summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/enc/vp8l_enc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/libwebp/src/enc/vp8l_enc.c')
-rw-r--r--src/3rdparty/libwebp/src/enc/vp8l_enc.c342
1 files changed, 275 insertions, 67 deletions
diff --git a/src/3rdparty/libwebp/src/enc/vp8l_enc.c b/src/3rdparty/libwebp/src/enc/vp8l_enc.c
index 0b44ebe..e330e71 100644
--- a/src/3rdparty/libwebp/src/enc/vp8l_enc.c
+++ b/src/3rdparty/libwebp/src/enc/vp8l_enc.c
@@ -65,25 +65,22 @@ static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) {
*col2 = tmp;
}
-static void GreedyMinimizeDeltas(uint32_t palette[], int num_colors) {
- // Find greedily always the closest color of the predicted color to minimize
- // deltas in the palette. This reduces storage needs since the
- // palette is stored with delta encoding.
- uint32_t predict = 0x00000000;
- int i, k;
- for (i = 0; i < num_colors; ++i) {
- int best_ix = i;
- uint32_t best_score = ~0U;
- for (k = i; k < num_colors; ++k) {
- const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
- if (best_score > cur_score) {
- best_score = cur_score;
- best_ix = k;
- }
+static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color,
+ int num_colors) {
+ int low = 0, hi = num_colors;
+ if (sorted[low] == color) return low; // loop invariant: sorted[low] != color
+ while (1) {
+ const int mid = (low + hi) >> 1;
+ if (sorted[mid] == color) {
+ return mid;
+ } else if (sorted[mid] < color) {
+ low = mid;
+ } else {
+ hi = mid;
}
- SwapColor(&palette[best_ix], &palette[i]);
- predict = palette[i];
}
+ assert(0);
+ return 0;
}
// The palette has been sorted by alpha. This function checks if the other
@@ -92,7 +89,8 @@ static void GreedyMinimizeDeltas(uint32_t palette[], int num_colors) {
// no benefit to re-organize them greedily. A monotonic development
// would be spotted in green-only situations (like lossy alpha) or gray-scale
// images.
-static int PaletteHasNonMonotonousDeltas(uint32_t palette[], int num_colors) {
+static int PaletteHasNonMonotonousDeltas(const uint32_t* const palette,
+ int num_colors) {
uint32_t predict = 0x000000;
int i;
uint8_t sign_found = 0x00;
@@ -115,28 +113,215 @@ static int PaletteHasNonMonotonousDeltas(uint32_t palette[], int num_colors) {
return (sign_found & (sign_found << 1)) != 0; // two consequent signs.
}
+static void PaletteSortMinimizeDeltas(const uint32_t* const palette_sorted,
+ int num_colors, uint32_t* const palette) {
+ uint32_t predict = 0x00000000;
+ int i, k;
+ memcpy(palette, palette_sorted, num_colors * sizeof(*palette));
+ if (!PaletteHasNonMonotonousDeltas(palette_sorted, num_colors)) return;
+ // Find greedily always the closest color of the predicted color to minimize
+ // deltas in the palette. This reduces storage needs since the
+ // palette is stored with delta encoding.
+ for (i = 0; i < num_colors; ++i) {
+ int best_ix = i;
+ uint32_t best_score = ~0U;
+ for (k = i; k < num_colors; ++k) {
+ const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
+ if (best_score > cur_score) {
+ best_score = cur_score;
+ best_ix = k;
+ }
+ }
+ SwapColor(&palette[best_ix], &palette[i]);
+ predict = palette[i];
+ }
+}
+
+// Sort palette in increasing order and prepare an inverse mapping array.
+static void PrepareMapToPalette(const uint32_t palette[], uint32_t num_colors,
+ uint32_t sorted[], uint32_t idx_map[]) {
+ uint32_t i;
+ memcpy(sorted, palette, num_colors * sizeof(*sorted));
+ qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort);
+ for (i = 0; i < num_colors; ++i) {
+ idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i;
+ }
+}
+
// -----------------------------------------------------------------------------
-// Palette
+// Modified Zeng method from "A Survey on Palette Reordering
+// Methods for Improving the Compression of Color-Indexed Images" by Armando J.
