi16(c1, c2);
+ const __m128i c = _mm_add_epi16(c3, c4);
+ // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
+ const __m128i d1 = _mm_mulhi_epi16(in1, k1);
+ const __m128i d2 = _mm_mulhi_epi16(in3, k2);
+ const __m128i d3 = _mm_add_epi16(in1, in3);
+ const __m128i d4 = _mm_add_epi16(d1, d2);
+ const __m128i d = _mm_add_epi16(d3, d4);
+
+ // Second pass.
+ const __m128i tmp0 = _mm_add_epi16(a, d);
+ const __m128i tmp1 = _mm_add_epi16(b, c);
+ const __m128i tmp2 = _mm_sub_epi16(b, c);
+ const __m128i tmp3 = _mm_sub_epi16(a, d);
+
+ // Transpose the two 4x4.
+ // a00 a01 a02 a03 b00 b01 b02 b03
+ // a10 a11 a12 a13 b10 b11 b12 b13
+ // a20 a21 a22 a23 b20 b21 b22 b23
+ // a30 a31 a32 a33 b30 b31 b32 b33
+ const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
+ const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
+ const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
+ const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
+ // a00 a10 a01 a11 a02 a12 a03 a13
+ // a20 a30 a21 a31 a22 a32 a23 a33
+ // b00 b10 b01 b11 b02 b12 b03 b13
+ // b20 b30 b21 b31 b22 b32 b23 b33
+ const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
+ const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
+ const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
+ const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
+ // a00 a10 a20 a30 a01 a11 a21 a31
+ // b00 b10 b20 b30 b01 b11 b21 b31
+ // a02 a12 a22 a32 a03 a13 a23 a33
+ // b02 b12 a22 b32 b03 b13 b23 b33
+ T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
+ T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
+ T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
+ T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
+ // a00 a10 a20 a30 b00 b10 b20 b30
+ // a01 a11 a21 a31 b01 b11 b21 b31
+ // a02 a12 a22 a32 b02 b12 b22 b32
+ // a03 a13 a23 a33 b03 b13 b23 b33
+ }
+
+ // Horizontal pass and subsequent transpose.
+ {
+ // First pass, c and d calculations are longer because of the "trick"
+ // multiplications.
+ const __m128i four = _mm_set1_epi16(4);
+ const __m128i dc = _mm_add_epi16(T0, four);
+ const __m128i a = _mm_add_epi16(dc, T2);
+ const __m128i b = _mm_sub_epi16(dc, T2);
+ // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
+ const __m128i c1 = _mm_mulhi_epi16(T1, k2);
+ const __m128i c2 = _mm_mulhi_epi16(T3, k1);
+ const __m128i c3 = _mm_sub_epi16(T1, T3);
+ const __m128i c4 = _mm_sub_epi16(c1, c2);
+ const __m128i c = _mm_add_epi16(c3, c4);
+ // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
+ const __m128i d1 = _mm_mulhi_epi16(T1, k1);
+ const __m128i d2 = _mm_mulhi_epi16(T3, k2);
+ const __m128i d3 = _mm_add_epi16(T1, T3);
+ const __m128i d4 = _mm_add_epi16(d1, d2);
+ const __m128i d = _mm_add_epi16(d3, d4);
+
+ // Second pass.
+ const __m128i tmp0 = _mm_add_epi16(a, d);
+ const __m128i tmp1 = _mm_add_epi16(b, c);
+ const __m128i tmp2 = _mm_sub_epi16(b, c);
+ const __m128i tmp3 = _mm_sub_epi16(a, d);
+ const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
+ const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
+ const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
+ const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
+
+ // Transpose the two 4x4.
+ // a00 a01 a02 a03 b00 b01 b02 b03
+ // a10 a11 a12 a13 b10 b11 b12 b13
+ // a20 a21 a22 a23 b20 b21 b22 b23
+ // a30 a31 a32 a33 b30 b31 b32 b33
+ const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
+ const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
+ const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
+ const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
+ // a00 a10 a01 a11 a02 a12 a03 a13
+ // a20 a30 a21 a31 a22 a32 a23 a33
+ // b00 b10 b01 b11 b02 b12 b03 b13
+ // b20 b30 b21 b31 b22 b32 b23 b33
+ const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
+ const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
+ const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
+ const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
+ // a00 a10 a20 a30 a01 a11 a21 a31
+ // b00 b10 b20 b30 b01 b11 b21 b31
+ // a02 a12 a22 a32 a03 a13 a23 a33
+ // b02 b12 a22 b32 b03 b13 b23 b33
+ T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
+ T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
+ T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
+ T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
+ // a00 a10 a20 a30 b00 b10 b20 b30
+ // a01 a11 a21 a31 b01 b11 b21 b31
+ // a02 a12 a22 a32 b02 b12 b22 b32
+ // a03 a13 a23 a33 b03 b13 b23 b33
+ }
+
+ // Add inverse transform to 'dst' and store.
+ {
+ const __m128i zero = _mm_setzero_si128();
+ // Load the reference(s).
+ __m128i dst0, dst1, dst2, dst3;
+ if (do_two) {
+ // Load eight bytes/pixels per line.
+ dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
+ dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
+ dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
+ dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
+ } else {
+ // Load four bytes/pixels per line.
+ dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS));
+ dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS));
+ dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS));
+ dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS));
+ }
+ // Convert to 16b.
+ dst0 = _mm_unpacklo_epi8(dst0, zero);
+ dst1 = _mm_unpacklo_epi8(dst1, zero);
+ dst2 = _mm_unpacklo_epi8(dst2, zero);
+ dst3 = _mm_unpacklo_epi8(dst3, zero);
+ // Add the inverse transform(s).
+ dst0 = _mm_add_epi16(dst0, T0);
+ dst1 = _mm_add_epi16(dst1, T1);
+ dst2 = _mm_add_epi16(dst2, T2);
+ dst3 = _mm_add_epi16(dst3, T3);
+ // Unsigned saturate to 8b.
+ dst0 = _mm_packus_epi16(dst0, dst0);
+ dst1 = _mm_packus_epi16(dst1, dst1);
+ dst2 = _mm_packus_epi16(dst2, dst2);
+ dst3 = _mm_packus_epi16(dst3, dst3);
+ // Store the results.
+ if (do_two) {
+ // Store eight bytes/pixels per line.
+ _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
+ _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
+ _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
+ _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
+ } else {
+ // Store four bytes/pixels per line.
+ *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0);
+ *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1);
+ *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2);
+ *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3);
+ }
+ }
+}
+
+#if defined(USE_TRANSFORM_AC3)
+#define MUL(a, b) (((a) * (b)) >> 16)
+static void TransformAC3SSE2(const int16_t* in, uint8_t* dst) {
+ static const int kC1 = 20091 + (1 << 16);
+ static const int kC2 = 35468;
+ const __m128i A = _mm_set1_epi16(in[0] + 4);
+ const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
+ const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
+ const int c1 = MUL(in[1], kC2);
+ const int d1 = MUL(in[1], kC1);
+ const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
+ const __m128i B = _mm_adds_epi16(A, CD);
+ const __m128i m0 = _mm_adds_epi16(B, d4);
+ const __m128i m1 = _mm_adds_epi16(B, c4);
+ const __m128i m2 = _mm_subs_epi16(B, c4);
+ const __m128i m3 = _mm_subs_epi16(B, d4);
+ const __m128i zero = _mm_setzero_si128();
+ // Load the source pixels.
+ __m128i dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS));
+ __m128i dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS));
+ __m128i dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS));
+ __m128i dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS));
+ // Convert to 16b.
+ dst0 = _mm_unpacklo_epi8(dst0, zero);
+ dst1 = _mm_unpacklo_epi8(dst1, zero);
+ dst2 = _mm_unpacklo_epi8(dst2, zero);
+ dst3 = _mm_unpacklo_epi8(dst3, zero);
+ // Add the inverse transform.
+ dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
+ dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
+ dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
+ dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
+ // Unsigned saturate to 8b.
+ dst0 = _mm_packus_epi16(dst0, dst0);
+ dst1 = _mm_packus_epi16(dst1, dst1);
+ dst2 = _mm_packus_epi16(dst2, dst2);
+ dst3 = _mm_packus_epi16(dst3, dst3);
+ // Store the results.
+ *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0);
+ *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1);
+ *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2);
+ *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3);
+}
+#undef MUL
+#endif // USE_TRANSFORM_AC3
+
+//------------------------------------------------------------------------------
+// Loop Filter (Paragraph 15)
+
+// Compute abs(p - q) = subs(p - q) OR subs(q - p)
+#define MM_ABS(p, q) _mm_or_si128( \
+ _mm_subs_epu8((q), (p)), \
+ _mm_subs_epu8((p), (q)))
+
+// Shift each byte of "a" by N bits while preserving by the sign bit.
+//
+// It first shifts the lower bytes of the words and then the upper bytes and
+// then merges the results together.
+#define SIGNED_SHIFT_N(a, N) { \
+ __m128i t = a; \
+ t = _mm_slli_epi16(t, 8); \
+ t = _mm_srai_epi16(t, N); \
+ t = _mm_srli_epi16(t, 8); \
+ \
+ a = _mm_srai_epi16(a, N + 8); \
+ a = _mm_slli_epi16(a, 8); \
+ \
+ a = _mm_or_si128(t, a); \
+}
+
+#define FLIP_SIGN_BIT2(a, b) { \
+ a = _mm_xor_si128(a, sign_bit); \
+ b = _mm_xor_si128(b, sign_bit); \
+}
+
+#define FLIP_SIGN_BIT4(a, b, c, d) { \
+ FLIP_SIGN_BIT2(a, b); \
+ FLIP_SIGN_BIT2(c, d); \
+}
+
+#define GET_NOTHEV(p1, p0, q0, q1, hev_thresh, not_hev) { \
+ const __m128i zero = _mm_setzero_si128(); \
+ const __m128i t_1 = MM_ABS(p1, p0); \
+ const __m128i t_2 = MM_ABS(q1, q0); \
+ \
+ const __m128i h = _mm_set1_epi8(hev_thresh); \
+ const __m128i t_3 = _mm_subs_epu8(t_1, h); /* abs(p1 - p0) - hev_tresh */ \
+ const __m128i t_4 = _mm_subs_epu8(t_2, h); /* abs(q1 - q0) - hev_tresh */ \
+ \
+ not_hev = _mm_or_si128(t_3, t_4); \
+ not_hev = _mm_cmpeq_epi8(not_hev, zero); /* not_hev <= t1 && not_hev <= t2 */\
+}
+
+#define GET_BASE_DELTA(p1, p0, q0, q1, o) { \
+ const __m128i qp0 = _mm_subs_epi8(q0, p0); /* q0 - p0 */ \
+ o = _mm_subs_epi8(p1, q1); /* p1 - q1 */ \
+ o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 1 * (q0 - p0) */ \
+ o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 2 * (q0 - p0) */ \
+ o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 3 * (q0 - p0) */ \
+}
+
+#define DO_SIMPLE_FILTER(p0, q0, fl) { \
+ const __m128i three = _mm_set1_epi8(3); \
+ const __m128i four = _mm_set1_epi8(4); \
+ __m128i v3 = _mm_adds_epi8(fl, three); \
+ __m128i v4 = _mm_adds_epi8(fl, four); \
+ \
+ /* Do +4 side */ \
+ SIGNED_SHIFT_N(v4, 3); /* v4 >> 3 */ \
+ q0 = _mm_subs_epi8(q0, v4); /* q0 -= v4 */ \
+ \
+ /* Now do +3 side */ \
+ SIGNED_SHIFT_N(v3, 3); /* v3 >> 3 */ \
+ p0 = _mm_adds_epi8(p0, v3); /* p0 += v3 */ \
+}
+
+// Updates values of 2 pixels at MB edge during complex filtering.
+// Update operations:
+// q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
+#define UPDATE_2PIXELS(pi, qi, a_lo, a_hi) { \
+ const __m128i a_lo7 = _mm_srai_epi16(a_lo, 7); \
+ const __m128i a_hi7 = _mm_srai_epi16(a_hi, 7); \
+ const __m128i delta = _mm_packs_epi16(a_lo7, a_hi7); \
+ pi = _mm_adds_epi8(pi, delta); \
+ qi = _mm_subs_epi8(qi, delta); \
+}
+
+static void NeedsFilter(const __m128i* p1, const __m128i* p0, const __m128i* q0,
+ const __m128i* q1, int thresh, __m128i *mask) {
+ __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1)
+ *mask = _mm_set1_epi8(0xFE);
+ t1 = _mm_and_si128(t1, *mask); // set lsb of each byte to zero
+ t1 = _mm_srli_epi16(t1, 1); // abs(p1 - q1) / 2
+
+ *mask = MM_ABS(*p0, *q0); // abs(p0 - q0)
+ *mask = _mm_adds_epu8(*mask, *mask); // abs(p0 - q0) * 2
+ *mask = _mm_adds_epu8(*mask, t1); // abs(p0 - q0) * 2 + abs(p1 - q1) / 2
+
+ t1 = _mm_set1_epi8(thresh);
+ *mask = _mm_subs_epu8(*mask, t1); // mask <= thresh
+ *mask = _mm_cmpeq_epi8(*mask, _mm_setzero_si128());
+}
+
+//------------------------------------------------------------------------------
+// Edge filtering functions
+
+// Applies filter on 2 pixels (p0 and q0)
+static WEBP_INLINE void DoFilter2(const __m128i* p1, __m128i* p0, __m128i* q0,
+ const __m128i* q1, int thresh) {
+ __m128i a, mask;
+ const __m128i sign_bit = _mm_set1_epi8(0x80);
+ const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
+ const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
+
+ NeedsFilter(p1, p0, q0, q1, thresh, &mask);
+
+ // convert to signed values
+ FLIP_SIGN_BIT2(*p0, *q0);
+
+ GET_BASE_DELTA(p1s, *p0, *q0, q1s, a);
+ a = _mm_and_si128(a, mask); // mask filter values we don't care about
+ DO_SIMPLE_FILTER(*p0, *q0, a);
+
+ // unoffset
+ FLIP_SIGN_BIT2(*p0, *q0);
+}
+
+// Applies filter on 4 pixels (p1, p0, q0 and q1)
+static WEBP_INLINE void DoFilter4(__m128i* p1, __m128i *p0,
+ __m128i* q0, __m128i* q1,
+ const __m128i* mask, int hev_thresh) {
+ __m128i not_hev;
+ __m128i t1, t2, t3;
+ const __m128i sign_bit = _mm_set1_epi8(0x80);
+
+ // compute hev mask
+ GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
+
+ // convert to signed values
+ FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
+
+ t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
+ t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1)
+ t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0
+ t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0)
+ t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0)
+ t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0)
+ t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about
+
+ // Do +4 side
+ t2 = _mm_set1_epi8(4);
+ t2 = _mm_adds_epi8(t1, t2); // 3 * (q0 - p0) + (p1 - q1) + 4
+ SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
+ t3 = t2; // save t2
+ *q0 = _mm_subs_epi8(*q0, t2); // q0 -= t2
+
+ // Now do +3 side
+ t2 = _mm_set1_epi8(3);
+ t2 = _mm_adds_epi8(t1, t2); // +3 instead of +4
+ SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
+ *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2
+
+ t2 = _mm_set1_epi8(1);
+ t3 = _mm_adds_epi8(t3, t2);
+ SIGNED_SHIFT_N(t3, 1); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 4
+
+ t3 = _mm_and_si128(not_hev, t3); // if !hev
+ *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3
+ *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3
+
+ // unoffset
+ FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
+}
+
+// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
+static WEBP_INLINE void DoFilter6(__m128i *p2, __m128i* p1, __m128i *p0,
+ __m128i* q0, __m128i* q1, __m128i *q2,
+ const __m128i* mask, int hev_thresh) {
+ __m128i a, not_hev;
+ const __m128i sign_bit = _mm_set1_epi8(0x80);
+
+ // compute hev mask
+ GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
+
+ // convert to signed values
+ FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
+ FLIP_SIGN_BIT2(*p2, *q2);
+
+ GET_BASE_DELTA(*p1, *p0, *q0, *q1, a);
+
+ { // do simple filter on pixels with hev
+ const __m128i m = _mm_andnot_si128(not_hev, *mask);
+ const __m128i f = _mm_and_si128(a, m);
+ DO_SIMPLE_FILTER(*p0, *q0, f);
+ }
+ { // do strong filter on pixels with not hev
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i nine = _mm_set1_epi16(0x0900);
+ const __m128i sixty_three = _mm_set1_epi16(63);
+
+ const __m128i m = _mm_and_si128(not_hev, *mask);
+ const __m128i f = _mm_and_si128(a, m);
+ const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
+ const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
+
+ const __m128i f9_lo = _mm_mulhi_epi16(f_lo, nine); // Filter (lo) * 9
+ const __m128i f9_hi = _mm_mulhi_epi16(f_hi, nine); // Filter (hi) * 9
+ const __m128i f18_lo = _mm_add_epi16(f9_lo, f9_lo); // Filter (lo) * 18
+ const __m128i f18_hi = _mm_add_epi16(f9_hi, f9_hi); // Filter (hi) * 18
+
+ const __m128i a2_lo = _mm_add_epi16(f9_lo, sixty_three); // Filter * 9 + 63
+ const __m128i a2_hi = _mm_add_epi16(f9_hi, sixty_three); // Filter * 9 + 63
+
+ const __m128i a1_lo = _mm_add_epi16(f18_lo, sixty_three); // F... * 18 + 63
+ const __m128i a1_hi = _mm_add_epi16(f18_hi, sixty_three); // F... * 18 + 63
+
+ const __m128i a0_lo = _mm_add_epi16(f18_lo, a2_lo); // Filter * 27 + 63
+ const __m128i a0_hi = _mm_add_epi16(f18_hi, a2_hi); // Filter * 27 + 63
+
+ UPDATE_2PIXELS(*p2, *q2, a2_lo, a2_hi);
+ UPDATE_2PIXELS(*p1, *q1, a1_lo, a1_hi);
+ UPDATE_2PIXELS(*p0, *q0, a0_lo, a0_hi);
+ }
+
+ // unoffset
+ FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
+ FLIP_SIGN_BIT2(*p2, *q2);
+}
+
+// reads 8 rows across a vertical edge.
+//
+// TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
+// two Load4x4() to avoid code duplication.
+static WEBP_INLINE void Load8x4(const uint8_t* b, int stride,
+ __m128i* p, __m128i* q) {
+ __m128i t1, t2;
+
+ // Load 0th, 1st, 4th and 5th rows
+ __m128i r0 = _mm_cvtsi32_si128(*((int*)&b[0 * stride])); // 03 02 01 00
+ __m128i r1 = _mm_cvtsi32_si128(*((int*)&b[1 * stride])); // 13 12 11 10
+ __m128i r4 = _mm_cvtsi32_si128(*((int*)&b[4 * stride])); // 43 42 41 40
+ __m128i r5 = _mm_cvtsi32_si128(*((int*)&b[5 * stride])); // 53 52 51 50
+
+ r0 = _mm_unpacklo_epi32(r0, r4); // 43 42 41 40 03 02 01 00
+ r1 = _mm_unpacklo_epi32(r1, r5); // 53 52 51 50 13 12 11 10
+
+ // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
+ t1 = _mm_unpacklo_epi8(r0, r1);
+
+ // Load 2nd, 3rd, 6th and 7th rows
+ r0 = _mm_cvtsi32_si128(*((int*)&b[2 * stride])); // 23 22 21 22
+ r1 = _mm_cvtsi32_si128(*((int*)&b[3 * stride])); // 33 32 31 30
+ r4 = _mm_cvtsi32_si128(*((int*)&b[6 * stride])); // 63 62 61 60
+ r5 = _mm_cvtsi32_si128(*((int*)&b[7 * stride])); // 73 72 71 70
+
+ r0 = _mm_unpacklo_epi32(r0, r4); // 63 62 61 60 23 22 21 20
+ r1 = _mm_unpacklo_epi32(r1, r5); // 73 72 71 70 33 32 31 30
+
+ // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
+ t2 = _mm_unpacklo_epi8(r0, r1);
+
+ // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
+ // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
+ r0 = t1;
+ t1 = _mm_unpacklo_epi16(t1, t2);
+ t2 = _mm_unpackhi_epi16(r0, t2);
+
+ // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
+ // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
+ *p = _mm_unpacklo_epi32(t1, t2);
+ *q = _mm_unpackhi_epi32(t1, t2);
+}
+
+static WEBP_INLINE void Load16x4(const uint8_t* r0, const uint8_t* r8,
+ int stride,
+ __m128i* p1, __m128i* p0,
+ __m128i* q0, __m128i* q1) {
+ __m128i t1, t2;
+ // Assume the pixels around the edge (|) are numbered as follows
+ // 00 01 | 02 03
+ // 10 11 | 12 13
+ // ... | ...
+ // e0 e1 | e2 e3
+ // f0 f1 | f2 f3
+ //
+ // r0 is pointing to the 0th row (00)
+ // r8 is pointing to the 8th row (80)
+
+ // Load
+ // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
+ // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
+ // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
+ // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
+ Load8x4(r0, stride, p1, q0);
+ Load8x4(r8, stride, p0, q1);
+
+ t1 = *p1;
+ t2 = *q0;
+ // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
+ // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
+ // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
+ // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
+ *p1 = _mm_unpacklo_epi64(t1, *p0);
+ *p0 = _mm_unpackhi_epi64(t1, *p0);
+ *q0 = _mm_unpacklo_epi64(t2, *q1);
+ *q1 = _mm_unpackhi_epi64(t2, *q1);
+}
+
+static WEBP_INLINE void Store4x4(__m128i* x, uint8_t* dst, int stride) {
+ int i;
+ for (i = 0; i < 4; ++i, dst += stride) {
+ *((int32_t*)dst) = _mm_cvtsi128_si32(*x);
+ *x = _mm_srli_si128(*x, 4);
+ }
+}
+
+// Transpose back and store
+static WEBP_INLINE void Store16x4(uint8_t* r0, uint8_t* r8, int stride,
+ __m128i* p1, __m128i* p0,
+ __m128i* q0, __m128i* q1) {
+ __m128i t1;
+
+ // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
+ // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
+ t1 = *p0;
+ *p0 = _mm_unpacklo_epi8(*p1, t1);
+ *p1 = _mm_unpackhi_epi8(*p1, t1);
+
+ // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
+ // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
+ t1 = *q0;
+ *q0 = _mm_unpacklo_epi8(t1, *q1);
+ *q1 = _mm_unpackhi_epi8(t1, *q1);
+
+ // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
+ // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
+ t1 = *p0;
+ *p0 = _mm_unpacklo_epi16(t1, *q0);
+ *q0 = _mm_unpackhi_epi16(t1, *q0);
+
+ // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
+ // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
+ t1 = *p1;
+ *p1 = _mm_unpacklo_epi16(t1, *q1);
+ *q1 = _mm_unpackhi_epi16(t1, *q1);
+
+ Store4x4(p0, r0, stride);
+ r0 += 4 * stride;
+ Store4x4(q0, r0, stride);
+
+ Store4x4(p1, r8, stride);
+ r8 += 4 * stride;
+ Store4x4(q1, r8, stride);
+}
+
+//------------------------------------------------------------------------------
+// Simple In-loop filtering (Paragraph 15.2)
+
+static void SimpleVFilter16SSE2(uint8_t* p, int stride, int thresh) {
+ // Load
+ __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
+ __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
+ __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
+ __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
+
+ DoFilter2(&p1, &p0, &q0, &q1, thresh);
+
+ // Store
+ _mm_storeu_si128((__m128i*)&p[-stride], p0);
+ _mm_storeu_si128((__m128i*)p, q0);
+}
+
+static void SimpleHFilter16SSE2(uint8_t* p, int stride, int thresh) {
+ __m128i p1, p0, q0, q1;
+
+ p -= 2; // beginning of p1
+
+ Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
+ DoFilter2(&p1, &p0, &q0, &q1, thresh);
+ Store16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
+}
+
+static void SimpleVFilter16iSSE2(uint8_t* p, int stride, int thresh) {
+ int k;
+ for (k = 3; k > 0; --k) {
+ p += 4 * stride;
+ SimpleVFilter16SSE2(p, stride, thresh);
+ }
+}
+
+static void SimpleHFilter16iSSE2(uint8_t* p, int stride, int thresh) {
+ int k;
+ for (k = 3; k > 0; --k) {
+ p += 4;
+ SimpleHFilter16SSE2(p, stride, thresh);
+ }
+}
+
+//------------------------------------------------------------------------------
+// Complex In-loop filtering (Paragraph 15.3)
+
+#define MAX_DIFF1(p3, p2, p1, p0, m) { \
+ m = MM_ABS(p3, p2); \
+ m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
+ m = _mm_max_epu8(m, MM_ABS(p1, p0)); \
+}
+
+#define MAX_DIFF2(p3, p2, p1, p0, m) { \
+ m = _mm_max_epu8(m, MM_ABS(p3, p2)); \
+ m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
+ m = _mm_max_epu8(m, MM_ABS(p1, p0)); \
+}
+
+#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \
+ e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]); \
+ e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]); \
+ e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]); \
+ e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]); \
+}
+
+#define LOADUV_H_EDGE(p, u, v, stride) { \
+ p = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \
+ p = _mm_unpacklo_epi64(p, _mm_loadl_epi64((__m128i*)&(v)[(stride)])); \
+}
+
+#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \
+ LOADUV_H_EDGE(e1, u, v, 0 * stride); \
+ LOADUV_H_EDGE(e2, u, v, 1 * stride); \
+ LOADUV_H_EDGE(e3, u, v, 2 * stride); \
+ LOADUV_H_EDGE(e4, u, v, 3 * stride); \
+}
+
+#define STOREUV(p, u, v, stride) { \
+ _mm_storel_epi64((__m128i*)&u[(stride)], p); \
+ p = _mm_srli_si128(p, 8); \
+ _mm_storel_epi64((__m128i*)&v[(stride)], p); \
+}
+
+#define COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask) { \
+ __m128i fl_yes; \
+ const __m128i it = _mm_set1_epi8(ithresh); \
+ mask = _mm_subs_epu8(mask, it); \
+ mask = _mm_cmpeq_epi8(mask, _mm_setzero_si128()); \
+ NeedsFilter(&p1, &p0, &q0, &q1, thresh, &fl_yes); \
+ mask = _mm_and_si128(mask, fl_yes); \
+}
+
+// on macroblock edges
+static void VFilter16SSE2(uint8_t* p, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ __m128i t1;
+ __m128i mask;
+ __m128i p2, p1, p0, q0, q1, q2;
+
+ // Load p3, p2, p1, p0
+ LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
+ MAX_DIFF1(t1, p2, p1, p0, mask);
+
+ // Load q0, q1, q2, q3
+ LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
+ MAX_DIFF2(t1, q2, q1, q0, mask);
+
+ COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
+ DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
+
+ // Store
+ _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
+ _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
+ _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
+ _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
+ _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
+ _mm_storeu_si128((__m128i*)&p[2 * stride], q2);
+}
+
+static void HFilter16SSE2(uint8_t* p, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ __m128i mask;
+ __m128i p3, p2, p1, p0, q0, q1, q2, q3;
+
+ uint8_t* const b = p - 4;
+ Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
+ MAX_DIFF1(p3, p2, p1, p0, mask);
+
+ Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
+ MAX_DIFF2(q3, q2, q1, q0, mask);
+
+ COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
+ DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
+
+ Store16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
+ Store16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
+}
+
+// on three inner edges
+static void VFilter16iSSE2(uint8_t* p, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ int k;
+ __m128i mask;
+ __m128i t1, t2, p1, p0, q0, q1;
+
+ for (k = 3; k > 0; --k) {
+ // Load p3, p2, p1, p0
+ LOAD_H_EDGES4(p, stride, t2, t1, p1, p0);
+ MAX_DIFF1(t2, t1, p1, p0, mask);
+
+ p += 4 * stride;
+
+ // Load q0, q1, q2, q3
+ LOAD_H_EDGES4(p, stride, q0, q1, t1, t2);
+ MAX_DIFF2(t2, t1, q1, q0, mask);
+
+ COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
+ DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
+
+ // Store
+ _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
+ _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
+ _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
+ _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
+ }
+}
+
+static void HFilter16iSSE2(uint8_t* p, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ int k;
+ uint8_t* b;
+ __m128i mask;
+ __m128i t1, t2, p1, p0, q0, q1;
+
+ for (k = 3; k > 0; --k) {
+ b = p;
+ Load16x4(b, b + 8 * stride, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
+ MAX_DIFF1(t2, t1, p1, p0, mask);
+
+ b += 4; // beginning of q0
+ Load16x4(b, b + 8 * stride, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
+ MAX_DIFF2(t2, t1, q1, q0, mask);
+
+ COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
+ DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
+
+ b -= 2; // beginning of p1
+ Store16x4(b, b + 8 * stride, stride, &p1, &p0, &q0, &q1);
+
+ p += 4;
+ }
+}
+
+// 8-pixels wide variant, for chroma filtering
+static void VFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ __m128i mask;
+ __m128i t1, p2, p1, p0, q0, q1, q2;
+
+ // Load p3, p2, p1, p0
+ LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
+ MAX_DIFF1(t1, p2, p1, p0, mask);
+
+ // Load q0, q1, q2, q3
+ LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
+ MAX_DIFF2(t1, q2, q1, q0, mask);
+
+ COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
+ DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
+
+ // Store
+ STOREUV(p2, u, v, -3 * stride);
+ STOREUV(p1, u, v, -2 * stride);
+ STOREUV(p0, u, v, -1 * stride);
+ STOREUV(q0, u, v, 0 * stride);
+ STOREUV(q1, u, v, 1 * stride);
+ STOREUV(q2, u, v, 2 * stride);
+}
+
+static void HFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ __m128i mask;
+ __m128i p3, p2, p1, p0, q0, q1, q2, q3;
+
+ uint8_t* const tu = u - 4;
+ uint8_t* const tv = v - 4;
+ Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
+ MAX_DIFF1(p3, p2, p1, p0, mask);
+
+ Load16x4(u, v, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
+ MAX_DIFF2(q3, q2, q1, q0, mask);
+
+ COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
+ DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
+
+ Store16x4(tu, tv, stride, &p3, &p2, &p1, &p0);
+ Store16x4(u, v, stride, &q0, &q1, &q2, &q3);
+}
+
+static void VFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ __m128i mask;
+ __m128i t1, t2, p1, p0, q0, q1;
+
+ // Load p3, p2, p1, p0
+ LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
+ MAX_DIFF1(t2, t1, p1, p0, mask);
+
+ u += 4 * stride;
+ v += 4 * stride;
+
+ // Load q0, q1, q2, q3
+ LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
+ MAX_DIFF2(t2, t1, q1, q0, mask);
+
+ COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
+ DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
+
+ // Store
+ STOREUV(p1, u, v, -2 * stride);
+ STOREUV(p0, u, v, -1 * stride);
+ STOREUV(q0, u, v, 0 * stride);
+ STOREUV(q1, u, v, 1 * stride);
+}
+
+static void HFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
+ int thresh, int ithresh, int hev_thresh) {
+ __m128i mask;
+ __m128i t1, t2, p1, p0, q0, q1;
+ Load16x4(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
+ MAX_DIFF1(t2, t1, p1, p0, mask);
+
+ u += 4; // beginning of q0
+ v += 4;
+ Load16x4(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
+ MAX_DIFF2(t2, t1, q1, q0, mask);
+
+ COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
+ DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
+
+ u -= 2; // beginning of p1
+ v -= 2;
+ Store16x4(u, v, stride, &p1, &p0, &q0, &q1);
+}
+
+#endif // WEBP_USE_SSE2
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void VP8DspInitSSE2(void);
+
+void VP8DspInitSSE2(void) {
+#if defined(WEBP_USE_SSE2)
+ VP8Transform = TransformSSE2;
+#if defined(USE_TRANSFORM_AC3)
+ VP8TransformAC3 = TransformAC3SSE2;
+#endif
+
+ VP8VFilter16 = VFilter16SSE2;
+ VP8HFilter16 = HFilter16SSE2;
+ VP8VFilter8 = VFilter8SSE2;
+ VP8HFilter8 = HFilter8SSE2;
+ VP8VFilter16i = VFilter16iSSE2;
+ VP8HFilter16i = HFilter16iSSE2;
+ VP8VFilter8i = VFilter8iSSE2;
+ VP8HFilter8i = HFilter8iSSE2;
+
+ VP8SimpleVFilter16 = SimpleVFilter16SSE2;
+ VP8SimpleHFilter16 = SimpleHFilter16SSE2;
+ VP8SimpleVFilter16i = SimpleVFilter16iSSE2;
+ VP8SimpleHFilter16i = SimpleHFilter16iSSE2;
+#endif // WEBP_USE_SSE2
+}
+
diff --git a/src/3rdparty/libwebp/src/dsp/dsp.h b/src/3rdparty/libwebp/src/dsp/dsp.h
new file mode 100644
index 0000000..3be783a
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/dsp.h
@@ -0,0 +1,224 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// Speed-critical functions.
