// Copyright 2022 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Sharp RGB to YUV conversion. // // Author: Skal (pascal.massimino@gmail.com) #include "sharpyuv/sharpyuv.h" #include #include #include #include #include #include "src/webp/types.h" #include "src/dsp/cpu.h" #include "sharpyuv/sharpyuv_dsp.h" #include "sharpyuv/sharpyuv_gamma.h" //------------------------------------------------------------------------------ // Sharp RGB->YUV conversion static const int kNumIterations = 4; #define YUV_FIX 16 // fixed-point precision for RGB->YUV static const int kYuvHalf = 1 << (YUV_FIX - 1); // Max bit depth so that intermediate calculations fit in 16 bits. static const int kMaxBitDepth = 14; // Returns the precision shift to use based on the input rgb_bit_depth. static int GetPrecisionShift(int rgb_bit_depth) { // Try to add 2 bits of precision if it fits in kMaxBitDepth. Otherwise remove // bits if needed. return ((rgb_bit_depth + 2) <= kMaxBitDepth) ? 2 : (kMaxBitDepth - rgb_bit_depth); } typedef int16_t fixed_t; // signed type with extra precision for UV typedef uint16_t fixed_y_t; // unsigned type with extra precision for W //------------------------------------------------------------------------------ static uint8_t clip_8b(fixed_t v) { return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u; } static uint16_t clip(fixed_t v, int max) { return (v < 0) ? 0 : (v > max) ? max : (uint16_t)v; } static fixed_y_t clip_bit_depth(int y, int bit_depth) { const int max = (1 << bit_depth) - 1; return (!(y & ~max)) ? (fixed_y_t)y : (y < 0) ? 0 : max; } //------------------------------------------------------------------------------ static int RGBToGray(int64_t r, int64_t g, int64_t b) { const int64_t luma = 13933 * r + 46871 * g + 4732 * b + kYuvHalf; return (int)(luma >> YUV_FIX); } static uint32_t ScaleDown(uint16_t a, uint16_t b, uint16_t c, uint16_t d, int rgb_bit_depth) { const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); const uint32_t A = SharpYuvGammaToLinear(a, bit_depth); const uint32_t B = SharpYuvGammaToLinear(b, bit_depth); const uint32_t C = SharpYuvGammaToLinear(c, bit_depth); const uint32_t D = SharpYuvGammaToLinear(d, bit_depth); return SharpYuvLinearToGamma((A + B + C + D + 2) >> 2, bit_depth); } static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w, int rgb_bit_depth) { const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); int i; for (i = 0; i < w; ++i) { const uint32_t R = SharpYuvGammaToLinear(src[0 * w + i], bit_depth); const uint32_t G = SharpYuvGammaToLinear(src[1 * w + i], bit_depth); const uint32_t B = SharpYuvGammaToLinear(src[2 * w + i], bit_depth); const uint32_t Y = RGBToGray(R, G, B); dst[i] = (fixed_y_t)SharpYuvLinearToGamma(Y, bit_depth); } } static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2, fixed_t* dst, int uv_w, int rgb_bit_depth) { int i; for (i = 0; i < uv_w; ++i) { const int r = ScaleDown(src1[0 * uv_w + 0], src1[0 * uv_w + 1], src2[0 * uv_w + 0], src2[0 * uv_w + 1], rgb_bit_depth); const int g = ScaleDown(src1[2 * uv_w + 0], src1[2 * uv_w + 1], src2[2 * uv_w + 0], src2[2 * uv_w + 1], rgb_bit_depth); const int b = ScaleDown(src1[4 * uv_w + 0], src1[4 * uv_w + 1], src2[4 * uv_w + 0], src2[4 * uv_w + 1], rgb_bit_depth); const int W = RGBToGray(r, g, b); dst[0 * uv_w] = (fixed_t)(r - W); dst[1 * uv_w] = (fixed_t)(g - W); dst[2 * uv_w] = (fixed_t)(b - W); dst += 1; src1 += 2; src2 += 2; } } static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) { int i; assert(w > 0); for (i = 0; i < w; ++i) { y[i] = RGBToGray(rgb[0 * w + i], rgb[1 * w + i], rgb[2 * w + i]); } } //------------------------------------------------------------------------------ static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0, int bit_depth) { const int v0 = (A * 3 + B + 2) >> 2; return clip_bit_depth(v0 + W0, bit_depth); } //------------------------------------------------------------------------------ static WEBP_INLINE int Shift(int v, int shift) { return (shift >= 0) ? (v << shift) : (v >> -shift); } static void ImportOneRow(const uint8_t* const r_ptr, const uint8_t* const g_ptr, const uint8_t* const b_ptr, int rgb_step, int rgb_bit_depth, int pic_width, fixed_y_t* const dst) { // Convert the rgb_step from a number of bytes to a number of uint8_t or // uint16_t values depending the bit depth. const int step = (rgb_bit_depth > 8) ? rgb_step / 2 : rgb_step; int i; const int w = (pic_width + 1) & ~1; for (i = 0; i < pic_width; ++i) { const int off = i * step; const int shift = GetPrecisionShift(rgb_bit_depth); if (rgb_bit_depth == 8) { dst[i + 0 * w] = Shift(r_ptr[off], shift); dst[i + 1 * w] = Shift(g_ptr[off], shift); dst[i + 2 * w] = Shift(b_ptr[off], shift); } else { dst[i + 0 * w] = Shift(((uint16_t*)r_ptr)[off], shift); dst[i + 1 * w] = Shift(((uint16_t*)g_ptr)[off], shift); dst[i + 2 * w] = Shift(((uint16_t*)b_ptr)[off], shift); } } if (pic_width & 1) { // replicate rightmost pixel dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1]; dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1]; dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1]; } } static void InterpolateTwoRows(const fixed_y_t* const best_y, const fixed_t* prev_uv, const fixed_t* cur_uv, const fixed_t* next_uv, int w, fixed_y_t* out1, fixed_y_t* out2, int rgb_bit_depth) { const int uv_w = w >> 1; const int len = (w - 1) >> 1; // length to filter int k = 3; const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); while (k-- > 0) { // process each R/G/B segments in turn // special boundary case for i==0 out1[0] = Filter2(cur_uv[0], prev_uv[0], best_y[0], bit_depth); out2[0] = Filter2(cur_uv[0], next_uv[0], best_y[w], bit_depth); SharpYuvFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1, bit_depth); SharpYuvFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1, bit_depth); // special boundary case for i == w - 1 when w is even if (!(w & 1)) { out1[w - 1] = Filter2(cur_uv[uv_w - 1], prev_uv[uv_w - 1], best_y[w - 1 + 0], bit_depth); out2[w - 1] = Filter2(cur_uv[uv_w - 1], next_uv[uv_w - 1], best_y[w - 1 + w], bit_depth); } out1 += w; out2 += w; prev_uv += uv_w; cur_uv += uv_w; next_uv += uv_w; } } static WEBP_INLINE int RGBToYUVComponent(int r, int g, int b, const int coeffs[4], int sfix) { const int srounder = 1 << (YUV_FIX + sfix - 1); const int luma = coeffs[0] * r + coeffs[1] * g + coeffs[2] * b + coeffs[3] + srounder; return (luma >> (YUV_FIX + sfix)); } static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv, uint8_t* y_ptr, int y_stride, uint8_t* u_ptr, int u_stride, uint8_t* v_ptr, int v_stride, int rgb_bit_depth, int yuv_bit_depth, int width, int height, const SharpYuvConversionMatrix* yuv_matrix) { int i, j; const fixed_t* const best_uv_base = best_uv; const int w = (width + 1) & ~1; const int h = (height + 1) & ~1; const int uv_w = w >> 1; const int uv_h = h >> 1; const int sfix = GetPrecisionShift(rgb_bit_depth); const int yuv_max = (1 << yuv_bit_depth) - 1; for (best_uv = best_uv_base, j = 0; j < height; ++j) { for (i = 0; i < width; ++i) { const int off = (i >> 1); const int W = best_y[i]; const int r = best_uv[off + 0 * uv_w] + W; const int g = best_uv[off + 1 * uv_w] + W; const int b = best_uv[off + 2 * uv_w] + W; const int y = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_y, sfix); if (yuv_bit_depth <= 8) { y_ptr[i] = clip_8b(y); } else { ((uint16_t*)y_ptr)[i] = clip(y, yuv_max); } } best_y += w; best_uv += (j & 1) * 3 * uv_w; y_ptr += y_stride; } for (best_uv = best_uv_base, j = 0; j < uv_h; ++j) { for (i = 0; i < uv_w; ++i) { const int off = i; // Note r, g and b values here are off by W, but a constant offset on all // 3 components doesn't change