summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/dsp/lossless_enc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/libwebp/src/dsp/lossless_enc.c')
-rw-r--r--src/3rdparty/libwebp/src/dsp/lossless_enc.c360
1 files changed, 292 insertions, 68 deletions
diff --git a/src/3rdparty/libwebp/src/dsp/lossless_enc.c b/src/3rdparty/libwebp/src/dsp/lossless_enc.c
index 2eafa3d..256f6f5 100644
--- a/src/3rdparty/libwebp/src/dsp/lossless_enc.c
+++ b/src/3rdparty/libwebp/src/dsp/lossless_enc.c
@@ -382,6 +382,7 @@ static float FastLog2Slow(uint32_t v) {
// Mostly used to reduce code size + readability
static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
+static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
//------------------------------------------------------------------------------
// Methods to calculate Entropy (Shannon).
@@ -551,18 +552,204 @@ static WEBP_INLINE uint32_t Predict(VP8LPredictorFunc pred_func,
}
}
+static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
+ const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
+ const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
+ const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
+ const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
+ return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
+}
+
+static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
+ uint32_t left, uint32_t right) {
+ const int diff_up = MaxDiffBetweenPixels(current, up);
+ const int diff_down = MaxDiffBetweenPixels(current, down);
+ const int diff_left = MaxDiffBetweenPixels(current, left);
+ const int diff_right = MaxDiffBetweenPixels(current, right);
+ return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
+}
+
+static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
+ const uint32_t green = (argb >> 8) & 0xff;
+ uint32_t red_blue = argb & 0x00ff00ffu;
+ red_blue += (green << 16) | green;
+ red_blue &= 0x00ff00ffu;
+ return (argb & 0xff00ff00u) | red_blue;
+}
+
+static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
+ uint8_t* const max_diffs, int used_subtract_green) {
+ uint32_t current, up, down, left, right;
+ int x;
+ if (width <= 2) return;
+ current = argb[0];
+ right = argb[1];
+ if (used_subtract_green) {
+ current = AddGreenToBlueAndRed(current);
+ right = AddGreenToBlueAndRed(right);
+ }
+ // max_diffs[0] and max_diffs[width - 1] are never used.
+ for (x = 1; x < width - 1; ++x) {
+ up = argb[-stride + x];
+ down = argb[stride + x];
+ left = current;
+ current = right;
+ right = argb[x + 1];
+ if (used_subtract_green) {
+ up = AddGreenToBlueAndRed(up);
+ down = AddGreenToBlueAndRed(down);
+ right = AddGreenToBlueAndRed(right);
+ }
+ max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
+ }
+}
+
+// Quantize the difference between the actual component value and its prediction
+// to a multiple of quantization, working modulo 256, taking care not to cross
+// a boundary (inclusive upper limit).
+static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
+ uint8_t boundary, int quantization) {
+ const int residual = (value - predict) & 0xff;
+ const int boundary_residual = (boundary - predict) & 0xff;
+ const int lower = residual & ~(quantization - 1);
+ const int upper = lower + quantization;
+ // Resolve ties towards a value closer to the prediction (i.e. towards lower
+ // if value comes after prediction and towards upper otherwise).
+ const int bias = ((boundary - value) & 0xff) < boundary_residual;
+ if (residual - lower < upper - residual + bias) {
+ // lower is closer to residual than upper.
+ if (residual > boundary_residual && lower <= boundary_residual) {
+ // Halve quantization step to avoid crossing boundary. This midpoint is
+ // on the same side of boundary as residual because midpoint >= residual
+ // (since lower is closer than upper) and residual is above the boundary.
+ return lower + (quantization >> 1);
+ }
+ return lower;
+ } else {
+ // upper is closer to residual than lower.
+ if (residual <= boundary_residual && upper > boundary_residual) {
+ // Halve quantization step to avoid crossing boundary. This midpoint is
+ // on the same side of boundary as residual because midpoint <= residual
+ // (since upper is closer than lower) and residual is below the boundary.
+ return lower + (quantization >> 1);
+ }
+ return upper & 0xff;
+ }
+}
+
+// Quantize every component of the difference between the actual pixel value and
+// its prediction to a multiple of a quantization (a power of 2, not larger than
+// max_quantization which is a power of 2, smaller than max_diff). Take care if
+// value and predict have undergone subtract green, which means that red and
+// blue are represented as offsets from green.
+static uint32_t NearLossless(uint32_t value, uint32_t predict,
+ int max_quantization, int max_diff,
+ int used_subtract_green) {
+ int quantization;
+ uint8_t new_green = 0;
+ uint8_t green_diff = 0;
+ uint8_t a, r, g, b;
+ if (max_diff <= 2) {
+ return VP8LSubPixels(value, predict);
+ }
+ quantization = max_quantization;
+ while (quantization >= max_diff) {
+ quantization >>= 1;
+ }
+ if ((value >> 24) == 0 || (value >> 24) == 0xff) {
+ // Preserve transparency of fully transparent or fully opaque pixels.
