// Copyright 2011 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // SSE2 version of some decoding functions (idct, loop filtering). // // Author: somnath@google.com (Somnath Banerjee) // cduvivier@google.com (Christian Duvivier) #include "src/dsp/dsp.h" #if defined(WEBP_USE_SSE2) // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C // one it seems => disable it by default. Uncomment the following to enable: #if !defined(USE_TRANSFORM_AC3) #define USE_TRANSFORM_AC3 0 // ALTERNATE_CODE #endif #include #include "src/dsp/common_sse2.h" #include "src/dec/vp8i_dec.h" #include "src/utils/utils.h" //------------------------------------------------------------------------------ // Transforms (Paragraph 14.4) static void Transform_SSE2(const int16_t* in, uint8_t* dst, int do_two) { // This implementation makes use of 16-bit fixed point versions of two // multiply constants: // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 // // To be able to use signed 16-bit integers, we use the following trick to // have constants within range: // - Associated constants are obtained by subtracting the 16-bit fixed point // version of one: // k = K - (1 << 16) => K = k + (1 << 16) // K1 = 85267 => k1 = 20091 // K2 = 35468 => k2 = -30068 // - The multiplication of a variable by a constant become the sum of the // variable and the multiplication of that variable by the associated // constant: // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x const __m128i k1 = _mm_set1_epi16(20091); const __m128i k2 = _mm_set1_epi16(-30068); __m128i T0, T1, T2, T3; // Load and concatenate the transform coefficients (we'll do two transforms // in parallel). In the case of only one transform, the second half of the // vectors will just contain random value we'll never use nor store. __m128i in0, in1, in2, in3; { in0 = _mm_loadl_epi64((const __m128i*)&in[0]); in1 = _mm_loadl_epi64((const __m128i*)&in[4]); in2 = _mm_loadl_epi64((const __m128i*)&in[8]); in3 = _mm_loadl_epi64((const __m128i*)&in[12]); // a00 a10 a20 a30 x x x x // a01 a11 a21 a31 x x x x // a02 a12 a22 a32 x x x x // a03 a13 a23 a33 x x x x if (do_two) { const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); in0 = _mm_unpacklo_epi64(in0, inB0); in1 = _mm_unpacklo_epi64(in1, inB1); in2 = _mm_unpacklo_epi64(in2, inB2); in3 = _mm_unpacklo_epi64(in3, inB3); // a00 a10 a20 a30 b00 b10 b20 b30 // a01 a11 a21 a31 b01 b11 b21 b31 // a02 a12 a22 a32 b02 b12 b22 b32 // a03 a13 a23 a33 b03 b13 b23 b33 } } // Vertical pass and subsequent transpose. { // First pass, c and d calculations are longer because of the "trick" // multiplications. const __m128i a = _mm_add_epi16(in0, in2); const __m128i b = _mm_sub_epi16(in0, in2); // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 const __m128i c1 = _mm_mulhi_epi16(in1, k2); const __m128i c2 = _mm_mulhi_epi16(in3, k1); const __m128i c3 = _mm_sub_epi16(in1, in3); const __m128i c4 = _mm_sub_epi16(c1, c2); const __m128i c = _mm_add_epi16(c3, c4); // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 const __m128i d1 = _mm_mulhi_epi16(in1, k1); const __m128i d2 = _mm_mulhi_epi16(in3, k2); const __m128i d3 = _mm_add_epi16(in1, in3); const __m128i d4 = _mm_add_epi16(d1, d2); const __m128i d = _mm_add_epi16(d3, d4); // Second pass. const __m128i tmp0 = _mm_add_epi16(a, d); const __m128i tmp1 = _mm_add_epi16(b, c); const __m128i tmp2 = _mm_sub_epi16(b, c); const __m128i tmp3 = _mm_sub_epi16(a, d); // Transpose the two 4x4. VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3); } // Horizontal pass and subsequent transpose. { // First pass, c and d calculations are longer because of the "trick" // multiplications. const __m128i four = _mm_set1_epi16(4); const __m128i dc = _mm_add_epi16(T0, four); const __m128i a = _mm_add_epi16(dc, T2); const __m128i b = _mm_sub_epi16(dc, T2); // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 const __m128i c1 = _mm_mulhi_epi16(T1, k2); const __m128i c2 = _mm_mulhi_epi16(T3, k1); const __m128i c3 = _mm_sub_epi16(T1, T3); const __m128i c4 = _mm_sub_epi16(c1, c2); const __m128i c = _mm_add_epi16(c3, c4); // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 const __m128i d1 = _mm_mulhi_epi16(T1, k1); const __m128i d2 = _mm_mulhi_epi16(T3, k2); const __m128i d3 = _mm_add_epi16(T1, T3); const __m128i d4 = _mm_add_epi16(d1, d2); const __m128i d = _mm_add_epi16(d3, d4); // Second pass. const __m128i tmp0 = _mm_add_epi16(a, d); const __m128i tmp1 = _mm_add_epi16(b, c); const __m128i tmp2 = _mm_sub_epi16(b, c); const __m128i tmp3 = _mm_sub_epi16(a, d); const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); // Transpose the two 4x4. VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1, &T2, &T3); } // Add inverse transform to 'dst' and store. { const __m128i zero = _mm_setzero_si128(); // Load the reference(s). __m128i dst0, dst1, dst2, dst3; if (do_two) { // Load eight bytes/pixels per line. dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS)); dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS)); dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS)); dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS)); } else { // Load four bytes/pixels per line. dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS)); dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS)); dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS)); dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS)); } // Convert to 16b. dst0 = _mm_unpacklo_epi8(dst0, zero); dst1 = _mm_unpacklo_epi8(dst1, zero); dst2 = _mm_unpacklo_epi8(dst2, zero); dst3 = _mm_unpacklo_epi8(dst3, zero); // Add the inverse transform(s). dst0 = _mm_add_epi16(dst0, T0); dst1 = _mm_add_epi16(dst1, T1); dst2 = _mm_add_epi16(dst2, T2); dst3 = _mm_add_epi16(dst3, T3); // Unsigned saturate to 8b. dst0 = _mm_packus_epi16(dst0, dst0); dst1 = _mm_packus_epi16(dst1, dst1); dst2 = _mm_packus_epi16(dst2, dst2); dst3 = _mm_packus_epi16(dst3, dst3); // Store the results. if (do_two) { // Store eight bytes/pixels per line. _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0); _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1); _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2); _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3); } else { // Store four bytes/pixels per line. WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); } } } #if (USE_TRANSFORM_AC3 == 1) #define MUL(a, b) (((a) * (b)) >> 16) static void TransformAC3(const int16_t* in, uint8_t* dst) { static const int kC1 = 20091 + (1 << 16); static const int kC2 = 35468; const __m128i A = _mm_set1_epi16(in[0] + 4); const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2)); const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1)); const int c1 = MUL(in[1], kC2); const int d1 = MUL(in[1], kC1); const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1); const __m128i B = _mm_adds_epi16(A, CD); const __m128i m0 = _mm_adds_epi16(B, d4); const __m128i m1 = _mm_adds_epi16(B, c4); const __m128i m2 = _mm_subs_epi16(B, c4); const __m128i m3 = _mm_subs_epi16(B, d4); const __m128i zero = _mm_setzero_si128(); // Load the source pixels. __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS)); __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS)); __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS)); __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS)); // Convert to 16b. dst0 = _mm_unpacklo_epi8(dst0, zero); dst1 = _mm_unpacklo_epi8(dst1, zero); dst2 = _mm_unpacklo_epi8(dst2, zero); dst3 = _mm_unpacklo_epi8(dst3, zero); // Add the inverse transform. dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3)); dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3)); dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3)); dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3)); // Unsigned saturate to 8b. dst0 = _mm_packus_epi16(dst0, dst0); dst1 = _mm_packus_epi16(dst1, dst1); dst2 = _mm_packus_epi16(dst2, dst2); dst3 = _mm_packus_epi16(dst3, dst3); // Store the results. WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); } #undef MUL #endif // USE_TRANSFORM_AC3 //------------------------------------------------------------------------------ // Loop Filter (Paragraph 15) // Compute abs(p - q) = subs(p - q) OR subs(q - p) #define MM_ABS(p, q) _mm_or_si128( \ _mm_subs_epu8((q), (p)), \ _mm_subs_epu8((p), (q))) // Shift each byte of "x" by 3 bits while preserving by the sign bit. static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) { const __m128i zero = _mm_setzero_si128(); const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x); const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x); const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8); const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8); *x = _mm_packs_epi16(lo_1, hi_1); } #define FLIP_SIGN_BIT2(a, b) { \ (a) = _mm_xor_si128(a, sign_bit); \ (b) = _mm_xor_si128(b, sign_bit); \ } #define FLIP_SIGN_BIT4(a, b, c, d) { \ FLIP_SIGN_BIT2(a, b); \ FLIP_SIGN_BIT2(c, d); \ } // input/output is uint8_t static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1, const __m128i* const p0, const __m128i* const q0, const __m128i* const q1, int hev_thresh, __m128i* const not_hev) { const __m128i zero = _mm_setzero_si128(); const __m128i t_1 = MM_ABS(*p1, *p0); const __m128i t_2 = MM_ABS(*q1, *q0); const __m128i h = _mm_set1_epi8(hev_thresh); const __m128i t_max = _mm_max_epu8(t_1, t_2); const __m128i t_max_h = _mm_subs_epu8(t_max, h); *not_hev = _mm_cmpeq_epi8(t_max_h, zero); // not_hev <= t1 && not_hev <= t2 } // input pixels are int8_t static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1, const __m128i* const p0, const __m128i* const q0, const __m128i* const q1, __m128i* const delta) { // beware of addition order, for saturation! const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0); // q0 - p0 const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0); // p1 - q1 + 1 * (q0 - p0) const __m128i s2 = _mm_adds_epi8(q0_p0, s1); // p1 - q1 + 2 * (q0 - p0) const __m128i s3 = _mm_adds_epi8(q0_p0, s2); // p1 - q1 + 3 * (q0 - p0) *delta = s3; } // input and output are int8_t static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0, __m128i* const q0, const __m128i* const fl) { const __m128i k3 = _mm_set1_epi8(3); const __m128i k4 = _mm_set1_epi8(4); __m128i v3 = _mm_adds_epi8(*fl, k3); __m128i v4 = _mm_adds_epi8(*fl, k4); SignedShift8b_SSE2(&v4); // v4 >> 3 SignedShift8b_SSE2(&v3); // v3 >> 3 *q0 = _mm_subs_epi8(*q0, v4); // q0 -= v4 *p0 = _mm_adds_epi8(*p0, v3); // p0 += v3 } // Updates values of 2 pixels at MB edge during complex filtering. // Update operations: // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)] // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip). static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi, const __m128i* const a0_lo, const __m128i* const a0_hi) { const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7); const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7); const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi); const __m128i sign_bit = _mm_set1_epi8(0x80); *pi = _mm_adds_epi8(*pi, delta); *qi = _mm_subs_epi8(*qi, delta); FLIP_SIGN_BIT2(*pi, *qi); } // input pixels are uint8_t static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1, const __m128i* const p0, const __m128i* const q0, const __m128i* const q1, int thresh, __m128i* const mask) { const __m128i m_thresh = _mm_set1_epi8(thresh); const __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1) const __m128i kFE = _mm_set1_epi8(0xFE); const __m128i t2 = _mm_and_si128(t1, kFE); // set lsb of each byte to zero const __m128i t3 = _mm_srli_epi16(t2, 1); // abs(p1 - q1) / 2 const __m128i t4 = MM_ABS(*p0, *q0); // abs(p0 - q0) const __m128i t5 = _mm_adds_epu8(t4, t4); // abs(p0 - q0) * 2 const __m128i t6 = _mm_adds_epu8(t5, t3); // abs(p0-q0)*2 + abs(p1-q1)/2 const __m128i t7 = _mm_subs_epu8(t6, m_thresh); // mask <= m_thresh *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128()); } //------------------------------------------------------------------------------ // Edge filtering functions // Applies filter on 2 pixels (p0 and q0) static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0, __m128i* const q0, __m128i* const q1, int thresh) { __m128i a, mask; const __m128i sign_bit = _mm_set1_epi8(0x80); // convert p1/q1 to int8_t (for GetBaseDelta_SSE2) const __m128i p1s = _mm_xor_si128(*p1, sign_bit); const __m128i q1s = _mm_xor_si128(*q1, sign_bit); NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask); FLIP_SIGN_BIT2(*p0, *q0); GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a); a = _mm_and_si128(a, mask); // mask filter values we don't care about DoSimpleFilter_SSE2(p0, q0, &a); FLIP_SIGN_BIT2(*p0, *q0); } // Applies filter on 4 pixels (p1, p0, q0 and q1) static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0, __m128i* const q0, __m128i* const q1, const __m128i* const mask, int hev_thresh) { const __m128i zero = _mm_setzero_si128(); const __m128i sign_bit = _mm_set1_epi8(0x80); const __m128i k64 = _mm_set1_epi8(64); const __m128i k3 = _mm_set1_epi8(3); const __m128i k4 = _mm_set1_epi8(4); __m128i not_hev; __m128i t1, t2, t3; // compute hev mask GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev); // convert to signed values FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1) t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0) t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0) t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0) t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about t2 = _mm_adds_epi8(t1, k3); // 3 * (q0 - p0) + hev(p1 - q1) + 3 t3 = _mm_adds_epi8(t1, k4); // 3 * (q0 - p0) + hev(p1 - q1) + 4 SignedShift8b_SSE2(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3 SignedShift8b_SSE2(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3 *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2 *q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3 FLIP_SIGN_BIT2(*p0, *q0); // this is equivalent to signed (a + 1) >> 1 calculation t2 = _mm_add_epi8(t3, sign_bit); t3 = _mm_avg_epu8(t2, zero); t3 = _mm_sub_epi8(t3, k64); t3 = _mm_and_si128(not_hev, t3); // if !hev *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3 *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3 FLIP_SIGN_BIT2(*p1, *q1); } // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2) static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1, __m128i* const p0, __m128i* const q0, __m128i* const q1, __m128i* const q2, const __m128i* const mask, int hev_thresh) { const __m128i zero = _mm_setzero_si128(); const __m128i sign_bit = _mm_set1_epi8(0x80); __m128i a, not_hev; // compute hev mask GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev); FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); FLIP_SIGN_BIT2(*p2, *q2); GetBaseDelta_SSE2(p1, p0, q0, q1, &a); { // do simple filter on pixels with hev const __m128i m = _mm_andnot_si128(not_hev, *mask); const __m128i f = _mm_and_si128(a, m); DoSimpleFilter_SSE2(p0, q0, &f); } { // do strong filter on pixels with not hev const __m128i k9 = _mm_set1_epi16(0x0900); const __m128i k63 = _mm_set1_epi16(63); const __m128i m = _mm_and_si128(not_hev, *mask); const __m128i f = _mm_and_si128(a, m); const __m128i f_lo = _mm_unpacklo_epi8(zero, f); const __m128i f_hi = _mm_unpackhi_epi8(zero, f); const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9); // Filter (lo) * 9 const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9); // Filter (hi) * 9 const __m128i a2_lo = _mm_add_epi16(f9_lo, k63); // Filter * 9 + 63 const __m128i a2_hi = _mm_add_epi16(f9_hi, k63); // Filter * 9 + 63 const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo); // Filter * 18 + 63 const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi); // Filter * 18 + 63 const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63 const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63 Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi); Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi); Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi); } } // reads 8 rows across a vertical edge. static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride, __m128i* const p, __m128i* const q) { // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00 // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10 const __m128i A0 = _mm_set_epi32( WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]), WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride])); const __m128i A1 = _mm_set_epi32( WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]), WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride])); // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00 // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20 const __m128i B0 = _mm_unpacklo_epi8(A0, A1); const __m128i B1 = _mm_unpackhi_epi8(A0, A1); // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40 const __m128i C0 = _mm_unpacklo_epi16(B0, B1); const __m128i C1 = _mm_unpackhi_epi16(B0, B1); // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 *p = _mm_unpacklo_epi32(C0, C1); *q = _mm_unpackhi_epi32(C0, C1); } static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0, const uint8_t* const r8, int stride, __m128i* const p1, __m128i* const p0, __m128i* const q0, __m128i* const q1) { // Assume the pixels around the edge (|) are numbered as follows // 00 01 | 02 03 // 10 11 | 12 13 // ... | ... // e0 e1 | e2 e3 // f0 f1 | f2 f3 // // r0 is pointing to the 0th row (00) // r8 is pointing to the 8th row (80) // Load // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 Load8x4_SSE2(r0, stride, p1, q0); Load8x4_SSE2(r8, stride, p0, q1); { // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 const __m128i t1 = *p1; const __m128i t2 = *q0; *p1 = _mm_unpacklo_epi64(t1, *p0); *p0 = _mm_unpackhi_epi64(t1, *p0); *q0 = _mm_unpacklo_epi64(t2, *q1); *q1 = _mm_unpackhi_epi64(t2, *q1); } } static WEBP_INLINE void Store4x4_SSE2(__m128i* const x, uint8_t* dst, int stride) { int i; for (i = 0; i < 4; ++i, dst += stride) { WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x)); *x = _mm_srli_si128(*x, 4); } } // Transpose back and store static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1, const __m128i* const p0, const __m128i* const q0, const __m128i* const q1, uint8_t* r0, uint8_t* r8, int stride) { __m128i t1, p1_s, p0_s, q0_s, q1_s; // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 t1 = *p0; p0_s = _mm_unpacklo_epi8(*p1, t1); p1_s = _mm_unpackhi_epi8(*p1, t1); // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 t1 = *q0; q0_s = _mm_unpacklo_epi8(t1, *q1); q1_s = _mm_unpackhi_epi8(t1, *q1); // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 t1 = p0_s; p0_s = _mm_unpacklo_epi16(t1, q0_s); q0_s = _mm_unpackhi_epi16(t1, q0_s); // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 t1 = p1_s; p1_s = _mm_unpacklo_epi16(t1, q1_s); q1_s = _mm_unpackhi_epi16(t1, q1_s); Store4x4_SSE2(&p0_s, r0, stride); r0 += 4 * stride; Store4x4_SSE2(&q0_s, r0, stride); Store4x4_SSE2(&p1_s, r8, stride); r8 += 4 * stride; Store4x4_SSE2(&q1_s, r8, stride); } //------------------------------------------------------------------------------ // Simple In-loop filtering (Paragraph 15.2) static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) { // Load __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]); __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]); __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]); __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]); DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh); // Store _mm_storeu_si128((__m128i*)&p[-stride], p0); _mm_storeu_si128((__m128i*)&p[0], q0); } static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) { __m128i p1, p0, q0, q1; p -= 2; // beginning of p1 Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1); DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh); Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride); } static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) { int k; for (k = 3; k > 0; --k) { p += 4 * stride; SimpleVFilter16_SSE2(p, stride, thresh); } } static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) { int k; for (k = 3; k > 0; --k) { p += 4; SimpleHFilter16_SSE2(p, stride, thresh); } } //------------------------------------------------------------------------------ // Complex In-loop filtering (Paragraph 15.3) #define MAX_DIFF1(p3, p2, p1, p0, m) do { \ (m) = MM_ABS(p1, p0); \ (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \ (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \ } while (0) #define MAX_DIFF2(p3, p2, p1, p0, m) do { \ (m) = _mm_max_epu8(m, MM_ABS(p1, p0)); \ (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \ (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \ } while (0) #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \ (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]); \ (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]); \ (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]); \ (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]); \ } #define LOADUV_H_EDGE(p, u, v, stride) do { \ const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \ const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]); \ (p) = _mm_unpacklo_epi64(U, V); \ } while (0) #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \ LOADUV_H_EDGE(e1, u, v, 0 * (stride)); \ LOADUV_H_EDGE(e2, u, v, 1 * (stride)); \ LOADUV_H_EDGE(e3, u, v, 2 * (stride)); \ LOADUV_H_EDGE(e4, u, v, 3 * (stride)); \ } #define STOREUV(p, u, v, stride) { \ _mm_storel_epi64((__m128i*)&(u)[(stride)], p); \ (p) = _mm_srli_si128(p, 8); \ _mm_storel_epi64((__m128i*)&(v)[(stride)], p); \ } static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1, const __m128i* const p0, const __m128i* const q0, const __m128i* const q1, int thresh, int ithresh, __m128i* const mask) { const __m128i it = _mm_set1_epi8(ithresh); const __m128i diff = _mm_subs_epu8(*mask, it); const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128()); __m128i filter_mask; NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask); *mask = _mm_and_si128(thresh_mask, filter_mask); } // on macroblock edges static void VFilter16_SSE2(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { __m128i t1; __m128i mask; __m128i p2, p1, p0, q0, q1, q2; // Load p3, p2, p1, p0 LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0); MAX_DIFF1(t1, p2, p1, p0, mask); // Load q0, q1, q2, q3 LOAD_H_EDGES4(p, stride, q0, q1, q2, t1); MAX_DIFF2(t1, q2, q1, q0, mask); ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); // Store _mm_storeu_si128((__m128i*)&p[-3 * stride], p2); _mm_storeu_si128((__m128i*)&p[-2 * stride], p1); _mm_storeu_si128((__m128i*)&p[-1 * stride], p0); _mm_storeu_si128((__m128i*)&p[+0 * stride], q0); _mm_storeu_si128((__m128i*)&p[+1 * stride], q1); _mm_storeu_si128((__m128i*)&p[+2 * stride], q2); } static void HFilter16_SSE2(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { __m128i mask; __m128i p3, p2, p1, p0, q0, q1, q2, q3; uint8_t* const b = p - 4; Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); MAX_DIFF1(p3, p2, p1, p0, mask); Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); MAX_DIFF2(q3, q2, q1, q0, mask); ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride); Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride); } // on three inner edges static void VFilter16i_SSE2(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { int k; __m128i p3, p2, p1, p0; // loop invariants LOAD_H_EDGES4(p, stride, p3, p2, p1, p0); // prologue for (k = 3; k > 0; --k) { __m128i mask, tmp1, tmp2; uint8_t* const b = p + 2 * stride; // beginning of p1 p += 4 * stride; MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2); MAX_DIFF2(p3, p2, tmp1, tmp2, mask); // p3 and p2 are not just temporary variables here: they will be // re-used for next span. And q2/q3 will become p1/p0 accordingly. ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh); // Store _mm_storeu_si128((__m128i*)&b[0 * stride], p1); _mm_storeu_si128((__m128i*)&b[1 * stride], p0); _mm_storeu_si128((__m128i*)&b[2 * stride], p3); _mm_storeu_si128((__m128i*)&b[3 * stride], p2); // rotate samples p1 = tmp1; p0 = tmp2; } } static void HFilter16i_SSE2(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { int k; __m128i p3, p2, p1, p0; // loop invariants Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0); // prologue for (k = 3; k > 0; --k) { __m128i mask, tmp1, tmp2; uint8_t* const b = p + 2; // beginning of p1 p += 4; // beginning of q0 (and next span) MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2); MAX_DIFF2(p3, p2, tmp1, tmp2, mask); ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh); Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride); // rotate samples p1 = tmp1; p0 = tmp2; } } // 8-pixels wide variant, for chroma filtering static void VFilter8_SSE2(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { __m128i mask; __m128i t1, p2, p1, p0, q0, q1, q2; // Load p3, p2, p1, p0 LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0); MAX_DIFF1(t1, p2, p1, p0, mask); // Load q0, q1, q2, q3 LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1); MAX_DIFF2(t1, q2, q1, q0, mask); ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); // Store STOREUV(p2, u, v, -3 * stride); STOREUV(p1, u, v, -2 * stride); STOREUV(p0, u, v, -1 * stride); STOREUV(q0, u, v, 0 * stride); STOREUV(q1, u, v, 1 * stride); STOREUV(q2, u, v, 2 * stride); } static void HFilter8_SSE2(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { __m128i mask; __m128i p3, p2, p1, p0, q0, q1, q2, q3; uint8_t* const tu = u - 4; uint8_t* const tv = v - 4; Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0); MAX_DIFF1(p3, p2, p1, p0, mask); Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3); MAX_DIFF2(q3, q2, q1, q0, mask); ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride); Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride); } static void VFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { __m128i mask; __m128i t1, t2, p1, p0, q0, q1; // Load p3, p2, p1, p0 LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0); MAX_DIFF1(t2, t1, p1, p0, mask); u += 4 * stride; v += 4 * stride; // Load q0, q1, q2, q3 LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2); MAX_DIFF2(t2, t1, q1, q0, mask); ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh); // Store STOREUV(p1, u, v, -2 * stride); STOREUV(p0, u, v, -1 * stride); STOREUV(q0, u, v, 0 * stride); STOREUV(q1, u, v, 1 * stride); } static void HFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { __m128i mask; __m128i t1, t2, p1, p0, q0, q1; Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0 MAX_DIFF1(t2, t1, p1, p0, mask); u += 4; // beginning of q0 v += 4; Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3 MAX_DIFF2(t2, t1, q1, q0, mask); ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh); u -= 2; // beginning of p1 v -= 2; Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride); } //------------------------------------------------------------------------------ // 4x4 predictions #define