// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // NEON variant of methods for lossless decoder // // Author: Skal (pascal.massimino@gmail.com) #include "./dsp.h" #if defined(WEBP_USE_NEON) #include #include "./lossless.h" #include "./neon.h" //------------------------------------------------------------------------------ // Colorspace conversion functions #if !defined(WORK_AROUND_GCC) // gcc 4.6.0 had some trouble (NDK-r9) with this code. We only use it for // gcc-4.8.x at least. static void ConvertBGRAToRGBA(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~15); for (; src < end; src += 16) { uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); // swap B and R. (VSWP d0,d2 has no intrinsics equivalent!) const uint8x16_t tmp = pixel.val[0]; pixel.val[0] = pixel.val[2]; pixel.val[2] = tmp; vst4q_u8(dst, pixel); dst += 64; } VP8LConvertBGRAToRGBA_C(src, num_pixels & 15, dst); // left-overs } static void ConvertBGRAToBGR(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~15); for (; src < end; src += 16) { const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); const uint8x16x3_t tmp = { { pixel.val[0], pixel.val[1], pixel.val[2] } }; vst3q_u8(dst, tmp); dst += 48; } VP8LConvertBGRAToBGR_C(src, num_pixels & 15, dst); // left-overs } static void ConvertBGRAToRGB(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~15); for (; src < end; src += 16) { const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); const uint8x16x3_t tmp = { { pixel.val[2], pixel.val[1], pixel.val[0] } }; vst3q_u8(dst, tmp); dst += 48; } VP8LConvertBGRAToRGB_C(src, num_pixels & 15, dst); // left-overs } #else // WORK_AROUND_GCC // gcc-4.6.0 fallback static const uint8_t kRGBAShuffle[8] = { 2, 1, 0, 3, 6, 5, 4, 7 }; static void ConvertBGRAToRGBA(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~1); const uint8x8_t shuffle = vld1_u8(kRGBAShuffle); for (; src < end; src += 2) { const uint8x8_t pixels = vld1_u8((uint8_t*)src); vst1_u8(dst, vtbl1_u8(pixels, shuffle)); dst += 8; } VP8LConvertBGRAToRGBA_C(src, num_pixels & 1, dst); // left-overs } static const uint8_t kBGRShuffle[3][8] = { { 0, 1, 2, 4, 5, 6, 8, 9 }, { 10, 12, 13, 14, 16, 17, 18, 20 }, { 21, 22, 24, 25, 26, 28, 29, 30 } }; static void ConvertBGRAToBGR(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~7); const uint8x8_t shuffle0 = vld1_u8(kBGRShuffle[0]); const uint8x8_t shuffle1 = vld1_u8(kBGRShuffle[1]); const uint8x8_t shuffle2 = vld1_u8(kBGRShuffle[2]); for (; src < end; src += 8) { uint8x8x4_t pixels; INIT_VECTOR4(pixels, vld1_u8((const uint8_t*)(src + 0)), vld1_u8((const uint8_t*)(src + 2)), vld1_u8((const uint8_t*)(src + 4)), vld1_u8((const uint8_t*)(src + 6))); vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); dst += 8 * 3; } VP8LConvertBGRAToBGR_C(src, num_pixels & 7, dst); // left-overs } static const uint8_t kRGBShuffle[3][8] = { { 2, 1, 0, 6, 5, 4, 10, 9 }, { 8, 14, 13, 12, 18, 17, 16, 22 }, { 21, 20, 26, 25, 24, 30, 29, 28 } }; static void ConvertBGRAToRGB(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~7); const uint8x8_t shuffle0 = vld1_u8(kRGBShuffle[0]); const uint8x8_t shuffle1 = vld1_u8(kRGBShuffle[1]); const uint8x8_t shuffle2 = vld1_u8(kRGBShuffle[2]); for (; src < end; src += 8) { uint8x8x4_t pixels; INIT_VECTOR4(pixels, vld1_u8((const uint8_t*)(src + 0)), vld1_u8((const uint8_t*)(src + 2)), vld1_u8((const uint8_t*)(src + 4)), vld1_u8((const uint8_t*)(src + 6))); vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); dst += 8 * 3; } VP8LConvertBGRAToRGB_C(src, num_pixels & 7, dst); // left-overs } #endif // !WORK_AROUND_GCC //------------------------------------------------------------------------------ #ifdef USE_INTRINSICS