+// Pinho and Antonio J. R. Neves.
+
+// Finds the biggest cooccurrence in the matrix.
+static void CoOccurrenceFindMax(const uint32_t* const cooccurrence,
+ uint32_t num_colors, uint8_t* const c1,
+ uint8_t* const c2) {
+ // Find the index that is most frequently located adjacent to other
+ // (different) indexes.
+ uint32_t best_sum = 0u;
+ uint32_t i, j, best_cooccurrence;
+ *c1 = 0u;
+ for (i = 0; i < num_colors; ++i) {
+ uint32_t sum = 0;
+ for (j = 0; j < num_colors; ++j) sum += cooccurrence[i * num_colors + j];
+ if (sum > best_sum) {
+ best_sum = sum;
+ *c1 = i;
+ }
+ }
+ // Find the index that is most frequently found adjacent to *c1.
+ *c2 = 0u;
+ best_cooccurrence = 0u;
+ for (i = 0; i < num_colors; ++i) {
+ if (cooccurrence[*c1 * num_colors + i] > best_cooccurrence) {
+ best_cooccurrence = cooccurrence[*c1 * num_colors + i];
+ *c2 = i;
+ }
+ }
+ assert(*c1 != *c2);
+}
-// If number of colors in the image is less than or equal to MAX_PALETTE_SIZE,
-// creates a palette and returns true, else returns false.
-static int AnalyzeAndCreatePalette(const WebPPicture* const pic,
- int low_effort,
- uint32_t palette[MAX_PALETTE_SIZE],
- int* const palette_size) {
- const int num_colors = WebPGetColorPalette(pic, palette);
- if (num_colors > MAX_PALETTE_SIZE) {
- *palette_size = 0;
- return 0;
+// Builds the cooccurrence matrix
+static WebPEncodingError CoOccurrenceBuild(const WebPPicture* const pic,
+ const uint32_t* const palette,
+ uint32_t num_colors,
+ uint32_t* cooccurrence) {
+ uint32_t *lines, *line_top, *line_current, *line_tmp;
+ int x, y;
+ const uint32_t* src = pic->argb;
+ uint32_t prev_pix = ~src[0];
+ uint32_t prev_idx = 0u;
+ uint32_t idx_map[MAX_PALETTE_SIZE] = {0};
+ uint32_t palette_sorted[MAX_PALETTE_SIZE];
+ lines = (uint32_t*)WebPSafeMalloc(2 * pic->width, sizeof(*lines));
+ if (lines == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY;
+ line_top = &lines[0];
+ line_current = &lines[pic->width];
+ PrepareMapToPalette(palette, num_colors, palette_sorted, idx_map);
+ for (y = 0; y < pic->height; ++y) {
+ for (x = 0; x < pic->width; ++x) {
+ const uint32_t pix = src[x];
+ if (pix != prev_pix) {
+ prev_idx = idx_map[SearchColorNoIdx(palette_sorted, pix, num_colors)];
+ prev_pix = pix;
+ }
+ line_current[x] = prev_idx;
+ // 4-connectivity is what works best as mentioned in "On the relation
+ // between Memon's and the modified Zeng's palette reordering methods".
+ if (x > 0 && prev_idx != line_current[x - 1]) {
+ const uint32_t left_idx = line_current[x - 1];
+ ++cooccurrence[prev_idx * num_colors + left_idx];
+ ++cooccurrence[left_idx * num_colors + prev_idx];
+ }
+ if (y > 0 && prev_idx != line_top[x]) {
+ const uint32_t top_idx = line_top[x];
+ ++cooccurrence[prev_idx * num_colors + top_idx];
+ ++cooccurrence[top_idx * num_colors + prev_idx];
+ }
+ }
+ line_tmp = line_top;
+ line_top = line_current;
+ line_current = line_tmp;
+ src += pic->argb_stride;
+ }
+ WebPSafeFree(lines);
+ return VP8_ENC_OK;
+}
+
+struct Sum {
+ uint8_t index;
+ uint32_t sum;
+};
+
+// Implements the modified Zeng method from "A Survey on Palette Reordering
+// Methods for Improving the Compression of Color-Indexed Images" by Armando J.