+//
+// Author: Skal (pascal.massimino@gmail.com)
+
+#ifndef WEBP_DSP_DSP_H_
+#define WEBP_DSP_DSP_H_
+
+#include "../webp/types.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+//------------------------------------------------------------------------------
+// CPU detection
+
+#if defined(_MSC_VER) && _MSC_VER > 1310 && \
+ (defined(_M_X64) || defined(_M_IX86))
+#define WEBP_MSC_SSE2 // Visual C++ SSE2 targets
+#endif
+
+#if defined(__SSE2__) || defined(WEBP_MSC_SSE2)
+#define WEBP_USE_SSE2
+#endif
+
+#if defined(__ANDROID__) && defined(__ARM_ARCH_7A__)
+#define WEBP_ANDROID_NEON // Android targets that might support NEON
+#endif
+
+#if defined(__ARM_NEON__) || defined(WEBP_ANDROID_NEON)
+#define WEBP_USE_NEON
+#endif
+
+typedef enum {
+ kSSE2,
+ kSSE3,
+ kNEON
+} CPUFeature;
+// returns true if the CPU supports the feature.
+typedef int (*VP8CPUInfo)(CPUFeature feature);
+extern VP8CPUInfo VP8GetCPUInfo;
+
+//------------------------------------------------------------------------------
+// Encoding
+
+// Transforms
+// VP8Idct: Does one of two inverse transforms. If do_two is set, the transforms
+// will be done for (ref, in, dst) and (ref + 4, in + 16, dst + 4).
+typedef void (*VP8Idct)(const uint8_t* ref, const int16_t* in, uint8_t* dst,
+ int do_two);
+typedef void (*VP8Fdct)(const uint8_t* src, const uint8_t* ref, int16_t* out);
+typedef void (*VP8WHT)(const int16_t* in, int16_t* out);
+extern VP8Idct VP8ITransform;
+extern VP8Fdct VP8FTransform;
+extern VP8WHT VP8ITransformWHT;
+extern VP8WHT VP8FTransformWHT;
+// Predictions
+// *dst is the destination block. *top and *left can be NULL.
+typedef void (*VP8IntraPreds)(uint8_t *dst, const uint8_t* left,
+ const uint8_t* top);
+typedef void (*VP8Intra4Preds)(uint8_t *dst, const uint8_t* top);
+extern VP8Intra4Preds VP8EncPredLuma4;
+extern VP8IntraPreds VP8EncPredLuma16;
+extern VP8IntraPreds VP8EncPredChroma8;
+
+typedef int (*VP8Metric)(const uint8_t* pix, const uint8_t* ref);
+extern VP8Metric VP8SSE16x16, VP8SSE16x8, VP8SSE8x8, VP8SSE4x4;
+typedef int (*VP8WMetric)(const uint8_t* pix, const uint8_t* ref,
+ const uint16_t* const weights);
+extern VP8WMetric VP8TDisto4x4, VP8TDisto16x16;
+
+typedef void (*VP8BlockCopy)(const uint8_t* src, uint8_t* dst);
+extern VP8BlockCopy VP8Copy4x4;
+// Quantization
+struct VP8Matrix; // forward declaration
+typedef int (*VP8QuantizeBlock)(int16_t in[16], int16_t out[16],
+ int n, const struct VP8Matrix* const mtx);
+extern VP8QuantizeBlock VP8EncQuantizeBlock;
+
+// specific to 2nd transform:
+typedef int (*VP8QuantizeBlockWHT)(int16_t in[16], int16_t out[16],
+ const struct VP8Matrix* const mtx);
+extern VP8QuantizeBlockWHT VP8EncQuantizeBlockWHT;
+
+// Collect histogram for susceptibility calculation and accumulate in histo[].
+struct VP8Histogram;
+typedef void (*VP8CHisto)(const uint8_t* ref, const uint8_t* pred,
+ int start_block, int end_block,
+ struct VP8Histogram* const histo);
+extern const int VP8DspScan[16 + 4 + 4];
+extern VP8CHisto VP8CollectHistogram;
+
+void VP8EncDspInit(void); // must be called before using any of the above
+
+//------------------------------------------------------------------------------
+// Decoding
+
+typedef void (*VP8DecIdct)(const int16_t* coeffs, uint8_t* dst);
+// when doing two transforms, coeffs is actually int16_t[2][16].
+typedef void (*VP8DecIdct2)(const int16_t* coeffs, uint8_t* dst, int do_two);
+extern VP8DecIdct2 VP8Transform;
+extern VP8DecIdct VP8TransformAC3;
+extern VP8DecIdct VP8TransformUV;
+extern VP8DecIdct VP8TransformDC;
+extern VP8DecIdct VP8TransformDCUV;
+extern VP8WHT VP8TransformWHT;
+
+// *dst is the destination block, with stride BPS. Boundary samples are
+// assumed accessible when needed.
+typedef void (*VP8PredFunc)(uint8_t* dst);
+extern const VP8PredFunc VP8PredLuma16[/* NUM_B_DC_MODES */];
+extern const VP8PredFunc VP8PredChroma8[/* NUM_B_DC_MODES */];
+extern const VP8PredFunc VP8PredLuma4[/* NUM_BMODES */];
+
+// simple filter (only for luma)
+typedef void (*VP8SimpleFilterFunc)(uint8_t* p, int stride, int thresh);
+extern VP8SimpleFilterFunc VP8SimpleVFilter16;
+extern VP8SimpleFilterFunc VP8SimpleHFilter16;
+extern VP8SimpleFilterFunc VP8SimpleVFilter16i; // filter 3 inner edges
+extern VP8SimpleFilterFunc VP8SimpleHFilter16i;
+
+// regular filter (on both macroblock edges and inner edges)
+typedef void (*VP8LumaFilterFunc)(uint8_t* luma, int stride,
+ int thresh, int ithresh, int hev_t);
+typedef void (*VP8ChromaFilterFunc)(uint8_t* u, uint8_t* v, int stride,
+ int thresh, int ithresh, int hev_t);
+// on outer edge
+extern VP8LumaFilterFunc VP8VFilter16;
+extern VP8LumaFilterFunc VP8HFilter16;
+extern VP8ChromaFilterFunc VP8VFilter8;
+extern VP8ChromaFilterFunc VP8HFilter8;
+
+// on inner edge
+extern VP8LumaFilterFunc VP8VFilter16i; // filtering 3 inner edges altogether
+extern VP8LumaFilterFunc VP8HFilter16i;
+extern VP8ChromaFilterFunc VP8VFilter8i; // filtering u and v altogether
+extern VP8ChromaFilterFunc VP8HFilter8i;
+
+// must be called before anything using the above
+void VP8DspInit(void);
+
+//------------------------------------------------------------------------------
+// WebP I/O
+
+#define FANCY_UPSAMPLING // undefined to remove fancy upsampling support
+
+// Convert a pair of y/u/v lines together to the output rgb/a colorspace.
+// bottom_y can be NULL if only one line of output is needed (at top/bottom).
+typedef void (*WebPUpsampleLinePairFunc)(
+ const uint8_t* top_y, const uint8_t* bottom_y,
+ const uint8_t* top_u, const uint8_t* top_v,
+ const uint8_t* cur_u, const uint8_t* cur_v,
+ uint8_t* top_dst, uint8_t* bottom_dst, int len);
+
+#ifdef FANCY_UPSAMPLING
+
+// Fancy upsampling functions to convert YUV to RGB(A) modes
+extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */];
+
+// Initializes SSE2 version of the fancy upsamplers.
+void WebPInitUpsamplersSSE2(void);
+
+// NEON version
+void WebPInitUpsamplersNEON(void);
+
+#endif // FANCY_UPSAMPLING
+
+// Point-sampling methods.
+typedef void (*WebPSampleLinePairFunc)(
+ const uint8_t* top_y, const uint8_t* bottom_y,
+ const uint8_t* u, const uint8_t* v,
+ uint8_t* top_dst, uint8_t* bottom_dst, int len);
+
+extern const WebPSampleLinePairFunc WebPSamplers[/* MODE_LAST */];
+
+// General function for converting two lines of ARGB or RGBA.
+// 'alpha_is_last' should be true if 0xff000000 is stored in memory as
+// as 0x00, 0x00, 0x00, 0xff (little endian).
+WebPUpsampleLinePairFunc WebPGetLinePairConverter(int alpha_is_last);
+
+// YUV444->RGB converters
+typedef void (*WebPYUV444Converter)(const uint8_t* y,
+ const uint8_t* u, const uint8_t* v,
+ uint8_t* dst, int len);
+
+extern const WebPYUV444Converter WebPYUV444Converters[/* MODE_LAST */];
+
+// Main function to be called
+void WebPInitUpsamplers(void);
+
+//------------------------------------------------------------------------------
+// Pre-multiply planes with alpha values
+
+// Apply alpha pre-multiply on an rgba, bgra or argb plane of size w * h.
+// alpha_first should be 0 for argb, 1 for rgba or bgra (where alpha is last).
+extern void (*WebPApplyAlphaMultiply)(
+ uint8_t* rgba, int alpha_first, int w, int h, int stride);
+
+// Same, buf specifically for RGBA4444 format
+extern void (*WebPApplyAlphaMultiply4444)(
+ uint8_t* rgba4444, int w, int h, int stride);
+
+// To be called first before using the above.
+void WebPInitPremultiply(void);
+
+void WebPInitPremultiplySSE2(void); // should not be called directly.
+void WebPInitPremultiplyNEON(void);
+
+//------------------------------------------------------------------------------
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif /* WEBP_DSP_DSP_H_ */
diff --git a/src/3rdparty/libwebp/src/dsp/enc.c b/src/3rdparty/libwebp/src/dsp/enc.c
new file mode 100644
index 0000000..fcc6ec8
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/enc.c
@@ -0,0 +1,753 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// Speed-critical encoding functions.
+//
+// Author: Skal (pascal.massimino@gmail.com)
+
+#include <assert.h>
+#include <stdlib.h> // for abs()
+
+#include "./dsp.h"
+#include "../enc/vp8enci.h"
+
+static WEBP_INLINE uint8_t clip_8b(int v) {
+ return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255;
+}
+
+static WEBP_INLINE int clip_max(int v, int max) {
+ return (v > max) ? max : v;
+}
+
+//------------------------------------------------------------------------------
+// Compute susceptibility based on DCT-coeff histograms:
+// the higher, the "easier" the macroblock is to compress.
+
+const int VP8DspScan[16 + 4 + 4] = {
+ // Luma
+ 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
+ 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
+ 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
+ 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
+
+ 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
+ 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
+};
+
+static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
+ int start_block, int end_block,
+ VP8Histogram* const histo) {
+ int j;
+ for (j = start_block; j < end_block; ++j) {
+ int k;
+ int16_t out[16];
+
+ VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
+
+ // Convert coefficients to bin.
+ for (k = 0; k < 16; ++k) {
+ const int v = abs(out[k]) >> 3; // TODO(skal): add rounding?
+ const int clipped_value = clip_max(v, MAX_COEFF_THRESH);
+ histo->distribution[clipped_value]++;
+ }
+ }
+}
+
+//------------------------------------------------------------------------------
+// run-time tables (~4k)
+
+static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255]
+
+// We declare this variable 'volatile' to prevent instruction reordering
+// and make sure it's set to true _last_ (so as to be thread-safe)
+static volatile int tables_ok = 0;
+
+static void InitTables(void) {
+ if (!tables_ok) {
+ int i;
+ for (i = -255; i <= 255 + 255; ++i) {
+ clip1[255 + i] = clip_8b(i);
+ }
+ tables_ok = 1;
+ }
+}
+
+
+//------------------------------------------------------------------------------
+// Transforms (Paragraph 14.4)
+
+#define STORE(x, y, v) \
+ dst[(x) + (y) * BPS] = clip_8b(ref[(x) + (y) * BPS] + ((v) >> 3))
+
+static const int kC1 = 20091 + (1 << 16);
+static const int kC2 = 35468;
+#define MUL(a, b) (((a) * (b)) >> 16)
+
+static WEBP_INLINE void ITransformOne(const uint8_t* ref, const int16_t* in,
+ uint8_t* dst) {
+ int C[4 * 4], *tmp;
+ int i;
+ tmp = C;
+ for (i = 0; i < 4; ++i) { // vertical pass
+ const int a = in[0] + in[8];
+ const int b = in[0] - in[8];
+ const int c = MUL(in[4], kC2) - MUL(in[12], kC1);
+ const int d = MUL(in[4], kC1) + MUL(in[12], kC2);
+ tmp[0] = a + d;
+ tmp[1] = b + c;
+ tmp[2] = b - c;
+ tmp[3] = a - d;
+ tmp += 4;
+ in++;
+ }
+
+ tmp = C;
+ for (i = 0; i < 4; ++i) { // horizontal pass
+ const int dc = tmp[0] + 4;
+ const int a = dc + tmp[8];
+ const int b = dc - tmp[8];
+ const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1);
+ const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2);
+ STORE(0, i, a + d);
+ STORE(1, i, b + c);
+ STORE(2, i, b - c);
+ STORE(3, i, a - d);
+ tmp++;
+ }
+}
+
+static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
+ int do_two) {
+ ITransformOne(ref, in, dst);
+ if (do_two) {
+ ITransformOne(ref + 4, in + 16, dst + 4);
+ }
+}
+
+static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
+ int i;
+ int tmp[16];
+ for (i = 0; i < 4; ++i, src += BPS, ref += BPS) {
+ const int d0 = src[0] - ref[0]; // 9bit dynamic range ([-255,255])
+ const int d1 = src[1] - ref[1];
+ const int d2 = src[2] - ref[2];
+ const int d3 = src[3] - ref[3];
+ const int a0 = (d0 + d3); // 10b [-510,510]
+ const int a1 = (d1 + d2);
+ const int a2 = (d1 - d2);
+ const int a3 = (d0 - d3);
+ tmp[0 + i * 4] = (a0 + a1) * 8; // 14b [-8160,8160]
+ tmp[1 + i * 4] = (a2 * 2217 + a3 * 5352 + 1812) >> 9; // [-7536,7542]
+ tmp[2 + i * 4] = (a0 - a1) * 8;
+ tmp[3 + i * 4] = (a3 * 2217 - a2 * 5352 + 937) >> 9;
+ }
+ for (i = 0; i < 4; ++i) {
+ const int a0 = (tmp[0 + i] + tmp[12 + i]); // 15b
+ const int a1 = (tmp[4 + i] + tmp[ 8 + i]);
+ const int a2 = (tmp[4 + i] - tmp[ 8 + i]);
+ const int a3 = (tmp[0 + i] - tmp[12 + i]);
+ out[0 + i] = (a0 + a1 + 7) >> 4; // 12b
+ out[4 + i] = ((a2 * 2217 + a3 * 5352 + 12000) >> 16) + (a3 != 0);
+ out[8 + i] = (a0 - a1 + 7) >> 4;
+ out[12+ i] = ((a3 * 2217 - a2 * 5352 + 51000) >> 16);
+ }
+}
+
+static void ITransformWHT(const int16_t* in, int16_t* out) {
+ int tmp[16];
+ int i;
+ for (i = 0; i < 4; ++i) {
+ const int a0 = in[0 + i] + in[12 + i];
+ const int a1 = in[4 + i] + in[ 8 + i];
+ const int a2 = in[4 + i] - in[ 8 + i];
+ const int a3 = in[0 + i] - in[12 + i];
+ tmp[0 + i] = a0 + a1;
+ tmp[8 + i] = a0 - a1;
+ tmp[4 + i] = a3 + a2;
+ tmp[12 + i] = a3 - a2;
+ }
+ for (i = 0; i < 4; ++i) {
+ const int dc = tmp[0 + i * 4] + 3; // w/ rounder
+ const int a0 = dc + tmp[3 + i * 4];
+ const int a1 = tmp[1 + i * 4] + tmp[2 + i * 4];
+ const int a2 = tmp[1 + i * 4] - tmp[2 + i * 4];
+ const int a3 = dc - tmp[3 + i * 4];
+ out[ 0] = (a0 + a1) >> 3;
+ out[16] = (a3 + a2) >> 3;
+ out[32] = (a0 - a1) >> 3;
+ out[48] = (a3 - a2) >> 3;
+ out += 64;
+ }
+}
+
+static void FTransformWHT(const int16_t* in, int16_t* out) {
+ // input is 12b signed
+ int32_t tmp[16];
+ int i;
+ for (i = 0; i < 4; ++i, in += 64) {
+ const int a0 = (in[0 * 16] + in[2 * 16]); // 13b
+ const int a1 = (in[1 * 16] + in[3 * 16]);
+ const int a2 = (in[1 * 16] - in[3 * 16]);
+ const int a3 = (in[0 * 16] - in[2 * 16]);
+ tmp[0 + i * 4] = a0 + a1; // 14b
+ tmp[1 + i * 4] = a3 + a2;
+ tmp[2 + i * 4] = a3 - a2;
+ tmp[3 + i * 4] = a0 - a1;
+ }
+ for (i = 0; i < 4; ++i) {
+ const int a0 = (tmp[0 + i] + tmp[8 + i]); // 15b
+ const int a1 = (tmp[4 + i] + tmp[12+ i]);
+ const int a2 = (tmp[4 + i] - tmp[12+ i]);
+ const int a3 = (tmp[0 + i] - tmp[8 + i]);
+ const int b0 = a0 + a1; // 16b
+ const int b1 = a3 + a2;
+ const int b2 = a3 - a2;
+ const int b3 = a0 - a1;
+ out[ 0 + i] = b0 >> 1; // 15b
+ out[ 4 + i] = b1 >> 1;
+ out[ 8 + i] = b2 >> 1;
+ out[12 + i] = b3 >> 1;
+ }
+}
+
+#undef MUL
+#undef STORE
+
+//------------------------------------------------------------------------------
+// Intra predictions
+
+#define DST(x, y) dst[(x) + (y) * BPS]
+
+static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) {
+ int j;
+ for (j = 0; j < size; ++j) {
+ memset(dst + j * BPS, value, size);
+ }
+}
+
+static WEBP_INLINE void VerticalPred(uint8_t* dst,
+ const uint8_t* top, int size) {
+ int j;
+ if (top) {
+ for (j = 0; j < size; ++j) memcpy(dst + j * BPS, top, size);
+ } else {
+ Fill(dst, 127, size);
+ }
+}
+
+static WEBP_INLINE void HorizontalPred(uint8_t* dst,
+ const uint8_t* left, int size) {
+ if (left) {
+ int j;
+ for (j = 0; j < size; ++j) {
+ memset(dst + j * BPS, left[j], size);
+ }
+ } else {
+ Fill(dst, 129, size);
+ }
+}
+
+static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left,
+ const uint8_t* top, int size) {
+ int y;
+ if (left) {
+ if (top) {
+ const uint8_t* const clip = clip1 + 255 - left[-1];
+ for (y = 0; y < size; ++y) {
+ const uint8_t* const clip_table = clip + left[y];
+ int x;
+ for (x = 0; x < size; ++x) {
+ dst[x] = clip_table[top[x]];
+ }
+ dst += BPS;
+ }
+ } else {
+ HorizontalPred(dst, left, size);
+ }
+ } else {
+ // true motion without left samples (hence: with default 129 value)
+ // is equivalent to VE prediction where you just copy the top samples.
+ // Note that if top samples are not available, the default value is
+ // then 129, and not 127 as in the VerticalPred case.
+ if (top) {
+ VerticalPred(dst, top, size);
+ } else {
+ Fill(dst, 129, size);
+ }
+ }
+}
+
+static WEBP_INLINE void DCMode(uint8_t* dst, const uint8_t* left,
+ const uint8_t* top,
+ int size, int round, int shift) {
+ int DC = 0;
+ int j;
+ if (top) {
+ for (j = 0; j < size; ++j) DC += top[j];
+ if (left) { // top and left present
+ for (j = 0; j < size; ++j) DC += left[j];
+ } else { // top, but no left
+ DC += DC;
+ }
+ DC = (DC + round) >> shift;
+ } else if (left) { // left but no top
+ for (j = 0; j < size; ++j) DC += left[j];
+ DC += DC;
+ DC = (DC + round) >> shift;
+ } else { // no top, no left, nothing.
+ DC = 0x80;
+ }
+ Fill(dst, DC, size);
+}
+
+//------------------------------------------------------------------------------
+// Chroma 8x8 prediction (paragraph 12.2)
+
+static void IntraChromaPreds(uint8_t* dst, const uint8_t* left,
+ const uint8_t* top) {
+ // U block
+ DCMode(C8DC8 + dst, left, top, 8, 8, 4);
+ VerticalPred(C8VE8 + dst, top, 8);
+ HorizontalPred(C8HE8 + dst, left, 8);
+ TrueMotion(C8TM8 + dst, left, top, 8);
+ // V block
+ dst += 8;
+ if (top) top += 8;
+ if (left) left += 16;
+ DCMode(C8DC8 + dst, left, top, 8, 8, 4);
+ VerticalPred(C8VE8 + dst, top, 8);
+ HorizontalPred(C8HE8 + dst, left, 8);
+ TrueMotion(C8TM8 + dst, left, top, 8);
+}
+
+//------------------------------------------------------------------------------
+// luma 16x16 prediction (paragraph 12.3)
+
+static void Intra16Preds(uint8_t* dst,
+ const uint8_t* left, const uint8_t* top) {
+ DCMode(I16DC16 + dst, left, top, 16, 16, 5);
+ VerticalPred(I16VE16 + dst, top, 16);
+ HorizontalPred(I16HE16 + dst, left, 16);
+ TrueMotion(I16TM16 + dst, left, top, 16);
+}
+
+//------------------------------------------------------------------------------
+// luma 4x4 prediction
+
+#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
+#define AVG2(a, b) (((a) + (b) + 1) >> 1)
+
+static void VE4(uint8_t* dst, const uint8_t* top) { // vertical
+ const uint8_t vals[4] = {
+ AVG3(top[-1], top[0], top[1]),
+ AVG3(top[ 0], top[1], top[2]),
+ AVG3(top[ 1], top[2], top[3]),
+ AVG3(top[ 2], top[3], top[4])
+ };
+ int i;
+ for (i = 0; i < 4; ++i) {
+ memcpy(dst + i * BPS, vals, 4);
+ }
+}
+
+static void HE4(uint8_t* dst, const uint8_t* top) { // horizontal
+ const int X = top[-1];
+ const int I = top[-2];
+ const int J = top[-3];
+ const int K = top[-4];
+ const int L = top[-5];
+ *(uint32_t*)(dst + 0 * BPS) = 0x01010101U * AVG3(X, I, J);
+ *(uint32_t*)(dst + 1 * BPS) = 0x01010101U * AVG3(I, J, K);
+ *(uint32_t*)(dst + 2 * BPS) = 0x01010101U * AVG3(J, K, L);
+ *(uint32_t*)(dst + 3 * BPS) = 0x01010101U * AVG3(K, L, L);
+}
+
+static void DC4(uint8_t* dst, const uint8_t* top) {
+ uint32_t dc = 4;
+ int i;
+ for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
+ Fill(dst, dc >> 3, 4);
+}
+
+static void RD4(uint8_t* dst, const uint8_t* top) {
+ const int X = top[-1];
+ const int I = top[-2];
+ const int J = top[-3];
+ const int K = top[-4];
+ const int L = top[-5];
+ const int A = top[0];
+ const int B = top[1];
+ const int C = top[2];
+ const int D = top[3];
+ DST(0, 3) = AVG3(J, K, L);
+ DST(0, 2) = DST(1, 3) = AVG3(I, J, K);
+ DST(0, 1) = DST(1, 2) = DST(2, 3) = AVG3(X, I, J);
+ DST(0, 0) = DST(1, 1) = DST(2, 2) = DST(3, 3) = AVG3(A, X, I);
+ DST(1, 0) = DST(2, 1) = DST(3, 2) = AVG3(B, A, X);
+ DST(2, 0) = DST(3, 1) = AVG3(C, B, A);
+ DST(3, 0) = AVG3(D, C, B);
+}
+
+static void LD4(uint8_t* dst, const uint8_t* top) {
+ const int A = top[0];
+ const int B = top[1];
+ const int C = top[2];
+ const int D = top[3];
+ const int E = top[4];
+ const int F = top[5];
+ const int G = top[6];
+ const int H = top[7];
+ DST(0, 0) = AVG3(A, B, C);
+ DST(1, 0) = DST(0, 1) = AVG3(B, C, D);
+ DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E);
+ DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F);
+ DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G);
+ DST(3, 2) = DST(2, 3) = AVG3(F, G, H);
+ DST(3, 3) = AVG3(G, H, H);
+}
+
+static void VR4(uint8_t* dst, const uint8_t* top) {
+ const int X = top[-1];
+ const int I = top[-2];
+ const int J = top[-3];
+ const int K = top[-4];
+ const int A = top[0];
+ const int B = top[1];
+ const int C = top[2];
+ const int D = top[3];
+ DST(0, 0) = DST(1, 2) = AVG2(X, A);
+ DST(1, 0) = DST(2, 2) = AVG2(A, B);
+ DST(2, 0) = DST(3, 2) = AVG2(B, C);
+ DST(3, 0) = AVG2(C, D);
+
+ DST(0, 3) = AVG3(K, J, I);
+ DST(0, 2) = AVG3(J, I, X);
+ DST(0, 1) = DST(1, 3) = AVG3(I, X, A);
+ DST(1, 1) = DST(2, 3) = AVG3(X, A, B);
+ DST(2, 1) = DST(3, 3) = AVG3(A, B, C);
+ DST(3, 1) = AVG3(B, C, D);
+}
+
+static void VL4(uint8_t* dst, const uint8_t* top) {
+ const int A = top[0];
+ const int B = top[1];
+ const int C = top[2];
+ const int D = top[3];
+ const int E = top[4];
+ const int F = top[5];
+ const int G = top[6];
+ const int H = top[7];
+ DST(0, 0) = AVG2(A, B);
+ DST(1, 0) = DST(0, 2) = AVG2(B, C);
+ DST(2, 0) = DST(1, 2) = AVG2(C, D);
+ DST(3, 0) = DST(2, 2) = AVG2(D, E);
+
+ DST(0, 1) = AVG3(A, B, C);
+ DST(1, 1) = DST(0, 3) = AVG3(B, C, D);
+ DST(2, 1) = DST(1, 3) = AVG3(C, D, E);
+ DST(3, 1) = DST(2, 3) = AVG3(D, E, F);
+ DST(3, 2) = AVG3(E, F, G);
+ DST(3, 3) = AVG3(F, G, H);
+}
+
+static void HU4(uint8_t* dst, const uint8_t* top) {
+ const int I = top[-2];
+ const int J = top[-3];
+ const int K = top[-4];
+ const int L = top[-5];
+ DST(0, 0) = AVG2(I, J);
+ DST(2, 0) = DST(0, 1) = AVG2(J, K);
+ DST(2, 1) = DST(0, 2) = AVG2(K, L);
+ DST(1, 0) = AVG3(I, J, K);
+ DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
+ DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
+ DST(3, 2) = DST(2, 2) =
+ DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
+}
+
+static void HD4(uint8_t* dst, const uint8_t* top) {
+ const int X = top[-1];
+ const int I = top[-2];
+ const int J = top[-3];
+ const int K = top[-4];
+ const int L = top[-5];
+ const int A = top[0];
+ const int B = top[1];
+ const int C = top[2];
+
+ DST(0, 0) = DST(2, 1) = AVG2(I, X);
+ DST(0, 1) = DST(2, 2) = AVG2(J, I);
+ DST(0, 2) = DST(2, 3) = AVG2(K, J);
+ DST(0, 3) = AVG2(L, K);
+
+ DST(3, 0) = AVG3(A, B, C);
+ DST(2, 0) = AVG3(X, A, B);
+ DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
+ DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
+ DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
+ DST(1, 3) = AVG3(L, K, J);
+}
+
+static void TM4(uint8_t* dst, const uint8_t* top) {
+ int x, y;
+ const uint8_t* const clip = clip1 + 255 - top[-1];
+ for (y = 0; y < 4; ++y) {
+ const uint8_t* const clip_table = clip + top[-2 - y];
+ for (x = 0; x < 4; ++x) {
+ dst[x] = clip_table[top[x]];
+ }
+ dst += BPS;
+ }
+}
+
+#undef DST
+#undef AVG3
+#undef AVG2
+
+// Left samples are top[-5 .. -2], top_left is top[-1], top are
+// located at top[0..3], and top right is top[4..7]
+static void Intra4Preds(uint8_t* dst, const uint8_t* top) {
+ DC4(I4DC4 + dst, top);
+ TM4(I4TM4 + dst, top);
+ VE4(I4VE4 + dst, top);
+ HE4(I4HE4 + dst, top);
+ RD4(I4RD4 + dst, top);
+ VR4(I4VR4 + dst, top);
+ LD4(I4LD4 + dst, top);
+ VL4(I4VL4 + dst, top);
+ HD4(I4HD4 + dst, top);
+ HU4(I4HU4 + dst, top);
+}
+
+//------------------------------------------------------------------------------
+// Metric
+
+static WEBP_INLINE int GetSSE(const uint8_t* a, const uint8_t* b,
+ int w, int h) {
+ int count = 0;
+ int y, x;
+ for (y = 0; y < h; ++y) {
+ for (x = 0; x < w; ++x) {
+ const int diff = (int)a[x] - b[x];
+ count += diff * diff;
+ }
+ a += BPS;
+ b += BPS;
+ }
+ return count;
+}
+
+static int SSE16x16(const uint8_t* a, const uint8_t* b) {
+ return GetSSE(a, b, 16, 16);
+}
+static int SSE16x8(const uint8_t* a, const uint8_t* b) {
+ return GetSSE(a, b, 16, 8);
+}
+static int SSE8x8(const uint8_t* a, const uint8_t* b) {
+ return GetSSE(a, b, 8, 8);
+}
+static int SSE4x4(const uint8_t* a, const uint8_t* b) {
+ return GetSSE(a, b, 4, 4);
+}
+
+//------------------------------------------------------------------------------
+// Texture distortion
+//
+// We try to match the spectral content (weighted) between source and
+// reconstructed samples.
+
+// Hadamard transform
+// Returns the weighted sum of the absolute value of transformed coefficients.