+ a = ((value >> 24) - (predict >> 24)) & 0xff;
+ } else {
+ a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
+ }
+ g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
+ quantization);
+ if (used_subtract_green) {
+ // The green offset will be added to red and blue components during decoding
+ // to obtain the actual red and blue values.
+ new_green = ((predict >> 8) + g) & 0xff;
+ // The amount by which green has been adjusted during quantization. It is
+ // subtracted from red and blue for compensation, to avoid accumulating two
+ // quantization errors in them.
+ green_diff = (new_green - (value >> 8)) & 0xff;
+ }
+ r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff,
+ (predict >> 16) & 0xff, 0xff - new_green,
+ quantization);
+ b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff,
+ 0xff - new_green, quantization);
+ return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
+}
+
+// Returns the difference between the pixel and its prediction. In case of a
+// lossy encoding, updates the source image to avoid propagating the deviation
+// further to pixels which depend on the current pixel for their predictions.
+static WEBP_INLINE uint32_t GetResidual(int width, int height,
+ uint32_t* const upper_row,
+ uint32_t* const current_row,
+ const uint8_t* const max_diffs,
+ int mode, VP8LPredictorFunc pred_func,
+ int x, int y, int max_quantization,
+ int exact, int used_subtract_green) {
+ const uint32_t predict = Predict(pred_func, x, y, current_row, upper_row);
+ uint32_t residual;
+ if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
+ x == 0 || x == width - 1) {
+ residual = VP8LSubPixels(current_row[x], predict);
+ } else {
+ residual = NearLossless(current_row[x], predict, max_quantization,
+ max_diffs[x], used_subtract_green);
+ // Update the source image.
+ current_row[x] = VP8LAddPixels(predict, residual);
+ // x is never 0 here so we do not need to update upper_row like below.
+ }
+ if (!exact && (current_row[x] & kMaskAlpha) == 0) {
+ // If alpha is 0, cleanup RGB. We can choose the RGB values of the residual
+ // for best compression. The prediction of alpha itself can be non-zero and
+ // must be kept though. We choose RGB of the residual to be 0.
+ residual &= kMaskAlpha;
+ // Update the source image.
+ current_row[x] = predict & ~kMaskAlpha;
+ // The prediction for the rightmost pixel in a row uses the leftmost pixel
+ // in that row as its top-right context pixel. Hence if we change the
+ // leftmost pixel of current_row, the corresponding change must be applied
+ // to upper_row as well where top-right context is being read from.
+ if (x == 0 && y != 0) upper_row[width] = current_row[0];
+ }
+ return residual;
+}
+
// Returns best predictor and updates the accumulated histogram.
+// If max_quantization > 1, assumes that near lossless processing will be
+// applied, quantizing residuals to multiples of quantization levels up to
+// max_quantization (the actual quantization level depends on smoothness near
+// the given pixel).
static int GetBestPredictorForTile(int width, int height,
int tile_x, int tile_y, int bits,
int accumulated[4][256],
- const uint32_t* const argb_scratch,
- int exact) {
+ uint32_t* const argb_scratch,
+ const uint32_t* const argb,
+ int max_quantization,
+ int exact, int used_subtract_green) {
const int kNumPredModes = 14;
- const int col_start = tile_x << bits;
- const int row_start = tile_y << bits;
+ const int start_x = tile_x << bits;
+ const int start_y = tile_y << bits;
const int tile_size = 1 << bits;
- const int max_y = GetMin(tile_size, height - row_start);
- const int max_x = GetMin(tile_size, width - col_start);
+ const int max_y = GetMin(tile_size, height - start_y);
+ const int max_x = GetMin(tile_size, width - start_x);
+ // Whether there exist columns just outside the tile.
+ const int have_left = (start_x > 0);
+ const int have_right = (max_x < width - start_x);
+ // Position and size of the strip covering the tile and adjacent columns if
+ // they exist.
+ const int context_start_x = start_x - have_left;
+ const int context_width = max_x + have_left + have_right;
+ // The width of upper_row and current_row is one pixel larger than image width
+ // to allow the top right pixel to point to the leftmost pixel of the next row
+ // when at the right edge.