+// Pinho and Antonio J. R. Neves.
+static WebPEncodingError PaletteSortModifiedZeng(
+ const WebPPicture* const pic, const uint32_t* const palette_sorted,
+ uint32_t num_colors, uint32_t* const palette) {
+ uint32_t i, j, ind;
+ uint8_t remapping[MAX_PALETTE_SIZE];
+ uint32_t* cooccurrence;
+ struct Sum sums[MAX_PALETTE_SIZE];
+ uint32_t first, last;
+ uint32_t num_sums;
+ // TODO(vrabaud) check whether one color images should use palette or not.
+ if (num_colors <= 1) return VP8_ENC_OK;
+ // Build the co-occurrence matrix.
+ cooccurrence =
+ (uint32_t*)WebPSafeCalloc(num_colors * num_colors, sizeof(*cooccurrence));
+ if (cooccurrence == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY;
+ if (CoOccurrenceBuild(pic, palette_sorted, num_colors, cooccurrence) !=
+ VP8_ENC_OK) {
+ WebPSafeFree(cooccurrence);
+ return VP8_ENC_ERROR_OUT_OF_MEMORY;
+ }
+
+ // Initialize the mapping list with the two best indices.
+ CoOccurrenceFindMax(cooccurrence, num_colors, &remapping[0], &remapping[1]);
+
+ // We need to append and prepend to the list of remapping. To this end, we
+ // actually define the next start/end of the list as indices in a vector (with
+ // a wrap around when the end is reached).
+ first = 0;
+ last = 1;
+ num_sums = num_colors - 2; // -2 because we know the first two values
+ if (num_sums > 0) {
+ // Initialize the sums with the first two remappings and find the best one
+ struct Sum* best_sum = &sums[0];
+ best_sum->index = 0u;
+ best_sum->sum = 0u;
+ for (i = 0, j = 0; i < num_colors; ++i) {
+ if (i == remapping[0] || i == remapping[1]) continue;
+ sums[j].index = i;
+ sums[j].sum = cooccurrence[i * num_colors + remapping[0]] +
+ cooccurrence[i * num_colors + remapping[1]];
+ if (sums[j].sum > best_sum->sum) best_sum = &sums[j];
+ ++j;
+ }
+
+ while (num_sums > 0) {
+ const uint8_t best_index = best_sum->index;
+ // Compute delta to know if we need to prepend or append the best index.
+ int32_t delta = 0;
+ const int32_t n = num_colors - num_sums;
+ for (ind = first, j = 0; (ind + j) % num_colors != last + 1; ++j) {
+ const uint16_t l_j = remapping[(ind + j) % num_colors];
+ delta += (n - 1 - 2 * (int32_t)j) *
+ (int32_t)cooccurrence[best_index * num_colors + l_j];
+ }
+ if (delta > 0) {
+ first = (first == 0) ? num_colors - 1 : first - 1;
+ remapping[first] = best_index;
+ } else {
+ ++last;
+ remapping[last] = best_index;
+ }
+ // Remove best_sum from sums.
+ *best_sum = sums[num_sums - 1];
+ --num_sums;
+ // Update all the sums and find the best one.
+ best_sum = &sums[0];
+ for (i = 0; i < num_sums; ++i) {
+ sums[i].sum += cooccurrence[best_index * num_colors + sums[i].index];
+ if (sums[i].sum > best_sum->sum) best_sum = &sums[i];
+ }
+ }
}
- *palette_size = num_colors;
- qsort(palette, num_colors, sizeof(*palette), PaletteCompareColorsForQsort);
- if (!low_effort && PaletteHasNonMonotonousDeltas(palette, num_colors)) {
- GreedyMinimizeDeltas(palette, num_colors);
+ assert((last + 1) % num_colors == first);
+ WebPSafeFree(cooccurrence);
+
+ // Re-map the palette.