+static int TTransform(const uint8_t* in, const uint16_t* w) {
+ int sum = 0;
+ int tmp[16];
+ int i;
+ // horizontal pass
+ for (i = 0; i < 4; ++i, in += BPS) {
+ const int a0 = in[0] + in[2];
+ const int a1 = in[1] + in[3];
+ const int a2 = in[1] - in[3];
+ const int a3 = in[0] - in[2];
+ tmp[0 + i * 4] = a0 + a1;
+ tmp[1 + i * 4] = a3 + a2;
+ tmp[2 + i * 4] = a3 - a2;
+ tmp[3 + i * 4] = a0 - a1;
+ }
+ // vertical pass
+ for (i = 0; i < 4; ++i, ++w) {
+ const int a0 = tmp[0 + i] + tmp[8 + i];
+ const int a1 = tmp[4 + i] + tmp[12+ i];
+ const int a2 = tmp[4 + i] - tmp[12+ i];
+ const int a3 = tmp[0 + i] - tmp[8 + i];
+ const int b0 = a0 + a1;
+ const int b1 = a3 + a2;
+ const int b2 = a3 - a2;
+ const int b3 = a0 - a1;
+
+ sum += w[ 0] * abs(b0);
+ sum += w[ 4] * abs(b1);
+ sum += w[ 8] * abs(b2);
+ sum += w[12] * abs(b3);
+ }
+ return sum;
+}
+
+static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
+ const uint16_t* const w) {
+ const int sum1 = TTransform(a, w);
+ const int sum2 = TTransform(b, w);
+ return abs(sum2 - sum1) >> 5;
+}
+
+static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
+ const uint16_t* const w) {
+ int D = 0;
+ int x, y;
+ for (y = 0; y < 16 * BPS; y += 4 * BPS) {
+ for (x = 0; x < 16; x += 4) {
+ D += Disto4x4(a + x + y, b + x + y, w);
+ }
+ }
+ return D;
+}
+
+//------------------------------------------------------------------------------
+// Quantization
+//
+
+static const uint8_t kZigzag[16] = {
+ 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
+};
+
+// Simple quantization
+static int QuantizeBlock(int16_t in[16], int16_t out[16],
+ int n, const VP8Matrix* const mtx) {
+ int last = -1;
+ for (; n < 16; ++n) {
+ const int j = kZigzag[n];
+ const int sign = (in[j] < 0);
+ const int coeff = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
+ if (coeff > mtx->zthresh_[j]) {
+ const int Q = mtx->q_[j];
+ const int iQ = mtx->iq_[j];
+ const int B = mtx->bias_[j];
+ out[n] = QUANTDIV(coeff, iQ, B);
+ if (out[n] > MAX_LEVEL) out[n] = MAX_LEVEL;
+ if (sign) out[n] = -out[n];
+ in[j] = out[n] * Q;
+ if (out[n]) last = n;
+ } else {
+ out[n] = 0;
+ in[j] = 0;
+ }
+ }
+ return (last >= 0);
+}
+
+static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
+ const VP8Matrix* const mtx) {
+ int n, last = -1;
+ for (n = 0; n < 16; ++n) {
+ const int j = kZigzag[n];
+ const int sign = (in[j] < 0);
+ const int coeff = sign ? -in[j] : in[j];
+ assert(mtx->sharpen_[j] == 0);
+ if (coeff > mtx->zthresh_[j]) {
+ const int Q = mtx->q_[j];
+ const int iQ = mtx->iq_[j];
+ const int B = mtx->bias_[j];
+ out[n] = QUANTDIV(coeff, iQ, B);
+ if (out[n] > MAX_LEVEL) out[n] = MAX_LEVEL;
+ if (sign) out[n] = -out[n];
+ in[j] = out[n] * Q;
+ if (out[n]) last = n;
+ } else {
+ out[n] = 0;
+ in[j] = 0;
+ }
+ }
+ return (last >= 0);
+}
+
+//------------------------------------------------------------------------------
+// Block copy
+
+static WEBP_INLINE void Copy(const uint8_t* src, uint8_t* dst, int size) {
+ int y;
+ for (y = 0; y < size; ++y) {
+ memcpy(dst, src, size);
+ src += BPS;
+ dst += BPS;
+ }
+}
+
+static void Copy4x4(const uint8_t* src, uint8_t* dst) { Copy(src, dst, 4); }
+
+//------------------------------------------------------------------------------
+// Initialization
+
+// Speed-critical function pointers. We have to initialize them to the default
+// implementations within VP8EncDspInit().
+VP8CHisto VP8CollectHistogram;
+VP8Idct VP8ITransform;
+VP8Fdct VP8FTransform;
+VP8WHT VP8ITransformWHT;
+VP8WHT VP8FTransformWHT;
+VP8Intra4Preds VP8EncPredLuma4;
+VP8IntraPreds VP8EncPredLuma16;
+VP8IntraPreds VP8EncPredChroma8;
+VP8Metric VP8SSE16x16;
+VP8Metric VP8SSE8x8;
+VP8Metric VP8SSE16x8;
+VP8Metric VP8SSE4x4;
+VP8WMetric VP8TDisto4x4;
+VP8WMetric VP8TDisto16x16;
+VP8QuantizeBlock VP8EncQuantizeBlock;
+VP8QuantizeBlockWHT VP8EncQuantizeBlockWHT;
+VP8BlockCopy VP8Copy4x4;
+
+extern void VP8EncDspInitSSE2(void);
+extern void VP8EncDspInitNEON(void);
+
+void VP8EncDspInit(void) {
+ InitTables();
+
+ // default C implementations
+ VP8CollectHistogram = CollectHistogram;
+ VP8ITransform = ITransform;
+ VP8FTransform = FTransform;
+ VP8ITransformWHT = ITransformWHT;
+ VP8FTransformWHT = FTransformWHT;
+ VP8EncPredLuma4 = Intra4Preds;
+ VP8EncPredLuma16 = Intra16Preds;
+ VP8EncPredChroma8 = IntraChromaPreds;
+ VP8SSE16x16 = SSE16x16;
+ VP8SSE8x8 = SSE8x8;
+ VP8SSE16x8 = SSE16x8;
+ VP8SSE4x4 = SSE4x4;
+ VP8TDisto4x4 = Disto4x4;
+ VP8TDisto16x16 = Disto16x16;
+ VP8EncQuantizeBlock = QuantizeBlock;
+ VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
+ VP8Copy4x4 = Copy4x4;
+
+ // If defined, use CPUInfo() to overwrite some pointers with faster versions.
+ if (VP8GetCPUInfo) {
+#if defined(WEBP_USE_SSE2)
+ if (VP8GetCPUInfo(kSSE2)) {
+ VP8EncDspInitSSE2();
+ }
+#elif defined(WEBP_USE_NEON)
+ if (VP8GetCPUInfo(kNEON)) {
+ VP8EncDspInitNEON();
+ }
+#endif
+ }
+}
+
diff --git a/src/3rdparty/libwebp/src/dsp/enc_neon.c b/src/3rdparty/libwebp/src/dsp/enc_neon.c
new file mode 100644
index 0000000..52cca18
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/enc_neon.c
@@ -0,0 +1,632 @@
+// Copyright 2012 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// ARM NEON version of speed-critical encoding functions.
+//
+// adapted from libvpx (http://www.webmproject.org/code/)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_NEON)
+
+#include "../enc/vp8enci.h"
+
+//------------------------------------------------------------------------------
+// Transforms (Paragraph 14.4)
+
+// Inverse transform.
+// This code is pretty much the same as TransformOneNEON in the decoder, except
+// for subtraction to *ref. See the comments there for algorithmic explanations.
+static void ITransformOne(const uint8_t* ref,
+ const int16_t* in, uint8_t* dst) {
+ const int kBPS = BPS;
+ const int16_t kC1C2[] = { 20091, 17734, 0, 0 }; // kC1 / (kC2 >> 1) / 0 / 0
+
+ __asm__ volatile (
+ "vld1.16 {q1, q2}, [%[in]] \n"
+ "vld1.16 {d0}, [%[kC1C2]] \n"
+
+ // d2: in[0]
+ // d3: in[8]
+ // d4: in[4]
+ // d5: in[12]
+ "vswp d3, d4 \n"
+
+ // q8 = {in[4], in[12]} * kC1 * 2 >> 16
+ // q9 = {in[4], in[12]} * kC2 >> 16
+ "vqdmulh.s16 q8, q2, d0[0] \n"
+ "vqdmulh.s16 q9, q2, d0[1] \n"
+
+ // d22 = a = in[0] + in[8]
+ // d23 = b = in[0] - in[8]
+ "vqadd.s16 d22, d2, d3 \n"
+ "vqsub.s16 d23, d2, d3 \n"
+
+ // q8 = in[4]/[12] * kC1 >> 16
+ "vshr.s16 q8, q8, #1 \n"
+
+ // Add {in[4], in[12]} back after the multiplication.
+ "vqadd.s16 q8, q2, q8 \n"
+
+ // d20 = c = in[4]*kC2 - in[12]*kC1
+ // d21 = d = in[4]*kC1 + in[12]*kC2
+ "vqsub.s16 d20, d18, d17 \n"
+ "vqadd.s16 d21, d19, d16 \n"
+
+ // d2 = tmp[0] = a + d
+ // d3 = tmp[1] = b + c
+ // d4 = tmp[2] = b - c
+ // d5 = tmp[3] = a - d
+ "vqadd.s16 d2, d22, d21 \n"
+ "vqadd.s16 d3, d23, d20 \n"
+ "vqsub.s16 d4, d23, d20 \n"
+ "vqsub.s16 d5, d22, d21 \n"
+
+ "vzip.16 q1, q2 \n"
+ "vzip.16 q1, q2 \n"
+
+ "vswp d3, d4 \n"
+
+ // q8 = {tmp[4], tmp[12]} * kC1 * 2 >> 16
+ // q9 = {tmp[4], tmp[12]} * kC2 >> 16
+ "vqdmulh.s16 q8, q2, d0[0] \n"
+ "vqdmulh.s16 q9, q2, d0[1] \n"
+
+ // d22 = a = tmp[0] + tmp[8]
+ // d23 = b = tmp[0] - tmp[8]
+ "vqadd.s16 d22, d2, d3 \n"
+ "vqsub.s16 d23, d2, d3 \n"
+
+ "vshr.s16 q8, q8, #1 \n"
+ "vqadd.s16 q8, q2, q8 \n"
+
+ // d20 = c = in[4]*kC2 - in[12]*kC1
+ // d21 = d = in[4]*kC1 + in[12]*kC2
+ "vqsub.s16 d20, d18, d17 \n"
+ "vqadd.s16 d21, d19, d16 \n"
+
+ // d2 = tmp[0] = a + d
+ // d3 = tmp[1] = b + c
+ // d4 = tmp[2] = b - c
+ // d5 = tmp[3] = a - d
+ "vqadd.s16 d2, d22, d21 \n"
+ "vqadd.s16 d3, d23, d20 \n"
+ "vqsub.s16 d4, d23, d20 \n"
+ "vqsub.s16 d5, d22, d21 \n"
+
+ "vld1.32 d6[0], [%[ref]], %[kBPS] \n"
+ "vld1.32 d6[1], [%[ref]], %[kBPS] \n"
+ "vld1.32 d7[0], [%[ref]], %[kBPS] \n"
+ "vld1.32 d7[1], [%[ref]], %[kBPS] \n"
+
+ "sub %[ref], %[ref], %[kBPS], lsl #2 \n"
+
+ // (val) + 4 >> 3
+ "vrshr.s16 d2, d2, #3 \n"
+ "vrshr.s16 d3, d3, #3 \n"
+ "vrshr.s16 d4, d4, #3 \n"
+ "vrshr.s16 d5, d5, #3 \n"
+
+ "vzip.16 q1, q2 \n"
+ "vzip.16 q1, q2 \n"
+
+ // Must accumulate before saturating
+ "vmovl.u8 q8, d6 \n"
+ "vmovl.u8 q9, d7 \n"
+
+ "vqadd.s16 q1, q1, q8 \n"
+ "vqadd.s16 q2, q2, q9 \n"
+
+ "vqmovun.s16 d0, q1 \n"
+ "vqmovun.s16 d1, q2 \n"
+
+ "vst1.32 d0[0], [%[dst]], %[kBPS] \n"
+ "vst1.32 d0[1], [%[dst]], %[kBPS] \n"
+ "vst1.32 d1[0], [%[dst]], %[kBPS] \n"
+ "vst1.32 d1[1], [%[dst]] \n"
+
+ : [in] "+r"(in), [dst] "+r"(dst) // modified registers
+ : [kBPS] "r"(kBPS), [kC1C2] "r"(kC1C2), [ref] "r"(ref) // constants
+ : "memory", "q0", "q1", "q2", "q8", "q9", "q10", "q11" // clobbered
+ );
+}
+
+static void ITransform(const uint8_t* ref,
+ const int16_t* in, uint8_t* dst, int do_two) {
+ ITransformOne(ref, in, dst);
+ if (do_two) {
+ ITransformOne(ref + 4, in + 16, dst + 4);
+ }
+}
+
+// Same code as dec_neon.c
+static void ITransformWHT(const int16_t* in, int16_t* out) {
+ const int kStep = 32; // The store is only incrementing the pointer as if we
+ // had stored a single byte.
+ __asm__ volatile (
+ // part 1
+ // load data into q0, q1
+ "vld1.16 {q0, q1}, [%[in]] \n"
+
+ "vaddl.s16 q2, d0, d3 \n" // a0 = in[0] + in[12]
+ "vaddl.s16 q3, d1, d2 \n" // a1 = in[4] + in[8]
+ "vsubl.s16 q4, d1, d2 \n" // a2 = in[4] - in[8]
+ "vsubl.s16 q5, d0, d3 \n" // a3 = in[0] - in[12]
+
+ "vadd.s32 q0, q2, q3 \n" // tmp[0] = a0 + a1
+ "vsub.s32 q2, q2, q3 \n" // tmp[8] = a0 - a1
+ "vadd.s32 q1, q5, q4 \n" // tmp[4] = a3 + a2
+ "vsub.s32 q3, q5, q4 \n" // tmp[12] = a3 - a2
+
+ // Transpose
+ // q0 = tmp[0, 4, 8, 12], q1 = tmp[2, 6, 10, 14]
+ // q2 = tmp[1, 5, 9, 13], q3 = tmp[3, 7, 11, 15]
+ "vswp d1, d4 \n" // vtrn.64 q0, q2
+ "vswp d3, d6 \n" // vtrn.64 q1, q3
+ "vtrn.32 q0, q1 \n"
+ "vtrn.32 q2, q3 \n"
+
+ "vmov.s32 q4, #3 \n" // dc = 3
+ "vadd.s32 q0, q0, q4 \n" // dc = tmp[0] + 3
+ "vadd.s32 q6, q0, q3 \n" // a0 = dc + tmp[3]
+ "vadd.s32 q7, q1, q2 \n" // a1 = tmp[1] + tmp[2]
+ "vsub.s32 q8, q1, q2 \n" // a2 = tmp[1] - tmp[2]
+ "vsub.s32 q9, q0, q3 \n" // a3 = dc - tmp[3]
+
+ "vadd.s32 q0, q6, q7 \n"
+ "vshrn.s32 d0, q0, #3 \n" // (a0 + a1) >> 3
+ "vadd.s32 q1, q9, q8 \n"
+ "vshrn.s32 d1, q1, #3 \n" // (a3 + a2) >> 3
+ "vsub.s32 q2, q6, q7 \n"
+ "vshrn.s32 d2, q2, #3 \n" // (a0 - a1) >> 3
+ "vsub.s32 q3, q9, q8 \n"
+ "vshrn.s32 d3, q3, #3 \n" // (a3 - a2) >> 3
+
+ // set the results to output
+ "vst1.16 d0[0], [%[out]], %[kStep] \n"
+ "vst1.16 d1[0], [%[out]], %[kStep] \n"
+ "vst1.16 d2[0], [%[out]], %[kStep] \n"
+ "vst1.16 d3[0], [%[out]], %[kStep] \n"
+ "vst1.16 d0[1], [%[out]], %[kStep] \n"
+ "vst1.16 d1[1], [%[out]], %[kStep] \n"
+ "vst1.16 d2[1], [%[out]], %[kStep] \n"
+ "vst1.16 d3[1], [%[out]], %[kStep] \n"
+ "vst1.16 d0[2], [%[out]], %[kStep] \n"
+ "vst1.16 d1[2], [%[out]], %[kStep] \n"
+ "vst1.16 d2[2], [%[out]], %[kStep] \n"
+ "vst1.16 d3[2], [%[out]], %[kStep] \n"
+ "vst1.16 d0[3], [%[out]], %[kStep] \n"
+ "vst1.16 d1[3], [%[out]], %[kStep] \n"
+ "vst1.16 d2[3], [%[out]], %[kStep] \n"
+ "vst1.16 d3[3], [%[out]], %[kStep] \n"
+
+ : [out] "+r"(out) // modified registers
+ : [in] "r"(in), [kStep] "r"(kStep) // constants
+ : "memory", "q0", "q1", "q2", "q3", "q4",
+ "q5", "q6", "q7", "q8", "q9" // clobbered
+ );
+}
+
+// Forward transform.
+
+// adapted from vp8/encoder/arm/neon/shortfdct_neon.asm
+static const int16_t kCoeff16[] = {
+ 5352, 5352, 5352, 5352, 2217, 2217, 2217, 2217
+};
+static const int32_t kCoeff32[] = {
+ 1812, 1812, 1812, 1812,
+ 937, 937, 937, 937,
+ 12000, 12000, 12000, 12000,
+ 51000, 51000, 51000, 51000
+};
+
+static void FTransform(const uint8_t* src, const uint8_t* ref,
+ int16_t* out) {
+ const int kBPS = BPS;
+ const uint8_t* src_ptr = src;
+ const uint8_t* ref_ptr = ref;
+ const int16_t* coeff16 = kCoeff16;
+ const int32_t* coeff32 = kCoeff32;
+
+ __asm__ volatile (
+ // load src into q4, q5 in high half
+ "vld1.8 {d8}, [%[src_ptr]], %[kBPS] \n"
+ "vld1.8 {d10}, [%[src_ptr]], %[kBPS] \n"
+ "vld1.8 {d9}, [%[src_ptr]], %[kBPS] \n"
+ "vld1.8 {d11}, [%[src_ptr]] \n"
+
+ // load ref into q6, q7 in high half
+ "vld1.8 {d12}, [%[ref_ptr]], %[kBPS] \n"
+ "vld1.8 {d14}, [%[ref_ptr]], %[kBPS] \n"
+ "vld1.8 {d13}, [%[ref_ptr]], %[kBPS] \n"
+ "vld1.8 {d15}, [%[ref_ptr]] \n"
+
+ // Pack the high values in to q4 and q6
+ "vtrn.32 q4, q5 \n"
+ "vtrn.32 q6, q7 \n"
+
+ // d[0-3] = src - ref
+ "vsubl.u8 q0, d8, d12 \n"
+ "vsubl.u8 q1, d9, d13 \n"
+
+ // load coeff16 into q8(d16=5352, d17=2217)
+ "vld1.16 {q8}, [%[coeff16]] \n"
+
+ // load coeff32 high half into q9 = 1812, q10 = 937
+ "vld1.32 {q9, q10}, [%[coeff32]]! \n"
+
+ // load coeff32 low half into q11=12000, q12=51000
+ "vld1.32 {q11,q12}, [%[coeff32]] \n"
+
+ // part 1
+ // Transpose. Register dN is the same as dN in C
+ "vtrn.32 d0, d2 \n"
+ "vtrn.32 d1, d3 \n"
+ "vtrn.16 d0, d1 \n"
+ "vtrn.16 d2, d3 \n"
+
+ "vadd.s16 d4, d0, d3 \n" // a0 = d0 + d3
+ "vadd.s16 d5, d1, d2 \n" // a1 = d1 + d2
+ "vsub.s16 d6, d1, d2 \n" // a2 = d1 - d2
+ "vsub.s16 d7, d0, d3 \n" // a3 = d0 - d3
+
+ "vadd.s16 d0, d4, d5 \n" // a0 + a1
+ "vshl.s16 d0, d0, #3 \n" // temp[0+i*4] = (a0+a1) << 3
+ "vsub.s16 d2, d4, d5 \n" // a0 - a1
+ "vshl.s16 d2, d2, #3 \n" // (temp[2+i*4] = (a0-a1) << 3
+
+ "vmlal.s16 q9, d7, d16 \n" // a3*5352 + 1812
+ "vmlal.s16 q10, d7, d17 \n" // a3*2217 + 937
+ "vmlal.s16 q9, d6, d17 \n" // a2*2217 + a3*5352 + 1812
+ "vmlsl.s16 q10, d6, d16 \n" // a3*2217 + 937 - a2*5352
+
+ // temp[1+i*4] = (d2*2217 + d3*5352 + 1812) >> 9
+ // temp[3+i*4] = (d3*2217 + 937 - d2*5352) >> 9
+ "vshrn.s32 d1, q9, #9 \n"
+ "vshrn.s32 d3, q10, #9 \n"
+
+ // part 2
+ // transpose d0=ip[0], d1=ip[4], d2=ip[8], d3=ip[12]
+ "vtrn.32 d0, d2 \n"
+ "vtrn.32 d1, d3 \n"
+ "vtrn.16 d0, d1 \n"
+ "vtrn.16 d2, d3 \n"
+
+ "vmov.s16 d26, #7 \n"
+
+ "vadd.s16 d4, d0, d3 \n" // a1 = ip[0] + ip[12]
+ "vadd.s16 d5, d1, d2 \n" // b1 = ip[4] + ip[8]
+ "vsub.s16 d6, d1, d2 \n" // c1 = ip[4] - ip[8]
+ "vadd.s16 d4, d4, d26 \n" // a1 + 7
+ "vsub.s16 d7, d0, d3 \n" // d1 = ip[0] - ip[12]
+
+ "vadd.s16 d0, d4, d5 \n" // op[0] = a1 + b1 + 7
+ "vsub.s16 d2, d4, d5 \n" // op[8] = a1 - b1 + 7
+
+ "vmlal.s16 q11, d7, d16 \n" // d1*5352 + 12000
+ "vmlal.s16 q12, d7, d17 \n" // d1*2217 + 51000
+
+ "vceq.s16 d4, d7, #0 \n"
+
+ "vshr.s16 d0, d0, #4 \n"
+ "vshr.s16 d2, d2, #4 \n"
+
+ "vmlal.s16 q11, d6, d17 \n" // c1*2217 + d1*5352 + 12000
+ "vmlsl.s16 q12, d6, d16 \n" // d1*2217 - c1*5352 + 51000
+
+ "vmvn d4, d4 \n" // !(d1 == 0)
+ // op[4] = (c1*2217 + d1*5352 + 12000)>>16
+ "vshrn.s32 d1, q11, #16 \n"
+ // op[4] += (d1!=0)
+ "vsub.s16 d1, d1, d4 \n"
+ // op[12]= (d1*2217 - c1*5352 + 51000)>>16
+ "vshrn.s32 d3, q12, #16 \n"
+
+ // set result to out array
+ "vst1.16 {q0, q1}, [%[out]] \n"
+ : [src_ptr] "+r"(src_ptr), [ref_ptr] "+r"(ref_ptr),
+ [coeff32] "+r"(coeff32) // modified registers
+ : [kBPS] "r"(kBPS), [coeff16] "r"(coeff16),
+ [out] "r"(out) // constants
+ : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9",
+ "q10", "q11", "q12", "q13" // clobbered
+ );
+}
+
+static void FTransformWHT(const int16_t* in, int16_t* out) {
+ const int kStep = 32;
+ __asm__ volatile (
+ // d0 = in[0 * 16] , d1 = in[1 * 16]
+ // d2 = in[2 * 16] , d3 = in[3 * 16]
+ "vld1.16 d0[0], [%[in]], %[kStep] \n"
+ "vld1.16 d1[0], [%[in]], %[kStep] \n"
+ "vld1.16 d2[0], [%[in]], %[kStep] \n"
+ "vld1.16 d3[0], [%[in]], %[kStep] \n"
+ "vld1.16 d0[1], [%[in]], %[kStep] \n"
+ "vld1.16 d1[1], [%[in]], %[kStep] \n"
+ "vld1.16 d2[1], [%[in]], %[kStep] \n"
+ "vld1.16 d3[1], [%[in]], %[kStep] \n"
+ "vld1.16 d0[2], [%[in]], %[kStep] \n"
+ "vld1.16 d1[2], [%[in]], %[kStep] \n"
+ "vld1.16 d2[2], [%[in]], %[kStep] \n"
+ "vld1.16 d3[2], [%[in]], %[kStep] \n"
+ "vld1.16 d0[3], [%[in]], %[kStep] \n"
+ "vld1.16 d1[3], [%[in]], %[kStep] \n"
+ "vld1.16 d2[3], [%[in]], %[kStep] \n"
+ "vld1.16 d3[3], [%[in]], %[kStep] \n"
+
+ "vaddl.s16 q2, d0, d2 \n" // a0=(in[0*16]+in[2*16])
+ "vaddl.s16 q3, d1, d3 \n" // a1=(in[1*16]+in[3*16])
+ "vsubl.s16 q4, d1, d3 \n" // a2=(in[1*16]-in[3*16])
+ "vsubl.s16 q5, d0, d2 \n" // a3=(in[0*16]-in[2*16])
+
+ "vqadd.s32 q6, q2, q3 \n" // a0 + a1
+ "vqadd.s32 q7, q5, q4 \n" // a3 + a2
+ "vqsub.s32 q8, q5, q4 \n" // a3 - a2
+ "vqsub.s32 q9, q2, q3 \n" // a0 - a1
+
+ // Transpose
+ // q6 = tmp[0, 1, 2, 3] ; q7 = tmp[ 4, 5, 6, 7]
+ // q8 = tmp[8, 9, 10, 11] ; q9 = tmp[12, 13, 14, 15]
+ "vswp d13, d16 \n" // vtrn.64 q0, q2
+ "vswp d15, d18 \n" // vtrn.64 q1, q3
+ "vtrn.32 q6, q7 \n"
+ "vtrn.32 q8, q9 \n"
+
+ "vqadd.s32 q0, q6, q8 \n" // a0 = tmp[0] + tmp[8]
+ "vqadd.s32 q1, q7, q9 \n" // a1 = tmp[4] + tmp[12]
+ "vqsub.s32 q2, q7, q9 \n" // a2 = tmp[4] - tmp[12]
+ "vqsub.s32 q3, q6, q8 \n" // a3 = tmp[0] - tmp[8]
+
+ "vqadd.s32 q4, q0, q1 \n" // b0 = a0 + a1
+ "vqadd.s32 q5, q3, q2 \n" // b1 = a3 + a2
+ "vqsub.s32 q6, q3, q2 \n" // b2 = a3 - a2
+ "vqsub.s32 q7, q0, q1 \n" // b3 = a0 - a1
+
+ "vshrn.s32 d18, q4, #1 \n" // b0 >> 1
+ "vshrn.s32 d19, q5, #1 \n" // b1 >> 1
+ "vshrn.s32 d20, q6, #1 \n" // b2 >> 1
+ "vshrn.s32 d21, q7, #1 \n" // b3 >> 1
+
+ "vst1.16 {q9, q10}, [%[out]] \n"
+
+ : [in] "+r"(in)
+ : [kStep] "r"(kStep), [out] "r"(out)
+ : "memory", "q0", "q1", "q2", "q3", "q4", "q5",
+ "q6", "q7", "q8", "q9", "q10" // clobbered
+ ) ;
+}
+
+//------------------------------------------------------------------------------
+// Texture distortion
+//
+// We try to match the spectral content (weighted) between source and
+// reconstructed samples.
+
+// Hadamard transform
+// Returns the weighted sum of the absolute value of transformed coefficients.
+// This uses a TTransform helper function in C
+static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
+ const uint16_t* const w) {
+ const int kBPS = BPS;
+ const uint8_t* A = a;
+ const uint8_t* B = b;
+ const uint16_t* W = w;
+ int sum;
+ __asm__ volatile (
+ "vld1.32 d0[0], [%[a]], %[kBPS] \n"
+ "vld1.32 d0[1], [%[a]], %[kBPS] \n"
+ "vld1.32 d2[0], [%[a]], %[kBPS] \n"
+ "vld1.32 d2[1], [%[a]] \n"
+
+ "vld1.32 d1[0], [%[b]], %[kBPS] \n"
+ "vld1.32 d1[1], [%[b]], %[kBPS] \n"
+ "vld1.32 d3[0], [%[b]], %[kBPS] \n"
+ "vld1.32 d3[1], [%[b]] \n"
+
+ // a d0/d2, b d1/d3
+ // d0/d1: 01 01 01 01
+ // d2/d3: 23 23 23 23
+ // But: it goes 01 45 23 67
+ // Notice the middle values are transposed
+ "vtrn.16 q0, q1 \n"
+
+ // {a0, a1} = {in[0] + in[2], in[1] + in[3]}
+ "vaddl.u8 q2, d0, d2 \n"
+ "vaddl.u8 q10, d1, d3 \n"
+ // {a3, a2} = {in[0] - in[2], in[1] - in[3]}
+ "vsubl.u8 q3, d0, d2 \n"
+ "vsubl.u8 q11, d1, d3 \n"
+
+ // tmp[0] = a0 + a1
+ "vpaddl.s16 q0, q2 \n"
+ "vpaddl.s16 q8, q10 \n"
+
+ // tmp[1] = a3 + a2
+ "vpaddl.s16 q1, q3 \n"
+ "vpaddl.s16 q9, q11 \n"
+
+ // No pair subtract
+ // q2 = {a0, a3}
+ // q3 = {a1, a2}
+ "vtrn.16 q2, q3 \n"
+ "vtrn.16 q10, q11 \n"
+
+ // {tmp[3], tmp[2]} = {a0 - a1, a3 - a2}
+ "vsubl.s16 q12, d4, d6 \n"
+ "vsubl.s16 q13, d5, d7 \n"
+ "vsubl.s16 q14, d20, d22 \n"
+ "vsubl.s16 q15, d21, d23 \n"
+
+ // separate tmp[3] and tmp[2]
+ // q12 = tmp[3]
+ // q13 = tmp[2]
+ "vtrn.32 q12, q13 \n"
+ "vtrn.32 q14, q15 \n"
+
+ // Transpose tmp for a
+ "vswp d1, d26 \n" // vtrn.64
+ "vswp d3, d24 \n" // vtrn.64
+ "vtrn.32 q0, q1 \n"
+ "vtrn.32 q13, q12 \n"
+
+ // Transpose tmp for b
+ "vswp d17, d30 \n" // vtrn.64
+ "vswp d19, d28 \n" // vtrn.64
+ "vtrn.32 q8, q9 \n"
+ "vtrn.32 q15, q14 \n"
+
+ // The first Q register is a, the second b.
+ // q0/8 tmp[0-3]
+ // q13/15 tmp[4-7]
+ // q1/9 tmp[8-11]
+ // q12/14 tmp[12-15]
+
+ // These are still in 01 45 23 67 order. We fix it easily in the addition
+ // case but the subtraction propagates them.
+ "vswp d3, d27 \n"
+ "vswp d19, d31 \n"
+
+ // a0 = tmp[0] + tmp[8]
+ "vadd.s32 q2, q0, q1 \n"
+ "vadd.s32 q3, q8, q9 \n"
+
+ // a1 = tmp[4] + tmp[12]
+ "vadd.s32 q10, q13, q12 \n"
+ "vadd.s32 q11, q15, q14 \n"
+
+ // a2 = tmp[4] - tmp[12]
+ "vsub.s32 q13, q13, q12 \n"
+ "vsub.s32 q15, q15, q14 \n"
+
+ // a3 = tmp[0] - tmp[8]
+ "vsub.s32 q0, q0, q1 \n"
+ "vsub.s32 q8, q8, q9 \n"
+
+ // b0 = a0 + a1
+ "vadd.s32 q1, q2, q10 \n"
+ "vadd.s32 q9, q3, q11 \n"
+
+ // b1 = a3 + a2
+ "vadd.s32 q12, q0, q13 \n"
+ "vadd.s32 q14, q8, q15 \n"
+
+ // b2 = a3 - a2
+ "vsub.s32 q0, q0, q13 \n"
+ "vsub.s32 q8, q8, q15 \n"
+
+ // b3 = a0 - a1
+ "vsub.s32 q2, q2, q10 \n"
+ "vsub.s32 q3, q3, q11 \n"
+
+ "vld1.64 {q10, q11}, [%[w]] \n"
+
+ // abs(b0)
+ "vabs.s32 q1, q1 \n"
+ "vabs.s32 q9, q9 \n"
+ // abs(b1)
+ "vabs.s32 q12, q12 \n"
+ "vabs.s32 q14, q14 \n"
+ // abs(b2)
+ "vabs.s32 q0, q0 \n"
+ "vabs.s32 q8, q8 \n"
+ // abs(b3)
+ "vabs.s32 q2, q2 \n"
+ "vabs.s32 q3, q3 \n"
+
+ // expand w before using.
+ "vmovl.u16 q13, d20 \n"
+ "vmovl.u16 q15, d21 \n"
+
+ // w[0] * abs(b0)
+ "vmul.u32 q1, q1, q13 \n"
+ "vmul.u32 q9, q9, q13 \n"
+
+ // w[4] * abs(b1)
+ "vmla.u32 q1, q12, q15 \n"
+ "vmla.u32 q9, q14, q15 \n"
+
+ // expand w before using.
