summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/utils/huffman.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/libwebp/src/utils/huffman.c')
-rw-r--r--src/3rdparty/libwebp/src/utils/huffman.c392
1 files changed, 139 insertions, 253 deletions
diff --git a/src/3rdparty/libwebp/src/utils/huffman.c b/src/3rdparty/libwebp/src/utils/huffman.c
index c4c16d9..d57376a 100644
--- a/src/3rdparty/libwebp/src/utils/huffman.c
+++ b/src/3rdparty/libwebp/src/utils/huffman.c
@@ -18,302 +18,188 @@
#include "../utils/utils.h"
#include "../webp/format_constants.h"
-// Uncomment the following to use look-up table for ReverseBits()
-// (might be faster on some platform)
-// #define USE_LUT_REVERSE_BITS
-
// Huffman data read via DecodeImageStream is represented in two (red and green)
// bytes.
#define MAX_HTREE_GROUPS 0x10000
-#define NON_EXISTENT_SYMBOL (-1)
-
-static void TreeNodeInit(HuffmanTreeNode* const node) {
- node->children_ = -1; // means: 'unassigned so far'
-}
-
-static int NodeIsEmpty(const HuffmanTreeNode* const node) {
- return (node->children_ < 0);
-}
-
-static int IsFull(const HuffmanTree* const tree) {
- return (tree->num_nodes_ == tree->max_nodes_);
-}
-
-static void AssignChildren(HuffmanTree* const tree,
- HuffmanTreeNode* const node) {
- HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
- node->children_ = (int)(children - node);
- assert(children - node == (int)(children - node));
- tree->num_nodes_ += 2;
- TreeNodeInit(children + 0);
- TreeNodeInit(children + 1);
-}
-
-// A Huffman tree is a full binary tree; and in a full binary tree with L
-// leaves, the total number of nodes N = 2 * L - 1.
-static int HuffmanTreeMaxNodes(int num_leaves) {
- return (2 * num_leaves - 1);
-}
-
-static int HuffmanTreeAllocate(HuffmanTree* const tree, int num_nodes) {
- assert(tree != NULL);
- tree->root_ =
- (HuffmanTreeNode*)WebPSafeMalloc(num_nodes, sizeof(*tree->root_));
- return (tree->root_ != NULL);
-}
-
-static int TreeInit(HuffmanTree* const tree, int num_leaves) {
- assert(tree != NULL);
- if (num_leaves == 0) return 0;
- tree->max_nodes_ = HuffmanTreeMaxNodes(num_leaves);
- assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table
- if (!HuffmanTreeAllocate(tree, tree->max_nodes_)) return 0;
- TreeNodeInit(tree->root_); // Initialize root.
- tree->num_nodes_ = 1;
- memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_));
- memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_));
- return 1;
-}
-
-void VP8LHuffmanTreeFree(HuffmanTree* const tree) {
- if (tree != NULL) {
- WebPSafeFree(tree->root_);
- tree->root_ = NULL;
- tree->max_nodes_ = 0;
- tree->num_nodes_ = 0;
- }
-}
HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
HTreeGroup* const htree_groups =
- (HTreeGroup*)WebPSafeCalloc(num_htree_groups, sizeof(*htree_groups));
- assert(num_htree_groups <= MAX_HTREE_GROUPS);
+ (HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups));
if (htree_groups == NULL) {
return NULL;
}
+ assert(num_htree_groups <= MAX_HTREE_GROUPS);
return htree_groups;
}
-void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups) {
+void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) {
if (htree_groups != NULL) {
- int i, j;
- for (i = 0; i < num_htree_groups; ++i) {
- HuffmanTree* const htrees = htree_groups[i].htrees_;
- for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
- VP8LHuffmanTreeFree(&htrees[j]);
- }
- }
WebPSafeFree(htree_groups);
}
}
-int VP8LHuffmanCodeLengthsToCodes(
- const int* const code_lengths, int code_lengths_size,
- int* const huff_codes) {
- int symbol;
- int code_len;
- int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
- int curr_code;
- int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
- int max_code_length = 0;
-
- assert(code_lengths != NULL);
- assert(code_lengths_size > 0);
- assert(huff_codes != NULL);
-
- // Calculate max code length.
- for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- if (code_lengths[symbol] > max_code_length) {
- max_code_length = code_lengths[symbol];
- }
- }
- if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;
-
- // Calculate code length histogram.
- for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- ++code_length_hist[code_lengths[symbol]];
+// Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
+// bit-wise reversal of the len least significant bits of key.
+static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) {
+ uint32_t step = 1 << (len - 1);
+ while (key & step) {
+ step >>= 1;
}
- code_length_hist[0] = 0;
-
- // Calculate the initial values of 'next_codes' for each code length.
- // next_codes[code_len] denotes the code to be assigned to the next symbol
- // of code length 'code_len'.
- curr_code = 0;
- next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist.
