summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/dsp/alpha_processing_sse2.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/libwebp/src/dsp/alpha_processing_sse2.c')
-rw-r--r--src/3rdparty/libwebp/src/dsp/alpha_processing_sse2.c231
1 files changed, 226 insertions, 5 deletions
diff --git a/src/3rdparty/libwebp/src/dsp/alpha_processing_sse2.c b/src/3rdparty/libwebp/src/dsp/alpha_processing_sse2.c
index 3d0a9b5..5acb481 100644
--- a/src/3rdparty/libwebp/src/dsp/alpha_processing_sse2.c
+++ b/src/3rdparty/libwebp/src/dsp/alpha_processing_sse2.c
@@ -18,6 +18,86 @@
//------------------------------------------------------------------------------
+static int DispatchAlpha(const uint8_t* alpha, int alpha_stride,
+ int width, int height,
+ uint8_t* dst, int dst_stride) {
+ // alpha_and stores an 'and' operation of all the alpha[] values. The final
+ // value is not 0xff if any of the alpha[] is not equal to 0xff.
+ uint32_t alpha_and = 0xff;
+ int i, j;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i rgb_mask = _mm_set1_epi32(0xffffff00u); // to preserve RGB
+ const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u);
+ __m128i all_alphas = all_0xff;
+
+ // We must be able to access 3 extra bytes after the last written byte
+ // 'dst[4 * width - 4]', because we don't know if alpha is the first or the
+ // last byte of the quadruplet.
+ const int limit = (width - 1) & ~7;
+
+ for (j = 0; j < height; ++j) {
+ __m128i* out = (__m128i*)dst;
+ for (i = 0; i < limit; i += 8) {
+ // load 8 alpha bytes
+ const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]);
+ const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
+ const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
+ const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
+ // load 8 dst pixels (32 bytes)
+ const __m128i b0_lo = _mm_loadu_si128(out + 0);
+ const __m128i b0_hi = _mm_loadu_si128(out + 1);
+ // mask dst alpha values
+ const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask);
+ const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask);
+ // combine
+ const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo);
+ const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi);
+ // store
+ _mm_storeu_si128(out + 0, b2_lo);
+ _mm_storeu_si128(out + 1, b2_hi);
+ // accumulate eight alpha 'and' in parallel
+ all_alphas = _mm_and_si128(all_alphas, a0);
+ out += 2;
+ }
+ for (; i < width; ++i) {
+ const uint32_t alpha_value = alpha[i];
+ dst[4 * i] = alpha_value;
+ alpha_and &= alpha_value;
+ }
+ alpha += alpha_stride;
+ dst += dst_stride;
+ }
+ // Combine the eight alpha 'and' into a 8-bit mask.
+ alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
+ return (alpha_and != 0xff);
+}
+
+static void DispatchAlphaToGreen(const uint8_t* alpha, int alpha_stride,
+ int width, int height,
+ uint32_t* dst, int dst_stride) {
+ int i, j;
+ const __m128i zero = _mm_setzero_si128();
+ const int limit = width & ~15;
+ for (j = 0; j < height; ++j) {
+ for (i = 0; i < limit; i += 16) { // process 16 alpha bytes
+ const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]);
+ const __m128i a1 = _mm_unpacklo_epi8(zero, a0); // note the 'zero' first!
+ const __m128i b1 = _mm_unpackhi_epi8(zero, a0);
+ const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
+ const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero);
+ const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
+ const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero);
+ _mm_storeu_si128((__m128i*)&dst[i + 0], a2_lo);
+ _mm_storeu_si128((__m128i*)&dst[i + 4], a2_hi);
+ _mm_storeu_si128((__m128i*)&dst[i + 8], b2_lo);
+ _mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi);
+ }
+ for (; i < width; ++i) dst[i] = alpha[i] << 8;
+ alpha += alpha_stride;
+ dst += dst_stride;
+ }
+}
+
static int ExtractAlpha(const uint8_t* argb, int argb_stride,
int width, int height,
uint8_t* alpha, int alpha_stride) {
@@ -63,15 +143,156 @@ static int ExtractAlpha(const uint8_t* argb, int argb_stride,
return (alpha_and == 0xff);
}
-#endif // WEBP_USE_SSE2
+//------------------------------------------------------------------------------
+// Non-dither premultiplied modes
+
+#define MULTIPLIER(a) ((a) * 0x8081)
+#define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
+
+// We can't use a 'const int' for the SHUFFLE value, because it has to be an
+// immediate in the _mm_shufflexx_epi16() instruction. We really a macro here.