+ "vmovl.u16 q13, d22 \n"
+ "vmovl.u16 q15, d23 \n"
+
+ // w[8] * abs(b1)
+ "vmla.u32 q1, q0, q13 \n"
+ "vmla.u32 q9, q8, q13 \n"
+
+ // w[12] * abs(b1)
+ "vmla.u32 q1, q2, q15 \n"
+ "vmla.u32 q9, q3, q15 \n"
+
+ // Sum the arrays
+ "vpaddl.u32 q1, q1 \n"
+ "vpaddl.u32 q9, q9 \n"
+ "vadd.u64 d2, d3 \n"
+ "vadd.u64 d18, d19 \n"
+
+ // Hadamard transform needs 4 bits of extra precision (2 bits in each
+ // direction) for dynamic raw. Weights w[] are 16bits at max, so the maximum
+ // precision for coeff is 8bit of input + 4bits of Hadamard transform +
+ // 16bits for w[] + 2 bits of abs() summation.
+ //
+ // This uses a maximum of 31 bits (signed). Discarding the top 32 bits is
+ // A-OK.
+
+ // sum2 - sum1
+ "vsub.u32 d0, d2, d18 \n"
+ // abs(sum2 - sum1)
+ "vabs.s32 d0, d0 \n"
+ // abs(sum2 - sum1) >> 5
+ "vshr.u32 d0, #5 \n"
+
+ // It would be better to move the value straight into r0 but I'm not
+ // entirely sure how this works with inline assembly.
+ "vmov.32 %[sum], d0[0] \n"
+
+ : [sum] "=r"(sum), [a] "+r"(A), [b] "+r"(B), [w] "+r"(W)
+ : [kBPS] "r"(kBPS)
+ : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9",
+ "q10", "q11", "q12", "q13", "q14", "q15" // clobbered
+ ) ;
+
+ return sum;
+}
+
+static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
+ const uint16_t* const w) {
+ int D = 0;
+ int x, y;
+ for (y = 0; y < 16 * BPS; y += 4 * BPS) {
+ for (x = 0; x < 16; x += 4) {
+ D += Disto4x4(a + x + y, b + x + y, w);
+ }
+ }
+ return D;
+}
+
+#endif // WEBP_USE_NEON
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void VP8EncDspInitNEON(void);
+
+void VP8EncDspInitNEON(void) {
+#if defined(WEBP_USE_NEON)
+ VP8ITransform = ITransform;
+ VP8FTransform = FTransform;
+
+ VP8ITransformWHT = ITransformWHT;
+ VP8FTransformWHT = FTransformWHT;
+
+ VP8TDisto4x4 = Disto4x4;
+ VP8TDisto16x16 = Disto16x16;
+#endif // WEBP_USE_NEON
+}
+
diff --git a/src/3rdparty/libwebp/src/dsp/enc_sse2.c b/src/3rdparty/libwebp/src/dsp/enc_sse2.c
new file mode 100644
index 0000000..540a3cb
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/enc_sse2.c
@@ -0,0 +1,957 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// SSE2 version of speed-critical encoding functions.
+//
+// Author: Christian Duvivier (cduvivier@google.com)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_SSE2)
+#include <stdlib.h> // for abs()
+#include <emmintrin.h>
+
+#include "../enc/vp8enci.h"
+
+//------------------------------------------------------------------------------
+// Quite useful macro for debugging. Left here for convenience.
+
+#if 0
+#include <stdio.h>
+static void PrintReg(const __m128i r, const char* const name, int size) {
+ int n;
+ union {
+ __m128i r;
+ uint8_t i8[16];
+ uint16_t i16[8];
+ uint32_t i32[4];
+ uint64_t i64[2];
+ } tmp;
+ tmp.r = r;
+ printf("%s\t: ", name);
+ if (size == 8) {
+ for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
+ } else if (size == 16) {
+ for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
+ } else if (size == 32) {
+ for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
+ } else {
+ for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
+ }
+ printf("\n");
+}
+#endif
+
+//------------------------------------------------------------------------------
+// Compute susceptibility based on DCT-coeff histograms:
+// the higher, the "easier" the macroblock is to compress.
+
+static void CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
+ int start_block, int end_block,
+ VP8Histogram* const histo) {
+ const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
+ int j;
+ for (j = start_block; j < end_block; ++j) {
+ int16_t out[16];
+ int k;
+
+ VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
+
+ // Convert coefficients to bin (within out[]).
+ {
+ // Load.
+ const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
+ const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
+ // sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative)
+ const __m128i sign0 = _mm_srai_epi16(out0, 15);
+ const __m128i sign1 = _mm_srai_epi16(out1, 15);
+ // abs(out) = (out ^ sign) - sign
+ const __m128i xor0 = _mm_xor_si128(out0, sign0);
+ const __m128i xor1 = _mm_xor_si128(out1, sign1);
+ const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
+ const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
+ // v = abs(out) >> 3
+ const __m128i v0 = _mm_srai_epi16(abs0, 3);
+ const __m128i v1 = _mm_srai_epi16(abs1, 3);
+ // bin = min(v, MAX_COEFF_THRESH)
+ const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
+ const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
+ // Store.
+ _mm_storeu_si128((__m128i*)&out[0], bin0);
+ _mm_storeu_si128((__m128i*)&out[8], bin1);
+ }
+
+ // Convert coefficients to bin.
+ for (k = 0; k < 16; ++k) {
+ histo->distribution[out[k]]++;
+ }
+ }
+}
+
+//------------------------------------------------------------------------------
+// Transforms (Paragraph 14.4)
+
+// Does one or two inverse transforms.
+static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
+ int do_two) {
+ // This implementation makes use of 16-bit fixed point versions of two
+ // multiply constants:
+ // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
+ // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
+ //
+ // To be able to use signed 16-bit integers, we use the following trick to
+ // have constants within range:
+ // - Associated constants are obtained by subtracting the 16-bit fixed point
+ // version of one:
+ // k = K - (1 << 16) => K = k + (1 << 16)
+ // K1 = 85267 => k1 = 20091
+ // K2 = 35468 => k2 = -30068
+ // - The multiplication of a variable by a constant become the sum of the
+ // variable and the multiplication of that variable by the associated
+ // constant:
+ // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
+ const __m128i k1 = _mm_set1_epi16(20091);
+ const __m128i k2 = _mm_set1_epi16(-30068);
+ __m128i T0, T1, T2, T3;
+
+ // Load and concatenate the transform coefficients (we'll do two inverse
+ // transforms in parallel). In the case of only one inverse transform, the
+ // second half of the vectors will just contain random value we'll never
+ // use nor store.
+ __m128i in0, in1, in2, in3;
+ {
+ in0 = _mm_loadl_epi64((__m128i*)&in[0]);
+ in1 = _mm_loadl_epi64((__m128i*)&in[4]);
+ in2 = _mm_loadl_epi64((__m128i*)&in[8]);
+ in3 = _mm_loadl_epi64((__m128i*)&in[12]);
+ // a00 a10 a20 a30 x x x x
+ // a01 a11 a21 a31 x x x x
+ // a02 a12 a22 a32 x x x x
+ // a03 a13 a23 a33 x x x x
+ if (do_two) {
+ const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
+ const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
+ const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
+ const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
+ in0 = _mm_unpacklo_epi64(in0, inB0);
+ in1 = _mm_unpacklo_epi64(in1, inB1);
+ in2 = _mm_unpacklo_epi64(in2, inB2);
+ in3 = _mm_unpacklo_epi64(in3, inB3);
+ // a00 a10 a20 a30 b00 b10 b20 b30
+ // a01 a11 a21 a31 b01 b11 b21 b31
+ // a02 a12 a22 a32 b02 b12 b22 b32
+ // a03 a13 a23 a33 b03 b13 b23 b33
+ }
+ }
+
+ // Vertical pass and subsequent transpose.
+ {
+ // First pass, c and d calculations are longer because of the "trick"
+ // multiplications.
+ const __m128i a = _mm_add_epi16(in0, in2);
+ const __m128i b = _mm_sub_epi16(in0, in2);
+ // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
+ const __m128i c1 = _mm_mulhi_epi16(in1, k2);
+ const __m128i c2 = _mm_mulhi_epi16(in3, k1);
+ const __m128i c3 = _mm_sub_epi16(in1, in3);
+ const __m128i c4 = _mm_sub_epi16(c1, c2);
+ const __m128i c = _mm_add_epi16(c3, c4);
+ // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
+ const __m128i d1 = _mm_mulhi_epi16(in1, k1);
+ const __m128i d2 = _mm_mulhi_epi16(in3, k2);
+ const __m128i d3 = _mm_add_epi16(in1, in3);
+ const __m128i d4 = _mm_add_epi16(d1, d2);
+ const __m128i d = _mm_add_epi16(d3, d4);
+
+ // Second pass.
+ const __m128i tmp0 = _mm_add_epi16(a, d);
+ const __m128i tmp1 = _mm_add_epi16(b, c);
+ const __m128i tmp2 = _mm_sub_epi16(b, c);
+ const __m128i tmp3 = _mm_sub_epi16(a, d);
+
+ // Transpose the two 4x4.
+ // a00 a01 a02 a03 b00 b01 b02 b03
+ // a10 a11 a12 a13 b10 b11 b12 b13
+ // a20 a21 a22 a23 b20 b21 b22 b23
+ // a30 a31 a32 a33 b30 b31 b32 b33
+ const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
+ const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
+ const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
+ const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
+ // a00 a10 a01 a11 a02 a12 a03 a13
+ // a20 a30 a21 a31 a22 a32 a23 a33
+ // b00 b10 b01 b11 b02 b12 b03 b13
+ // b20 b30 b21 b31 b22 b32 b23 b33
+ const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
+ const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
+ const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
+ const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
+ // a00 a10 a20 a30 a01 a11 a21 a31
+ // b00 b10 b20 b30 b01 b11 b21 b31
+ // a02 a12 a22 a32 a03 a13 a23 a33
+ // b02 b12 a22 b32 b03 b13 b23 b33
+ T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
+ T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
+ T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
+ T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
+ // a00 a10 a20 a30 b00 b10 b20 b30
+ // a01 a11 a21 a31 b01 b11 b21 b31
+ // a02 a12 a22 a32 b02 b12 b22 b32
+ // a03 a13 a23 a33 b03 b13 b23 b33
+ }
+
+ // Horizontal pass and subsequent transpose.
+ {
+ // First pass, c and d calculations are longer because of the "trick"
+ // multiplications.
+ const __m128i four = _mm_set1_epi16(4);
+ const __m128i dc = _mm_add_epi16(T0, four);
+ const __m128i a = _mm_add_epi16(dc, T2);
+ const __m128i b = _mm_sub_epi16(dc, T2);
+ // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
+ const __m128i c1 = _mm_mulhi_epi16(T1, k2);
+ const __m128i c2 = _mm_mulhi_epi16(T3, k1);
+ const __m128i c3 = _mm_sub_epi16(T1, T3);
+ const __m128i c4 = _mm_sub_epi16(c1, c2);
+ const __m128i c = _mm_add_epi16(c3, c4);
+ // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
+ const __m128i d1 = _mm_mulhi_epi16(T1, k1);
+ const __m128i d2 = _mm_mulhi_epi16(T3, k2);
+ const __m128i d3 = _mm_add_epi16(T1, T3);
+ const __m128i d4 = _mm_add_epi16(d1, d2);
+ const __m128i d = _mm_add_epi16(d3, d4);
+
+ // Second pass.
+ const __m128i tmp0 = _mm_add_epi16(a, d);
+ const __m128i tmp1 = _mm_add_epi16(b, c);
+ const __m128i tmp2 = _mm_sub_epi16(b, c);
+ const __m128i tmp3 = _mm_sub_epi16(a, d);
+ const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
+ const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
+ const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
+ const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
+
+ // Transpose the two 4x4.
+ // a00 a01 a02 a03 b00 b01 b02 b03
+ // a10 a11 a12 a13 b10 b11 b12 b13
+ // a20 a21 a22 a23 b20 b21 b22 b23
+ // a30 a31 a32 a33 b30 b31 b32 b33
+ const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
+ const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
+ const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
+ const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
+ // a00 a10 a01 a11 a02 a12 a03 a13
+ // a20 a30 a21 a31 a22 a32 a23 a33
+ // b00 b10 b01 b11 b02 b12 b03 b13
+ // b20 b30 b21 b31 b22 b32 b23 b33
+ const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
+ const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
+ const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
+ const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
+ // a00 a10 a20 a30 a01 a11 a21 a31
+ // b00 b10 b20 b30 b01 b11 b21 b31
+ // a02 a12 a22 a32 a03 a13 a23 a33
+ // b02 b12 a22 b32 b03 b13 b23 b33
+ T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
+ T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
+ T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
+ T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
+ // a00 a10 a20 a30 b00 b10 b20 b30
+ // a01 a11 a21 a31 b01 b11 b21 b31
+ // a02 a12 a22 a32 b02 b12 b22 b32
+ // a03 a13 a23 a33 b03 b13 b23 b33
+ }
+
+ // Add inverse transform to 'ref' and store.
+ {
+ const __m128i zero = _mm_setzero_si128();
+ // Load the reference(s).
+ __m128i ref0, ref1, ref2, ref3;
+ if (do_two) {
+ // Load eight bytes/pixels per line.
+ ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
+ ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
+ ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
+ ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
+ } else {
+ // Load four bytes/pixels per line.
+ ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
+ ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
+ ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
+ ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
+ }
+ // Convert to 16b.
+ ref0 = _mm_unpacklo_epi8(ref0, zero);
+ ref1 = _mm_unpacklo_epi8(ref1, zero);
+ ref2 = _mm_unpacklo_epi8(ref2, zero);
+ ref3 = _mm_unpacklo_epi8(ref3, zero);
+ // Add the inverse transform(s).
+ ref0 = _mm_add_epi16(ref0, T0);
+ ref1 = _mm_add_epi16(ref1, T1);
+ ref2 = _mm_add_epi16(ref2, T2);
+ ref3 = _mm_add_epi16(ref3, T3);
+ // Unsigned saturate to 8b.
+ ref0 = _mm_packus_epi16(ref0, ref0);
+ ref1 = _mm_packus_epi16(ref1, ref1);
+ ref2 = _mm_packus_epi16(ref2, ref2);
+ ref3 = _mm_packus_epi16(ref3, ref3);
+ // Store the results.
+ if (do_two) {
+ // Store eight bytes/pixels per line.
+ _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
+ _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
+ _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
+ _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
+ } else {
+ // Store four bytes/pixels per line.
+ *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
+ *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
+ *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
+ *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
+ }
+ }
+}
+
+static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
+ int16_t* out) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i seven = _mm_set1_epi16(7);
+ const __m128i k937 = _mm_set1_epi32(937);
+ const __m128i k1812 = _mm_set1_epi32(1812);
+ const __m128i k51000 = _mm_set1_epi32(51000);
+ const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
+ const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
+ 5352, 2217, 5352, 2217);
+ const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
+ 2217, -5352, 2217, -5352);
+ const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
+ const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
+ const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
+ 2217, 5352, 2217, 5352);
+ const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
+ -5352, 2217, -5352, 2217);
+ __m128i v01, v32;
+
+
+ // Difference between src and ref and initial transpose.
+ {
+ // Load src and convert to 16b.
+ const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
+ const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
+ const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
+ const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
+ const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
+ const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
+ const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
+ const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
+ // Load ref and convert to 16b.
+ const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
+ const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
+ const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
+ const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
+ const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
+ const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
+ const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
+ const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
+ // Compute difference. -> 00 01 02 03 00 00 00 00
+ const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
+ const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
+ const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
+ const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
+
+
+ // Unpack and shuffle
+ // 00 01 02 03 0 0 0 0
+ // 10 11 12 13 0 0 0 0
+ // 20 21 22 23 0 0 0 0
+ // 30 31 32 33 0 0 0 0
+ const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
+ const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
+ // 00 01 10 11 02 03 12 13
+ // 20 21 30 31 22 23 32 33
+ const __m128i shuf01_p =
+ _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
+ const __m128i shuf23_p =
+ _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
+ // 00 01 10 11 03 02 13 12
+ // 20 21 30 31 23 22 33 32
+ const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
+ const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
+ // 00 01 10 11 20 21 30 31
+ // 03 02 13 12 23 22 33 32
+ const __m128i a01 = _mm_add_epi16(s01, s32);
+ const __m128i a32 = _mm_sub_epi16(s01, s32);
+ // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
+ // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
+
+ const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ]
+ const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ]
+ const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
+ const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
+ const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
+ const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
+ const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9);
+ const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9);
+ const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
+ const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
+ const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1...
+ const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3
+ const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
+ v01 = _mm_unpacklo_epi32(s_lo, s_hi);
+ v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2..
+ }
+
+ // Second pass
+ {
+ // Same operations are done on the (0,3) and (1,2) pairs.
+ // a0 = v0 + v3
+ // a1 = v1 + v2
+ // a3 = v0 - v3
+ // a2 = v1 - v2
+ const __m128i a01 = _mm_add_epi16(v01, v32);
+ const __m128i a32 = _mm_sub_epi16(v01, v32);
+ const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
+ const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
+ const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
+
+ // d0 = (a0 + a1 + 7) >> 4;
+ // d2 = (a0 - a1 + 7) >> 4;
+ const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
+ const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
+ const __m128i d0 = _mm_srai_epi16(c0, 4);
+ const __m128i d2 = _mm_srai_epi16(c2, 4);
+
+ // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
+ // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
+ const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
+ const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
+ const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
+ const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
+ const __m128i d3 = _mm_add_epi32(c3, k51000);
+ const __m128i e1 = _mm_srai_epi32(d1, 16);
+ const __m128i e3 = _mm_srai_epi32(d3, 16);
+ const __m128i f1 = _mm_packs_epi32(e1, e1);
+ const __m128i f3 = _mm_packs_epi32(e3, e3);
+ // f1 = f1 + (a3 != 0);
+ // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
+ // desired (0, 1), we add one earlier through k12000_plus_one.
+ // -> f1 = f1 + 1 - (a3 == 0)
+ const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
+
+ _mm_storel_epi64((__m128i*)&out[ 0], d0);
+ _mm_storel_epi64((__m128i*)&out[ 4], g1);
+ _mm_storel_epi64((__m128i*)&out[ 8], d2);
+ _mm_storel_epi64((__m128i*)&out[12], f3);
+ }
+}
+
+static void FTransformWHTSSE2(const int16_t* in, int16_t* out) {
+ int32_t tmp[16];
+ int i;
+ for (i = 0; i < 4; ++i, in += 64) {
+ const int a0 = (in[0 * 16] + in[2 * 16]);
+ const int a1 = (in[1 * 16] + in[3 * 16]);
+ const int a2 = (in[1 * 16] - in[3 * 16]);
+ const int a3 = (in[0 * 16] - in[2 * 16]);
+ tmp[0 + i * 4] = a0 + a1;
+ tmp[1 + i * 4] = a3 + a2;
+ tmp[2 + i * 4] = a3 - a2;
+ tmp[3 + i * 4] = a0 - a1;
+ }
+ {
+ const __m128i src0 = _mm_loadu_si128((__m128i*)&tmp[0]);
+ const __m128i src1 = _mm_loadu_si128((__m128i*)&tmp[4]);
+ const __m128i src2 = _mm_loadu_si128((__m128i*)&tmp[8]);
+ const __m128i src3 = _mm_loadu_si128((__m128i*)&tmp[12]);
+ const __m128i a0 = _mm_add_epi32(src0, src2);
+ const __m128i a1 = _mm_add_epi32(src1, src3);
+ const __m128i a2 = _mm_sub_epi32(src1, src3);
+ const __m128i a3 = _mm_sub_epi32(src0, src2);
+ const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1);
+ const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1);
+ const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1);
+ const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1);
+ const __m128i out0 = _mm_packs_epi32(b0, b1);
+ const __m128i out1 = _mm_packs_epi32(b2, b3);
+ _mm_storeu_si128((__m128i*)&out[0], out0);
+ _mm_storeu_si128((__m128i*)&out[8], out1);
+ }
+}
+
+//------------------------------------------------------------------------------
+// Metric
+
+static int SSE_Nx4SSE2(const uint8_t* a, const uint8_t* b,
+ int num_quads, int do_16) {
+ const __m128i zero = _mm_setzero_si128();
+ __m128i sum1 = zero;
+ __m128i sum2 = zero;
+
+ while (num_quads-- > 0) {
+ // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
+ // thanks to buffer over-allocation to that effect.
+ const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
+ const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
+ const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
+ const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
+ const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
+ const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
+ const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
+ const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
+
+ // compute clip0(a-b) and clip0(b-a)
+ const __m128i a0p = _mm_subs_epu8(a0, b0);
+ const __m128i a0m = _mm_subs_epu8(b0, a0);
+ const __m128i a1p = _mm_subs_epu8(a1, b1);
+ const __m128i a1m = _mm_subs_epu8(b1, a1);
+ const __m128i a2p = _mm_subs_epu8(a2, b2);
+ const __m128i a2m = _mm_subs_epu8(b2, a2);
+ const __m128i a3p = _mm_subs_epu8(a3, b3);
+ const __m128i a3m = _mm_subs_epu8(b3, a3);
+
+ // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
+ const __m128i diff0 = _mm_or_si128(a0p, a0m);
+ const __m128i diff1 = _mm_or_si128(a1p, a1m);
+ const __m128i diff2 = _mm_or_si128(a2p, a2m);
+ const __m128i diff3 = _mm_or_si128(a3p, a3m);
+
+ // unpack (only four operations, instead of eight)
+ const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
+ const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
+ const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
+ const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
+
+ // multiply with self
+ const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
+ const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
+ const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
+ const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
+
+ // collect in a cascading way
+ const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
+ const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
+ sum1 = _mm_add_epi32(sum1, low_sum0);
+ sum2 = _mm_add_epi32(sum2, low_sum1);
+
+ if (do_16) { // if necessary, process the higher 8 bytes similarly
+ const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
+ const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
+ const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
+ const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
+
+ const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
+ const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
+ const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
+ const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
+ const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
+ const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
+ sum1 = _mm_add_epi32(sum1, hi_sum0);
+ sum2 = _mm_add_epi32(sum2, hi_sum1);
+ }
+ a += 4 * BPS;
+ b += 4 * BPS;
+ }
+ {
+ int32_t tmp[4];
+ const __m128i sum = _mm_add_epi32(sum1, sum2);
+ _mm_storeu_si128((__m128i*)tmp, sum);
+ return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
+ }
+}
+
+static int SSE16x16SSE2(const uint8_t* a, const uint8_t* b) {
+ return SSE_Nx4SSE2(a, b, 4, 1);
+}
+
+static int SSE16x8SSE2(const uint8_t* a, const uint8_t* b) {
+ return SSE_Nx4SSE2(a, b, 2, 1);
+}
+
+static int SSE8x8SSE2(const uint8_t* a, const uint8_t* b) {
+ return SSE_Nx4SSE2(a, b, 2, 0);
+}
+
+static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
+ const __m128i zero = _mm_setzero_si128();
+
+ // Load values. Note that we read 8 pixels instead of 4,
+ // but the a/b buffers are over-allocated to that effect.
+ const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
+ const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
+ const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
+ const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
+ const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
+ const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
+ const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
+ const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
+
+ // Combine pair of lines and convert to 16b.
+ const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
+ const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
+ const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
+ const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
+ const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
+ const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
+ const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
+ const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
+
+ // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
+ // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
+ // need absolute values, there is no need to do calculation
+ // in 8bit as we are already in 16bit, ... Yet this is what
+ // benchmarks the fastest!
+ const __m128i d0 = _mm_subs_epu8(a01s, b01s);
+ const __m128i d1 = _mm_subs_epu8(b01s, a01s);
+ const __m128i d2 = _mm_subs_epu8(a23s, b23s);
+ const __m128i d3 = _mm_subs_epu8(b23s, a23s);
+
+ // Square and add them all together.
+ const __m128i madd0 = _mm_madd_epi16(d0, d0);
+ const __m128i madd1 = _mm_madd_epi16(d1, d1);
+ const __m128i madd2 = _mm_madd_epi16(d2, d2);
+ const __m128i madd3 = _mm_madd_epi16(d3, d3);
+ const __m128i sum0 = _mm_add_epi32(madd0, madd1);
+ const __m128i sum1 = _mm_add_epi32(madd2, madd3);
+ const __m128i sum2 = _mm_add_epi32(sum0, sum1);
+
+ int32_t tmp[4];
+ _mm_storeu_si128((__m128i*)tmp, sum2);
+ return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
+}
+
+//------------------------------------------------------------------------------
+// Texture distortion
+//
+// We try to match the spectral content (weighted) between source and
+// reconstructed samples.
+
+// Hadamard transform
+// Returns the difference between the weighted sum of the absolute value of
+// transformed coefficients.
+static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
+ const uint16_t* const w) {
+ int32_t sum[4];
+ __m128i tmp_0, tmp_1, tmp_2, tmp_3;
+ const __m128i zero = _mm_setzero_si128();
+
+ // Load, combine and transpose inputs.
+ {
+ const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
+ const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
+ const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
+ const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
+ const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
+ const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
+ const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
+ const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
+
+ // Combine inA and inB (we'll do two transforms in parallel).
+ const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
+ const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
+ const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
+ const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
+ // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0
+ // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0
+ // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0
+ // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0
+
+ // Transpose the two 4x4, discarding the filling zeroes.
+ const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
+ const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
+ // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23
+ // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33
+ const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
+ const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
+ // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31
+ // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33
+
+ // Convert to 16b.
+ tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
+ tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
+ tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
+ tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
+ // a00 a10 a20 a30 b00 b10 b20 b30
+ // a01 a11 a21 a31 b01 b11 b21 b31
+ // a02 a12 a22 a32 b02 b12 b22 b32
+ // a03 a13 a23 a33 b03 b13 b23 b33
+ }
+
+ // Horizontal pass and subsequent transpose.
+ {
+ // Calculate a and b (two 4x4 at once).
+ const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
+ const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
+ const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
+ const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
+ const __m128i b0 = _mm_add_epi16(a0, a1);
+ const __m128i b1 = _mm_add_epi16(a3, a2);
+ const __m128i b2 = _mm_sub_epi16(a3, a2);
+ const __m128i b3 = _mm_sub_epi16(a0, a1);
+ // a00 a01 a02 a03 b00 b01 b02 b03
+ // a10 a11 a12 a13 b10 b11 b12 b13
+ // a20 a21 a22 a23 b20 b21 b22 b23
+ // a30 a31 a32 a33 b30 b31 b32 b33
+
+ // Transpose the two 4x4.
+ const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
+ const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
+ const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
+ const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
+ // a00 a10 a01 a11 a02 a12 a03 a13
+ // a20 a30 a21 a31 a22 a32 a23 a33
+ // b00 b10 b01 b11 b02 b12 b03 b13
+ // b20 b30 b21 b31 b22 b32 b23 b33
+ const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
+ const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
+ const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
+ const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
+ // a00 a10 a20 a30 a01 a11 a21 a31
+ // b00 b10 b20 b30 b01 b11 b21 b31
+ // a02 a12 a22 a32 a03 a13 a23 a33
+ // b02 b12 a22 b32 b03 b13 b23 b33
+ tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
+ tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
+ tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
+ tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
+ // a00 a10 a20 a30 b00 b10 b20 b30
+ // a01 a11 a21 a31 b01 b11 b21 b31
+ // a02 a12 a22 a32 b02 b12 b22 b32
+ // a03 a13 a23 a33 b03 b13 b23 b33
+ }
+
+ // Vertical pass and difference of weighted sums.
+ {
+ // Load all inputs.
+ // TODO(cduvivier): Make variable declarations and allocations aligned so
+ // we can use _mm_load_si128 instead of _mm_loadu_si128.
+ const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
+ const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
+
+ // Calculate a and b (two 4x4 at once).
+ const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
+ const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
+ const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
+ const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
+ const __m128i b0 = _mm_add_epi16(a0, a1);
+ const __m128i b1 = _mm_add_epi16(a3, a2);
+ const __m128i b2 = _mm_sub_epi16(a3, a2);
+ const __m128i b3 = _mm_sub_epi16(a0, a1);
+
+ // Separate the transforms of inA and inB.
+ __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
+ __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
+ __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
+ __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
+
+ {
+ // sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative)
+ const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
+ const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
+ const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
+ const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
+
+ // b = abs(b) = (b ^ sign) - sign
+ A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
+ A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
+ B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
+ B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
+ A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
+ A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
+ B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
+ B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
+ }
+
+ // weighted sums
+ A_b0 = _mm_madd_epi16(A_b0, w_0);
+ A_b2 = _mm_madd_epi16(A_b2, w_8);
+ B_b0 = _mm_madd_epi16(B_b0, w_0);
+ B_b2 = _mm_madd_epi16(B_b2, w_8);
+ A_b0 = _mm_add_epi32(A_b0, A_b2);
+ B_b0 = _mm_add_epi32(B_b0, B_b2);
+
+ // difference of weighted sums
+ A_b0 = _mm_sub_epi32(A_b0, B_b0);
+ _mm_storeu_si128((__m128i*)&sum[0], A_b0);
+ }
+ return sum[0] + sum[1] + sum[2] + sum[3];
+}
+
+static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
+ const uint16_t* const w) {
+ const int diff_sum = TTransformSSE2(a, b, w);
+ return abs(diff_sum) >> 5;
+}
+
+static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
+ const uint16_t* const w) {
+ int D = 0;
+ int x, y;
+ for (y = 0; y < 16 * BPS; y += 4 * BPS) {
+ for (x = 0; x < 16; x += 4) {
+ D += Disto4x4SSE2(a + x + y, b + x + y, w);
+ }
+ }
+ return D;
+}
+
+//------------------------------------------------------------------------------
+// Quantization
+//
+
+// Simple quantization
+static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
+ int n, const VP8Matrix* const mtx) {
+ const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
+ const __m128i zero = _mm_setzero_si128();
+ __m128i coeff0, coeff8;
+ __m128i out0, out8;
+ __m128i packed_out;
+
+ // Load all inputs.
+ // TODO(cduvivier): Make variable declarations and allocations aligned so that
+ // we can use _mm_load_si128 instead of _mm_loadu_si128.
+ __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
+ __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
+ const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
+ const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
+ const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
+ const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
+ const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
+ const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
+ const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
+ const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
+
+ // sign(in) = in >> 15 (0x0000 if positive, 0xffff if negative)
+ const __m128i sign0 = _mm_srai_epi16(in0, 15);
+ const __m128i sign8 = _mm_srai_epi16(in8, 15);
+
+ // coeff = abs(in) = (in ^ sign) - sign
+ coeff0 = _mm_xor_si128(in0, sign0);
+ coeff8 = _mm_xor_si128(in8, sign8);
+ coeff0 = _mm_sub_epi16(coeff0, sign0);
+ coeff8 = _mm_sub_epi16(coeff8, sign8);
+
+ // coeff = abs(in) + sharpen
+ coeff0 = _mm_add_epi16(coeff0, sharpen0);
+ coeff8 = _mm_add_epi16(coeff8, sharpen8);
+
+ // out = (coeff * iQ + B) >> QFIX;
+ {
+ // doing calculations with 32b precision (QFIX=17)
+ // out = (coeff * iQ)
+ __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
+ __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
+ __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
+ __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
+ __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
+ __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
+ __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
+ __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
+ // expand bias from 16b to 32b
+ __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
+ __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
+ __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
+ __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
+ // out = (coeff * iQ + B)
+ out_00 = _mm_add_epi32(out_00, bias_00);
+ out_04 = _mm_add_epi32(out_04, bias_04);
+ out_08 = _mm_add_epi32(out_08, bias_08);
+ out_12 = _mm_add_epi32(out_12, bias_12);
+ // out = (coeff * iQ + B) >> QFIX;
+ out_00 = _mm_srai_epi32(out_00, QFIX);
+ out_04 = _mm_srai_epi32(out_04, QFIX);
+ out_08 = _mm_srai_epi32(out_08, QFIX);
+ out_12 = _mm_srai_epi32(out_12, QFIX);
+
+ // pack result as 16b
+ out0 = _mm_packs_epi32(out_00, out_04);
+ out8 = _mm_packs_epi32(out_08, out_12);
+
+ // if (coeff > 2047) coeff = 2047
+ out0 = _mm_min_epi16(out0, max_coeff_2047);
+ out8 = _mm_min_epi16(out8, max_coeff_2047);
+ }
+
+ // get sign back (if (sign[j]) out_n = -out_n)
+ out0 = _mm_xor_si128(out0, sign0);
+ out8 = _mm_xor_si128(out8, sign8);
+ out0 = _mm_sub_epi16(out0, sign0);
+ out8 = _mm_sub_epi16(out8, sign8);
+
+ // in = out * Q
+ in0 = _mm_mullo_epi16(out0, q0);
+ in8 = _mm_mullo_epi16(out8, q8);
+
+ _mm_storeu_si128((__m128i*)&in[0], in0);
+ _mm_storeu_si128((__m128i*)&in[8], in8);
+
+ // zigzag the output before storing it.