- for (code_len = 1; code_len <= max_code_length; ++code_len) {
- curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
- next_codes[code_len] = curr_code;
+ return (key & (step - 1)) + step;
+}
+
+// Stores code in table[0], table[step], table[2*step], ..., table[end].
+// Assumes that end is an integer multiple of step.
+static WEBP_INLINE void ReplicateValue(HuffmanCode* table,
+ int step, int end,
+ HuffmanCode code) {
+ assert(end % step == 0);
+ do {
+ end -= step;
+ table[end] = code;
+ } while (end > 0);
+}
+
+// Returns the table width of the next 2nd level table. count is the histogram
+// of bit lengths for the remaining symbols, len is the code length of the next
+// processed symbol
+static WEBP_INLINE int NextTableBitSize(const int* const count,
+ int len, int root_bits) {
+ int left = 1 << (len - root_bits);
+ while (len < MAX_ALLOWED_CODE_LENGTH) {
+ left -= count[len];
+ if (left <= 0) break;
+ ++len;
+ left <<= 1;
}
+ return len - root_bits;
+}
+
+int VP8LBuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
+ const int code_lengths[], int code_lengths_size) {
+ HuffmanCode* table = root_table; // next available space in table
+ int total_size = 1 << root_bits; // total size root table + 2nd level table
+ int* sorted = NULL; // symbols sorted by code length
+ int len; // current code length
+ int symbol; // symbol index in original or sorted table
+ // number of codes of each length:
+ int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
+ // offsets in sorted table for each length:
+ int offset[MAX_ALLOWED_CODE_LENGTH + 1];
+
+ assert(code_lengths_size != 0);
+ assert(code_lengths != NULL);
+ assert(root_table != NULL);
+ assert(root_bits > 0);
- // Get symbols.
+ // Build histogram of code lengths.
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- if (code_lengths[symbol] > 0) {
- huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
- } else {
- huff_codes[symbol] = NON_EXISTENT_SYMBOL;
+ if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) {
+ return 0;
}
+ ++count[code_lengths[symbol]];
}
- return 1;
-}
-
-#ifndef USE_LUT_REVERSE_BITS
-static int ReverseBitsShort(int bits, int num_bits) {
- int retval = 0;
- int i;
- assert(num_bits <= 8); // Not a hard requirement, just for coherency.
- for (i = 0; i < num_bits; ++i) {
- retval <<= 1;
- retval |= bits & 1;
- bits >>= 1;
+ // Error, all code lengths are zeros.
+ if (count[0] == code_lengths_size) {
+ return 0;
}
- return retval;
-}
-
-#else
-
-static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values.
- 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
- 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
-};
-static int ReverseBitsShort(int bits, int num_bits) {
- const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4];
- assert(num_bits <= 8);
- return v >> (8 - num_bits);
-}
-
-#endif
-
-static int TreeAddSymbol(HuffmanTree* const tree,
- int symbol, int code, int code_length) {
- int step = HUFF_LUT_BITS;
- int base_code;
- HuffmanTreeNode* node = tree->root_;
- const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
- assert(symbol == (int16_t)symbol);
- if (code_length <= HUFF_LUT_BITS) {
- int i;
- base_code = ReverseBitsShort(code, code_length);
- for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) {
- const int idx = base_code | (i << code_length);
- tree->lut_symbol_[idx] = (int16_t)symbol;
- tree->lut_bits_[idx] = code_length;
- }
- } else {
- base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)),
- HUFF_LUT_BITS);
- }
- while (code_length-- > 0) {
- if (node >= max_node) {
+ // Generate offsets into sorted symbol table by code length.
+ offset[1] = 0;
+ for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) {
+ if (count[len] > (1 << len)) {
return 0;
}
- if (NodeIsEmpty(node)) {
- if (IsFull(tree)) return 0; // error: too many symbols.
- AssignChildren(tree, node);
- } else if (!HuffmanTreeNodeIsNotLeaf(node)) {
- return 0; // leaf is already occupied.
- }
- node += node->children_ + ((code >> code_length) & 1);
- if (--step == 0) {
- tree->lut_jump_[base_code] = (int16_t)(node - tree->root_);
- }
- }
- if (NodeIsEmpty(node)) {
- node->children_ = 0; // turn newly created node into a leaf.
- } else if (HuffmanTreeNodeIsNotLeaf(node)) {
- return 0; // trying to assign a symbol to already used code.
+ offset[len + 1] = offset[len] + count[len];
}
- node->symbol_ = symbol; // Add symbol in this node.
- return 1;
-}
-
-int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree,
- const int* const code_lengths,
- int* const codes,
- int code_lengths_size) {
- int symbol;
- int num_symbols = 0;
- int root_symbol = 0;
- assert(tree != NULL);
- assert(code_lengths != NULL);
+ sorted = (int*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted));
+ if (sorted == NULL) {
+ return 0;
+ }
- // Find out number of symbols and the root symbol.
