summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/enc/histogram.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/libwebp/src/enc/histogram.c')
-rw-r--r--src/3rdparty/libwebp/src/enc/histogram.c512
1 files changed, 512 insertions, 0 deletions
diff --git a/src/3rdparty/libwebp/src/enc/histogram.c b/src/3rdparty/libwebp/src/enc/histogram.c
new file mode 100644
index 0000000..abd253b
--- /dev/null
+++ b/src/3rdparty/libwebp/src/enc/histogram.c
@@ -0,0 +1,512 @@
+// Copyright 2012 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// Author: Jyrki Alakuijala (jyrki@google.com)
+//
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <math.h>
+#include <stdio.h>
+
+#include "./backward_references.h"
+#include "./histogram.h"
+#include "../dsp/lossless.h"
+#include "../utils/utils.h"
+
+static void HistogramClear(VP8LHistogram* const p) {
+ memset(p->literal_, 0, sizeof(p->literal_));
+ memset(p->red_, 0, sizeof(p->red_));
+ memset(p->blue_, 0, sizeof(p->blue_));
+ memset(p->alpha_, 0, sizeof(p->alpha_));
+ memset(p->distance_, 0, sizeof(p->distance_));
+ p->bit_cost_ = 0;
+}
+
+void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
+ VP8LHistogram* const histo) {
+ int i;
+ for (i = 0; i < refs->size; ++i) {
+ VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
+ }
+}
+
+void VP8LHistogramCreate(VP8LHistogram* const p,
+ const VP8LBackwardRefs* const refs,
+ int palette_code_bits) {
+ if (palette_code_bits >= 0) {
+ p->palette_code_bits_ = palette_code_bits;
+ }
+ HistogramClear(p);
+ VP8LHistogramStoreRefs(refs, p);
+}
+
+void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
+ p->palette_code_bits_ = palette_code_bits;
+ HistogramClear(p);
+}
+
+VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
+ int i;
+ VP8LHistogramSet* set;
+ VP8LHistogram* bulk;
+ const uint64_t total_size = sizeof(*set)
+ + (uint64_t)size * sizeof(*set->histograms)
+ + (uint64_t)size * sizeof(**set->histograms);
+ uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
+ if (memory == NULL) return NULL;
+
+ set = (VP8LHistogramSet*)memory;
+ memory += sizeof(*set);
+ set->histograms = (VP8LHistogram**)memory;
+ memory += size * sizeof(*set->histograms);
+ bulk = (VP8LHistogram*)memory;
+ set->max_size = size;
+ set->size = size;
+ for (i = 0; i < size; ++i) {
+ set->histograms[i] = bulk + i;
+ VP8LHistogramInit(set->histograms[i], cache_bits);
+ }
+ return set;
+}
+
+// -----------------------------------------------------------------------------
+
+void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
+ const PixOrCopy* const v) {
+ if (PixOrCopyIsLiteral(v)) {
+ ++histo->alpha_[PixOrCopyLiteral(v, 3)];
+ ++histo->red_[PixOrCopyLiteral(v, 2)];
+ ++histo->literal_[PixOrCopyLiteral(v, 1)];
+ ++histo->blue_[PixOrCopyLiteral(v, 0)];
+ } else if (PixOrCopyIsCacheIdx(v)) {
+ int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
+ ++histo->literal_[literal_ix];
+ } else {
+ int code, extra_bits;
+ VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
+ ++histo->literal_[256 + code];
+ VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
+ ++histo->distance_[code];
+ }
+}
+
+static double BitsEntropy(const int* const array, int n) {
+ double retval = 0.;
+ int sum = 0;
+ int nonzeros = 0;
+ int max_val = 0;
+ int i;
+ double mix;
+ for (i = 0; i < n; ++i) {
+ if (array[i] != 0) {
+ sum += array[i];
+ ++nonzeros;
+ retval -= VP8LFastSLog2(array[i]);
+ if (max_val < array[i]) {
+ max_val = array[i];
+ }
+ }
+ }
+ retval += VP8LFastSLog2(sum);
+
+ if (nonzeros < 5) {
+ if (nonzeros <= 1) {
+ return 0;
+ }
+ // Two symbols, they will be 0 and 1 in a Huffman code.
+ // Let's mix in a bit of entropy to favor good clustering when
+ // distributions of these are combined.
+ if (nonzeros == 2) {
+ return 0.99 * sum + 0.01 * retval;
+ }
+ // No matter what the entropy says, we cannot be better than min_limit
+ // with Huffman coding. I am mixing a bit of entropy into the
+ // min_limit since it produces much better (~0.5 %) compression results
+ // perhaps because of better entropy clustering.