+ //
+ // The zigzag pattern can almost be reproduced with a small sequence of
+ // shuffles. After it, we only need to swap the 7th (ending up in third
+ // position instead of twelfth) and 8th values.
+ {
+ __m128i outZ0, outZ8;
+ outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
+ outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
+ outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
+ outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
+ outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
+ outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
+ _mm_storeu_si128((__m128i*)&out[0], outZ0);
+ _mm_storeu_si128((__m128i*)&out[8], outZ8);
+ packed_out = _mm_packs_epi16(outZ0, outZ8);
+ }
+ {
+ const int16_t outZ_12 = out[12];
+ const int16_t outZ_3 = out[3];
+ out[3] = outZ_12;
+ out[12] = outZ_3;
+ }
+
+ // detect if all 'out' values are zeroes or not
+ {
+ int32_t tmp[4];
+ _mm_storeu_si128((__m128i*)tmp, packed_out);
+ if (n) {
+ tmp[0] &= ~0xff;
+ }
+ return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
+ }
+}
+
+static int QuantizeBlockWHTSSE2(int16_t in[16], int16_t out[16],
+ const VP8Matrix* const mtx) {
+ return QuantizeBlockSSE2(in, out, 0, mtx);
+}
+
+#endif // WEBP_USE_SSE2
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void VP8EncDspInitSSE2(void);
+
+void VP8EncDspInitSSE2(void) {
+#if defined(WEBP_USE_SSE2)
+ VP8CollectHistogram = CollectHistogramSSE2;
+ VP8EncQuantizeBlock = QuantizeBlockSSE2;
+ VP8EncQuantizeBlockWHT = QuantizeBlockWHTSSE2;
+ VP8ITransform = ITransformSSE2;
+ VP8FTransform = FTransformSSE2;
+ VP8FTransformWHT = FTransformWHTSSE2;
+ VP8SSE16x16 = SSE16x16SSE2;
+ VP8SSE16x8 = SSE16x8SSE2;
+ VP8SSE8x8 = SSE8x8SSE2;
+ VP8SSE4x4 = SSE4x4SSE2;
+ VP8TDisto4x4 = Disto4x4SSE2;
+ VP8TDisto16x16 = Disto16x16SSE2;
+#endif // WEBP_USE_SSE2
+}
+
diff --git a/src/3rdparty/libwebp/src/dsp/lossless.c b/src/3rdparty/libwebp/src/dsp/lossless.c
new file mode 100644
index 0000000..bab76d2
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/lossless.c
@@ -0,0 +1,1532 @@
+// Copyright 2012 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// Image transforms and color space conversion methods for lossless decoder.
+//
+// Authors: Vikas Arora (vikaas.arora@gmail.com)
+// Jyrki Alakuijala (jyrki@google.com)
+// Urvang Joshi (urvang@google.com)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_SSE2)
+#include <emmintrin.h>
+#endif
+
+#include <math.h>
+#include <stdlib.h>
+#include "./lossless.h"
+#include "../dec/vp8li.h"
+#include "./yuv.h"
+
+#define MAX_DIFF_COST (1e30f)
+
+// lookup table for small values of log2(int)
+#define APPROX_LOG_MAX 4096
+#define LOG_2_RECIPROCAL 1.44269504088896338700465094007086
+const float kLog2Table[LOG_LOOKUP_IDX_MAX] = {
+ 0.0000000000000000f, 0.0000000000000000f,
+ 1.0000000000000000f, 1.5849625007211560f,
+ 2.0000000000000000f, 2.3219280948873621f,
+ 2.5849625007211560f, 2.8073549220576041f,
+ 3.0000000000000000f, 3.1699250014423121f,
+ 3.3219280948873621f, 3.4594316186372973f,
+ 3.5849625007211560f, 3.7004397181410921f,
+ 3.8073549220576041f, 3.9068905956085187f,
+ 4.0000000000000000f, 4.0874628412503390f,
+ 4.1699250014423121f, 4.2479275134435852f,
+ 4.3219280948873626f, 4.3923174227787606f,
+ 4.4594316186372973f, 4.5235619560570130f,
+ 4.5849625007211560f, 4.6438561897747243f,
+ 4.7004397181410917f, 4.7548875021634682f,
+ 4.8073549220576037f, 4.8579809951275718f,
+ 4.9068905956085187f, 4.9541963103868749f,
+ 5.0000000000000000f, 5.0443941193584533f,
+ 5.0874628412503390f, 5.1292830169449663f,
+ 5.1699250014423121f, 5.2094533656289501f,
+ 5.2479275134435852f, 5.2854022188622487f,
+ 5.3219280948873626f, 5.3575520046180837f,
+ 5.3923174227787606f, 5.4262647547020979f,
+ 5.4594316186372973f, 5.4918530963296747f,
+ 5.5235619560570130f, 5.5545888516776376f,
+ 5.5849625007211560f, 5.6147098441152083f,
+ 5.6438561897747243f, 5.6724253419714951f,
+ 5.7004397181410917f, 5.7279204545631987f,
+ 5.7548875021634682f, 5.7813597135246599f,
+ 5.8073549220576037f, 5.8328900141647412f,
+ 5.8579809951275718f, 5.8826430493618415f,
+ 5.9068905956085187f, 5.9307373375628866f,
+ 5.9541963103868749f, 5.9772799234999167f,
+ 6.0000000000000000f, 6.0223678130284543f,
+ 6.0443941193584533f, 6.0660891904577720f,
+ 6.0874628412503390f, 6.1085244567781691f,
+ 6.1292830169449663f, 6.1497471195046822f,
+ 6.1699250014423121f, 6.1898245588800175f,
+ 6.2094533656289501f, 6.2288186904958804f,
+ 6.2479275134435852f, 6.2667865406949010f,
+ 6.2854022188622487f, 6.3037807481771030f,
+ 6.3219280948873626f, 6.3398500028846243f,
+ 6.3575520046180837f, 6.3750394313469245f,
+ 6.3923174227787606f, 6.4093909361377017f,
+ 6.4262647547020979f, 6.4429434958487279f,
+ 6.4594316186372973f, 6.4757334309663976f,
+ 6.4918530963296747f, 6.5077946401986963f,
+ 6.5235619560570130f, 6.5391588111080309f,
+ 6.5545888516776376f, 6.5698556083309478f,
+ 6.5849625007211560f, 6.5999128421871278f,
+ 6.6147098441152083f, 6.6293566200796094f,
+ 6.6438561897747243f, 6.6582114827517946f,
+ 6.6724253419714951f, 6.6865005271832185f,
+ 6.7004397181410917f, 6.7142455176661224f,
+ 6.7279204545631987f, 6.7414669864011464f,
+ 6.7548875021634682f, 6.7681843247769259f,
+ 6.7813597135246599f, 6.7944158663501061f,
+ 6.8073549220576037f, 6.8201789624151878f,
+ 6.8328900141647412f, 6.8454900509443747f,
+ 6.8579809951275718f, 6.8703647195834047f,
+ 6.8826430493618415f, 6.8948177633079437f,
+ 6.9068905956085187f, 6.9188632372745946f,
+ 6.9307373375628866f, 6.9425145053392398f,
+ 6.9541963103868749f, 6.9657842846620869f,
+ 6.9772799234999167f, 6.9886846867721654f,
+ 7.0000000000000000f, 7.0112272554232539f,
+ 7.0223678130284543f, 7.0334230015374501f,
+ 7.0443941193584533f, 7.0552824355011898f,
+ 7.0660891904577720f, 7.0768155970508308f,
+ 7.0874628412503390f, 7.0980320829605263f,
+ 7.1085244567781691f, 7.1189410727235076f,
+ 7.1292830169449663f, 7.1395513523987936f,
+ 7.1497471195046822f, 7.1598713367783890f,
+ 7.1699250014423121f, 7.1799090900149344f,
+ 7.1898245588800175f, 7.1996723448363644f,
+ 7.2094533656289501f, 7.2191685204621611f,
+ 7.2288186904958804f, 7.2384047393250785f,
+ 7.2479275134435852f, 7.2573878426926521f,
+ 7.2667865406949010f, 7.2761244052742375f,
+ 7.2854022188622487f, 7.2946207488916270f,
+ 7.3037807481771030f, 7.3128829552843557f,
+ 7.3219280948873626f, 7.3309168781146167f,
+ 7.3398500028846243f, 7.3487281542310771f,
+ 7.3575520046180837f, 7.3663222142458160f,
+ 7.3750394313469245f, 7.3837042924740519f,
+ 7.3923174227787606f, 7.4008794362821843f,
+ 7.4093909361377017f, 7.4178525148858982f,
+ 7.4262647547020979f, 7.4346282276367245f,
+ 7.4429434958487279f, 7.4512111118323289f,
+ 7.4594316186372973f, 7.4676055500829976f,
+ 7.4757334309663976f, 7.4838157772642563f,
+ 7.4918530963296747f, 7.4998458870832056f,
+ 7.5077946401986963f, 7.5156998382840427f,
+ 7.5235619560570130f, 7.5313814605163118f,
+ 7.5391588111080309f, 7.5468944598876364f,
+ 7.5545888516776376f, 7.5622424242210728f,
+ 7.5698556083309478f, 7.5774288280357486f,
+ 7.5849625007211560f, 7.5924570372680806f,
+ 7.5999128421871278f, 7.6073303137496104f,
+ 7.6147098441152083f, 7.6220518194563764f,
+ 7.6293566200796094f, 7.6366246205436487f,
+ 7.6438561897747243f, 7.6510516911789281f,
+ 7.6582114827517946f, 7.6653359171851764f,
+ 7.6724253419714951f, 7.6794800995054464f,
+ 7.6865005271832185f, 7.6934869574993252f,
+ 7.7004397181410917f, 7.7073591320808825f,
+ 7.7142455176661224f, 7.7210991887071855f,
+ 7.7279204545631987f, 7.7347096202258383f,
+ 7.7414669864011464f, 7.7481928495894605f,
+ 7.7548875021634682f, 7.7615512324444795f,
+ 7.7681843247769259f, 7.7747870596011736f,
+ 7.7813597135246599f, 7.7879025593914317f,
+ 7.7944158663501061f, 7.8008998999203047f,
+ 7.8073549220576037f, 7.8137811912170374f,
+ 7.8201789624151878f, 7.8265484872909150f,
+ 7.8328900141647412f, 7.8392037880969436f,
+ 7.8454900509443747f, 7.8517490414160571f,
+ 7.8579809951275718f, 7.8641861446542797f,
+ 7.8703647195834047f, 7.8765169465649993f,
+ 7.8826430493618415f, 7.8887432488982591f,
+ 7.8948177633079437f, 7.9008668079807486f,
+ 7.9068905956085187f, 7.9128893362299619f,
+ 7.9188632372745946f, 7.9248125036057812f,
+ 7.9307373375628866f, 7.9366379390025709f,
+ 7.9425145053392398f, 7.9483672315846778f,
+ 7.9541963103868749f, 7.9600019320680805f,
+ 7.9657842846620869f, 7.9715435539507719f,
+ 7.9772799234999167f, 7.9829935746943103f,
+ 7.9886846867721654f, 7.9943534368588577f
+};
+
+const float kSLog2Table[LOG_LOOKUP_IDX_MAX] = {
+ 0.00000000f, 0.00000000f, 2.00000000f, 4.75488750f,
+ 8.00000000f, 11.60964047f, 15.50977500f, 19.65148445f,
+ 24.00000000f, 28.52932501f, 33.21928095f, 38.05374781f,
+ 43.01955001f, 48.10571634f, 53.30296891f, 58.60335893f,
+ 64.00000000f, 69.48686830f, 75.05865003f, 80.71062276f,
+ 86.43856190f, 92.23866588f, 98.10749561f, 104.04192499f,
+ 110.03910002f, 116.09640474f, 122.21143267f, 128.38196256f,
+ 134.60593782f, 140.88144886f, 147.20671787f, 153.58008562f,
+ 160.00000000f, 166.46500594f, 172.97373660f, 179.52490559f,
+ 186.11730005f, 192.74977453f, 199.42124551f, 206.13068654f,
+ 212.87712380f, 219.65963219f, 226.47733176f, 233.32938445f,
+ 240.21499122f, 247.13338933f, 254.08384998f, 261.06567603f,
+ 268.07820003f, 275.12078236f, 282.19280949f, 289.29369244f,
+ 296.42286534f, 303.57978409f, 310.76392512f, 317.97478424f,
+ 325.21187564f, 332.47473081f, 339.76289772f, 347.07593991f,
+ 354.41343574f, 361.77497759f, 369.16017124f, 376.56863518f,
+ 384.00000000f, 391.45390785f, 398.93001188f, 406.42797576f,
+ 413.94747321f, 421.48818752f, 429.04981119f, 436.63204548f,
+ 444.23460010f, 451.85719280f, 459.49954906f, 467.16140179f,
+ 474.84249102f, 482.54256363f, 490.26137307f, 497.99867911f,
+ 505.75424759f, 513.52785023f, 521.31926438f, 529.12827280f,
+ 536.95466351f, 544.79822957f, 552.65876890f, 560.53608414f,
+ 568.42998244f, 576.34027536f, 584.26677867f, 592.20931226f,
+ 600.16769996f, 608.14176943f, 616.13135206f, 624.13628279f,
+ 632.15640007f, 640.19154569f, 648.24156472f, 656.30630539f,
+ 664.38561898f, 672.47935976f, 680.58738488f, 688.70955430f,
+ 696.84573069f, 704.99577935f, 713.15956818f, 721.33696754f,
+ 729.52785023f, 737.73209140f, 745.94956849f, 754.18016116f,
+ 762.42375127f, 770.68022275f, 778.94946161f, 787.23135586f,
+ 795.52579543f, 803.83267219f, 812.15187982f, 820.48331383f,
+ 828.82687147f, 837.18245171f, 845.54995518f, 853.92928416f,
+ 862.32034249f, 870.72303558f, 879.13727036f, 887.56295522f,
+ 896.00000000f, 904.44831595f, 912.90781569f, 921.37841320f,
+ 929.86002376f, 938.35256392f, 946.85595152f, 955.37010560f,
+ 963.89494641f, 972.43039537f, 980.97637504f, 989.53280911f,
+ 998.09962237f, 1006.67674069f, 1015.26409097f, 1023.86160116f,
+ 1032.46920021f, 1041.08681805f, 1049.71438560f, 1058.35183469f,
+ 1066.99909811f, 1075.65610955f, 1084.32280357f, 1092.99911564f,
+ 1101.68498204f, 1110.38033993f, 1119.08512727f, 1127.79928282f,
+ 1136.52274614f, 1145.25545758f, 1153.99735821f, 1162.74838989f,
+ 1171.50849518f, 1180.27761738f, 1189.05570047f, 1197.84268914f,
+ 1206.63852876f, 1215.44316535f, 1224.25654560f, 1233.07861684f,
+ 1241.90932703f, 1250.74862473f, 1259.59645914f, 1268.45278005f,
+ 1277.31753781f, 1286.19068338f, 1295.07216828f, 1303.96194457f,
+ 1312.85996488f, 1321.76618236f, 1330.68055071f, 1339.60302413f,
+ 1348.53355734f, 1357.47210556f, 1366.41862452f, 1375.37307041f,
+ 1384.33539991f, 1393.30557020f, 1402.28353887f, 1411.26926400f,
+ 1420.26270412f, 1429.26381818f, 1438.27256558f, 1447.28890615f,
+ 1456.31280014f, 1465.34420819f, 1474.38309138f, 1483.42941118f,
+ 1492.48312945f, 1501.54420843f, 1510.61261078f, 1519.68829949f,
+ 1528.77123795f, 1537.86138993f, 1546.95871952f, 1556.06319119f,
+ 1565.17476976f, 1574.29342040f, 1583.41910860f, 1592.55180020f,
+ 1601.69146137f, 1610.83805860f, 1619.99155871f, 1629.15192882f,
+ 1638.31913637f, 1647.49314911f, 1656.67393509f, 1665.86146266f,
+ 1675.05570047f, 1684.25661744f, 1693.46418280f, 1702.67836605f,
+ 1711.89913698f, 1721.12646563f, 1730.36032233f, 1739.60067768f,
+ 1748.84750254f, 1758.10076802f, 1767.36044551f, 1776.62650662f,
+ 1785.89892323f, 1795.17766747f, 1804.46271172f, 1813.75402857f,
+ 1823.05159087f, 1832.35537170f, 1841.66534438f, 1850.98148244f,
+ 1860.30375965f, 1869.63214999f, 1878.96662767f, 1888.30716711f,
+ 1897.65374295f, 1907.00633003f, 1916.36490342f, 1925.72943838f,
+ 1935.09991037f, 1944.47629506f, 1953.85856831f, 1963.24670620f,
+ 1972.64068498f, 1982.04048108f, 1991.44607117f, 2000.85743204f,
+ 2010.27454072f, 2019.69737440f, 2029.12591044f, 2038.56012640f
+};
+
+const VP8LPrefixCode kPrefixEncodeCode[PREFIX_LOOKUP_IDX_MAX] = {
+ { 0, 0}, { 0, 0}, { 1, 0}, { 2, 0}, { 3, 0}, { 4, 1}, { 4, 1}, { 5, 1},
+ { 5, 1}, { 6, 2}, { 6, 2}, { 6, 2}, { 6, 2}, { 7, 2}, { 7, 2}, { 7, 2},
+ { 7, 2}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3},
+ { 8, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3},
+ { 9, 3}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4},
+ {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4},
+ {10, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4},
+ {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4},
+ {11, 4}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5},
+ {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5},
+ {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5},
+ {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5},
+ {12, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5},
+ {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5},
+ {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5},
+ {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5},
+ {13, 5}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
+ {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
+ {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
+ {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
+ {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
+ {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
+ {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
+ {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
+ {14, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
+ {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
+ {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
+ {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
+ {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
+ {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
+ {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
+ {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
+ {15, 6}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
+ {16, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+ {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
+};
+
+const uint8_t kPrefixEncodeExtraBitsValue[PREFIX_LOOKUP_IDX_MAX] = {
+ 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3,
+ 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
+ 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
+ 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
+ 127,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
+ 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
+ 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126
+};
+
+float VP8LFastSLog2Slow(int v) {
+ assert(v >= LOG_LOOKUP_IDX_MAX);
+ if (v < APPROX_LOG_MAX) {
+ int log_cnt = 0;
+ const float v_f = (float)v;
+ while (v >= LOG_LOOKUP_IDX_MAX) {
+ ++log_cnt;
+ v = v >> 1;
+ }
+ return v_f * (kLog2Table[v] + log_cnt);
+ } else {
+ return (float)(LOG_2_RECIPROCAL * v * log((double)v));
+ }
+}
+
+float VP8LFastLog2Slow(int v) {
+ assert(v >= LOG_LOOKUP_IDX_MAX);
+ if (v < APPROX_LOG_MAX) {
+ int log_cnt = 0;
+ while (v >= LOG_LOOKUP_IDX_MAX) {
+ ++log_cnt;
+ v = v >> 1;
+ }
+ return kLog2Table[v] + log_cnt;
+ } else {
+ return (float)(LOG_2_RECIPROCAL * log((double)v));
+ }
+}
+
+//------------------------------------------------------------------------------
+// Image transforms.
+
+// In-place sum of each component with mod 256.
+static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) {
+ const uint32_t alpha_and_green = (*a & 0xff00ff00u) + (b & 0xff00ff00u);
+ const uint32_t red_and_blue = (*a & 0x00ff00ffu) + (b & 0x00ff00ffu);
+ *a = (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
+}
+
+static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
+ return (((a0 ^ a1) & 0xfefefefeL) >> 1) + (a0 & a1);
+}
+
+static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
+ return Average2(Average2(a0, a2), a1);
+}
+
+static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
+ uint32_t a2, uint32_t a3) {
+ return Average2(Average2(a0, a1), Average2(a2, a3));
+}
+
+static WEBP_INLINE uint32_t Clip255(uint32_t a) {
+ if (a < 256) {
+ return a;
+ }
+ // return 0, when a is a negative integer.
+ // return 255, when a is positive.
+ return ~a >> 24;
+}
+
+static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
+ return Clip255(a + b - c);
+}
+
+static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
+ uint32_t c2) {
+ const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
+ const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
+ (c1 >> 16) & 0xff,
+ (c2 >> 16) & 0xff);
+ const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
+ (c1 >> 8) & 0xff,
+ (c2 >> 8) & 0xff);
+ const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
+ return (a << 24) | (r << 16) | (g << 8) | b;
+}
+
+static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
+ return Clip255(a + (a - b) / 2);
+}
+
+static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
+ uint32_t c2) {
+ const uint32_t ave = Average2(c0, c1);
+ const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
+ const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
+ const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
+ const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
+ return (a << 24) | (r << 16) | (g << 8) | b;
+}
+
+static WEBP_INLINE int Sub3(int a, int b, int c) {
+ const int pb = b - c;
+ const int pa = a - c;
+ return abs(pb) - abs(pa);
+}
+
+static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
+ const int pa_minus_pb =
+ Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
+ Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
+ Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
+ Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
+ return (pa_minus_pb <= 0) ? a : b;
+}
+
+//------------------------------------------------------------------------------
+// Predictors
+
+static uint32_t Predictor0(uint32_t left, const uint32_t* const top) {
+ (void)top;
+ (void)left;
+ return ARGB_BLACK;
+}
+static uint32_t Predictor1(uint32_t left, const uint32_t* const top) {
+ (void)top;
+ return left;
+}
+static uint32_t Predictor2(uint32_t left, const uint32_t* const top) {
+ (void)left;
+ return top[0];
+}
+static uint32_t Predictor3(uint32_t left, const uint32_t* const top) {
+ (void)left;
+ return top[1];
+}
+static uint32_t Predictor4(uint32_t left, const uint32_t* const top) {
+ (void)left;
+ return top[-1];
+}
+static uint32_t Predictor5(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average3(left, top[0], top[1]);
+ return pred;
+}
+static uint32_t Predictor6(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(left, top[-1]);
+ return pred;
+}
+static uint32_t Predictor7(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(left, top[0]);
+ return pred;
+}
+static uint32_t Predictor8(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(top[-1], top[0]);
+ (void)left;
+ return pred;
+}
+static uint32_t Predictor9(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(top[0], top[1]);
+ (void)left;
+ return pred;
+}
+static uint32_t Predictor10(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average4(left, top[-1], top[0], top[1]);
+ return pred;
+}
+static uint32_t Predictor11(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = VP8LSelect(top[0], left, top[-1]);
+ return pred;
+}
+static uint32_t Predictor12(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = VP8LClampedAddSubtractFull(left, top[0], top[-1]);
+ return pred;
+}
+static uint32_t Predictor13(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = VP8LClampedAddSubtractHalf(left, top[0], top[-1]);
+ return pred;
+}
+
+// TODO(vikasa): Export the predictor array, to allow SSE2 variants.
+typedef uint32_t (*PredictorFunc)(uint32_t left, const uint32_t* const top);
+static const PredictorFunc kPredictors[16] = {
+ Predictor0, Predictor1, Predictor2, Predictor3,
+ Predictor4, Predictor5, Predictor6, Predictor7,
+ Predictor8, Predictor9, Predictor10, Predictor11,
+ Predictor12, Predictor13,
+ Predictor0, Predictor0 // <- padding security sentinels
+};
+
+// TODO(vikasa): Replace 256 etc with defines.
+static float PredictionCostSpatial(const int* counts,
+ int weight_0, double exp_val) {
+ const int significant_symbols = 16;
+ const double exp_decay_factor = 0.6;
+ double bits = weight_0 * counts[0];
+ int i;
+ for (i = 1; i < significant_symbols; ++i) {
+ bits += exp_val * (counts[i] + counts[256 - i]);
+ exp_val *= exp_decay_factor;
+ }
+ return (float)(-0.1 * bits);
+}
+
+// Compute the combined Shanon's entropy for distribution {X} and {X+Y}
+static float CombinedShannonEntropy(const int* const X,
+ const int* const Y, int n) {
+ int i;
+ double retval = 0.;
+ int sumX = 0, sumXY = 0;
+ for (i = 0; i < n; ++i) {
+ const int x = X[i];
+ const int xy = X[i] + Y[i];
+ if (x != 0) {
+ sumX += x;
+ retval -= VP8LFastSLog2(x);
+ }
+ if (xy != 0) {
+ sumXY += xy;
+ retval -= VP8LFastSLog2(xy);
+ }
+ }
+ retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
+ return (float)retval;
+}
+
+static float PredictionCostSpatialHistogram(int accumulated[4][256],
+ int tile[4][256]) {
+ int i;
+ double retval = 0;
+ for (i = 0; i < 4; ++i) {
+ const double kExpValue = 0.94;
+ retval += PredictionCostSpatial(tile[i], 1, kExpValue);
+ retval += CombinedShannonEntropy(tile[i], accumulated[i], 256);
+ }
+ return (float)retval;
+}
+
+static int GetBestPredictorForTile(int width, int height,
+ int tile_x, int tile_y, int bits,
+ int accumulated[4][256],
+ const uint32_t* const argb_scratch) {
+ const int kNumPredModes = 14;
+ const int col_start = tile_x << bits;
+ const int row_start = tile_y << bits;
+ const int tile_size = 1 << bits;
+ const int ymax = (tile_size <= height - row_start) ?
+ tile_size : height - row_start;
+ const int xmax = (tile_size <= width - col_start) ?
+ tile_size : width - col_start;
+ int histo[4][256];
+ float best_diff = MAX_DIFF_COST;
+ int best_mode = 0;
+
+ int mode;
+ for (mode = 0; mode < kNumPredModes; ++mode) {
+ const uint32_t* current_row = argb_scratch;
+ const PredictorFunc pred_func = kPredictors[mode];
+ float cur_diff;
+ int y;
+ memset(&histo[0][0], 0, sizeof(histo));
+ for (y = 0; y < ymax; ++y) {
+ int x;
+ const int row = row_start + y;
+ const uint32_t* const upper_row = current_row;
+ current_row = upper_row + width;
+ for (x = 0; x < xmax; ++x) {
+ const int col = col_start + x;
+ uint32_t predict;
+ uint32_t predict_diff;
+ if (row == 0) {
+ predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left.
+ } else if (col == 0) {
+ predict = upper_row[col]; // Top.
+ } else {
+ predict = pred_func(current_row[col - 1], upper_row + col);
+ }
+ predict_diff = VP8LSubPixels(current_row[col], predict);
+ ++histo[0][predict_diff >> 24];
+ ++histo[1][((predict_diff >> 16) & 0xff)];
+ ++histo[2][((predict_diff >> 8) & 0xff)];
+ ++histo[3][(predict_diff & 0xff)];
+ }
+ }
+ cur_diff = PredictionCostSpatialHistogram(accumulated, histo);
+ if (cur_diff < best_diff) {
+ best_diff = cur_diff;
+ best_mode = mode;
+ }
+ }
+
+ return best_mode;
+}
+
+static void CopyTileWithPrediction(int width, int height,
+ int tile_x, int tile_y, int bits, int mode,
+ const uint32_t* const argb_scratch,
+ uint32_t* const argb) {
+ const int col_start = tile_x << bits;
+ const int row_start = tile_y << bits;
+ const int tile_size = 1 << bits;
+ const int ymax = (tile_size <= height - row_start) ?
+ tile_size : height - row_start;
+ const int xmax = (tile_size <= width - col_start) ?
+ tile_size : width - col_start;
+ const PredictorFunc pred_func = kPredictors[mode];
+ const uint32_t* current_row = argb_scratch;
+
+ int y;
+ for (y = 0; y < ymax; ++y) {
+ int x;
+ const int row = row_start + y;
+ const uint32_t* const upper_row = current_row;
+ current_row = upper_row + width;
+ for (x = 0; x < xmax; ++x) {
+ const int col = col_start + x;
+ const int pix = row * width + col;
+ uint32_t predict;
+ if (row == 0) {
+ predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left.
+ } else if (col == 0) {
+ predict = upper_row[col]; // Top.
+ } else {
+ predict = pred_func(current_row[col - 1], upper_row + col);
+ }
+ argb[pix] = VP8LSubPixels(current_row[col], predict);
+ }
+ }
+}
+
+void VP8LResidualImage(int width, int height, int bits,
+ uint32_t* const argb, uint32_t* const argb_scratch,
+ uint32_t* const image) {
+ const int max_tile_size = 1 << bits;
+ const int tiles_per_row = VP8LSubSampleSize(width, bits);
+ const int tiles_per_col = VP8LSubSampleSize(height, bits);
+ uint32_t* const upper_row = argb_scratch;
+ uint32_t* const current_tile_rows = argb_scratch + width;
+ int tile_y;
+ int histo[4][256];
+ memset(histo, 0, sizeof(histo));
+ for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
+ const int tile_y_offset = tile_y * max_tile_size;
+ const int this_tile_height =
+ (tile_y < tiles_per_col - 1) ? max_tile_size : height - tile_y_offset;
+ int tile_x;
+ if (tile_y > 0) {
+ memcpy(upper_row, current_tile_rows + (max_tile_size - 1) * width,
+ width * sizeof(*upper_row));
+ }
+ memcpy(current_tile_rows, &argb[tile_y_offset * width],
+ this_tile_height * width * sizeof(*current_tile_rows));
+ for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
+ int pred;
+ int y;
+ const int tile_x_offset = tile_x * max_tile_size;
+ int all_x_max = tile_x_offset + max_tile_size;
+ if (all_x_max > width) {
+ all_x_max = width;
+ }
+ pred = GetBestPredictorForTile(width, height, tile_x, tile_y, bits, histo,
+ argb_scratch);
+ image[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8);
+ CopyTileWithPrediction(width, height, tile_x, tile_y, bits, pred,
+ argb_scratch, argb);
+ for (y = 0; y < max_tile_size; ++y) {
+ int ix;
+ int all_x;
+ int all_y = tile_y_offset + y;
+ if (all_y >= height) {
+ break;
+ }
+ ix = all_y * width + tile_x_offset;
+ for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
+ const uint32_t a = argb[ix];
+ ++histo[0][a >> 24];
+ ++histo[1][((a >> 16) & 0xff)];
+ ++histo[2][((a >> 8) & 0xff)];
+ ++histo[3][(a & 0xff)];
+ }
+ }
+ }
+ }
+}
+
+// Inverse prediction.
+static void PredictorInverseTransform(const VP8LTransform* const transform,
+ int y_start, int y_end, uint32_t* data) {
+ const int width = transform->xsize_;
+ if (y_start == 0) { // First Row follows the L (mode=1) mode.
+ int x;
+ const uint32_t pred0 = Predictor0(data[-1], NULL);
+ AddPixelsEq(data, pred0);
+ for (x = 1; x < width; ++x) {
+ const uint32_t pred1 = Predictor1(data[x - 1], NULL);
+ AddPixelsEq(data + x, pred1);
+ }
+ data += width;
+ ++y_start;
+ }
+
+ {
+ int y = y_start;
+ const int mask = (1 << transform->bits_) - 1;
+ const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
+ const uint32_t* pred_mode_base =
+ transform->data_ + (y >> transform->bits_) * tiles_per_row;
+
+ while (y < y_end) {
+ int x;
+ const uint32_t pred2 = Predictor2(data[-1], data - width);
+ const uint32_t* pred_mode_src = pred_mode_base;
+ PredictorFunc pred_func;
+
+ // First pixel follows the T (mode=2) mode.
+ AddPixelsEq(data, pred2);
+
+ // .. the rest:
+ pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf];
+ for (x = 1; x < width; ++x) {
+ uint32_t pred;
+ if ((x & mask) == 0) { // start of tile. Read predictor function.
+ pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf];
+ }
+ pred = pred_func(data[x - 1], data + x - width);
+ AddPixelsEq(data + x, pred);
+ }
+ data += width;
+ ++y;
+ if ((y & mask) == 0) { // Use the same mask, since tiles are squares.
+ pred_mode_base += tiles_per_row;
+ }
+ }
+ }
+}
+
+static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixs) {
+ int i = 0;
+ for (; i < num_pixs; ++i) {
+ const uint32_t argb = argb_data[i];
+ const uint32_t green = (argb >> 8) & 0xff;
+ const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff;
+ const uint32_t new_b = ((argb & 0xff) - green) & 0xff;
+ argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b;
+ }
+}
+
+// Add green to blue and red channels (i.e. perform the inverse transform of
+// 'subtract green').
+static void AddGreenToBlueAndRed(uint32_t* data, const uint32_t* data_end) {
+ while (data < data_end) {
+ const uint32_t argb = *data;
+ const uint32_t green = ((argb >> 8) & 0xff);
+ uint32_t red_blue = (argb & 0x00ff00ffu);
+ red_blue += (green << 16) | green;
+ red_blue &= 0x00ff00ffu;
+ *data++ = (argb & 0xff00ff00u) | red_blue;
+ }
+}
+
+typedef struct {
+ // Note: the members are uint8_t, so that any negative values are
+ // automatically converted to "mod 256" values.
+ uint8_t green_to_red_;
+ uint8_t green_to_blue_;
+ uint8_t red_to_blue_;
+} Multipliers;
+
+static WEBP_INLINE void MultipliersClear(Multipliers* m) {
+ m->green_to_red_ = 0;
+ m->green_to_blue_ = 0;
+ m->red_to_blue_ = 0;
+}
+
+static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred,
+ int8_t color) {
+ return (uint32_t)((int)(color_pred) * color) >> 5;
+}
+
+static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
+ Multipliers* const m) {
+ m->green_to_red_ = (color_code >> 0) & 0xff;
+ m->green_to_blue_ = (color_code >> 8) & 0xff;
+ m->red_to_blue_ = (color_code >> 16) & 0xff;
+}
+
+static WEBP_INLINE uint32_t MultipliersToColorCode(Multipliers* const m) {
+ return 0xff000000u |
+ ((uint32_t)(m->red_to_blue_) << 16) |
+ ((uint32_t)(m->green_to_blue_) << 8) |
+ m->green_to_red_;
+}
+
+static WEBP_INLINE uint32_t TransformColor(const Multipliers* const m,
+ uint32_t argb, int inverse) {
+ const uint32_t green = argb >> 8;
+ const uint32_t red = argb >> 16;
+ uint32_t new_red = red;
+ uint32_t new_blue = argb;
+
+ if (inverse) {
+ new_red += ColorTransformDelta(m->green_to_red_, green);
+ new_red &= 0xff;
+ new_blue += ColorTransformDelta(m->green_to_blue_, green);
+ new_blue += ColorTransformDelta(m->red_to_blue_, new_red);
+ new_blue &= 0xff;
+ } else {
+ new_red -= ColorTransformDelta(m->green_to_red_, green);
+ new_red &= 0xff;
+ new_blue -= ColorTransformDelta(m->green_to_blue_, green);
+ new_blue -= ColorTransformDelta(m->red_to_blue_, red);
+ new_blue &= 0xff;
+ }
+ return (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
+}
+
+static WEBP_INLINE uint8_t TransformColorRed(uint8_t green_to_red,
+ uint32_t argb) {
+ const uint32_t green = argb >> 8;
+ uint32_t new_red = argb >> 16;
+ new_red -= ColorTransformDelta(green_to_red, green);
+ return (new_red & 0xff);
+}
+
+static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue,
+ uint8_t red_to_blue,
+ uint32_t argb) {
+ const uint32_t green = argb >> 8;
+ const uint32_t red = argb >> 16;
+ uint8_t new_blue = argb;
+ new_blue -= ColorTransformDelta(green_to_blue, green);
+ new_blue -= ColorTransformDelta(red_to_blue, red);
+ return (new_blue & 0xff);
+}
+
+static WEBP_INLINE int SkipRepeatedPixels(const uint32_t* const argb,
+ int ix, int xsize) {
+ const uint32_t v = argb[ix];
+ if (ix >= xsize + 3) {
+ if (v == argb[ix - xsize] &&
+ argb[ix - 1] == argb[ix - xsize - 1] &&
+ argb[ix - 2] == argb[ix - xsize - 2] &&
+ argb[ix - 3] == argb[ix - xsize - 3]) {
+ return 1;
+ }
+ return v == argb[ix - 3] && v == argb[ix - 2] && v == argb[ix - 1];
+ } else if (ix >= 3) {
+ return v == argb[ix - 3] && v == argb[ix - 2] && v == argb[ix - 1];
+ }
+ return 0;
+}
+
+static float PredictionCostCrossColor(const int accumulated[256],
+ const int counts[256]) {
+ // Favor low entropy, locally and globally.
+ // Favor small absolute values for PredictionCostSpatial
+ static const double kExpValue = 2.4;
+ return CombinedShannonEntropy(counts, accumulated, 256) +
+ PredictionCostSpatial(counts, 3, kExpValue);
+}
+
+static Multipliers GetBestColorTransformForTile(
+ int tile_x, int tile_y, int bits,
+ Multipliers prevX,
+ Multipliers prevY,
+ int step, int xsize, int ysize,
+ int* accumulated_red_histo,
+ int* accumulated_blue_histo,
+ const uint32_t* const argb) {
+ float best_diff = MAX_DIFF_COST;
+ float cur_diff;
+ const int halfstep = step / 2;
+ const int max_tile_size = 1 << bits;
+ const int tile_y_offset = tile_y * max_tile_size;
+ const int tile_x_offset = tile_x * max_tile_size;
+ int green_to_red;
+ int green_to_blue;
+ int red_to_blue;
+ int all_x_max = tile_x_offset + max_tile_size;
+ int all_y_max = tile_y_offset + max_tile_size;
+ Multipliers best_tx;
+ MultipliersClear(&best_tx);
+ if (all_x_max > xsize) {
+ all_x_max = xsize;
+ }
+ if (all_y_max > ysize) {
+ all_y_max = ysize;
+ }
+
+ for (green_to_red = -64; green_to_red <= 64; green_to_red += halfstep) {
+ int histo[256] = { 0 };
+ int all_y;
+
+ for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) {
+ int ix = all_y * xsize + tile_x_offset;
+ int all_x;
+ for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
+ if (SkipRepeatedPixels(argb, ix, xsize)) {
+ continue;
+ }
+ ++histo[TransformColorRed(green_to_red, argb[ix])]; // red.
+ }
+ }
+ cur_diff = PredictionCostCrossColor(&accumulated_red_histo[0], &histo[0]);
+ if ((uint8_t)green_to_red == prevX.green_to_red_) {
+ cur_diff -= 3; // favor keeping the areas locally similar
+ }
+ if ((uint8_t)green_to_red == prevY.green_to_red_) {
+ cur_diff -= 3; // favor keeping the areas locally similar
+ }
+ if (green_to_red == 0) {
+ cur_diff -= 3;
+ }
+ if (cur_diff < best_diff) {
+ best_diff = cur_diff;
+ best_tx.green_to_red_ = green_to_red;
+ }
+ }
+ best_diff = MAX_DIFF_COST;
+ for (green_to_blue = -32; green_to_blue <= 32; green_to_blue += step) {
+ for (red_to_blue = -32; red_to_blue <= 32; red_to_blue += step) {
+ int all_y;
+ int histo[256] = { 0 };
+ for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) {
+ int all_x;
+ int ix = all_y * xsize + tile_x_offset;
+ for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
+ if (SkipRepeatedPixels(argb, ix, xsize)) {
+ continue;
+ }
+ ++histo[TransformColorBlue(green_to_blue, red_to_blue, argb[ix])];
+ }
+ }
+ cur_diff =
+ PredictionCostCrossColor(&accumulated_blue_histo[0], &histo[0]);
+ if ((uint8_t)green_to_blue == prevX.green_to_blue_) {
+ cur_diff -= 3; // favor keeping the areas locally similar
+ }
+ if ((uint8_t)green_to_blue == prevY.green_to_blue_) {
+ cur_diff -= 3; // favor keeping the areas locally similar
+ }
+ if ((uint8_t)red_to_blue == prevX.red_to_blue_) {
+ cur_diff -= 3; // favor keeping the areas locally similar
+ }
+ if ((uint8_t)red_to_blue == prevY.red_to_blue_) {
+ cur_diff -= 3; // favor keeping the areas locally similar
+ }
+ if (green_to_blue == 0) {
+ cur_diff -= 3;
+ }
+ if (red_to_blue == 0) {
+ cur_diff -= 3;
+ }
+ if (cur_diff < best_diff) {
+ best_diff = cur_diff;
+ best_tx.green_to_blue_ = green_to_blue;
+ best_tx.red_to_blue_ = red_to_blue;
+ }
+ }
+ }
+ return best_tx;
+}
+
+static void CopyTileWithColorTransform(int xsize, int ysize,
+ int tile_x, int tile_y, int bits,
+ Multipliers color_transform,
+ uint32_t* const argb) {
+ int y;
+ int xscan = 1 << bits;
+ int yscan = 1 << bits;
+ tile_x <<= bits;
+ tile_y <<= bits;
+ if (xscan > xsize - tile_x) {
+ xscan = xsize - tile_x;
+ }
+ if (yscan > ysize - tile_y) {
+ yscan = ysize - tile_y;
+ }
+ yscan += tile_y;
+ for (y = tile_y; y < yscan; ++y) {
+ int ix = y * xsize + tile_x;
+ const int end_ix = ix + xscan;
+ for (; ix < end_ix; ++ix) {
+ argb[ix] = TransformColor(&color_transform, argb[ix], 0);
+ }
+ }
+}
+
+void VP8LColorSpaceTransform(int width, int height, int bits, int step,
+ uint32_t* const argb, uint32_t* image) {
+ const int max_tile_size = 1 << bits;
+ int tile_xsize = VP8LSubSampleSize(width, bits);
+ int tile_ysize = VP8LSubSampleSize(height, bits);
+ int accumulated_red_histo[256] = { 0 };
+ int accumulated_blue_histo[256] = { 0 };
+ int tile_y;
+ int tile_x;
+ Multipliers prevX;
+ Multipliers prevY;
+ MultipliersClear(&prevY);
+ MultipliersClear(&prevX);
+ for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
+ for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
+ Multipliers color_transform;
+ int all_x_max;
+ int y;
+ const int tile_y_offset = tile_y * max_tile_size;
+ const int tile_x_offset = tile_x * max_tile_size;
+ if (tile_y != 0) {
+ ColorCodeToMultipliers(image[tile_y * tile_xsize + tile_x - 1], &prevX);
+ ColorCodeToMultipliers(image[(tile_y - 1) * tile_xsize + tile_x],
+ &prevY);
+ } else if (tile_x != 0) {
+ ColorCodeToMultipliers(image[tile_y * tile_xsize + tile_x - 1], &prevX);
+ }
+ color_transform =
+ GetBestColorTransformForTile(tile_x, tile_y, bits,
+ prevX, prevY,
+ step, width, height,
+ &accumulated_red_histo[0],
+ &accumulated_blue_histo[0],
+ argb);
+ image[tile_y * tile_xsize + tile_x] =
+ MultipliersToColorCode(&color_transform);
+ CopyTileWithColorTransform(width, height, tile_x, tile_y, bits,
+ color_transform, argb);
+
+ // Gather accumulated histogram data.
+ all_x_max = tile_x_offset + max_tile_size;
+ if (all_x_max > width) {
+ all_x_max = width;
+ }
+ for (y = 0; y < max_tile_size; ++y) {
+ int ix;
+ int all_x;
+ int all_y = tile_y_offset + y;
+ if (all_y >= height) {
+ break;
+ }
+ ix = all_y * width + tile_x_offset;
+ for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
+ if (ix >= 2 &&
+ argb[ix] == argb[ix - 2] &&
+ argb[ix] == argb[ix - 1]) {
+ continue; // repeated pixels are handled by backward references
+ }
+ if (ix >= width + 2 &&
+ argb[ix - 2] == argb[ix - width - 2] &&
+ argb[ix - 1] == argb[ix - width - 1] &&
+ argb[ix] == argb[ix - width]) {
+ continue; // repeated pixels are handled by backward references
+ }
+ ++accumulated_red_histo[(argb[ix] >> 16) & 0xff];
+ ++accumulated_blue_histo[argb[ix] & 0xff];
+ }
+ }
+ }
+ }
+}
+
+// Color space inverse transform.
+static void ColorSpaceInverseTransform(const VP8LTransform* const transform,
+ int y_start, int y_end, uint32_t* data) {
+ const int width = transform->xsize_;
+ const int mask = (1 << transform->bits_) - 1;
+ const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
+ int y = y_start;
+ const uint32_t* pred_row =
+ transform->data_ + (y >> transform->bits_) * tiles_per_row;
+
+ while (y < y_end) {
+ const uint32_t* pred = pred_row;
+ Multipliers m = { 0, 0, 0 };
+ int x;
+
+ for (x = 0; x < width; ++x) {
+ if ((x & mask) == 0) ColorCodeToMultipliers(*pred++, &m);
+ data[x] = TransformColor(&m, data[x], 1);
+ }
+ data += width;
+ ++y;
+ if ((y & mask) == 0) pred_row += tiles_per_row;;
+ }
+}
+
+// Separate out pixels packed together using pixel-bundling.
+// We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t).
+#define COLOR_INDEX_INVERSE(FUNC_NAME, TYPE, GET_INDEX, GET_VALUE) \
+void FUNC_NAME(const VP8LTransform* const transform, \
+ int y_start, int y_end, const TYPE* src, TYPE* dst) { \
+ int y; \
+ const int bits_per_pixel = 8 >> transform->bits_; \
+ const int width = transform->xsize_; \
+ const uint32_t* const color_map = transform->data_; \
+ if (bits_per_pixel < 8) { \
+ const int pixels_per_byte = 1 << transform->bits_; \
+ const int count_mask = pixels_per_byte - 1; \
+ const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \
+ for (y = y_start; y < y_end; ++y) { \
+ uint32_t packed_pixels = 0; \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ /* We need to load fresh 'packed_pixels' once every */ \
+ /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \
+ /* is a power of 2, so can just use a mask for that, instead of */ \
+ /* decrementing a counter. */ \
+ if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \
+ *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \
+ packed_pixels >>= bits_per_pixel; \
+ } \
+ } \
+ } else { \
+ for (y = y_start; y < y_end; ++y) { \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \
+ } \
+ } \
+ } \
+}
+
+static WEBP_INLINE uint32_t GetARGBIndex(uint32_t idx) {
+ return (idx >> 8) & 0xff;
+}
+
+static WEBP_INLINE uint8_t GetAlphaIndex(uint8_t idx) {
+ return idx;
+}
+
+static WEBP_INLINE uint32_t GetARGBValue(uint32_t val) {
+ return val;
+}
+
+static WEBP_INLINE uint8_t GetAlphaValue(uint32_t val) {
+ return (val >> 8) & 0xff;
+}
+
+static COLOR_INDEX_INVERSE(ColorIndexInverseTransform, uint32_t, GetARGBIndex,
+ GetARGBValue)
+COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, uint8_t, GetAlphaIndex,
+ GetAlphaValue)
+
+#undef COLOR_INDEX_INVERSE
+
+void VP8LInverseTransform(const VP8LTransform* const transform,
+ int row_start, int row_end,
+ const uint32_t* const in, uint32_t* const out) {
+ const int width = transform->xsize_;
+ assert(row_start < row_end);
+ assert(row_end <= transform->ysize_);
+ switch (transform->type_) {
+ case SUBTRACT_GREEN:
+ VP8LAddGreenToBlueAndRed(out, out + (row_end - row_start) * width);
+ break;
+ case PREDICTOR_TRANSFORM:
+ PredictorInverseTransform(transform, row_start, row_end, out);
+ if (row_end != transform->ysize_) {
+ // The last predicted row in this iteration will be the top-pred row
+ // for the first row in next iteration.
+ memcpy(out - width, out + (row_end - row_start - 1) * width,
+ width * sizeof(*out));
+ }
+ break;
+ case CROSS_COLOR_TRANSFORM:
+ ColorSpaceInverseTransform(transform, row_start, row_end, out);
+ break;
+ case COLOR_INDEXING_TRANSFORM:
+ if (in == out && transform->bits_ > 0) {
+ // Move packed pixels to the end of unpacked region, so that unpacking
+ // can occur seamlessly.
+ // Also, note that this is the only transform that applies on
+ // the effective width of VP8LSubSampleSize(xsize_, bits_). All other
+ // transforms work on effective width of xsize_.
+ const int out_stride = (row_end - row_start) * width;
+ const int in_stride = (row_end - row_start) *
+ VP8LSubSampleSize(transform->xsize_, transform->bits_);
+ uint32_t* const src = out + out_stride - in_stride;
+ memmove(src, out, in_stride * sizeof(*src));
+ ColorIndexInverseTransform(transform, row_start, row_end, src, out);
+ } else {
+ ColorIndexInverseTransform(transform, row_start, row_end, in, out);
+ }
+ break;
+ }
+}
+
+//------------------------------------------------------------------------------
+// Color space conversion.
+
+static int is_big_endian(void) {
+ static const union {
+ uint16_t w;
+ uint8_t b[2];
+ } tmp = { 1 };
+ return (tmp.b[0] != 1);
+}
+
+static void ConvertBGRAToRGB(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ const uint32_t* const src_end = src + num_pixels;
+ while (src < src_end) {
+ const uint32_t argb = *src++;
+ *dst++ = (argb >> 16) & 0xff;
+ *dst++ = (argb >> 8) & 0xff;
+ *dst++ = (argb >> 0) & 0xff;
+ }
+}
+
+static void ConvertBGRAToRGBA(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ const uint32_t* const src_end = src + num_pixels;
+ while (src < src_end) {
+ const uint32_t argb = *src++;
+ *dst++ = (argb >> 16) & 0xff;
+ *dst++ = (argb >> 8) & 0xff;
+ *dst++ = (argb >> 0) & 0xff;
+ *dst++ = (argb >> 24) & 0xff;
+ }
+}
+
+static void ConvertBGRAToRGBA4444(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ const uint32_t* const src_end = src + num_pixels;
+ while (src < src_end) {
+ const uint32_t argb = *src++;
+ const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
+ const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf);
+#ifdef WEBP_SWAP_16BIT_CSP
+ *dst++ = ba;
+ *dst++ = rg;
+#else
+ *dst++ = rg;
+ *dst++ = ba;
+#endif
+ }
+}
+
+static void ConvertBGRAToRGB565(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ const uint32_t* const src_end = src + num_pixels;
+ while (src < src_end) {
+ const uint32_t argb = *src++;
+ const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
+ const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f);
+#ifdef WEBP_SWAP_16BIT_CSP
+ *dst++ = gb;
+ *dst++ = rg;
+#else
+ *dst++ = rg;
+ *dst++ = gb;
+#endif
+ }
+}
+
+static void ConvertBGRAToBGR(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ const uint32_t* const src_end = src + num_pixels;
+ while (src < src_end) {
+ const uint32_t argb = *src++;
+ *dst++ = (argb >> 0) & 0xff;
+ *dst++ = (argb >> 8) & 0xff;
+ *dst++ = (argb >> 16) & 0xff;
+ }
+}
+
+static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
+ int swap_on_big_endian) {
+ if (is_big_endian() == swap_on_big_endian) {
+ const uint32_t* const src_end = src + num_pixels;
+ while (src < src_end) {
+ uint32_t argb = *src++;
+
+#if !defined(__BIG_ENDIAN__)
+#if !defined(WEBP_REFERENCE_IMPLEMENTATION)
+#if defined(__i386__) || defined(__x86_64__)
+ __asm__ volatile("bswap %0" : "=r"(argb) : "0"(argb));
+ *(uint32_t*)dst = argb;
+#elif defined(_MSC_VER)
+ argb = _byteswap_ulong(argb);
+ *(uint32_t*)dst = argb;
+#else
+ dst[0] = (argb >> 24) & 0xff;
+ dst[1] = (argb >> 16) & 0xff;
+ dst[2] = (argb >> 8) & 0xff;
+ dst[3] = (argb >> 0) & 0xff;
+#endif
+#else // WEBP_REFERENCE_IMPLEMENTATION
+ dst[0] = (argb >> 24) & 0xff;
+ dst[1] = (argb >> 16) & 0xff;
+ dst[2] = (argb >> 8) & 0xff;
+ dst[3] = (argb >> 0) & 0xff;
+#endif
+#else // __BIG_ENDIAN__
+ dst[0] = (argb >> 0) & 0xff;
+ dst[1] = (argb >> 8) & 0xff;
+ dst[2] = (argb >> 16) & 0xff;
+ dst[3] = (argb >> 24) & 0xff;
+#endif
+ dst += sizeof(argb);
+ }
+ } else {
+ memcpy(dst, src, num_pixels * sizeof(*src));
+ }
+}
+
+void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
+ WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) {
+ switch (out_colorspace) {
+ case MODE_RGB:
+ ConvertBGRAToRGB(in_data, num_pixels, rgba);
+ break;
+ case MODE_RGBA:
+ ConvertBGRAToRGBA(in_data, num_pixels, rgba);
+ break;
+ case MODE_rgbA:
+ ConvertBGRAToRGBA(in_data, num_pixels, rgba);
+ WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
+ break;
+ case MODE_BGR:
+ ConvertBGRAToBGR(in_data, num_pixels, rgba);
+ break;
+ case MODE_BGRA:
+ CopyOrSwap(in_data, num_pixels, rgba, 1);
+ break;
+ case MODE_bgrA:
+ CopyOrSwap(in_data, num_pixels, rgba, 1);
+ WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
+ break;
+ case MODE_ARGB:
+ CopyOrSwap(in_data, num_pixels, rgba, 0);
+ break;
+ case MODE_Argb:
+ CopyOrSwap(in_data, num_pixels, rgba, 0);
+ WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0);
+ break;
+ case MODE_RGBA_4444:
+ ConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
+ break;
+ case MODE_rgbA_4444:
+ ConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
+ WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0);
+ break;
+ case MODE_RGB_565:
+ ConvertBGRAToRGB565(in_data, num_pixels, rgba);
+ break;
+ default:
+ assert(0); // Code flow should not reach here.
+ }
+}
+
+// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
+void VP8LBundleColorMap(const uint8_t* const row, int width,
+ int xbits, uint32_t* const dst) {
+ int x;
+ if (xbits > 0) {
+ const int bit_depth = 1 << (3 - xbits);
+ const int mask = (1 << xbits) - 1;
+ uint32_t code = 0xff000000;
+ for (x = 0; x < width; ++x) {
+ const int xsub = x & mask;
+ if (xsub == 0) {
+ code = 0xff000000;
+ }
+ code |= row[x] << (8 + bit_depth * xsub);
+ dst[x >> xbits] = code;
+ }
+ } else {
+ for (x = 0; x < width; ++x) dst[x] = 0xff000000 | (row[x] << 8);
+ }
+}
+
+//------------------------------------------------------------------------------
+
+// TODO(vikasa): Move the SSE2 functions to lossless_dsp.c (new file), once
+// color-space conversion methods (ConvertFromBGRA) are also updated for SSE2.
+#if defined(WEBP_USE_SSE2)
+static WEBP_INLINE uint32_t ClampedAddSubtractFullSSE2(uint32_t c0, uint32_t c1,
+ uint32_t c2) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero);
+ const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero);
+ const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero);
+ const __m128i V1 = _mm_add_epi16(C0, C1);
+ const __m128i V2 = _mm_sub_epi16(V1, C2);
+ const __m128i b = _mm_packus_epi16(V2, V2);
+ const uint32_t output = _mm_cvtsi128_si32(b);
+ return output;
+}
+
+static WEBP_INLINE uint32_t ClampedAddSubtractHalfSSE2(uint32_t c0, uint32_t c1,
+ uint32_t c2) {
+ const uint32_t ave = Average2(c0, c1);
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(ave), zero);
+ const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero);
+ const __m128i A1 = _mm_sub_epi16(A0, B0);
+ const __m128i BgtA = _mm_cmpgt_epi16(B0, A0);
+ const __m128i A2 = _mm_sub_epi16(A1, BgtA);
+ const __m128i A3 = _mm_srai_epi16(A2, 1);
+ const __m128i A4 = _mm_add_epi16(A0, A3);
+ const __m128i A5 = _mm_packus_epi16(A4, A4);
+ const uint32_t output = _mm_cvtsi128_si32(A5);
+ return output;
+}
+
+static WEBP_INLINE uint32_t SelectSSE2(uint32_t a, uint32_t b, uint32_t c) {
+ int pa_minus_pb;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i A0 = _mm_cvtsi32_si128(a);
+ const __m128i B0 = _mm_cvtsi32_si128(b);
+ const __m128i C0 = _mm_cvtsi32_si128(c);
+ const __m128i AC0 = _mm_subs_epu8(A0, C0);
+ const __m128i CA0 = _mm_subs_epu8(C0, A0);
+ const __m128i BC0 = _mm_subs_epu8(B0, C0);
+ const __m128i CB0 = _mm_subs_epu8(C0, B0);
+ const __m128i AC = _mm_or_si128(AC0, CA0);
+ const __m128i BC = _mm_or_si128(BC0, CB0);
+ const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c|
+ const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c|
+ const __m128i diff = _mm_sub_epi16(pb, pa);
+ {
+ int16_t out[8];
+ _mm_storeu_si128((__m128i*)out, diff);
+ pa_minus_pb = out[0] + out[1] + out[2] + out[3];
+ }
+ return (pa_minus_pb <= 0) ? a : b;
+}
+
+static void SubtractGreenFromBlueAndRedSSE2(uint32_t* argb_data, int num_pixs) {
+ int i = 0;
+ const __m128i mask = _mm_set1_epi32(0x0000ff00);
+ for (; i + 4 < num_pixs; i += 4) {
+ const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]);
+ const __m128i in_00g0 = _mm_and_si128(in, mask); // 00g0|00g0|...
+ const __m128i in_0g00 = _mm_slli_epi32(in_00g0, 8); // 0g00|0g00|...
+ const __m128i in_000g = _mm_srli_epi32(in_00g0, 8); // 000g|000g|...
+ const __m128i in_0g0g = _mm_or_si128(in_0g00, in_000g);
+ const __m128i out = _mm_sub_epi8(in, in_0g0g);
+ _mm_storeu_si128((__m128i*)&argb_data[i], out);
+ }
+ // fallthrough and finish off with plain-C
+ for (; i < num_pixs; ++i) {
+ const uint32_t argb = argb_data[i];
+ const uint32_t green = (argb >> 8) & 0xff;
+ const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff;
+ const uint32_t new_b = ((argb & 0xff) - green) & 0xff;
+ argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b;
+ }
+}
+
+static void AddGreenToBlueAndRedSSE2(uint32_t* data, const uint32_t* data_end) {
+ const __m128i mask = _mm_set1_epi32(0x0000ff00);
+ for (; data + 4 < data_end; data += 4) {
+ const __m128i in = _mm_loadu_si128((__m128i*)data);
+ const __m128i in_00g0 = _mm_and_si128(in, mask); // 00g0|00g0|...
+ const __m128i in_0g00 = _mm_slli_epi32(in_00g0, 8); // 0g00|0g00|...
+ const __m128i in_000g = _mm_srli_epi32(in_00g0, 8); // 000g|000g|...
+ const __m128i in_0g0g = _mm_or_si128(in_0g00, in_000g);
+ const __m128i out = _mm_add_epi8(in, in_0g0g);
+ _mm_storeu_si128((__m128i*)data, out);
+ }
+ // fallthrough and finish off with plain-C
+ while (data < data_end) {
+ const uint32_t argb = *data;
+ const uint32_t green = ((argb >> 8) & 0xff);
+ uint32_t red_blue = (argb & 0x00ff00ffu);
+ red_blue += (green << 16) | green;
+ red_blue &= 0x00ff00ffu;
+ *data++ = (argb & 0xff00ff00u) | red_blue;
+ }
+}
+
+extern void VP8LDspInitSSE2(void);
+
+void VP8LDspInitSSE2(void) {
+ VP8LClampedAddSubtractFull = ClampedAddSubtractFullSSE2;
+ VP8LClampedAddSubtractHalf = ClampedAddSubtractHalfSSE2;
+ VP8LSelect = SelectSSE2;
+ VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRedSSE2;
+ VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRedSSE2;
+}
+#endif
+//------------------------------------------------------------------------------
+
+VP8LPredClampedAddSubFunc VP8LClampedAddSubtractFull;
+VP8LPredClampedAddSubFunc VP8LClampedAddSubtractHalf;
+VP8LPredSelectFunc VP8LSelect;
+VP8LSubtractGreenFromBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
+VP8LAddGreenToBlueAndRedFunc VP8LAddGreenToBlueAndRed;
+
+void VP8LDspInit(void) {
+ VP8LClampedAddSubtractFull = ClampedAddSubtractFull;
+ VP8LClampedAddSubtractHalf = ClampedAddSubtractHalf;
+ VP8LSelect = Select;
+ VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed;
+ VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed;
+
+ // If defined, use CPUInfo() to overwrite some pointers with faster versions.
+ if (VP8GetCPUInfo != NULL) {
+#if defined(WEBP_USE_SSE2)
+ if (VP8GetCPUInfo(kSSE2)) {
+ VP8LDspInitSSE2();
+ }
+#endif
+ }
+}
+
+//------------------------------------------------------------------------------
+
diff --git a/src/3rdparty/libwebp/src/dsp/lossless.h b/src/3rdparty/libwebp/src/dsp/lossless.h
new file mode 100644
index 0000000..0f1d442
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/lossless.h
@@ -0,0 +1,220 @@
+// Copyright 2012 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// Image transforms and color space conversion methods for lossless decoder.
+//
+// Authors: Vikas Arora (vikaas.arora@gmail.com)
+// Jyrki Alakuijala (jyrki@google.com)
+
+#ifndef WEBP_DSP_LOSSLESS_H_
+#define WEBP_DSP_LOSSLESS_H_
+
+#include "../webp/types.h"
+#include "../webp/decode.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+//------------------------------------------------------------------------------
+//
+
+typedef uint32_t (*VP8LPredClampedAddSubFunc)(uint32_t c0, uint32_t c1,
+ uint32_t c2);
+typedef uint32_t (*VP8LPredSelectFunc)(uint32_t c0, uint32_t c1, uint32_t c2);
+typedef void (*VP8LSubtractGreenFromBlueAndRedFunc)(uint32_t* argb_data,
+ int num_pixs);
+typedef void (*VP8LAddGreenToBlueAndRedFunc)(uint32_t* data_start,
+ const uint32_t* data_end);
+
+extern VP8LPredClampedAddSubFunc VP8LClampedAddSubtractFull;
+extern VP8LPredClampedAddSubFunc VP8LClampedAddSubtractHalf;
+extern VP8LPredSelectFunc VP8LSelect;
+extern VP8LSubtractGreenFromBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
+extern VP8LAddGreenToBlueAndRedFunc VP8LAddGreenToBlueAndRed;
+
+// Must be called before calling any of the above methods.
+void VP8LDspInit(void);
+
+//------------------------------------------------------------------------------
+// Image transforms.
+
+struct VP8LTransform; // Defined in dec/vp8li.h.
+
+// Performs inverse transform of data given transform information, start and end
+// rows. Transform will be applied to rows [row_start, row_end[.
+// The *in and *out pointers refer to source and destination data respectively
+// corresponding to the intermediate row (row_start).
+void VP8LInverseTransform(const struct VP8LTransform* const transform,
+ int row_start, int row_end,
+ const uint32_t* const in, uint32_t* const out);
+
+// Similar to the static method ColorIndexInverseTransform() that is part of
+// lossless.c, but used only for alpha decoding. It takes uint8_t (rather than
+// uint32_t) arguments for 'src' and 'dst'.
+void VP8LColorIndexInverseTransformAlpha(
+ const struct VP8LTransform* const transform, int y_start, int y_end,
+ const uint8_t* src, uint8_t* dst);
+
+void VP8LResidualImage(int width, int height, int bits,
+ uint32_t* const argb, uint32_t* const argb_scratch,
+ uint32_t* const image);
+
+void VP8LColorSpaceTransform(int width, int height, int bits, int step,
+ uint32_t* const argb, uint32_t* image);
+
+//------------------------------------------------------------------------------
+// Color space conversion.