DST(x, y) dst[(x) + (y) * BPS] #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) // We use the following 8b-arithmetic tricks: // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] // and: // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 static void VE4_SSE2(uint8_t* dst) { // vertical const __m128i one = _mm_set1_epi8(1); const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); const __m128i b = _mm_subs_epu8(a, lsb); const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); const uint32_t vals = _mm_cvtsi128_si32(avg); int i; for (i = 0; i < 4; ++i) { WebPUint32ToMem(dst + i * BPS, vals); } } static void LD4_SSE2(uint8_t* dst) { // Down-Left const __m128i one = _mm_set1_epi8(1); const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3); const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); const __m128i avg2 = _mm_subs_epu8(avg1, lsb); const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); } static void VR4_SSE2(uint8_t* dst) { // Vertical-Right const __m128i one = _mm_set1_epi8(1); const int I = dst[-1 + 0 * BPS]; const int J = dst[-1 + 1 * BPS]; const int K = dst[-1 + 2 * BPS]; const int X = dst[-1 - BPS]; const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); const __m128i _XABCD = _mm_slli_si128(XABCD, 1); const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0); const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); const __m128i avg2 = _mm_subs_epu8(avg1, lsb); const __m128i efgh = _mm_avg_epu8(avg2, XABCD); WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); // these two are hard to implement in SSE2, so we keep the C-version: DST(0, 2) = AVG3(J, I, X); DST(0, 3) = AVG3(K, J, I); } static void VL4_SSE2(uint8_t* dst) { // Vertical-Left const __m128i one = _mm_set1_epi8(1); const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); const __m128i avg3 = _mm_avg_epu8(avg1, avg2); const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); const __m128i abbc = _mm_or_si128(ab, bc); const __m128i lsb2 = _mm_and_si128(abbc, lsb1); const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); // these two are hard to get and irregular DST(3, 2) = (extra_out >> 0) & 0xff; DST(3, 3) = (extra_out >> 8) & 0xff; } static void RD4_SSE2(uint8_t* dst) { // Down-right const __m128i one = _mm_set1_epi8(1); const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); const __m128i ____XABCD = _mm_slli_si128(XABCD, 4); const uint32_t I = dst[-1 + 0 * BPS]; const uint32_t J = dst[-1 + 1 * BPS]; const uint32_t K = dst[-1 + 2 * BPS]; const uint32_t L = dst[-1 + 3 * BPS]; const __m128i LKJI_____ = _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24)); const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD); const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); const __m128i avg2 = _mm_subs_epu8(avg1, lsb); const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); } #undef DST #undef AVG3 //------------------------------------------------------------------------------ // Luma 16x16 static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) { const uint8_t* top = dst - BPS; const __m128i zero = _mm_setzero_si128(); int y; if (size == 4) { const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top)); const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); for (y = 0; y < 4; ++y, dst += BPS) { const int val = dst[-1] - top[-1]; const __m128i base = _mm_set1_epi16(val); const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); WebPUint32ToMem(dst, _mm_cvtsi128_si32(out)); } } else if (size == 8) { const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); for (y = 0; y < 8; ++y, dst += BPS) { const int val = dst[-1] - top[-1]; const __m128i base = _mm_set1_epi16(val); const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); _mm_storel_epi64((__m128i*)dst, out); } } else { const __m128i top_values = _mm_loadu_si128((const __m128i*)top); const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); for (y = 0; y < 16; ++y, dst += BPS) { const int val = dst[-1] - top[-1]; const __m128i base = _mm_set1_epi16(val); const __m128i out_0 = _mm_add_epi16(base, top_base_0); const __m128i out_1 = _mm_add_epi16(base, top_base_1); const __m128i out = _mm_packus_epi16(out_0, out_1); _mm_storeu_si128((__m128i*)dst, out); } } } static void TM4_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 4); } static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); } static void TM16_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 16); } static void