+ if (nonzeros == 3) {
+ mix = 0.95;
+ } else {
+ mix = 0.7; // nonzeros == 4.
+ }
+ } else {
+ mix = 0.627;
+ }
+
+ {
+ double min_limit = 2 * sum - max_val;
+ min_limit = mix * min_limit + (1.0 - mix) * retval;
+ return (retval < min_limit) ? min_limit : retval;
+ }
+}
+
+// Returns the cost encode the rle-encoded entropy code.
+// The constants in this function are experimental.
+static double HuffmanCost(const int* const population, int length) {
+ // Small bias because Huffman code length is typically not stored in
+ // full length.
+ static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
+ static const double kSmallBias = 9.1;
+ double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
+ int streak = 0;
+ int i = 0;
+ for (; i < length - 1; ++i) {
+ ++streak;
+ if (population[i] == population[i + 1]) {
+ continue;
+ }
+ last_streak_hack:
+ // population[i] points now to the symbol in the streak of same values.
+ if (streak > 3) {
+ if (population[i] == 0) {
+ retval += 1.5625 + 0.234375 * streak;
+ } else {
+ retval += 2.578125 + 0.703125 * streak;
+ }
+ } else {
+ if (population[i] == 0) {
+ retval += 1.796875 * streak;
+ } else {
+ retval += 3.28125 * streak;
+ }
+ }
+ streak = 0;
+ }
+ if (i == length - 1) {
+ ++streak;
+ goto last_streak_hack;
+ }
+ return retval;
+}
+
+static double PopulationCost(const int* const population, int length) {
+ return BitsEntropy(population, length) + HuffmanCost(population, length);
+}
+
+static double ExtraCost(const int* const population, int length) {
+ int i;
+ double cost = 0.;
+ for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2];
+ return cost;
+}
+
+// Estimates the Entropy + Huffman + other block overhead size cost.
+double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
+ return PopulationCost(p->literal_, VP8LHistogramNumCodes(p))
+ + PopulationCost(p->red_, 256)
+ + PopulationCost(p->blue_, 256)
+ + PopulationCost(p->alpha_, 256)
+ + PopulationCost(p->distance_, NUM_DISTANCE_CODES)
+ + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
+ + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
+}
+
+double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
+ return BitsEntropy(p->literal_, VP8LHistogramNumCodes(p))
+ + BitsEntropy(p->red_, 256)
+ + BitsEntropy(p->blue_, 256)
+ + BitsEntropy(p->alpha_, 256)
+ + BitsEntropy(p->distance_, NUM_DISTANCE_CODES)
+ + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
+ + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
+}
+
+// -----------------------------------------------------------------------------
+// Various histogram combine/cost-eval functions
+
+// Adds 'in' histogram to 'out'
+static void HistogramAdd(const VP8LHistogram* const in,
+ VP8LHistogram* const out) {
+ int i;
+ for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
+ out->literal_[i] += in->literal_[i];
+ }
+ for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
+ out->distance_[i] += in->distance_[i];
+ }
+ for (i = 0; i < 256; ++i) {
+ out->red_[i] += in->red_[i];
+ out->blue_[i] += in->blue_[i];
+ out->alpha_[i] += in->alpha_[i];
+ }
+}
+
+// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
+// to the threshold value 'cost_threshold'. The score returned is
+// Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
+// Since the previous score passed is 'cost_threshold', we only need to compare
+// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
+// early.
+static double HistogramAddEval(const VP8LHistogram* const a,
+ const VP8LHistogram* const b,
+ VP8LHistogram* const out,
+ double cost_threshold) {
+ double cost = 0;
+ const double sum_cost = a->bit_cost_ + b->bit_cost_;
+ int i;
+
+ cost_threshold += sum_cost;
+
+ // palette_code_bits_ is part of the cost evaluation for literal_.
+ // TODO(skal): remove/simplify this palette_code_bits_?