+#define APPLY_ALPHA(RGBX, SHUFFLE, MASK, MULT) do { \
+ const __m128i argb0 = _mm_loadl_epi64((__m128i*)&(RGBX)); \
+ const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero); \
+ const __m128i alpha0 = _mm_and_si128(argb1, MASK); \
+ const __m128i alpha1 = _mm_shufflelo_epi16(alpha0, SHUFFLE); \
+ const __m128i alpha2 = _mm_shufflehi_epi16(alpha1, SHUFFLE); \
+ /* alpha2 = [0 a0 a0 a0][0 a1 a1 a1] */ \
+ const __m128i scale0 = _mm_mullo_epi16(alpha2, MULT); \
+ const __m128i scale1 = _mm_mulhi_epu16(alpha2, MULT); \
+ const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0); \
+ const __m128i argb3 = _mm_mullo_epi16(argb1, scale1); \
+ const __m128i argb4 = _mm_adds_epu16(argb2, argb3); \
+ const __m128i argb5 = _mm_srli_epi16(argb4, 7); \
+ const __m128i argb6 = _mm_or_si128(argb5, alpha0); \
+ const __m128i argb7 = _mm_packus_epi16(argb6, zero); \
+ _mm_storel_epi64((__m128i*)&(RGBX), argb7); \
+} while (0)
+
+static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first,
+ int w, int h, int stride) {
+ const __m128i zero = _mm_setzero_si128();
+ const int kSpan = 2;
+ const int w2 = w & ~(kSpan - 1);
+ while (h-- > 0) {
+ uint32_t* const rgbx = (uint32_t*)rgba;
+ int i;
+ if (!alpha_first) {
+ const __m128i kMask = _mm_set_epi16(0xff, 0, 0, 0, 0xff, 0, 0, 0);
+ const __m128i kMult =
+ _mm_set_epi16(0, 0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081);
+ for (i = 0; i < w2; i += kSpan) {
+ APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 3, 3, 3), kMask, kMult);
+ }
+ } else {
+ const __m128i kMask = _mm_set_epi16(0, 0, 0, 0xff, 0, 0, 0, 0xff);
+ const __m128i kMult =
+ _mm_set_epi16(0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081, 0);
+ for (i = 0; i < w2; i += kSpan) {
+ APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 3), kMask, kMult);
+ }
+ }
+ // Finish with left-overs.
+ for (; i < w; ++i) {
+ uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
+ const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
+ const uint32_t a = alpha[4 * i];
+ if (a != 0xff) {
+ const uint32_t mult = MULTIPLIER(a);
+ rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
+ rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
+ rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
+ }
+ }
+ rgba += stride;
+ }
+}
+#undef MULTIPLIER
+#undef PREMULTIPLY
+
+// -----------------------------------------------------------------------------
+// Apply alpha value to rows
+
+// We use: kINV255 = (1 << 24) / 255 = 0x010101
+// So: a * kINV255 = (a << 16) | [(a << 8) | a]
+// -> _mm_mulhi_epu16() takes care of the (a<<16) part,
+// and _mm_mullo_epu16(a * 0x0101,...) takes care of the "(a << 8) | a" one.