the value of u and v with a YCbCr matrix. const int r = best_uv[off + 0 * uv_w]; const int g = best_uv[off + 1 * uv_w]; const int b = best_uv[off + 2 * uv_w]; const int u = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_u, sfix); const int v = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_v, sfix); if (yuv_bit_depth <= 8) { u_ptr[i] = clip_8b(u); v_ptr[i] = clip_8b(v); } else { ((uint16_t*)u_ptr)[i] = clip(u, yuv_max); ((uint16_t*)v_ptr)[i] = clip(v, yuv_max); } } best_uv += 3 * uv_w; u_ptr += u_stride; v_ptr += v_stride; } return 1; } //------------------------------------------------------------------------------ // Main function static void* SafeMalloc(uint64_t nmemb, size_t size) { const uint64_t total_size = nmemb * (uint64_t)size; if (total_size != (size_t)total_size) return NULL; return malloc((size_t)total_size); } #define SAFE_ALLOC(W, H, T) ((T*)SafeMalloc((W) * (H), sizeof(T))) static int DoSharpArgbToYuv(const uint8_t* r_ptr, const uint8_t* g_ptr, const uint8_t* b_ptr, int rgb_step, int rgb_stride, int rgb_bit_depth, uint8_t* y_ptr, int y_stride, uint8_t* u_ptr, int u_stride, uint8_t* v_ptr, int v_stride, int yuv_bit_depth, int width, int height, const SharpYuvConversionMatrix* yuv_matrix) { // we expand the right/bottom border if needed const int w = (width + 1) & ~1; const int h = (height + 1) & ~1; const int uv_w = w >> 1; const int uv_h = h >> 1; uint64_t prev_diff_y_sum = ~0; int j, iter; // TODO(skal): allocate one big memory chunk. But for now, it's easier // for valgrind debugging to have several chunks. fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t); fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t); fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t); fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t); fixed_y_t* best_y = best_y_base; fixed_y_t* target_y = target_y_base; fixed_t* best_uv = best_uv_base; fixed_t* target_uv = target_uv_base; const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h); int ok; assert(w > 0); assert(h > 0); if (best_y_base == NULL || best_uv_base == NULL || target_y_base == NULL || target_uv_base == NULL || best_rgb_y == NULL || best_rgb_uv == NULL || tmp_buffer == NULL) { ok = 0; goto End; } // Import RGB samples to W/RGB representation. for (j = 0; j < height; j += 2) { const int is_last_row = (j == height - 1); fixed_y_t* const src1 = tmp_buffer + 0 * w; fixed_y_t* const src2 = tmp_buffer + 3 * w; // prepare two rows of input ImportOneRow(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, width, src1); if (!is_last_row) { ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride, rgb_step, rgb_bit_depth, width, src2); } else { memcpy(src2, src1, 3 * w * sizeof(*src2)); } StoreGray(src1, best_y + 0, w); StoreGray(src2, best_y + w, w); UpdateW(src1, target_y, w, rgb_bit_depth); UpdateW(src2, target_y + w, w, rgb_bit_depth); UpdateChroma(src1, src2, target_uv, uv_w, rgb_bit_depth); memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv)); best_y += 2 * w; best_uv += 3 * uv_w; target_y += 2 * w; target_uv += 3 * uv_w; r_ptr += 2 * rgb_stride; g_ptr += 2 * rgb_stride; b_ptr += 2 * rgb_stride; } // Iterate and resolve clipping conflicts. for (iter = 0; iter < kNumIterations; ++iter) { const fixed_t* cur_uv = best_uv_base; const fixed_t* prev_uv = best_uv_base; uint64_t diff_y_sum = 0; best_y = best_y_base; best_uv = best_uv_base; target_y = target_y_base; target_uv = target_uv_base; for (j = 0; j < h; j += 2) { fixed_y_t* const src1 = tmp_buffer + 0 * w; fixed_y_t* const src2 = tmp_buffer + 3 * w; { const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0); InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w, src1, src2, rgb_bit_depth); prev_uv = cur_uv; cur_uv = next_uv; } UpdateW(src1, best_rgb_y + 0 * w, w, rgb_bit_depth); UpdateW(src2, best_rgb_y + 1 * w, w, rgb_bit_depth); UpdateChroma(src1, src2, best_rgb_uv, uv_w, rgb_bit_depth); // update two rows of Y and one row of RGB diff_y_sum += SharpYuvUpdateY(target_y, best_rgb_y, best_y, 2 * w, rgb_bit_depth + GetPrecisionShift(rgb_bit_depth)); SharpYuvUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w); best_y += 2 * w; best_uv += 3 * uv_w; target_y += 2 * w; target_uv += 3 * uv_w; } // test exit condition if (iter > 0) { if (diff_y_sum < diff_y_threshold) break; if (diff_y_sum > prev_diff_y_sum) break; } prev_diff_y_sum = diff_y_sum; } // final reconstruction ok = ConvertWRGBToYUV(best_y_base, best_uv_base, y_ptr, y_stride, u_ptr, u_stride, v_ptr, v_stride, rgb_bit_depth, yuv_bit_depth, width, height, yuv_matrix); End: free(best_y_base); free(best_uv_base); free(target_y_base); free(target_uv_base); free(best_rgb_y); free(best_rgb_uv); free(tmp_buffer); return ok; } #undef SAFE_ALLOC // Hidden exported init function. // By default SharpYuvConvert calls it with NULL. If needed, users can declare // it as extern and call it with a VP8CPUInfo function. extern void SharpYuvInit(VP8CPUInfo cpu_info_func); void SharpYuvInit(VP8CPUInfo cpu_info_func) { static volatile VP8CPUInfo sharpyuv_last_cpuinfo_used = (VP8CPUInfo)&sharpyuv_last_cpuinfo_used; const int initialized = (sharpyuv_last_cpuinfo_used != (VP8CPUInfo)&sharpyuv_last_cpuinfo_used); if (cpu_info_func == NULL && initialized) return; if (sharpyuv_last_cpuinfo_used == cpu_info_func) return; SharpYuvInitDsp(cpu_info_func); if (!initialized) { SharpYuvInitGammaTables(); } sharpyuv_last_cpuinfo_used = cpu_info_func; } int SharpYuvConvert(const void* r_ptr, const void* g_ptr, const void* b_ptr, int rgb_step, int rgb_stride, int rgb_bit_depth, void* y_ptr, int y_stride, void* u_ptr, int u_stride, void* v_ptr, int v_stride, int yuv_bit_depth, int width, int height, const SharpYuvConversionMatrix* yuv_matrix) { SharpYuvConversionMatrix scaled_matrix; const int rgb_max = (1 << rgb_bit_depth) - 1; const int rgb_round = 1 << (rgb_bit_depth - 1); const int yuv_max = (1 << yuv_bit_depth) - 1; const int sfix = GetPrecisionShift(rgb_bit_depth); if (width < 1 || height < 1 || width == INT_MAX || height == INT_MAX || r_ptr == NULL || g_ptr == NULL || b_ptr == NULL || y_ptr == NULL || u_ptr == NULL || v_ptr == NULL) { return 0; } if (rgb_bit_depth != 8 && rgb_bit_depth != 10 && rgb_bit_depth != 12 && rgb_bit_depth != 16) { return 0; } if (yuv_bit_depth != 8 && yuv_bit_depth != 10 && yuv_bit_depth != 12) { return 0; } if (rgb_bit_depth > 8 && (rgb_step % 2 != 0 || rgb_stride %2 != 0)) { // Step/stride should be even for uint16_t buffers. return 0; } if (yuv_bit_depth > 8 && (y_stride % 2 != 0 || u_stride % 2 != 0 || v_stride % 2 != 0)) { // Stride should be even for uint16_t buffers. return 0; } SharpYuvInit(NULL); // Add scaling factor to go from rgb_bit_depth to yuv_bit_depth, to the // rgb->yuv conversion matrix. if (rgb_bit_depth == yuv_bit_depth) { memcpy(&scaled_matrix, yuv_matrix, sizeof(scaled_matrix)); } else { int i; for (i = 0; i < 3; ++i) { scaled_matrix.rgb_to_y[i] = (yuv_matrix->rgb_to_y[i] * yuv_max + rgb_round) / rgb_max; scaled_matrix.rgb_to_u[i] = (yuv_matrix->rgb_to_u[i] * yuv_max + rgb_round) / rgb_max; scaled_matrix.rgb_to_v[i] = (yuv_matrix->rgb_to_v[i] * yuv_max + rgb_round) / rgb_max; } } // Also incorporate precision change scaling. scaled_matrix.rgb_to_y[3] = Shift(yuv_matrix->rgb_to_y[3], sfix); scaled_matrix.rgb_to_u[3] = Shift(yuv_matrix->rgb_to_u[3], sfix); scaled_matrix.rgb_to_v[3] = Shift(yuv_matrix->rgb_to_v[3], sfix); return DoSharpArgbToYuv(r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride, rgb_bit_depth, y_ptr, y_stride, u_ptr, u_stride, v_ptr, v_stride, yuv_bit_depth, width, height, &scaled_matrix); } //------------------------------------------------------------------------------