VE16_SSE2(uint8_t* dst) { const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); int j; for (j = 0; j < 16; ++j) { _mm_storeu_si128((__m128i*)(dst + j * BPS), top); } } static void HE16_SSE2(uint8_t* dst) { // horizontal int j; for (j = 16; j > 0; --j) { const __m128i values = _mm_set1_epi8(dst[-1]); _mm_storeu_si128((__m128i*)dst, values); dst += BPS; } } static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) { int j; const __m128i values = _mm_set1_epi8(v); for (j = 0; j < 16; ++j) { _mm_storeu_si128((__m128i*)(dst + j * BPS), values); } } static void DC16_SSE2(uint8_t* dst) { // DC const __m128i zero = _mm_setzero_si128(); const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); const __m128i sad8x2 = _mm_sad_epu8(top, zero); // sum the two sads: sad8x2[0:1] + sad8x2[8:9] const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); int left = 0; int j; for (j = 0; j < 16; ++j) { left += dst[-1 + j * BPS]; } { const int DC = _mm_cvtsi128_si32(sum) + left + 16; Put16_SSE2(DC >> 5, dst); } } static void DC16NoTop_SSE2(uint8_t* dst) { // DC with top samples unavailable int DC = 8; int j; for (j = 0; j < 16; ++j) { DC += dst[-1 + j * BPS]; } Put16_SSE2(DC >> 4, dst); } static void DC16NoLeft_SSE2(uint8_t* dst) { // DC with left samples unavailable const __m128i zero = _mm_setzero_si128(); const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); const __m128i sad8x2 = _mm_sad_epu8(top, zero); // sum the two sads: sad8x2[0:1] + sad8x2[8:9] const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); const int DC = _mm_cvtsi128_si32(sum) + 8; Put16_SSE2(DC >> 4, dst); } static void DC16NoTopLeft_SSE2(uint8_t* dst) { // DC with no top & left samples Put16_SSE2(0x80, dst); } //------------------------------------------------------------------------------ // Chroma static void VE8uv_SSE2(uint8_t* dst) { // vertical int j; const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); for (j = 0; j < 8; ++j) { _mm_storel_epi64((__m128i*)(dst + j * BPS), top); } } // helper for chroma-DC predictions static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) { int j; const __m128i values = _mm_set1_epi8(v); for (j = 0; j < 8; ++j) { _mm_storel_epi64((__m128i*)(dst + j * BPS), values); } } static void DC8uv_SSE2(uint8_t* dst) { // DC const __m128i zero = _mm_setzero_si128(); const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); const __m128i sum = _mm_sad_epu8(top, zero); int left = 0; int j; for (j = 0; j < 8; ++j) { left += dst[-1 + j * BPS]; } { const int DC = _mm_cvtsi128_si32(sum) + left + 8; Put8x8uv_SSE2(DC >> 4, dst); } } static void DC8uvNoLeft_SSE2(uint8_t* dst) { // DC with no left samples const __m128i zero = _mm_setzero_si128(); const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); const __m128i sum = _mm_sad_epu8(top, zero); const int DC = _mm_cvtsi128_si32(sum) + 4; Put8x8uv_SSE2(DC >> 3, dst); } static void DC8uvNoTop_SSE2(uint8_t* dst) { // DC with no top samples int dc0 = 4; int i; for (i = 0; i < 8; ++i) { dc0 += dst[-1 + i * BPS]; } Put8x8uv_SSE2(dc0 >> 3, dst); } static void DC8uvNoTopLeft_SSE2(uint8_t* dst) { // DC with nothing Put8x8uv_SSE2(0x80, dst); } //------------------------------------------------------------------------------ // Entry point extern void VP8DspInitSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) { VP8Transform = Transform_SSE2; #if (USE_TRANSFORM_AC3 == 1) VP8TransformAC3 = TransformAC3_SSE2; #endif VP8VFilter16 = VFilter16_SSE2; VP8HFilter16 = HFilter16_SSE2; VP8VFilter8 = VFilter8_SSE2; VP8HFilter8 = HFilter8_SSE2; VP8VFilter16i = VFilter16i_SSE2; VP8HFilter16i = HFilter16i_SSE2; VP8VFilter8i = VFilter8i_SSE2; VP8HFilter8i = HFilter8i_SSE2; VP8SimpleVFilter16 = SimpleVFilter16_SSE2; VP8SimpleHFilter16 = SimpleHFilter16_SSE2; VP8SimpleVFilter16i = SimpleVFilter16i_SSE2; VP8SimpleHFilter16i = SimpleHFilter16i_SSE2; VP8PredLuma4[1] = TM4_SSE2; VP8PredLuma4[2] = VE4_SSE2; VP8PredLuma4[4] = RD4_SSE2; VP8PredLuma4[5] = VR4_SSE2; VP8PredLuma4[6] = LD4_SSE2; VP8PredLuma4[7] = VL4_SSE2; VP8PredLuma16[0] = DC16_SSE2; VP8PredLuma16[1] = TM16_SSE2; VP8PredLuma16[2] = VE16_SSE2; VP8PredLuma16[3] = HE16_SSE2; VP8PredLuma16[4] = DC16NoTop_SSE2; VP8PredLuma16[5] = DC16NoLeft_SSE2; VP8PredLuma16[6] = DC16NoTopLeft_SSE2; VP8PredChroma8[0] = DC8uv_SSE2; VP8PredChroma8[1] = TM8uv_SSE2; VP8PredChroma8[2] = VE8uv_SSE2; VP8PredChroma8[4] = DC8uvNoTop_SSE2; VP8PredChroma8[5] = DC8uvNoLeft_SSE2; VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2; } #else // !WEBP_USE_SSE2 WEBP_DSP_INIT_STUB(VP8DspInitSSE2) #endif // WEBP_USE_SSE2