+ uint32_t* upper_row = argb_scratch;
+ uint32_t* current_row = upper_row + width + 1;
+ uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
float best_diff = MAX_DIFF_COST;
int best_mode = 0;
int mode;
@@ -571,28 +758,46 @@ static int GetBestPredictorForTile(int width, int height,
// Need pointers to be able to swap arrays.
int (*histo_argb)[256] = histo_stack_1;
int (*best_histo)[256] = histo_stack_2;
-
int i, j;
+
for (mode = 0; mode < kNumPredModes; ++mode) {
- const uint32_t* current_row = argb_scratch;
const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
float cur_diff;
- int y;
+ int relative_y;
memset(histo_argb, 0, sizeof(histo_stack_1));
- for (y = 0; y < max_y; ++y) {
- int x;
- const int row = row_start + y;
- const uint32_t* const upper_row = current_row;
- current_row = upper_row + width;
- for (x = 0; x < max_x; ++x) {
- const int col = col_start + x;
- const uint32_t predict =
- Predict(pred_func, col, row, current_row, upper_row);
- uint32_t residual = VP8LSubPixels(current_row[col], predict);
- if (!exact && (current_row[col] & kMaskAlpha) == 0) {
- residual &= kMaskAlpha; // See CopyTileWithPrediction.
- }
- UpdateHisto(histo_argb, residual);
+ if (start_y > 0) {
+ // Read the row above the tile which will become the first upper_row.
+ // Include a pixel to the left if it exists; include a pixel to the right
+ // in all cases (wrapping to the leftmost pixel of the next row if it does
+ // not exist).
+ memcpy(current_row + context_start_x,
+ argb + (start_y - 1) * width + context_start_x,
+ sizeof(*argb) * (max_x + have_left + 1));
+ }
+ for (relative_y = 0; relative_y < max_y; ++relative_y) {
+ const int y = start_y + relative_y;
+ int relative_x;
+ uint32_t* tmp = upper_row;
+ upper_row = current_row;
+ current_row = tmp;
+ // Read current_row. Include a pixel to the left if it exists; include a
+ // pixel to the right in all cases except at the bottom right corner of
+ // the image (wrapping to the leftmost pixel of the next row if it does
+ // not exist in the current row).
+ memcpy(current_row + context_start_x,
+ argb + y * width + context_start_x,
+ sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
+ if (max_quantization > 1 && y >= 1 && y + 1 < height) {
+ MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
+ max_diffs + context_start_x, used_subtract_green);
+ }
+
+ for (relative_x = 0; relative_x < max_x; ++relative_x) {
+ const int x = start_x + relative_x;
+ UpdateHisto(histo_argb,
+ GetResidual(width, height, upper_row, current_row,
+ max_diffs, mode, pred_func, x, y,
+ max_quantization, exact, used_subtract_green));
}
}
cur_diff = PredictionCostSpatialHistogram(
@@ -615,71 +820,82 @@ static int GetBestPredictorForTile(int width, int height,
return best_mode;
}
+// Converts pixels of the image to residuals with respect to predictions.
+// If max_quantization > 1, applies near lossless processing, quantizing
+// residuals to multiples of quantization levels up to max_quantization
+// (the actual quantization level depends on smoothness near the given pixel).
static void CopyImageWithPrediction(int width, int height,
int bits, uint32_t* const modes,
uint32_t* const argb_scratch,
uint32_t* const argb,
- int low_effort, int exact) {
+ int low_effort, int max_quantization,
+ int exact, int used_subtract_green) {
const int tiles_per_row = VP8LSubSampleSize(width, bits);
const int mask = (1 << bits) - 1;
- // The row size is one pixel longer to allow the top right pixel to point to
- // the leftmost pixel of the next row when at the right edge.
- uint32_t* current_row = argb_scratch;
- uint32_t* upper_row = argb_scratch + width + 1;
+ // The width of upper_row and current_row is one pixel larger than image width
+ // to allow the top right pixel to point to the leftmost pixel of the next row
+ // when at the right edge.
+ uint32_t* upper_row = argb_scratch;
+ uint32_t* current_row = upper_row + width + 1;
+ uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
+ uint8_t* lower_max_diffs = current_max_diffs + width;
int y;
- VP8LPredictorFunc pred_func =
- low_effort ? VP8LPredictors[kPredLowEffort] : NULL;
+ int mode = 0;
+ VP8LPredictorFunc pred_func = NULL;
for (y = 0; y < height; ++y) {
int x;
- uint32_t* tmp = upper_row;
+ uint32_t* const tmp32 = upper_row;
upper_row = current_row;
- current_row = tmp;
- memcpy(current_row, argb + y * width, sizeof(*current_row) * width);
- current_row[width] = (y + 1 < height) ? argb[(y + 1) * width] : ARGB_BLACK;
+ current_row = tmp32;
+ memcpy(current_row, argb + y * width,
+ sizeof(*argb) * (width + (y + 1 < height)));
if (low_effort) {
for (x = 0; x < width; ++x) {
- const uint32_t predict =
- Predict(pred_func, x, y, current_row, upper_row);
+ const uint32_t predict = Predict(VP8LPredictors[kPredLowEffort], x, y,
+ current_row, upper_row);
argb[y * width + x] = VP8LSubPixels(current_row[x], predict);
}
} else {
+ if (max_quantization > 1) {
+ // Compute max_diffs for the lower row now, because that needs the
+ // contents of argb for the current row, which we will overwrite with
+ // residuals before proceeding with the next row.