+ // Sort symbols by length, by symbol order within each length.
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
+ const int symbol_code_length = code_lengths[symbol];
if (code_lengths[symbol] > 0) {
- // Note: code length = 0 indicates non-existent symbol.
- ++num_symbols;
- root_symbol = symbol;
+ sorted[offset[symbol_code_length]++] = symbol;
}
}
- // Initialize the tree. Will fail for num_symbols = 0
- if (!TreeInit(tree, num_symbols)) return 0;
-
- // Build tree.
- if (num_symbols == 1) { // Trivial case.
- const int max_symbol = code_lengths_size;
- if (root_symbol < 0 || root_symbol >= max_symbol) {
- VP8LHuffmanTreeFree(tree);
- return 0;
- }
- return TreeAddSymbol(tree, root_symbol, 0, 0);
- } else { // Normal case.
- int ok = 0;
- memset(codes, 0, code_lengths_size * sizeof(*codes));
+ // Special case code with only one value.
+ if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) {
+ HuffmanCode code;
+ code.bits = 0;
+ code.value = (uint16_t)sorted[0];
+ ReplicateValue(table, 1, total_size, code);
+ WebPSafeFree(sorted);
+ return total_size;
+ }
- if (!VP8LHuffmanCodeLengthsToCodes(code_lengths, code_lengths_size,
- codes)) {
- goto End;
+ {
+ int step; // step size to replicate values in current table
+ uint32_t low = -1; // low bits for current root entry
+ uint32_t mask = total_size - 1; // mask for low bits
+ uint32_t key = 0; // reversed prefix code
+ int num_nodes = 1; // number of Huffman tree nodes
+ int num_open = 1; // number of open branches in current tree level
+ int table_bits = root_bits; // key length of current table
+ int table_size = 1 << table_bits; // size of current table
+ symbol = 0;
+ // Fill in root table.
+ for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) {
+ num_open <<= 1;
+ num_nodes += num_open;
+ num_open -= count[len];
+ if (num_open < 0) {
+ WebPSafeFree(sorted);
+ return 0;
+ }
+ for (; count[len] > 0; --count[len]) {
+ HuffmanCode code;
+ code.bits = (uint8_t)len;
+ code.value = (uint16_t)sorted[symbol++];
+ ReplicateValue(&table[key], step, table_size, code);
+ key = GetNextKey(key, len);
+ }
}
- // Add symbols one-by-one.
- for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- if (code_lengths[symbol] > 0) {
- if (!TreeAddSymbol(tree, symbol, codes[symbol],
- code_lengths[symbol])) {
- goto End;
+ // Fill in 2nd level tables and add pointers to root table.
+ for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH;
+ ++len, step <<= 1) {
+ num_open <<= 1;
+ num_nodes += num_open;
+ num_open -= count[len];
+ if (num_open < 0) {
+ WebPSafeFree(sorted);
+ return 0;
+ }
+ for (; count[len] > 0; --count[len]) {
+ HuffmanCode code;
+ if ((key & mask) != low) {
+ table += table_size;
+ table_bits = NextTableBitSize(count, len, root_bits);
+ table_size = 1 << table_bits;
+ total_size += table_size;
+ low = key & mask;
+ root_table[low].bits = (uint8_t)(table_bits + root_bits);
+ root_table[low].value = (uint16_t)((table - root_table) - low);
}
+ code.bits = (uint8_t)(len - root_bits);
+ code.value = (uint16_t)sorted[symbol++];
+ ReplicateValue(&table[key >> root_bits], step, table_size, code);
+ key = GetNextKey(key, len);
}
}
- ok = 1;
- End:
- ok = ok && IsFull(tree);
- if (!ok) VP8LHuffmanTreeFree(tree);
- return ok;
- }
-}
-
-int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree,
- const int* const code_lengths,
- const int* const codes,
- const int* const symbols, int max_symbol,
- int num_symbols) {
- int ok = 0;
- int i;
- assert(tree != NULL);
- assert(code_lengths != NULL);
- assert(codes != NULL);
- assert(symbols != NULL);
-
- // Initialize the tree. Will fail if num_symbols = 0.
- if (!TreeInit(tree, num_symbols)) return 0;
- // Add symbols one-by-one.
- for (i = 0; i < num_symbols; ++i) {
- if (codes[i] != NON_EXISTENT_SYMBOL) {
- if (symbols[i] < 0 || symbols[i] >= max_symbol) {
- goto End;
- }
- if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
- goto End;
- }
+ // Check if tree is full.
+ if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) {
+ WebPSafeFree(sorted);
+ return 0;
}
}
- ok = 1;
- End:
- ok = ok && IsFull(tree);
- if (!ok) VP8LHuffmanTreeFree(tree);
- return ok;
+
+ WebPSafeFree(sorted);
+ return total_size;
}