static WEBP_INLINE uint32_t Average2(const uint32_t* const a, const uint32_t* const b) { const uint8x8_t a0 = vreinterpret_u8_u64(vcreate_u64(*a)); const uint8x8_t b0 = vreinterpret_u8_u64(vcreate_u64(*b)); const uint8x8_t avg = vhadd_u8(a0, b0); return vget_lane_u32(vreinterpret_u32_u8(avg), 0); } static WEBP_INLINE uint32_t Average3(const uint32_t* const a, const uint32_t* const b, const uint32_t* const c) { const uint8x8_t a0 = vreinterpret_u8_u64(vcreate_u64(*a)); const uint8x8_t b0 = vreinterpret_u8_u64(vcreate_u64(*b)); const uint8x8_t c0 = vreinterpret_u8_u64(vcreate_u64(*c)); const uint8x8_t avg1 = vhadd_u8(a0, c0); const uint8x8_t avg2 = vhadd_u8(avg1, b0); return vget_lane_u32(vreinterpret_u32_u8(avg2), 0); } static WEBP_INLINE uint32_t Average4(const uint32_t* const a, const uint32_t* const b, const uint32_t* const c, const uint32_t* const d) { const uint8x8_t a0 = vreinterpret_u8_u64(vcreate_u64(*a)); const uint8x8_t b0 = vreinterpret_u8_u64(vcreate_u64(*b)); const uint8x8_t c0 = vreinterpret_u8_u64(vcreate_u64(*c)); const uint8x8_t d0 = vreinterpret_u8_u64(vcreate_u64(*d)); const uint8x8_t avg1 = vhadd_u8(a0, b0); const uint8x8_t avg2 = vhadd_u8(c0, d0); const uint8x8_t avg3 = vhadd_u8(avg1, avg2); return vget_lane_u32(vreinterpret_u32_u8(avg3), 0); } static uint32_t Predictor5(uint32_t left, const uint32_t* const top) { return Average3(&left, top + 0, top + 1); } static uint32_t Predictor6(uint32_t left, const uint32_t* const top) { return Average2(&left, top - 1); } static uint32_t Predictor7(uint32_t left, const uint32_t* const top) { return Average2(&left, top + 0); } static uint32_t Predictor8(uint32_t left, const uint32_t* const top) { (void)left; return Average2(top - 1, top + 0); } static uint32_t Predictor9(uint32_t left, const uint32_t* const top) { (void)left; return Average2(top + 0, top + 1); } static uint32_t Predictor10(uint32_t left, const uint32_t* const top) { return Average4(&left, top - 1, top + 0, top + 1); } //------------------------------------------------------------------------------ static WEBP_INLINE uint32_t Select(const uint32_t* const c0, const uint32_t* const c1, const uint32_t* const c2) { const uint8x8_t p0 = vreinterpret_u8_u64(vcreate_u64(*c0)); const uint8x8_t p1 = vreinterpret_u8_u64(vcreate_u64(*c1)); const uint8x8_t p2 = vreinterpret_u8_u64(vcreate_u64(*c2)); const uint8x8_t bc = vabd_u8(p1, p2); // |b-c| const uint8x8_t ac = vabd_u8(p0, p2); // |a-c| const int16x4_t sum_bc = vreinterpret_s16_u16(vpaddl_u8(bc)); const int16x4_t sum_ac = vreinterpret_s16_u16(vpaddl_u8(ac)); const int32x2_t diff = vpaddl_s16(vsub_s16(sum_bc, sum_ac)); const int32_t pa_minus_pb = vget_lane_s32(diff, 0); return (pa_minus_pb <= 0) ? *c0 : *c1; } static uint32_t Predictor11(uint32_t left, const uint32_t* const top) { return Select(top + 0, &left, top - 1); } static WEBP_INLINE uint32_t ClampedAddSubtractFull(const uint32_t* const c0, const uint32_t* const c1, const uint32_t* const c2) { const uint8x8_t p0 = vreinterpret_u8_u64(vcreate_u64(*c0)); const uint8x8_t p1 = vreinterpret_u8_u64(vcreate_u64(*c1)); const uint8x8_t p2 = vreinterpret_u8_u64(vcreate_u64(*c2)); const uint16x8_t sum0 = vaddl_u8(p0, p1); // add and widen const uint16x8_t sum1 = vqsubq_u16(sum0, vmovl_u8(p2)); // widen and subtract const uint8x8_t out = vqmovn_u16(sum1); // narrow and clamp return vget_lane_u32(vreinterpret_u32_u8(out), 0); } static uint32_t Predictor12(uint32_t left, const uint32_t* const top) { return ClampedAddSubtractFull(&left, top + 0, top - 1); } static WEBP_INLINE uint32_t ClampedAddSubtractHalf(const uint32_t* const c0, const uint32_t* const c1, const uint32_t* const c2) { const uint8x8_t p0 = vreinterpret_u8_u64(vcreate_u64(*c0)); const uint8x8_t p1 = vreinterpret_u8_u64(vcreate_u64(*c1)); const uint8x8_t p2 = vreinterpret_u8_u64(vcreate_u64(*c2)); const uint8x8_t avg = vhadd_u8(p0, p1); // Average(c0,c1) const uint8x8_t ab = vshr_n_u8(vqsub_u8(avg, p2), 1); // (a-b)>>1 saturated const uint8x8_t ba = vshr_n_u8(vqsub_u8(p2, avg), 1); // (b-a)>>1 saturated const uint8x8_t out = vqsub_u8(vqadd_u8(avg, ab), ba); return vget_lane_u32(vreinterpret_u32_u8(out), 0); } static uint32_t Predictor13(uint32_t left, const uint32_t* const top) { return ClampedAddSubtractHalf(&left, top + 0, top - 1); } //------------------------------------------------------------------------------ // Subtract-Green Transform // vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use // non-standard versions there. #if defined(__APPLE__) && defined(__aarch64__) && \ defined(__apple_build_version__) && (__apple_build_version__< 6020037) #define USE_VTBLQ #endif #ifdef USE_VTBLQ // 255 = byte will be zeroed static const uint8_t kGreenShuffle[16] = { 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13, 255 }; static WEBP_INLINE uint8x16_t DoGreenShuffle(const uint8x16_t argb, const uint8x16_t shuffle) { return vcombine_u8(vtbl1q_u8(argb, vget_low_u8(shuffle)), vtbl1q_u8(argb, vget_high_u8(shuffle))); } #else // !USE_VTBLQ // 255 = byte will be zeroed static const uint8_t kGreenShuffle[8] = { 1, 255, 1, 255, 5, 255, 5, 255 }; static WEBP_INLINE uint8x16_t DoGreenShuffle(const uint8x16_t argb, const uint8x8_t shuffle) { return vcombine_u8(vtbl1_u8(vget_low_u8(argb), shuffle), vtbl1_u8(vget_high_u8(argb), shuffle)); } #endif // USE_VTBLQ static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) { const uint32_t* const end = argb_data + (num_pixels & ~3); #ifdef USE_VTBLQ const uint8x16_t shuffle = vld1q_u8(kGreenShuffle); #else const uint8x8_t shuffle = vld1_u8(kGreenShuffle); #endif for (; argb_data < end; argb_data += 4) { const uint8x16_t argb = vld1q_u8((uint8_t*)argb_data); const uint8x16_t greens = DoGreenShuffle(argb, shuffle); vst1q_u8((uint8_t*)argb_data, vsubq_u8(argb, greens)); } // fallthrough and finish off with plain-C VP8LSubtractGreenFromBlueAndRed_C(argb_data, num_pixels & 3); } static void AddGreenToBlueAndRed(uint32_t* argb_data, int num_pixels) { const uint32_t* const end = argb_data + (num_pixels & ~3); #ifdef USE_VTBLQ const uint8x16_t shuffle = vld1q_u8(kGreenShuffle); #else const uint8x8_t shuffle = vld1_u8(kGreenShuffle); #endif for (; argb_data < end; argb_data += 4) { const uint8x16_t argb = vld1q_u8((uint8_t*)argb_data); const uint8x16_t greens = DoGreenShuffle(argb, shuffle); vst1q_u8((uint8_t*)argb_data, vaddq_u8(argb, greens)); } // fallthrough and finish off with plain-C VP8LAddGreenToBlueAndRed_C(argb_data, num_pixels & 3); } #undef USE_VTBLQ #endif // USE_INTRINSICS #endif // WEBP_USE_NEON //------------------------------------------------------------------------------ extern void VP8LDspInitNEON(void); void VP8LDspInitNEON(void) { #if defined(WEBP_USE_NEON) VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA; VP8LConvertBGRAToBGR = ConvertBGRAToBGR; VP8LConvertBGRAToRGB = ConvertBGRAToRGB; #ifdef USE_INTRINSICS VP8LPredictors[5] = Predictor5; VP8LPredictors[6] = Predictor6; VP8LPredictors[7] = Predictor7; VP8LPredictors[8] = Predictor8; VP8LPredictors[9] = Predictor9; VP8LPredictors[10] = Predictor10; VP8LPredictors[11] = Predictor11; VP8LPredictors[12] = Predictor12; VP8LPredictors[13] = Predictor13; VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed; VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed; #endif #endif // WEBP_USE_NEON } //------------------------------------------------------------------------------