+ for (i = 0; i < num_colors; ++i) {
+ palette[i] = palette_sorted[remapping[(first + i) % num_colors]];
}
- return 1;
+ return VP8_ENC_OK;
}
+// -----------------------------------------------------------------------------
+// Palette
+
// These five modes are evaluated and their respective entropy is computed.
typedef enum {
kDirect = 0,
@@ -149,6 +334,13 @@ typedef enum {
} EntropyIx;
typedef enum {
+ kSortedDefault = 0,
+ kMinimizeDelta = 1,
+ kModifiedZeng = 2,
+ kUnusedPalette = 3,
+} PaletteSorting;
+
+typedef enum {
kHistoAlpha = 0,
kHistoAlphaPred,
kHistoGreen,
@@ -362,11 +554,14 @@ typedef struct {
} CrunchSubConfig;
typedef struct {
int entropy_idx_;
+ PaletteSorting palette_sorting_type_;
CrunchSubConfig sub_configs_[CRUNCH_SUBCONFIGS_MAX];
int sub_configs_size_;
} CrunchConfig;
-#define CRUNCH_CONFIGS_MAX kNumEntropyIx
+// +2 because we add a palette sorting configuration for kPalette and
+// kPaletteAndSpatial.
+#define CRUNCH_CONFIGS_MAX (kNumEntropyIx + 2)
static int EncoderAnalyze(VP8LEncoder* const enc,
CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],
@@ -386,9 +581,15 @@ static int EncoderAnalyze(VP8LEncoder* const enc,
int do_no_cache = 0;
assert(pic != NULL && pic->argb != NULL);
- use_palette =
- AnalyzeAndCreatePalette(pic, low_effort,
- enc->palette_, &enc->palette_size_);
+ // Check whether a palette is possible.
+ enc->palette_size_ = WebPGetColorPalette(pic, enc->palette_sorted_);
+ use_palette = (enc->palette_size_ <= MAX_PALETTE_SIZE);
+ if (!use_palette) {
+ enc->palette_size_ = 0;
+ } else {
+ qsort(enc->palette_sorted_, enc->palette_size_,
+ sizeof(*enc->palette_sorted_), PaletteCompareColorsForQsort);
+ }
// Empirical bit sizes.
enc->histo_bits_ = GetHistoBits(method, use_palette,
@@ -398,6 +599,8 @@ static int EncoderAnalyze(VP8LEncoder* const enc,
if (low_effort) {
// AnalyzeEntropy is somewhat slow.
crunch_configs[0].entropy_idx_ = use_palette ? kPalette : kSpatialSubGreen;
+ crunch_configs[0].palette_sorting_type_ =
+ use_palette ? kSortedDefault : kUnusedPalette;
n_lz77s = 1;
*crunch_configs_size = 1;
} else {
@@ -418,13 +621,28 @@ static int EncoderAnalyze(VP8LEncoder* const enc,
// a palette.
if ((i != kPalette && i != kPaletteAndSpatial) || use_palette) {
assert(*crunch_configs_size < CRUNCH_CONFIGS_MAX);
- crunch_configs[(*crunch_configs_size)++].entropy_idx_ = i;
+ crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
+ if (use_palette && (i == kPalette || i == kPaletteAndSpatial)) {
+ crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
+ kMinimizeDelta;
+ ++*crunch_configs_size;
+ // Also add modified Zeng's method.
+ crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
+ crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
+ kModifiedZeng;
+ } else {
+ crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
+ kUnusedPalette;
+ }
+ ++*crunch_configs_size;
}
}
} else {
// Only choose the guessed best transform.