+ out->palette_code_bits_ =
+ (a->palette_code_bits_ > b->palette_code_bits_) ? a->palette_code_bits_ :
+ b->palette_code_bits_;
+ for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
+ out->literal_[i] = a->literal_[i] + b->literal_[i];
+ }
+ cost += PopulationCost(out->literal_, VP8LHistogramNumCodes(out));
+ cost += ExtraCost(out->literal_ + 256, NUM_LENGTH_CODES);
+ if (cost > cost_threshold) return cost;
+
+ for (i = 0; i < 256; ++i) out->red_[i] = a->red_[i] + b->red_[i];
+ cost += PopulationCost(out->red_, 256);
+ if (cost > cost_threshold) return cost;
+
+ for (i = 0; i < 256; ++i) out->blue_[i] = a->blue_[i] + b->blue_[i];
+ cost += PopulationCost(out->blue_, 256);
+ if (cost > cost_threshold) return cost;
+
+ for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
+ out->distance_[i] = a->distance_[i] + b->distance_[i];
+ }
+ cost += PopulationCost(out->distance_, NUM_DISTANCE_CODES);
+ cost += ExtraCost(out->distance_, NUM_DISTANCE_CODES);
+ if (cost > cost_threshold) return cost;
+
+ for (i = 0; i < 256; ++i) out->alpha_[i] = a->alpha_[i] + b->alpha_[i];
+ cost += PopulationCost(out->alpha_, 256);
+
+ out->bit_cost_ = cost;
+ return cost - sum_cost;
+}
+
+// Same as HistogramAddEval(), except that the resulting histogram
+// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
+// the term C(b) which is constant over all the evaluations.
+static double HistogramAddThresh(const VP8LHistogram* const a,
+ const VP8LHistogram* const b,
+ double cost_threshold) {
+ int tmp[PIX_OR_COPY_CODES_MAX]; // <= max storage we'll need
+ int i;
+ double cost = -a->bit_cost_;
+
+ for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
+ tmp[i] = a->literal_[i] + b->literal_[i];
+ }
+ // note that the tests are ordered so that the usually largest
+ // cost shares come first.
+ cost += PopulationCost(tmp, VP8LHistogramNumCodes(a));
+ cost += ExtraCost(tmp + 256, NUM_LENGTH_CODES);
+ if (cost > cost_threshold) return cost;
+
+ for (i = 0; i < 256; ++i) tmp[i] = a->red_[i] + b->red_[i];
+ cost += PopulationCost(tmp, 256);
+ if (cost > cost_threshold) return cost;
+
+ for (i = 0; i < 256; ++i) tmp[i] = a->blue_[i] + b->blue_[i];
+ cost += PopulationCost(tmp, 256);
+ if (cost > cost_threshold) return cost;
+
+ for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
+ tmp[i] = a->distance_[i] + b->distance_[i];
+ }
+ cost += PopulationCost(tmp, NUM_DISTANCE_CODES);
+ cost += ExtraCost(tmp, NUM_DISTANCE_CODES);
+ if (cost > cost_threshold) return cost;
+
+ for (i = 0; i < 256; ++i) tmp[i] = a->alpha_[i] + b->alpha_[i];
+ cost += PopulationCost(tmp, 256);
+
+ return cost;
+}
+
+// -----------------------------------------------------------------------------
+
+static void HistogramBuildImage(int xsize, int histo_bits,
+ const VP8LBackwardRefs* const backward_refs,
+ VP8LHistogramSet* const image) {
+ int i;
+ int x = 0, y = 0;
+ const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
+ VP8LHistogram** const histograms = image->histograms;
+ assert(histo_bits > 0);
+ for (i = 0; i < backward_refs->size; ++i) {
+ const PixOrCopy* const v = &backward_refs->refs[i];
+ const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
+ VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
+ x += PixOrCopyLength(v);
+ while (x >= xsize) {
+ x -= xsize;
+ ++y;
+ }
+ }
+}
+
+static uint32_t MyRand(uint32_t *seed) {
+ *seed *= 16807U;
+ if (*seed == 0) {
+ *seed = 1;
+ }
+ return *seed;
+}
+
+static int HistogramCombine(const VP8LHistogramSet* const in,
+ VP8LHistogramSet* const out, int iter_mult,
+ int num_pairs, int num_tries_no_success) {
+ int ok = 0;
+ int i, iter;
+ uint32_t seed = 0;
+ int tries_with_no_success = 0;
+ int out_size = in->size;
+ const int outer_iters = in->size * iter_mult;
+ const int min_cluster_size = 2;
+ VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
+ VP8LHistogram* cur_combo = histos + 0; // trial merged histogram
+ VP8LHistogram* best_combo = histos + 1; // best merged histogram so far
+ if (histos == NULL) goto End;
+
+ // Copy histograms from in[] to out[].
+ assert(in->size <= out->size);
+ for (i = 0; i < in->size; ++i) {
+ in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
+ *out->histograms[i] = *in->histograms[i];
+ }
+
+ // Collapse similar histograms in 'out'.