+ uint8_t* const tmp8 = current_max_diffs;
+ current_max_diffs = lower_max_diffs;
+ lower_max_diffs = tmp8;
+ if (y + 2 < height) {
+ MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
+ used_subtract_green);
+ }
+ }
for (x = 0; x < width; ++x) {
- uint32_t predict, residual;
if ((x & mask) == 0) {
- const int mode =
- (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
+ mode = (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
pred_func = VP8LPredictors[mode];
}
- predict = Predict(pred_func, x, y, current_row, upper_row);
- residual = VP8LSubPixels(current_row[x], predict);
- if (!exact && (current_row[x] & kMaskAlpha) == 0) {
- // If alpha is 0, cleanup RGB. We can choose the RGB values of the
- // residual for best compression. The prediction of alpha itself can
- // be non-zero and must be kept though. We choose RGB of the residual
- // to be 0.
- residual &= kMaskAlpha;
- // Update input image so that next predictions use correct RGB value.
- current_row[x] = predict & ~kMaskAlpha;
- if (x == 0 && y != 0) upper_row[width] = current_row[x];
- }
- argb[y * width + x] = residual;
+ argb[y * width + x] = GetResidual(
+ width, height, upper_row, current_row, current_max_diffs, mode,
+ pred_func, x, y, max_quantization, exact, used_subtract_green);
}
}
}
}
+// Finds the best predictor for each tile, and converts the image to residuals
+// with respect to predictions. If near_lossless_quality < 100, applies
+// near lossless processing, shaving off more bits of residuals for lower
+// qualities.
void VP8LResidualImage(int width, int height, int bits, int low_effort,
uint32_t* const argb, uint32_t* const argb_scratch,
- uint32_t* const image, int exact) {
- const int max_tile_size = 1 << bits;
+ uint32_t* const image, int near_lossless_quality,
+ int exact, int used_subtract_green) {
const int tiles_per_row = VP8LSubSampleSize(width, bits);
const int tiles_per_col = VP8LSubSampleSize(height, bits);
- uint32_t* const upper_row = argb_scratch;
- uint32_t* const current_tile_rows = argb_scratch + width;
int tile_y;
int histo[4][256];
+ const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
if (low_effort) {
int i;
for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
@@ -688,26 +904,19 @@ void VP8LResidualImage(int width, int height, int bits, int low_effort,
} else {
memset(histo, 0, sizeof(histo));
for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
- const int tile_y_offset = tile_y * max_tile_size;
- const int this_tile_height =
- (tile_y < tiles_per_col - 1) ? max_tile_size : height - tile_y_offset;
int tile_x;
- if (tile_y > 0) {
- memcpy(upper_row, current_tile_rows + (max_tile_size - 1) * width,
- width * sizeof(*upper_row));
- }
- memcpy(current_tile_rows, &argb[tile_y_offset * width],
- this_tile_height * width * sizeof(*current_tile_rows));
for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y,
- bits, (int (*)[256])histo, argb_scratch, exact);
+ bits, histo, argb_scratch, argb, max_quantization, exact,
+ used_subtract_green);
image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8);
}
}
}
- CopyImageWithPrediction(width, height, bits,
- image, argb_scratch, argb, low_effort, exact);
+ CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb,
+ low_effort, max_quantization, exact,
+ used_subtract_green);
}
void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) {
@@ -1053,6 +1262,17 @@ void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
}
//------------------------------------------------------------------------------
+
+static int VectorMismatch(const uint32_t* const array1,
+ const uint32_t* const array2, int length) {
+ int match_len = 0;
+
+ while (match_len < length && array1[match_len] == array2[match_len]) {
+ ++match_len;
+ }
+ return match_len;
+}
+
// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
void VP8LBundleColorMap(const uint8_t* const row, int width,
int xbits, uint32_t* const dst) {
@@ -1149,6 +1369,8 @@ GetEntropyUnrefinedHelperFunc VP8LGetEntropyUnrefinedHelper;
VP8LHistogramAddFunc VP8LHistogramAdd;
+VP8LVectorMismatchFunc VP8LVectorMismatch;
+
extern void VP8LEncDspInitSSE2(void);
extern void VP8LEncDspInitSSE41(void);
extern void VP8LEncDspInitNEON(void);
@@ -1181,6 +1403,8 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
VP8LHistogramAdd = HistogramAdd;
+ VP8LVectorMismatch = VectorMismatch;
+
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
if (VP8GetCPUInfo != NULL) {
#if defined(WEBP_USE_SSE2)