+
+// Converts from BGRA to other color spaces.
+void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
+ WEBP_CSP_MODE out_colorspace, uint8_t* const rgba);
+
+//------------------------------------------------------------------------------
+// Misc methods.
+
+// Computes sampled size of 'size' when sampling using 'sampling bits'.
+static WEBP_INLINE uint32_t VP8LSubSampleSize(uint32_t size,
+ uint32_t sampling_bits) {
+ return (size + (1 << sampling_bits) - 1) >> sampling_bits;
+}
+
+// Faster logarithm for integers. Small values use a look-up table.
+#define LOG_LOOKUP_IDX_MAX 256
+extern const float kLog2Table[LOG_LOOKUP_IDX_MAX];
+extern const float kSLog2Table[LOG_LOOKUP_IDX_MAX];
+float VP8LFastLog2Slow(int v);
+float VP8LFastSLog2Slow(int v);
+static WEBP_INLINE float VP8LFastLog2(int v) {
+ return (v < LOG_LOOKUP_IDX_MAX) ? kLog2Table[v] : VP8LFastLog2Slow(v);
+}
+// Fast calculation of v * log2(v) for integer input.
+static WEBP_INLINE float VP8LFastSLog2(int v) {
+ return (v < LOG_LOOKUP_IDX_MAX) ? kSLog2Table[v] : VP8LFastSLog2Slow(v);
+}
+
+// -----------------------------------------------------------------------------
+// PrefixEncode()
+
+// use GNU builtins where available.
+#if defined(__GNUC__) && \
+ ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4)
+static WEBP_INLINE int BitsLog2Floor(uint32_t n) {
+ return 31 ^ __builtin_clz(n);
+}
+#elif defined(_MSC_VER) && _MSC_VER > 1310 && \
+ (defined(_M_X64) || defined(_M_IX86))
+#include <intrin.h>
+#pragma intrinsic(_BitScanReverse)
+
+static WEBP_INLINE int BitsLog2Floor(uint32_t n) {
+ unsigned long first_set_bit;
+ _BitScanReverse(&first_set_bit, n);
+ return first_set_bit;
+}
+#else
+// Returns (int)floor(log2(n)). n must be > 0.
+static WEBP_INLINE int BitsLog2Floor(uint32_t n) {
+ int log = 0;
+ uint32_t value = n;
+ int i;
+
+ for (i = 4; i >= 0; --i) {
+ const int shift = (1 << i);
+ const uint32_t x = value >> shift;
+ if (x != 0) {
+ value = x;
+ log += shift;
+ }
+ }
+ return log;
+}
+#endif
+
+static WEBP_INLINE int VP8LBitsLog2Ceiling(uint32_t n) {
+ const int log_floor = BitsLog2Floor(n);
+ if (n == (n & ~(n - 1))) // zero or a power of two.
+ return log_floor;
+ else
+ return log_floor + 1;
+}
+
+// Splitting of distance and length codes into prefixes and
+// extra bits. The prefixes are encoded with an entropy code
+// while the extra bits are stored just as normal bits.
+static WEBP_INLINE void VP8LPrefixEncodeBitsNoLUT(int distance, int* const code,
+ int* const extra_bits) {
+ const int highest_bit = BitsLog2Floor(--distance);
+ const int second_highest_bit = (distance >> (highest_bit - 1)) & 1;
+ *extra_bits = highest_bit - 1;
+ *code = 2 * highest_bit + second_highest_bit;
+}
+
+static WEBP_INLINE void VP8LPrefixEncodeNoLUT(int distance, int* const code,
+ int* const extra_bits,
+ int* const extra_bits_value) {
+ const int highest_bit = BitsLog2Floor(--distance);
+ const int second_highest_bit = (distance >> (highest_bit - 1)) & 1;
+ *extra_bits = highest_bit - 1;
+ *extra_bits_value = distance & ((1 << *extra_bits) - 1);
+ *code = 2 * highest_bit + second_highest_bit;
+}
+
+#define PREFIX_LOOKUP_IDX_MAX 512
+typedef struct {
+ int8_t code_;
+ int8_t extra_bits_;
+} VP8LPrefixCode;
+
+// These tables are derived using VP8LPrefixEncodeNoLUT.
+extern const VP8LPrefixCode kPrefixEncodeCode[PREFIX_LOOKUP_IDX_MAX];
+extern const uint8_t kPrefixEncodeExtraBitsValue[PREFIX_LOOKUP_IDX_MAX];
+static WEBP_INLINE void VP8LPrefixEncodeBits(int distance, int* const code,
+ int* const extra_bits) {
+ if (distance < PREFIX_LOOKUP_IDX_MAX) {
+ const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance];
+ *code = prefix_code.code_;
+ *extra_bits = prefix_code.extra_bits_;
+ } else {
+ VP8LPrefixEncodeBitsNoLUT(distance, code, extra_bits);
+ }
+}
+
+static WEBP_INLINE void VP8LPrefixEncode(int distance, int* const code,
+ int* const extra_bits,
+ int* const extra_bits_value) {
+ if (distance < PREFIX_LOOKUP_IDX_MAX) {
+ const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance];
+ *code = prefix_code.code_;
+ *extra_bits = prefix_code.extra_bits_;
+ *extra_bits_value = kPrefixEncodeExtraBitsValue[distance];
+ } else {
+ VP8LPrefixEncodeNoLUT(distance, code, extra_bits, extra_bits_value);
+ }
+}
+
+// In-place difference of each component with mod 256.
+static WEBP_INLINE uint32_t VP8LSubPixels(uint32_t a, uint32_t b) {
+ const uint32_t alpha_and_green =
+ 0x00ff00ffu + (a & 0xff00ff00u) - (b & 0xff00ff00u);
+ const uint32_t red_and_blue =
+ 0xff00ff00u + (a & 0x00ff00ffu) - (b & 0x00ff00ffu);
+ return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
+}
+
+void VP8LBundleColorMap(const uint8_t* const row, int width,
+ int xbits, uint32_t* const dst);
+
+//------------------------------------------------------------------------------
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // WEBP_DSP_LOSSLESS_H_
diff --git a/src/3rdparty/libwebp/src/dsp/upsampling.c b/src/3rdparty/libwebp/src/dsp/upsampling.c
new file mode 100644
index 0000000..978e3ce
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/upsampling.c
@@ -0,0 +1,366 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// YUV to RGB upsampling functions.
+//
+// Author: somnath@google.com (Somnath Banerjee)
+
+#include "./dsp.h"
+#include "./yuv.h"
+
+#include <assert.h>
+
+//------------------------------------------------------------------------------
+// Fancy upsampler
+
+#ifdef FANCY_UPSAMPLING
+
+// Fancy upsampling functions to convert YUV to RGB
+WebPUpsampleLinePairFunc WebPUpsamplers[MODE_LAST];
+
+// Given samples laid out in a square as:
+// [a b]
+// [c d]
+// we interpolate u/v as:
+// ([9*a + 3*b + 3*c + d 3*a + 9*b + 3*c + d] + [8 8]) / 16
+// ([3*a + b + 9*c + 3*d a + 3*b + 3*c + 9*d] [8 8]) / 16
+
+// We process u and v together stashed into 32bit (16bit each).
+#define LOAD_UV(u, v) ((u) | ((v) << 16))
+
+#define UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
+static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
+ const uint8_t* top_u, const uint8_t* top_v, \
+ const uint8_t* cur_u, const uint8_t* cur_v, \
+ uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
+ int x; \
+ const int last_pixel_pair = (len - 1) >> 1; \
+ uint32_t tl_uv = LOAD_UV(top_u[0], top_v[0]); /* top-left sample */ \
+ uint32_t l_uv = LOAD_UV(cur_u[0], cur_v[0]); /* left-sample */ \
+ assert(top_y != NULL); \
+ { \
+ const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
+ FUNC(top_y[0], uv0 & 0xff, (uv0 >> 16), top_dst); \
+ } \
+ if (bottom_y != NULL) { \
+ const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
+ FUNC(bottom_y[0], uv0 & 0xff, (uv0 >> 16), bottom_dst); \
+ } \
+ for (x = 1; x <= last_pixel_pair; ++x) { \
+ const uint32_t t_uv = LOAD_UV(top_u[x], top_v[x]); /* top sample */ \
+ const uint32_t uv = LOAD_UV(cur_u[x], cur_v[x]); /* sample */ \
+ /* precompute invariant values associated with first and second diagonals*/\
+ const uint32_t avg = tl_uv + t_uv + l_uv + uv + 0x00080008u; \
+ const uint32_t diag_12 = (avg + 2 * (t_uv + l_uv)) >> 3; \
+ const uint32_t diag_03 = (avg + 2 * (tl_uv + uv)) >> 3; \
+ { \
+ const uint32_t uv0 = (diag_12 + tl_uv) >> 1; \
+ const uint32_t uv1 = (diag_03 + t_uv) >> 1; \
+ FUNC(top_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
+ top_dst + (2 * x - 1) * XSTEP); \
+ FUNC(top_y[2 * x - 0], uv1 & 0xff, (uv1 >> 16), \
+ top_dst + (2 * x - 0) * XSTEP); \
+ } \
+ if (bottom_y != NULL) { \
+ const uint32_t uv0 = (diag_03 + l_uv) >> 1; \
+ const uint32_t uv1 = (diag_12 + uv) >> 1; \
+ FUNC(bottom_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
+ bottom_dst + (2 * x - 1) * XSTEP); \
+ FUNC(bottom_y[2 * x + 0], uv1 & 0xff, (uv1 >> 16), \
+ bottom_dst + (2 * x + 0) * XSTEP); \
+ } \
+ tl_uv = t_uv; \
+ l_uv = uv; \
+ } \
+ if (!(len & 1)) { \
+ { \
+ const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
+ FUNC(top_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
+ top_dst + (len - 1) * XSTEP); \
+ } \
+ if (bottom_y != NULL) { \
+ const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
+ FUNC(bottom_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
+ bottom_dst + (len - 1) * XSTEP); \
+ } \
+ } \
+}
+
+// All variants implemented.
+UPSAMPLE_FUNC(UpsampleRgbLinePair, VP8YuvToRgb, 3)
+UPSAMPLE_FUNC(UpsampleBgrLinePair, VP8YuvToBgr, 3)
+UPSAMPLE_FUNC(UpsampleRgbaLinePair, VP8YuvToRgba, 4)
+UPSAMPLE_FUNC(UpsampleBgraLinePair, VP8YuvToBgra, 4)
+UPSAMPLE_FUNC(UpsampleArgbLinePair, VP8YuvToArgb, 4)
+UPSAMPLE_FUNC(UpsampleRgba4444LinePair, VP8YuvToRgba4444, 2)
+UPSAMPLE_FUNC(UpsampleRgb565LinePair, VP8YuvToRgb565, 2)
+
+#undef LOAD_UV
+#undef UPSAMPLE_FUNC
+
+#endif // FANCY_UPSAMPLING
+
+//------------------------------------------------------------------------------
+// simple point-sampling
+
+#define SAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
+static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
+ const uint8_t* u, const uint8_t* v, \
+ uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
+ int i; \
+ for (i = 0; i < len - 1; i += 2) { \
+ FUNC(top_y[0], u[0], v[0], top_dst); \
+ FUNC(top_y[1], u[0], v[0], top_dst + XSTEP); \
+ FUNC(bottom_y[0], u[0], v[0], bottom_dst); \
+ FUNC(bottom_y[1], u[0], v[0], bottom_dst + XSTEP); \
+ top_y += 2; \
+ bottom_y += 2; \
+ u++; \
+ v++; \
+ top_dst += 2 * XSTEP; \
+ bottom_dst += 2 * XSTEP; \
+ } \
+ if (i == len - 1) { /* last one */ \
+ FUNC(top_y[0], u[0], v[0], top_dst); \
+ FUNC(bottom_y[0], u[0], v[0], bottom_dst); \
+ } \
+}
+
+// All variants implemented.
+SAMPLE_FUNC(SampleRgbLinePair, VP8YuvToRgb, 3)
+SAMPLE_FUNC(SampleBgrLinePair, VP8YuvToBgr, 3)
+SAMPLE_FUNC(SampleRgbaLinePair, VP8YuvToRgba, 4)
+SAMPLE_FUNC(SampleBgraLinePair, VP8YuvToBgra, 4)
+SAMPLE_FUNC(SampleArgbLinePair, VP8YuvToArgb, 4)
+SAMPLE_FUNC(SampleRgba4444LinePair, VP8YuvToRgba4444, 2)
+SAMPLE_FUNC(SampleRgb565LinePair, VP8YuvToRgb565, 2)
+
+#undef SAMPLE_FUNC
+
+const WebPSampleLinePairFunc WebPSamplers[MODE_LAST] = {
+ SampleRgbLinePair, // MODE_RGB
+ SampleRgbaLinePair, // MODE_RGBA
+ SampleBgrLinePair, // MODE_BGR
+ SampleBgraLinePair, // MODE_BGRA
+ SampleArgbLinePair, // MODE_ARGB
+ SampleRgba4444LinePair, // MODE_RGBA_4444
+ SampleRgb565LinePair, // MODE_RGB_565
+ SampleRgbaLinePair, // MODE_rgbA
+ SampleBgraLinePair, // MODE_bgrA
+ SampleArgbLinePair, // MODE_Argb
+ SampleRgba4444LinePair // MODE_rgbA_4444
+};
+
+//------------------------------------------------------------------------------
+
+#if !defined(FANCY_UPSAMPLING)
+#define DUAL_SAMPLE_FUNC(FUNC_NAME, FUNC) \
+static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bot_y, \
+ const uint8_t* top_u, const uint8_t* top_v, \
+ const uint8_t* bot_u, const uint8_t* bot_v, \
+ uint8_t* top_dst, uint8_t* bot_dst, int len) { \
+ const int half_len = len >> 1; \
+ int x; \
+ assert(top_dst != NULL); \
+ { \
+ for (x = 0; x < half_len; ++x) { \
+ FUNC(top_y[2 * x + 0], top_u[x], top_v[x], top_dst + 8 * x + 0); \
+ FUNC(top_y[2 * x + 1], top_u[x], top_v[x], top_dst + 8 * x + 4); \
+ } \
+ if (len & 1) FUNC(top_y[2 * x + 0], top_u[x], top_v[x], top_dst + 8 * x); \
+ } \
+ if (bot_dst != NULL) { \
+ for (x = 0; x < half_len; ++x) { \
+ FUNC(bot_y[2 * x + 0], bot_u[x], bot_v[x], bot_dst + 8 * x + 0); \
+ FUNC(bot_y[2 * x + 1], bot_u[x], bot_v[x], bot_dst + 8 * x + 4); \
+ } \
+ if (len & 1) FUNC(bot_y[2 * x + 0], bot_u[x], bot_v[x], bot_dst + 8 * x); \
+ } \
+}
+
+DUAL_SAMPLE_FUNC(DualLineSamplerBGRA, VP8YuvToBgra)
+DUAL_SAMPLE_FUNC(DualLineSamplerARGB, VP8YuvToArgb)
+#undef DUAL_SAMPLE_FUNC
+
+#endif // !FANCY_UPSAMPLING
+
+WebPUpsampleLinePairFunc WebPGetLinePairConverter(int alpha_is_last) {
+ WebPInitUpsamplers();
+ VP8YUVInit();
+#ifdef FANCY_UPSAMPLING
+ return WebPUpsamplers[alpha_is_last ? MODE_BGRA : MODE_ARGB];
+#else
+ return (alpha_is_last ? DualLineSamplerBGRA : DualLineSamplerARGB);
+#endif
+}
+
+//------------------------------------------------------------------------------
+// YUV444 converter
+
+#define YUV444_FUNC(FUNC_NAME, FUNC, XSTEP) \
+static void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \
+ uint8_t* dst, int len) { \
+ int i; \
+ for (i = 0; i < len; ++i) FUNC(y[i], u[i], v[i], &dst[i * XSTEP]); \
+}
+
+YUV444_FUNC(Yuv444ToRgb, VP8YuvToRgb, 3)
+YUV444_FUNC(Yuv444ToBgr, VP8YuvToBgr, 3)
+YUV444_FUNC(Yuv444ToRgba, VP8YuvToRgba, 4)
+YUV444_FUNC(Yuv444ToBgra, VP8YuvToBgra, 4)
+YUV444_FUNC(Yuv444ToArgb, VP8YuvToArgb, 4)
+YUV444_FUNC(Yuv444ToRgba4444, VP8YuvToRgba4444, 2)
+YUV444_FUNC(Yuv444ToRgb565, VP8YuvToRgb565, 2)
+
+#undef YUV444_FUNC
+
+const WebPYUV444Converter WebPYUV444Converters[MODE_LAST] = {
+ Yuv444ToRgb, // MODE_RGB
+ Yuv444ToRgba, // MODE_RGBA
+ Yuv444ToBgr, // MODE_BGR
+ Yuv444ToBgra, // MODE_BGRA
+ Yuv444ToArgb, // MODE_ARGB
+ Yuv444ToRgba4444, // MODE_RGBA_4444
+ Yuv444ToRgb565, // MODE_RGB_565
+ Yuv444ToRgba, // MODE_rgbA
+ Yuv444ToBgra, // MODE_bgrA
+ Yuv444ToArgb, // MODE_Argb
+ Yuv444ToRgba4444 // MODE_rgbA_4444
+};
+
+//------------------------------------------------------------------------------
+// Premultiplied modes
+
+// non dithered-modes
+
+// (x * a * 32897) >> 23 is bit-wise equivalent to (int)(x * a / 255.)
+// for all 8bit x or a. For bit-wise equivalence to (int)(x * a / 255. + .5),
+// one can use instead: (x * a * 65793 + (1 << 23)) >> 24
+#if 1 // (int)(x * a / 255.)
+#define MULTIPLIER(a) ((a) * 32897UL)
+#define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
+#else // (int)(x * a / 255. + .5)
+#define MULTIPLIER(a) ((a) * 65793UL)
+#define PREMULTIPLY(x, m) (((x) * (m) + (1UL << 23)) >> 24)
+#endif
+
+static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first,
+ int w, int h, int stride) {
+ while (h-- > 0) {
+ uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
+ const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
+ int i;
+ for (i = 0; i < w; ++i) {
+ const uint32_t a = alpha[4 * i];
+ if (a != 0xff) {
+ const uint32_t mult = MULTIPLIER(a);
+ rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
+ rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
+ rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
+ }
+ }
+ rgba += stride;
+ }
+}
+#undef MULTIPLIER
+#undef PREMULTIPLY
+
+// rgbA4444
+
+#define MULTIPLIER(a) ((a) * 0x1111) // 0x1111 ~= (1 << 16) / 15
+
+static WEBP_INLINE uint8_t dither_hi(uint8_t x) {
+ return (x & 0xf0) | (x >> 4);
+}
+
+static WEBP_INLINE uint8_t dither_lo(uint8_t x) {
+ return (x & 0x0f) | (x << 4);
+}
+
+static WEBP_INLINE uint8_t multiply(uint8_t x, uint32_t m) {
+ return (x * m) >> 16;
+}
+
+static void ApplyAlphaMultiply4444(uint8_t* rgba4444,
+ int w, int h, int stride) {
+ while (h-- > 0) {
+ int i;
+ for (i = 0; i < w; ++i) {
+ const uint8_t a = (rgba4444[2 * i + 1] & 0x0f);
+ const uint32_t mult = MULTIPLIER(a);
+ const uint8_t r = multiply(dither_hi(rgba4444[2 * i + 0]), mult);
+ const uint8_t g = multiply(dither_lo(rgba4444[2 * i + 0]), mult);
+ const uint8_t b = multiply(dither_hi(rgba4444[2 * i + 1]), mult);
+ rgba4444[2 * i + 0] = (r & 0xf0) | ((g >> 4) & 0x0f);
+ rgba4444[2 * i + 1] = (b & 0xf0) | a;
+ }
+ rgba4444 += stride;
+ }
+}
+#undef MULTIPLIER
+
+void (*WebPApplyAlphaMultiply)(uint8_t*, int, int, int, int)
+ = ApplyAlphaMultiply;
+void (*WebPApplyAlphaMultiply4444)(uint8_t*, int, int, int)
+ = ApplyAlphaMultiply4444;
+
+//------------------------------------------------------------------------------
+// Main call
+
+void WebPInitUpsamplers(void) {
+#ifdef FANCY_UPSAMPLING
+ WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair;
+ WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair;
+ WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair;
+ WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePair;
+ WebPUpsamplers[MODE_ARGB] = UpsampleArgbLinePair;
+ WebPUpsamplers[MODE_RGBA_4444] = UpsampleRgba4444LinePair;
+ WebPUpsamplers[MODE_RGB_565] = UpsampleRgb565LinePair;
+
+ // If defined, use CPUInfo() to overwrite some pointers with faster versions.
+ if (VP8GetCPUInfo != NULL) {
+#if defined(WEBP_USE_SSE2)
+ if (VP8GetCPUInfo(kSSE2)) {
+ WebPInitUpsamplersSSE2();
+ }
+#endif
+#if defined(WEBP_USE_NEON)
+ if (VP8GetCPUInfo(kNEON)) {
+ WebPInitUpsamplersNEON();
+ }
+#endif
+ }
+#endif // FANCY_UPSAMPLING
+}
+
+void WebPInitPremultiply(void) {
+ WebPApplyAlphaMultiply = ApplyAlphaMultiply;
+ WebPApplyAlphaMultiply4444 = ApplyAlphaMultiply4444;
+
+#ifdef FANCY_UPSAMPLING
+ WebPUpsamplers[MODE_rgbA] = UpsampleRgbaLinePair;
+ WebPUpsamplers[MODE_bgrA] = UpsampleBgraLinePair;
+ WebPUpsamplers[MODE_Argb] = UpsampleArgbLinePair;
+ WebPUpsamplers[MODE_rgbA_4444] = UpsampleRgba4444LinePair;
+
+ if (VP8GetCPUInfo != NULL) {
+#if defined(WEBP_USE_SSE2)
+ if (VP8GetCPUInfo(kSSE2)) {
+ WebPInitPremultiplySSE2();
+ }
+#endif
+#if defined(WEBP_USE_NEON)
+ if (VP8GetCPUInfo(kNEON)) {
+ WebPInitPremultiplyNEON();
+ }
+#endif
+ }
+#endif // FANCY_UPSAMPLING
+}
+
diff --git a/src/3rdparty/libwebp/src/dsp/upsampling_neon.c b/src/3rdparty/libwebp/src/dsp/upsampling_neon.c
new file mode 100644
index 0000000..791222f
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/upsampling_neon.c
@@ -0,0 +1,265 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// NEON version of YUV to RGB upsampling functions.
+//
+// Author: mans@mansr.com (Mans Rullgard)
+// Based on SSE code by: somnath@google.com (Somnath Banerjee)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_NEON)
+
+#include <assert.h>
+#include <arm_neon.h>
+#include <string.h>
+#include "./yuv.h"
+
+#ifdef FANCY_UPSAMPLING
+
+//-----------------------------------------------------------------------------
+// U/V upsampling
+
+// Loads 9 pixels each from rows r1 and r2 and generates 16 pixels.
+#define UPSAMPLE_16PIXELS(r1, r2, out) { \
+ uint8x8_t a = vld1_u8(r1); \
+ uint8x8_t b = vld1_u8(r1 + 1); \
+ uint8x8_t c = vld1_u8(r2); \
+ uint8x8_t d = vld1_u8(r2 + 1); \
+ \
+ uint16x8_t al = vshll_n_u8(a, 1); \
+ uint16x8_t bl = vshll_n_u8(b, 1); \
+ uint16x8_t cl = vshll_n_u8(c, 1); \
+ uint16x8_t dl = vshll_n_u8(d, 1); \
+ \
+ uint8x8_t diag1, diag2; \
+ uint16x8_t sl; \
+ \
+ /* a + b + c + d */ \
+ sl = vaddl_u8(a, b); \
+ sl = vaddw_u8(sl, c); \
+ sl = vaddw_u8(sl, d); \
+ \
+ al = vaddq_u16(sl, al); /* 3a + b + c + d */ \
+ bl = vaddq_u16(sl, bl); /* a + 3b + c + d */ \
+ \
+ al = vaddq_u16(al, dl); /* 3a + b + c + 3d */ \
+ bl = vaddq_u16(bl, cl); /* a + 3b + 3c + d */ \
+ \
+ diag2 = vshrn_n_u16(al, 3); \
+ diag1 = vshrn_n_u16(bl, 3); \
+ \
+ a = vrhadd_u8(a, diag1); \
+ b = vrhadd_u8(b, diag2); \
+ c = vrhadd_u8(c, diag2); \
+ d = vrhadd_u8(d, diag1); \
+ \
+ { \
+ const uint8x8x2_t a_b = {{ a, b }}; \
+ const uint8x8x2_t c_d = {{ c, d }}; \
+ vst2_u8(out, a_b); \
+ vst2_u8(out + 32, c_d); \
+ } \
+}
+
+// Turn the macro into a function for reducing code-size when non-critical
+static void Upsample16Pixels(const uint8_t *r1, const uint8_t *r2,
+ uint8_t *out) {
+ UPSAMPLE_16PIXELS(r1, r2, out);
+}
+
+#define UPSAMPLE_LAST_BLOCK(tb, bb, num_pixels, out) { \
+ uint8_t r1[9], r2[9]; \
+ memcpy(r1, (tb), (num_pixels)); \
+ memcpy(r2, (bb), (num_pixels)); \
+ /* replicate last byte */ \
+ memset(r1 + (num_pixels), r1[(num_pixels) - 1], 9 - (num_pixels)); \
+ memset(r2 + (num_pixels), r2[(num_pixels) - 1], 9 - (num_pixels)); \
+ Upsample16Pixels(r1, r2, out); \
+}
+
+//-----------------------------------------------------------------------------
+// YUV->RGB conversion
+
+static const int16_t kCoeffs[4] = { kYScale, kVToR, kUToG, kVToG };
+
+#define v255 vmov_n_u8(255)
+
+#define STORE_Rgb(out, r, g, b) do { \
+ const uint8x8x3_t r_g_b = {{ r, g, b }}; \
+ vst3_u8(out, r_g_b); \
+} while (0)
+
+#define STORE_Bgr(out, r, g, b) do { \
+ const uint8x8x3_t b_g_r = {{ b, g, r }}; \
+ vst3_u8(out, b_g_r); \
+} while (0)
+
+#define STORE_Rgba(out, r, g, b) do { \
+ const uint8x8x4_t r_g_b_v255 = {{ r, g, b, v255 }}; \
+ vst4_u8(out, r_g_b_v255); \
+} while (0)
+
+#define STORE_Bgra(out, r, g, b) do { \
+ const uint8x8x4_t b_g_r_v255 = {{ b, g, r, v255 }}; \
+ vst4_u8(out, b_g_r_v255); \
+} while (0)
+
+#define CONVERT8(FMT, XSTEP, N, src_y, src_uv, out, cur_x) { \
+ int i; \
+ for (i = 0; i < N; i += 8) { \
+ const int off = ((cur_x) + i) * XSTEP; \
+ uint8x8_t y = vld1_u8((src_y) + (cur_x) + i); \
+ uint8x8_t u = vld1_u8((src_uv) + i); \
+ uint8x8_t v = vld1_u8((src_uv) + i + 16); \
+ const int16x8_t yy = vreinterpretq_s16_u16(vsubl_u8(y, u16)); \
+ const int16x8_t uu = vreinterpretq_s16_u16(vsubl_u8(u, u128)); \
+ const int16x8_t vv = vreinterpretq_s16_u16(vsubl_u8(v, u128)); \
+ int32x4_t yl = vmull_lane_s16(vget_low_s16(yy), cf16, 0); \
+ int32x4_t yh = vmull_lane_s16(vget_high_s16(yy), cf16, 0); \
+ const int32x4_t rl = vmlal_lane_s16(yl, vget_low_s16(vv), cf16, 1);\
+ const int32x4_t rh = vmlal_lane_s16(yh, vget_high_s16(vv), cf16, 1);\
+ int32x4_t gl = vmlsl_lane_s16(yl, vget_low_s16(uu), cf16, 2); \
+ int32x4_t gh = vmlsl_lane_s16(yh, vget_high_s16(uu), cf16, 2); \
+ const int32x4_t bl = vmovl_s16(vget_low_s16(uu)); \
+ const int32x4_t bh = vmovl_s16(vget_high_s16(uu)); \
+ gl = vmlsl_lane_s16(gl, vget_low_s16(vv), cf16, 3); \
+ gh = vmlsl_lane_s16(gh, vget_high_s16(vv), cf16, 3); \
+ yl = vmlaq_lane_s32(yl, bl, cf32, 0); \
+ yh = vmlaq_lane_s32(yh, bh, cf32, 0); \
+ /* vrshrn_n_s32() already incorporates the rounding constant */ \
+ y = vqmovun_s16(vcombine_s16(vrshrn_n_s32(rl, YUV_FIX2), \
+ vrshrn_n_s32(rh, YUV_FIX2))); \
+ u = vqmovun_s16(vcombine_s16(vrshrn_n_s32(gl, YUV_FIX2), \
+ vrshrn_n_s32(gh, YUV_FIX2))); \
+ v = vqmovun_s16(vcombine_s16(vrshrn_n_s32(yl, YUV_FIX2), \
+ vrshrn_n_s32(yh, YUV_FIX2))); \
+ STORE_ ## FMT(out + off, y, u, v); \
+ } \
+}
+
+#define CONVERT1(FUNC, XSTEP, N, src_y, src_uv, rgb, cur_x) { \
+ int i; \
+ for (i = 0; i < N; i++) { \
+ const int off = ((cur_x) + i) * XSTEP; \
+ const int y = src_y[(cur_x) + i]; \
+ const int u = (src_uv)[i]; \
+ const int v = (src_uv)[i + 16]; \
+ FUNC(y, u, v, rgb + off); \
+ } \
+}
+
+#define CONVERT2RGB_8(FMT, XSTEP, top_y, bottom_y, uv, \
+ top_dst, bottom_dst, cur_x, len) { \
+ CONVERT8(FMT, XSTEP, len, top_y, uv, top_dst, cur_x) \
+ if (bottom_y != NULL) { \
+ CONVERT8(FMT, XSTEP, len, bottom_y, (uv) + 32, bottom_dst, cur_x) \
+ } \
+}
+
+#define CONVERT2RGB_1(FUNC, XSTEP, top_y, bottom_y, uv, \
+ top_dst, bottom_dst, cur_x, len) { \
+ CONVERT1(FUNC, XSTEP, len, top_y, uv, top_dst, cur_x); \
+ if (bottom_y != NULL) { \
+ CONVERT1(FUNC, XSTEP, len, bottom_y, (uv) + 32, bottom_dst, cur_x); \
+ } \
+}
+
+#define NEON_UPSAMPLE_FUNC(FUNC_NAME, FMT, XSTEP) \
+static void FUNC_NAME(const uint8_t *top_y, const uint8_t *bottom_y, \
+ const uint8_t *top_u, const uint8_t *top_v, \
+ const uint8_t *cur_u, const uint8_t *cur_v, \
+ uint8_t *top_dst, uint8_t *bottom_dst, int len) { \
+ int block; \
+ /* 16 byte aligned array to cache reconstructed u and v */ \
+ uint8_t uv_buf[2 * 32 + 15]; \
+ uint8_t *const r_uv = (uint8_t*)((uintptr_t)(uv_buf + 15) & ~15); \
+ const int uv_len = (len + 1) >> 1; \
+ /* 9 pixels must be read-able for each block */ \
+ const int num_blocks = (uv_len - 1) >> 3; \
+ const int leftover = uv_len - num_blocks * 8; \
+ const int last_pos = 1 + 16 * num_blocks; \
+ \
+ const int u_diag = ((top_u[0] + cur_u[0]) >> 1) + 1; \
+ const int v_diag = ((top_v[0] + cur_v[0]) >> 1) + 1; \
+ \
+ const int16x4_t cf16 = vld1_s16(kCoeffs); \
+ const int32x2_t cf32 = vmov_n_s32(kUToB); \
+ const uint8x8_t u16 = vmov_n_u8(16); \
+ const uint8x8_t u128 = vmov_n_u8(128); \
+ \
+ /* Treat the first pixel in regular way */ \
+ assert(top_y != NULL); \
+ { \
+ const int u0 = (top_u[0] + u_diag) >> 1; \
+ const int v0 = (top_v[0] + v_diag) >> 1; \
+ VP8YuvTo ## FMT(top_y[0], u0, v0, top_dst); \
+ } \
+ if (bottom_y != NULL) { \
+ const int u0 = (cur_u[0] + u_diag) >> 1; \
+ const int v0 = (cur_v[0] + v_diag) >> 1; \
+ VP8YuvTo ## FMT(bottom_y[0], u0, v0, bottom_dst); \
+ } \
+ \
+ for (block = 0; block < num_blocks; ++block) { \
+ UPSAMPLE_16PIXELS(top_u, cur_u, r_uv); \
+ UPSAMPLE_16PIXELS(top_v, cur_v, r_uv + 16); \
+ CONVERT2RGB_8(FMT, XSTEP, top_y, bottom_y, r_uv, \
+ top_dst, bottom_dst, 16 * block + 1, 16); \
+ top_u += 8; \
+ cur_u += 8; \
+ top_v += 8; \
+ cur_v += 8; \
+ } \
+ \
+ UPSAMPLE_LAST_BLOCK(top_u, cur_u, leftover, r_uv); \
+ UPSAMPLE_LAST_BLOCK(top_v, cur_v, leftover, r_uv + 16); \
+ CONVERT2RGB_1(VP8YuvTo ## FMT, XSTEP, top_y, bottom_y, r_uv, \
+ top_dst, bottom_dst, last_pos, len - last_pos); \
+}
+
+// NEON variants of the fancy upsampler.