*crunch_configs_size = 1;
crunch_configs[0].entropy_idx_ = min_entropy_ix;
+ crunch_configs[0].palette_sorting_type_ =
+ use_palette ? kMinimizeDelta : kUnusedPalette;
if (config->quality >= 75 && method == 5) {
// Test with and without color cache.
do_no_cache = 1;
@@ -432,6 +650,7 @@ static int EncoderAnalyze(VP8LEncoder* const enc,
if (min_entropy_ix == kPalette) {
*crunch_configs_size = 2;
crunch_configs[1].entropy_idx_ = kPaletteAndSpatial;
+ crunch_configs[1].palette_sorting_type_ = kMinimizeDelta;
}
}
}
@@ -1283,22 +1502,6 @@ static WebPEncodingError MakeInputImageCopy(VP8LEncoder* const enc) {
// -----------------------------------------------------------------------------
-static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color,
- int hi) {
- int low = 0;
- if (sorted[low] == color) return low; // loop invariant: sorted[low] != color
- while (1) {
- const int mid = (low + hi) >> 1;
- if (sorted[mid] == color) {
- return mid;
- } else if (sorted[mid] < color) {
- low = mid;
- } else {
- hi = mid;
- }
- }
-}
-
#define APPLY_PALETTE_GREEDY_MAX 4
static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[],
@@ -1333,17 +1536,6 @@ static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) {
(32 - PALETTE_INV_SIZE_BITS);
}
-// Sort palette in increasing order and prepare an inverse mapping array.
-static void PrepareMapToPalette(const uint32_t palette[], int num_colors,
- uint32_t sorted[], uint32_t idx_map[]) {
- int i;
- memcpy(sorted, palette, num_colors * sizeof(*sorted));
- qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort);
- for (i = 0; i < num_colors; ++i) {
- idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i;
- }
-}
-
// Use 1 pixel cache for ARGB pixels.
#define APPLY_PALETTE_FOR(COLOR_INDEX) do { \
uint32_t prev_pix = palette[0]; \
@@ -1571,7 +1763,8 @@ static int EncodeStreamHook(void* input, void* data2) {
enc->use_predict_ = (entropy_idx == kSpatial) ||
(entropy_idx == kSpatialSubGreen) ||
(entropy_idx == kPaletteAndSpatial);
- if (low_effort) {
+ // When using a palette, R/B==0, hence no need to test for cross-color.
+ if (low_effort || enc->use_palette_) {
enc->use_cross_color_ = 0;
} else {
enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_;
@@ -1603,6 +1796,19 @@ static int EncodeStreamHook(void* input, void* data2) {
// Encode palette
if (enc->use_palette_) {
+ if (crunch_configs[idx].palette_sorting_type_ == kSortedDefault) {
+ // Nothing to do, we have already sorted the palette.
+ memcpy(enc->palette_, enc->palette_sorted_,
+ enc->palette_size_ * sizeof(*enc->palette_));
+ } else if (crunch_configs[idx].palette_sorting_type_ == kMinimizeDelta) {
+ PaletteSortMinimizeDeltas(enc->palette_sorted_, enc->palette_size_,
+ enc->palette_);
+ } else {
+ assert(crunch_configs[idx].palette_sorting_type_ == kModifiedZeng);
+ err = PaletteSortModifiedZeng(enc->pic_, enc->palette_sorted_,
+ enc->palette_size_, enc->palette_);
+ if (err != VP8_ENC_OK) goto Error;
+ }
err = EncodePalette(bw, low_effort, enc);
if (err != VP8_ENC_OK) goto Error;
err = MapImageFromPalette(enc, use_delta_palette);
@@ -1767,6 +1973,8 @@ WebPEncodingError VP8LEncodeStream(const WebPConfig* const config,
enc_side->palette_size_ = enc_main->palette_size_;
memcpy(enc_side->palette_, enc_main->palette_,
sizeof(enc_main->palette_));
+ memcpy(enc_side->palette_sorted_, enc_main->palette_sorted_,
+ sizeof(enc_main->palette_sorted_));
param->enc_ = enc_side;
}
// Create the workers.