+ for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
+ double best_cost_diff = 0.;
+ int best_idx1 = -1, best_idx2 = 1;
+ int j;
+ const int num_tries = (num_pairs < out_size) ? num_pairs : out_size;
+ seed += iter;
+ for (j = 0; j < num_tries; ++j) {
+ double curr_cost_diff;
+ // Choose two histograms at random and try to combine them.
+ const uint32_t idx1 = MyRand(&seed) % out_size;
+ const uint32_t tmp = (j & 7) + 1;
+ const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1);
+ const uint32_t idx2 = (idx1 + diff + 1) % out_size;
+ if (idx1 == idx2) {
+ continue;
+ }
+ // Calculate cost reduction on combining.
+ curr_cost_diff = HistogramAddEval(out->histograms[idx1],
+ out->histograms[idx2],
+ cur_combo, best_cost_diff);
+ if (curr_cost_diff < best_cost_diff) { // found a better pair?
+ { // swap cur/best combo histograms
+ VP8LHistogram* const tmp_histo = cur_combo;
+ cur_combo = best_combo;
+ best_combo = tmp_histo;
+ }
+ best_cost_diff = curr_cost_diff;
+ best_idx1 = idx1;
+ best_idx2 = idx2;
+ }
+ }
+
+ if (best_idx1 >= 0) {
+ *out->histograms[best_idx1] = *best_combo;
+ // swap best_idx2 slot with last one (which is now unused)
+ --out_size;
+ if (best_idx2 != out_size) {
+ out->histograms[best_idx2] = out->histograms[out_size];
+ out->histograms[out_size] = NULL; // just for sanity check.
+ }
+ tries_with_no_success = 0;
+ }
+ if (++tries_with_no_success >= num_tries_no_success) {
+ break;
+ }
+ }
+ out->size = out_size;
+ ok = 1;
+
+ End:
+ free(histos);
+ return ok;
+}
+
+// -----------------------------------------------------------------------------
+// Histogram refinement
+
+// What is the bit cost of moving square_histogram from cur_symbol to candidate.
+static double HistogramDistance(const VP8LHistogram* const square_histogram,
+ const VP8LHistogram* const candidate,
+ double cost_threshold) {
+ return HistogramAddThresh(candidate, square_histogram, cost_threshold);
+}
+
+// Find the best 'out' histogram for each of the 'in' histograms.
+// Note: we assume that out[]->bit_cost_ is already up-to-date.
+static void HistogramRemap(const VP8LHistogramSet* const in,
+ const VP8LHistogramSet* const out,
+ uint16_t* const symbols) {
+ int i;
+ for (i = 0; i < in->size; ++i) {
+ int best_out = 0;
+ double best_bits =
+ HistogramDistance(in->histograms[i], out->histograms[0], 1.e38);
+ int k;
+ for (k = 1; k < out->size; ++k) {
+ const double cur_bits =
+ HistogramDistance(in->histograms[i], out->histograms[k], best_bits);
+ if (cur_bits < best_bits) {
+ best_bits = cur_bits;
+ best_out = k;
+ }
+ }
+ symbols[i] = best_out;
+ }
+
+ // Recompute each out based on raw and symbols.
+ for (i = 0; i < out->size; ++i) {
+ HistogramClear(out->histograms[i]);
+ }
+ for (i = 0; i < in->size; ++i) {
+ HistogramAdd(in->histograms[i], out->histograms[symbols[i]]);
+ }
+}
+
+int VP8LGetHistoImageSymbols(int xsize, int ysize,
+ const VP8LBackwardRefs* const refs,
+ int quality, int histo_bits, int cache_bits,
+ VP8LHistogramSet* const image_in,
+ uint16_t* const histogram_symbols) {
+ int ok = 0;
+ const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
+ const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
+ const int histo_image_raw_size = histo_xsize * histo_ysize;
+
+ // Heuristic params for HistogramCombine().
+ const int num_tries_no_success = 8 + (quality >> 1);
+ const int iter_mult = (quality < 27) ? 1 : 1 + ((quality - 27) >> 4);
+ const int num_pairs = (quality < 25) ? 10 : (5 * quality) >> 3;
+
+ VP8LHistogramSet* const image_out =
+ VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
+ if (image_out == NULL) return 0;
+
+ // Build histogram image.
+ HistogramBuildImage(xsize, histo_bits, refs, image_out);
+ // Collapse similar histograms.
+ if (!HistogramCombine(image_out, image_in, iter_mult, num_pairs,
+ num_tries_no_success)) {
+ goto Error;
+ }
+ // Find the optimal map from original histograms to the final ones.
+ HistogramRemap(image_out, image_in, histogram_symbols);
+ ok = 1;
+
+Error:
+ free(image_out);
+ return ok;
+}