+NEON_UPSAMPLE_FUNC(UpsampleRgbLinePairNEON, Rgb, 3)
+NEON_UPSAMPLE_FUNC(UpsampleBgrLinePairNEON, Bgr, 3)
+NEON_UPSAMPLE_FUNC(UpsampleRgbaLinePairNEON, Rgba, 4)
+NEON_UPSAMPLE_FUNC(UpsampleBgraLinePairNEON, Bgra, 4)
+
+#endif // FANCY_UPSAMPLING
+
+#endif // WEBP_USE_NEON
+
+//------------------------------------------------------------------------------
+
+#ifdef FANCY_UPSAMPLING
+
+extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */];
+
+void WebPInitUpsamplersNEON(void) {
+#if defined(WEBP_USE_NEON)
+ WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePairNEON;
+ WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePairNEON;
+ WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePairNEON;
+ WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePairNEON;
+#endif // WEBP_USE_NEON
+}
+
+void WebPInitPremultiplyNEON(void) {
+#if defined(WEBP_USE_NEON)
+ WebPUpsamplers[MODE_rgbA] = UpsampleRgbaLinePairNEON;
+ WebPUpsamplers[MODE_bgrA] = UpsampleBgraLinePairNEON;
+#endif // WEBP_USE_NEON
+}
+
+#else
+
+// this empty function is to avoid an empty .o
+void WebPInitPremultiplyNEON(void) {}
+
+#endif // FANCY_UPSAMPLING
+
diff --git a/src/3rdparty/libwebp/src/dsp/upsampling_sse2.c b/src/3rdparty/libwebp/src/dsp/upsampling_sse2.c
new file mode 100644
index 0000000..0db0798
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/upsampling_sse2.c
@@ -0,0 +1,218 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// SSE2 version of YUV to RGB upsampling functions.
+//
+// Author: somnath@google.com (Somnath Banerjee)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_SSE2)
+
+#include <assert.h>
+#include <emmintrin.h>
+#include <string.h>
+#include "./yuv.h"
+
+#ifdef FANCY_UPSAMPLING
+
+// We compute (9*a + 3*b + 3*c + d + 8) / 16 as follows
+// u = (9*a + 3*b + 3*c + d + 8) / 16
+// = (a + (a + 3*b + 3*c + d) / 8 + 1) / 2
+// = (a + m + 1) / 2
+// where m = (a + 3*b + 3*c + d) / 8
+// = ((a + b + c + d) / 2 + b + c) / 4
+//
+// Let's say k = (a + b + c + d) / 4.
+// We can compute k as
+// k = (s + t + 1) / 2 - ((a^d) | (b^c) | (s^t)) & 1
+// where s = (a + d + 1) / 2 and t = (b + c + 1) / 2
+//
+// Then m can be written as
+// m = (k + t + 1) / 2 - (((b^c) & (s^t)) | (k^t)) & 1
+
+// Computes out = (k + in + 1) / 2 - ((ij & (s^t)) | (k^in)) & 1
+#define GET_M(ij, in, out) do { \
+ const __m128i tmp0 = _mm_avg_epu8(k, (in)); /* (k + in + 1) / 2 */ \
+ const __m128i tmp1 = _mm_and_si128((ij), st); /* (ij) & (s^t) */ \
+ const __m128i tmp2 = _mm_xor_si128(k, (in)); /* (k^in) */ \
+ const __m128i tmp3 = _mm_or_si128(tmp1, tmp2); /* ((ij) & (s^t)) | (k^in) */\
+ const __m128i tmp4 = _mm_and_si128(tmp3, one); /* & 1 -> lsb_correction */ \
+ (out) = _mm_sub_epi8(tmp0, tmp4); /* (k + in + 1) / 2 - lsb_correction */ \
+} while (0)
+
+// pack and store two alternating pixel rows
+#define PACK_AND_STORE(a, b, da, db, out) do { \
+ const __m128i t_a = _mm_avg_epu8(a, da); /* (9a + 3b + 3c + d + 8) / 16 */ \
+ const __m128i t_b = _mm_avg_epu8(b, db); /* (3a + 9b + c + 3d + 8) / 16 */ \
+ const __m128i t_1 = _mm_unpacklo_epi8(t_a, t_b); \
+ const __m128i t_2 = _mm_unpackhi_epi8(t_a, t_b); \
+ _mm_store_si128(((__m128i*)(out)) + 0, t_1); \
+ _mm_store_si128(((__m128i*)(out)) + 1, t_2); \
+} while (0)
+
+// Loads 17 pixels each from rows r1 and r2 and generates 32 pixels.
+#define UPSAMPLE_32PIXELS(r1, r2, out) { \
+ const __m128i one = _mm_set1_epi8(1); \
+ const __m128i a = _mm_loadu_si128((__m128i*)&(r1)[0]); \
+ const __m128i b = _mm_loadu_si128((__m128i*)&(r1)[1]); \
+ const __m128i c = _mm_loadu_si128((__m128i*)&(r2)[0]); \
+ const __m128i d = _mm_loadu_si128((__m128i*)&(r2)[1]); \
+ \
+ const __m128i s = _mm_avg_epu8(a, d); /* s = (a + d + 1) / 2 */ \
+ const __m128i t = _mm_avg_epu8(b, c); /* t = (b + c + 1) / 2 */ \
+ const __m128i st = _mm_xor_si128(s, t); /* st = s^t */ \
+ \
+ const __m128i ad = _mm_xor_si128(a, d); /* ad = a^d */ \
+ const __m128i bc = _mm_xor_si128(b, c); /* bc = b^c */ \
+ \
+ const __m128i t1 = _mm_or_si128(ad, bc); /* (a^d) | (b^c) */ \
+ const __m128i t2 = _mm_or_si128(t1, st); /* (a^d) | (b^c) | (s^t) */ \
+ const __m128i t3 = _mm_and_si128(t2, one); /* (a^d) | (b^c) | (s^t) & 1 */ \
+ const __m128i t4 = _mm_avg_epu8(s, t); \
+ const __m128i k = _mm_sub_epi8(t4, t3); /* k = (a + b + c + d) / 4 */ \
+ __m128i diag1, diag2; \
+ \
+ GET_M(bc, t, diag1); /* diag1 = (a + 3b + 3c + d) / 8 */ \
+ GET_M(ad, s, diag2); /* diag2 = (3a + b + c + 3d) / 8 */ \
+ \
+ /* pack the alternate pixels */ \
+ PACK_AND_STORE(a, b, diag1, diag2, out + 0); /* store top */ \
+ PACK_AND_STORE(c, d, diag2, diag1, out + 2 * 32); /* store bottom */ \
+}
+
+// Turn the macro into a function for reducing code-size when non-critical
+static void Upsample32Pixels(const uint8_t r1[], const uint8_t r2[],
+ uint8_t* const out) {
+ UPSAMPLE_32PIXELS(r1, r2, out);
+}
+
+#define UPSAMPLE_LAST_BLOCK(tb, bb, num_pixels, out) { \
+ uint8_t r1[17], r2[17]; \
+ memcpy(r1, (tb), (num_pixels)); \
+ memcpy(r2, (bb), (num_pixels)); \
+ /* replicate last byte */ \
+ memset(r1 + (num_pixels), r1[(num_pixels) - 1], 17 - (num_pixels)); \
+ memset(r2 + (num_pixels), r2[(num_pixels) - 1], 17 - (num_pixels)); \
+ /* using the shared function instead of the macro saves ~3k code size */ \
+ Upsample32Pixels(r1, r2, out); \
+}
+
+#define CONVERT2RGB(FUNC, XSTEP, top_y, bottom_y, \
+ top_dst, bottom_dst, cur_x, num_pixels) { \
+ int n; \
+ for (n = 0; n < (num_pixels); ++n) { \
+ FUNC(top_y[(cur_x) + n], r_u[n], r_v[n], \
+ top_dst + ((cur_x) + n) * XSTEP); \
+ } \
+ if (bottom_y != NULL) { \
+ for (n = 0; n < (num_pixels); ++n) { \
+ FUNC(bottom_y[(cur_x) + n], r_u[64 + n], r_v[64 + n], \
+ bottom_dst + ((cur_x) + n) * XSTEP); \
+ } \
+ } \
+}
+
+#define CONVERT2RGB_32(FUNC, XSTEP, top_y, bottom_y, \
+ top_dst, bottom_dst, cur_x) do { \
+ FUNC##32(top_y + (cur_x), r_u, r_v, top_dst + (cur_x) * XSTEP); \
+ if (bottom_y != NULL) { \
+ FUNC##32(bottom_y + (cur_x), r_u + 64, r_v + 64, \
+ bottom_dst + (cur_x) * XSTEP); \
+ } \
+} while (0)
+
+#define SSE2_UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
+static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
+ const uint8_t* top_u, const uint8_t* top_v, \
+ const uint8_t* cur_u, const uint8_t* cur_v, \
+ uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
+ int uv_pos, pos; \
+ /* 16byte-aligned array to cache reconstructed u and v */ \
+ uint8_t uv_buf[4 * 32 + 15]; \
+ uint8_t* const r_u = (uint8_t*)((uintptr_t)(uv_buf + 15) & ~15); \
+ uint8_t* const r_v = r_u + 32; \
+ \
+ assert(top_y != NULL); \
+ { /* Treat the first pixel in regular way */ \
+ const int u_diag = ((top_u[0] + cur_u[0]) >> 1) + 1; \
+ const int v_diag = ((top_v[0] + cur_v[0]) >> 1) + 1; \
+ const int u0_t = (top_u[0] + u_diag) >> 1; \
+ const int v0_t = (top_v[0] + v_diag) >> 1; \
+ FUNC(top_y[0], u0_t, v0_t, top_dst); \
+ if (bottom_y != NULL) { \
+ const int u0_b = (cur_u[0] + u_diag) >> 1; \
+ const int v0_b = (cur_v[0] + v_diag) >> 1; \
+ FUNC(bottom_y[0], u0_b, v0_b, bottom_dst); \
+ } \
+ } \
+ /* For UPSAMPLE_32PIXELS, 17 u/v values must be read-able for each block */ \
+ for (pos = 1, uv_pos = 0; pos + 32 + 1 <= len; pos += 32, uv_pos += 16) { \
+ UPSAMPLE_32PIXELS(top_u + uv_pos, cur_u + uv_pos, r_u); \
+ UPSAMPLE_32PIXELS(top_v + uv_pos, cur_v + uv_pos, r_v); \
+ CONVERT2RGB_32(FUNC, XSTEP, top_y, bottom_y, top_dst, bottom_dst, pos); \
+ } \
+ if (len > 1) { \
+ const int left_over = ((len + 1) >> 1) - (pos >> 1); \
+ assert(left_over > 0); \
+ UPSAMPLE_LAST_BLOCK(top_u + uv_pos, cur_u + uv_pos, left_over, r_u); \
+ UPSAMPLE_LAST_BLOCK(top_v + uv_pos, cur_v + uv_pos, left_over, r_v); \
+ CONVERT2RGB(FUNC, XSTEP, top_y, bottom_y, top_dst, bottom_dst, \
+ pos, len - pos); \
+ } \
+}
+
+// SSE2 variants of the fancy upsampler.
+SSE2_UPSAMPLE_FUNC(UpsampleRgbLinePairSSE2, VP8YuvToRgb, 3)
+SSE2_UPSAMPLE_FUNC(UpsampleBgrLinePairSSE2, VP8YuvToBgr, 3)
+SSE2_UPSAMPLE_FUNC(UpsampleRgbaLinePairSSE2, VP8YuvToRgba, 4)
+SSE2_UPSAMPLE_FUNC(UpsampleBgraLinePairSSE2, VP8YuvToBgra, 4)
+
+#undef GET_M
+#undef PACK_AND_STORE
+#undef UPSAMPLE_32PIXELS
+#undef UPSAMPLE_LAST_BLOCK
+#undef CONVERT2RGB
+#undef CONVERT2RGB_32
+#undef SSE2_UPSAMPLE_FUNC
+
+#endif // FANCY_UPSAMPLING
+
+#endif // WEBP_USE_SSE2
+
+//------------------------------------------------------------------------------
+
+#ifdef FANCY_UPSAMPLING
+
+extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */];
+
+void WebPInitUpsamplersSSE2(void) {
+#if defined(WEBP_USE_SSE2)
+ VP8YUVInitSSE2();
+ WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePairSSE2;
+ WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePairSSE2;
+ WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePairSSE2;
+ WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePairSSE2;
+#endif // WEBP_USE_SSE2
+}
+
+void WebPInitPremultiplySSE2(void) {
+#if defined(WEBP_USE_SSE2)
+ WebPUpsamplers[MODE_rgbA] = UpsampleRgbaLinePairSSE2;
+ WebPUpsamplers[MODE_bgrA] = UpsampleBgraLinePairSSE2;
+#endif // WEBP_USE_SSE2
+}
+
+#else
+
+// this empty function is to avoid an empty .o
+void WebPInitPremultiplySSE2(void) {}
+
+#endif // FANCY_UPSAMPLING
+
diff --git a/src/3rdparty/libwebp/src/dsp/yuv.c b/src/3rdparty/libwebp/src/dsp/yuv.c
new file mode 100644
index 0000000..4f9cafc
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/yuv.c
@@ -0,0 +1,207 @@
+// Copyright 2010 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// YUV->RGB conversion function
+//
+// Author: Skal (pascal.massimino@gmail.com)
+
+#include "./yuv.h"
+
+
+#if defined(WEBP_YUV_USE_TABLE)
+
+static int done = 0;
+
+static WEBP_INLINE uint8_t clip(int v, int max_value) {
+ return v < 0 ? 0 : v > max_value ? max_value : v;
+}
+
+int16_t VP8kVToR[256], VP8kUToB[256];
+int32_t VP8kVToG[256], VP8kUToG[256];
+uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
+uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
+
+void VP8YUVInit(void) {
+ int i;
+ if (done) {
+ return;
+ }
+#ifndef USE_YUVj
+ for (i = 0; i < 256; ++i) {
+ VP8kVToR[i] = (89858 * (i - 128) + YUV_HALF) >> YUV_FIX;
+ VP8kUToG[i] = -22014 * (i - 128) + YUV_HALF;
+ VP8kVToG[i] = -45773 * (i - 128);
+ VP8kUToB[i] = (113618 * (i - 128) + YUV_HALF) >> YUV_FIX;
+ }
+ for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) {
+ const int k = ((i - 16) * 76283 + YUV_HALF) >> YUV_FIX;
+ VP8kClip[i - YUV_RANGE_MIN] = clip(k, 255);
+ VP8kClip4Bits[i - YUV_RANGE_MIN] = clip((k + 8) >> 4, 15);
+ }
+#else
+ for (i = 0; i < 256; ++i) {
+ VP8kVToR[i] = (91881 * (i - 128) + YUV_HALF) >> YUV_FIX;
+ VP8kUToG[i] = -22554 * (i - 128) + YUV_HALF;
+ VP8kVToG[i] = -46802 * (i - 128);
+ VP8kUToB[i] = (116130 * (i - 128) + YUV_HALF) >> YUV_FIX;
+ }
+ for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) {
+ const int k = i;
+ VP8kClip[i - YUV_RANGE_MIN] = clip(k, 255);
+ VP8kClip4Bits[i - YUV_RANGE_MIN] = clip((k + 8) >> 4, 15);
+ }
+#endif
+
+ done = 1;
+}
+
+#else
+
+void VP8YUVInit(void) {}
+
+#endif // WEBP_YUV_USE_TABLE
+
+//-----------------------------------------------------------------------------
+// SSE2 extras
+
+#if defined(WEBP_USE_SSE2)
+
+#ifdef FANCY_UPSAMPLING
+
+#include <emmintrin.h>
+#include <string.h> // for memcpy
+
+typedef union { // handy struct for converting SSE2 registers
+ int32_t i32[4];
+ uint8_t u8[16];
+ __m128i m;
+} VP8kCstSSE2;
+
+static int done_sse2 = 0;
+static VP8kCstSSE2 VP8kUtoRGBA[256], VP8kVtoRGBA[256], VP8kYtoRGBA[256];
+
+void VP8YUVInitSSE2(void) {
+ if (!done_sse2) {
+ int i;
+ for (i = 0; i < 256; ++i) {
+ VP8kYtoRGBA[i].i32[0] =
+ VP8kYtoRGBA[i].i32[1] =
+ VP8kYtoRGBA[i].i32[2] = (i - 16) * kYScale + YUV_HALF2;
+ VP8kYtoRGBA[i].i32[3] = 0xff << YUV_FIX2;
+
+ VP8kUtoRGBA[i].i32[0] = 0;
+ VP8kUtoRGBA[i].i32[1] = -kUToG * (i - 128);
+ VP8kUtoRGBA[i].i32[2] = kUToB * (i - 128);
+ VP8kUtoRGBA[i].i32[3] = 0;
+
+ VP8kVtoRGBA[i].i32[0] = kVToR * (i - 128);
+ VP8kVtoRGBA[i].i32[1] = -kVToG * (i - 128);
+ VP8kVtoRGBA[i].i32[2] = 0;
+ VP8kVtoRGBA[i].i32[3] = 0;
+ }
+ done_sse2 = 1;
+ }
+}
+
+static WEBP_INLINE __m128i VP8GetRGBA32b(int y, int u, int v) {
+ const __m128i u_part = _mm_loadu_si128(&VP8kUtoRGBA[u].m);
+ const __m128i v_part = _mm_loadu_si128(&VP8kVtoRGBA[v].m);
+ const __m128i y_part = _mm_loadu_si128(&VP8kYtoRGBA[y].m);
+ const __m128i uv_part = _mm_add_epi32(u_part, v_part);
+ const __m128i rgba1 = _mm_add_epi32(y_part, uv_part);
+ const __m128i rgba2 = _mm_srai_epi32(rgba1, YUV_FIX2);
+ return rgba2;
+}
+
+static WEBP_INLINE void VP8YuvToRgbSSE2(uint8_t y, uint8_t u, uint8_t v,
+ uint8_t* const rgb) {
+ const __m128i tmp0 = VP8GetRGBA32b(y, u, v);
+ const __m128i tmp1 = _mm_packs_epi32(tmp0, tmp0);
+ const __m128i tmp2 = _mm_packus_epi16(tmp1, tmp1);
+ // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
+ _mm_storel_epi64((__m128i*)rgb, tmp2);
+}
+
+static WEBP_INLINE void VP8YuvToBgrSSE2(uint8_t y, uint8_t u, uint8_t v,
+ uint8_t* const bgr) {
+ const __m128i tmp0 = VP8GetRGBA32b(y, u, v);
+ const __m128i tmp1 = _mm_shuffle_epi32(tmp0, _MM_SHUFFLE(3, 0, 1, 2));
+ const __m128i tmp2 = _mm_packs_epi32(tmp1, tmp1);
+ const __m128i tmp3 = _mm_packus_epi16(tmp2, tmp2);
+ // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
+ _mm_storel_epi64((__m128i*)bgr, tmp3);
+}
+
+void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
+ uint8_t* dst) {
+ int n;
+ for (n = 0; n < 32; n += 4) {
+ const __m128i tmp0_1 = VP8GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
+ const __m128i tmp0_2 = VP8GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
+ const __m128i tmp0_3 = VP8GetRGBA32b(y[n + 2], u[n + 2], v[n + 2]);
+ const __m128i tmp0_4 = VP8GetRGBA32b(y[n + 3], u[n + 3], v[n + 3]);
+ const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2);
+ const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4);
+ const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2);
+ _mm_storeu_si128((__m128i*)dst, tmp2);
+ dst += 4 * 4;
+ }
+}
+
+void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
+ uint8_t* dst) {
+ int n;
+ for (n = 0; n < 32; n += 2) {
+ const __m128i tmp0_1 = VP8GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
+ const __m128i tmp0_2 = VP8GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
+ const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2));
+ const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2));
+ const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
+ const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
+ _mm_storel_epi64((__m128i*)dst, tmp3);
+ dst += 4 * 2;
+ }
+}
+
+void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
+ uint8_t* dst) {
+ int n;
+ uint8_t tmp0[2 * 3 + 5 + 15];
+ uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align
+ for (n = 0; n < 30; ++n) { // we directly stomp the *dst memory
+ VP8YuvToRgbSSE2(y[n], u[n], v[n], dst + n * 3);
+ }
+ // Last two pixels are special: we write in a tmp buffer before sending
+ // to dst.
+ VP8YuvToRgbSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
+ VP8YuvToRgbSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
+ memcpy(dst + n * 3, tmp, 2 * 3);
+}
+
+void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
+ uint8_t* dst) {
+ int n;
+ uint8_t tmp0[2 * 3 + 5 + 15];
+ uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align
+ for (n = 0; n < 30; ++n) {
+ VP8YuvToBgrSSE2(y[n], u[n], v[n], dst + n * 3);
+ }
+ VP8YuvToBgrSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
+ VP8YuvToBgrSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
+ memcpy(dst + n * 3, tmp, 2 * 3);
+}
+
+#else
+
+void VP8YUVInitSSE2(void) {}
+
+#endif // FANCY_UPSAMPLING
+
+#endif // WEBP_USE_SSE2
+
diff --git a/src/3rdparty/libwebp/src/dsp/yuv.h b/src/3rdparty/libwebp/src/dsp/yuv.h
new file mode 100644
index 0000000..dd778f9
--- /dev/null
+++ b/src/3rdparty/libwebp/src/dsp/yuv.h
@@ -0,0 +1,317 @@
+// Copyright 2010 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// inline YUV<->RGB conversion function
+//
+// The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
+// More information at: http://en.wikipedia.org/wiki/YCbCr
+// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
+// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
+// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
+// We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
+//
+// For the Y'CbCr to RGB conversion, the BT.601 specification reads:
+// R = 1.164 * (Y-16) + 1.596 * (V-128)
+// G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
+// B = 1.164 * (Y-16) + 2.018 * (U-128)
+// where Y is in the [16,235] range, and U/V in the [16,240] range.
+// In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
+// "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
+// So in this case the formulae should read:
+// R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624
+// G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
+// B = 1.164 * [Y + 1.733 * (U-128)] - 18.624
+// once factorized.
+// For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2).
+// That's the maximum possible for a convenient ARM implementation.
+//
+// Author: Skal (pascal.massimino@gmail.com)
+
+#ifndef WEBP_DSP_YUV_H_
+#define WEBP_DSP_YUV_H_
+
+#include "./dsp.h"
+#include "../dec/decode_vp8.h"
+
+// Define the following to use the LUT-based code:
+// #define WEBP_YUV_USE_TABLE
+
+#if defined(WEBP_EXPERIMENTAL_FEATURES)
+// Do NOT activate this feature for real compression. This is only experimental!
+// This flag is for comparison purpose against JPEG's "YUVj" natural colorspace.
+// This colorspace is close to Rec.601's Y'CbCr model with the notable
+// difference of allowing larger range for luma/chroma.
+// See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its
+// difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
+// #define USE_YUVj
+#endif
+
+//------------------------------------------------------------------------------
+// YUV -> RGB conversion
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+enum {
+ YUV_FIX = 16, // fixed-point precision for RGB->YUV
+ YUV_HALF = 1 << (YUV_FIX - 1),
+ YUV_MASK = (256 << YUV_FIX) - 1,
+ YUV_RANGE_MIN = -227, // min value of r/g/b output
+ YUV_RANGE_MAX = 256 + 226, // max value of r/g/b output
+
+ YUV_FIX2 = 14, // fixed-point precision for YUV->RGB
+ YUV_HALF2 = 1 << (YUV_FIX2 - 1),
+ YUV_MASK2 = (256 << YUV_FIX2) - 1
+};
+
+// These constants are 14b fixed-point version of ITU-R BT.601 constants.
+#define kYScale 19077 // 1.164 = 255 / 219
+#define kVToR 26149 // 1.596 = 255 / 112 * 0.701
+#define kUToG 6419 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
+#define kVToG 13320 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
+#define kUToB 33050 // 2.018 = 255 / 112 * 0.886
+#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2)
+#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2)
+#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2)
+
+//------------------------------------------------------------------------------
+
+#if !defined(WEBP_YUV_USE_TABLE)
+
+// slower on x86 by ~7-8%, but bit-exact with the SSE2 version
+
+static WEBP_INLINE int VP8Clip8(int v) {
+ return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255;
+}
+
+static WEBP_INLINE int VP8YUVToR(int y, int v) {
+ return VP8Clip8(kYScale * y + kVToR * v + kRCst);
+}
+
+static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
+ return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst);
+}
+
+static WEBP_INLINE int VP8YUVToB(int y, int u) {
+ return VP8Clip8(kYScale * y + kUToB * u + kBCst);
+}
+
+static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
+ uint8_t* const rgb) {
+ rgb[0] = VP8YUVToR(y, v);
+ rgb[1] = VP8YUVToG(y, u, v);
+ rgb[2] = VP8YUVToB(y, u);
+}
+
+static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
+ uint8_t* const bgr) {
+ bgr[0] = VP8YUVToB(y, u);
+ bgr[1] = VP8YUVToG(y, u, v);
+ bgr[2] = VP8YUVToR(y, v);
+}
+
+static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
+ uint8_t* const rgb) {
+ const int r = VP8YUVToR(y, v); // 5 usable bits
+ const int g = VP8YUVToG(y, u, v); // 6 usable bits
+ const int b = VP8YUVToB(y, u); // 5 usable bits
+ const int rg = (r & 0xf8) | (g >> 5);
+ const int gb = ((g << 3) & 0xe0) | (b >> 3);
+#ifdef WEBP_SWAP_16BIT_CSP
+ rgb[0] = gb;
+ rgb[1] = rg;
+#else
+ rgb[0] = rg;
+ rgb[1] = gb;
+#endif
+}
+
+static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
+ uint8_t* const argb) {
+ const int r = VP8YUVToR(y, v); // 4 usable bits
+ const int g = VP8YUVToG(y, u, v); // 4 usable bits
+ const int b = VP8YUVToB(y, u); // 4 usable bits
+ const int rg = (r & 0xf0) | (g >> 4);
+ const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits
+#ifdef WEBP_SWAP_16BIT_CSP
+ argb[0] = ba;
+ argb[1] = rg;
+#else
+ argb[0] = rg;
+ argb[1] = ba;
+#endif
+}
+
+#else
+
+// Table-based version, not totally equivalent to the SSE2 version.
+// Rounding diff is only +/-1 though.
+
+extern int16_t VP8kVToR[256], VP8kUToB[256];
+extern int32_t VP8kVToG[256], VP8kUToG[256];
+extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
+extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
+
+static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
+ uint8_t* const rgb) {
+ const int r_off = VP8kVToR[v];
+ const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
+ const int b_off = VP8kUToB[u];
+ rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
+ rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
+ rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
+}
+
+static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
+ uint8_t* const bgr) {
+ const int r_off = VP8kVToR[v];
+ const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
+ const int b_off = VP8kUToB[u];
+ bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
+ bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
+ bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
+}
+
+static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
+ uint8_t* const rgb) {
+ const int r_off = VP8kVToR[v];
+ const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
+ const int b_off = VP8kUToB[u];
+ const int rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
+ (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
+ const int gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
+ (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
+#ifdef WEBP_SWAP_16BIT_CSP
+ rgb[0] = gb;
+ rgb[1] = rg;
+#else
+ rgb[0] = rg;
+ rgb[1] = gb;
+#endif
+}
+
+static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
+ uint8_t* const argb) {
+ const int r_off = VP8kVToR[v];
+ const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
+ const int b_off = VP8kUToB[u];
+ const int rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
+ VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
+ const int ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
+#ifdef WEBP_SWAP_16BIT_CSP
+ argb[0] = ba;
+ argb[1] = rg;
+#else
+ argb[0] = rg;
+ argb[1] = ba;
+#endif
+}
+
+#endif // WEBP_YUV_USE_TABLE
+
+//-----------------------------------------------------------------------------
+// Alpha handling variants
+
+static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
+ uint8_t* const argb) {
+ argb[0] = 0xff;
+ VP8YuvToRgb(y, u, v, argb + 1);
+}
+
+static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
+ uint8_t* const bgra) {
+ VP8YuvToBgr(y, u, v, bgra);
+ bgra[3] = 0xff;
+}
+
+static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
+ uint8_t* const rgba) {
+ VP8YuvToRgb(y, u, v, rgba);
+ rgba[3] = 0xff;
+}
+
+// Must be called before everything, to initialize the tables.
+void VP8YUVInit(void);
+
+//-----------------------------------------------------------------------------
+// SSE2 extra functions (mostly for upsampling_sse2.c)
+
+#if defined(WEBP_USE_SSE2)
+
+#if defined(FANCY_UPSAMPLING)
+// Process 32 pixels and store the result (24b or 32b per pixel) in *dst.
+void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
+ uint8_t* dst);
+void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
+ uint8_t* dst);
+void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
+ uint8_t* dst);
+void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
+ uint8_t* dst);
+#endif // FANCY_UPSAMPLING
+
+// Must be called to initialize tables before using the functions.
+void VP8YUVInitSSE2(void);
+
+#endif // WEBP_USE_SSE2
+
+//------------------------------------------------------------------------------
+// RGB -> YUV conversion
+
+// Stub functions that can be called with various rounding values:
+static WEBP_INLINE int VP8ClipUV(int uv, int rounding) {
+ uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2);
+ return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255;
+}
+
+#ifndef USE_YUVj
+
+static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
+ const int luma = 16839 * r + 33059 * g + 6420 * b;
+ return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip
+}
+
+static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
+ const int u = -9719 * r - 19081 * g + 28800 * b;
+ return VP8ClipUV(u, rounding);
+}
+
+static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
+ const int v = +28800 * r - 24116 * g - 4684 * b;
+ return VP8ClipUV(v, rounding);
+}
+
+#else
+
+// This JPEG-YUV colorspace, only for comparison!
+// These are also 16bit precision coefficients from Rec.601, but with full
+// [0..255] output range.
+static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
+ const int luma = 19595 * r + 38470 * g + 7471 * b;
+ return (luma + rounding) >> YUV_FIX; // no need to clip
+}
+
+static WEBP_INLINE int VP8_RGB_TO_U(int r, int g, int b, int rounding) {
+ const int u = -11058 * r - 21710 * g + 32768 * b;
+ return VP8ClipUV(u, rounding);
+}
+
+static WEBP_INLINE int VP8_RGB_TO_V(int r, int g, int b, int rounding) {
+ const int v = 32768 * r - 27439 * g - 5329 * b;
+ return VP8ClipUV(v, rounding);
+}
+
+#endif // USE_YUVj
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif /* WEBP_DSP_YUV_H_ */