+
+static void MultARGBRow(uint32_t* const ptr, int width, int inverse) {
+ int x = 0;
+ if (!inverse) {
+ const int kSpan = 2;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i kRound =
+ _mm_set_epi16(0, 1 << 7, 1 << 7, 1 << 7, 0, 1 << 7, 1 << 7, 1 << 7);
+ const __m128i kMult =
+ _mm_set_epi16(0, 0x0101, 0x0101, 0x0101, 0, 0x0101, 0x0101, 0x0101);
+ const __m128i kOne64 = _mm_set_epi16(1u << 8, 0, 0, 0, 1u << 8, 0, 0, 0);
+ const int w2 = width & ~(kSpan - 1);
+ for (x = 0; x < w2; x += kSpan) {
+ const __m128i argb0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
+ const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero);
+ const __m128i tmp0 = _mm_shufflelo_epi16(argb1, _MM_SHUFFLE(3, 3, 3, 3));
+ const __m128i tmp1 = _mm_shufflehi_epi16(tmp0, _MM_SHUFFLE(3, 3, 3, 3));
+ const __m128i tmp2 = _mm_srli_epi64(tmp1, 16);
+ const __m128i scale0 = _mm_mullo_epi16(tmp1, kMult);
+ const __m128i scale1 = _mm_or_si128(tmp2, kOne64);
+ const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0);
+ const __m128i argb3 = _mm_mullo_epi16(argb1, scale1);
+ const __m128i argb4 = _mm_adds_epu16(argb2, argb3);
+ const __m128i argb5 = _mm_adds_epu16(argb4, kRound);
+ const __m128i argb6 = _mm_srli_epi16(argb5, 8);
+ const __m128i argb7 = _mm_packus_epi16(argb6, zero);
+ _mm_storel_epi64((__m128i*)&ptr[x], argb7);
+ }
+ }
+ width -= x;
+ if (width > 0) WebPMultARGBRowC(ptr + x, width, inverse);
+}
+
+static void MultRow(uint8_t* const ptr, const uint8_t* const alpha,
+ int width, int inverse) {
+ int x = 0;
+ if (!inverse) {
+ const int kSpan = 8;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i kRound = _mm_set1_epi16(1 << 7);
+ const int w2 = width & ~(kSpan - 1);
+ for (x = 0; x < w2; x += kSpan) {
+ const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
+ const __m128i v1 = _mm_unpacklo_epi8(v0, zero);
+ const __m128i alpha0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
+ const __m128i alpha1 = _mm_unpacklo_epi8(alpha0, zero);
+ const __m128i alpha2 = _mm_unpacklo_epi8(alpha0, alpha0);
+ const __m128i v2 = _mm_mulhi_epu16(v1, alpha2);
+ const __m128i v3 = _mm_mullo_epi16(v1, alpha1);
+ const __m128i v4 = _mm_adds_epu16(v2, v3);
+ const __m128i v5 = _mm_adds_epu16(v4, kRound);
+ const __m128i v6 = _mm_srli_epi16(v5, 8);
+ const __m128i v7 = _mm_packus_epi16(v6, zero);
+ _mm_storel_epi64((__m128i*)&ptr[x], v7);
+ }
+ }
+ width -= x;
+ if (width > 0) WebPMultRowC(ptr + x, alpha + x, width, inverse);
+}
//------------------------------------------------------------------------------
-// Init function
+// Entry point
extern void WebPInitAlphaProcessingSSE2(void);
-void WebPInitAlphaProcessingSSE2(void) {
-#if defined(WEBP_USE_SSE2)
+WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) {
+ WebPMultARGBRow = MultARGBRow;
+ WebPMultRow = MultRow;
+ WebPApplyAlphaMultiply = ApplyAlphaMultiply;
+ WebPDispatchAlpha = DispatchAlpha;
+ WebPDispatchAlphaToGreen = DispatchAlphaToGreen;
WebPExtractAlpha = ExtractAlpha;
-#endif
}
+
+#else // !WEBP_USE_SSE2
+
+WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2)
+
+#endif // WEBP_USE_SSE2