// Copyright 2011 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Spatial prediction using various filters // // Author: Urvang (urvang@google.com) #include "./filters.h" #include #include #include //------------------------------------------------------------------------------ // Helpful macro. # define SANITY_CHECK(in, out) \ assert(in != NULL); \ assert(out != NULL); \ assert(width > 0); \ assert(height > 0); \ assert(stride >= width); \ assert(row >= 0 && num_rows > 0 && row + num_rows <= height); \ (void)height; // Silence unused warning. static WEBP_INLINE void PredictLine(const uint8_t* src, const uint8_t* pred, uint8_t* dst, int length, int inverse) { int i; if (inverse) { for (i = 0; i < length; ++i) dst[i] = src[i] + pred[i]; } else { for (i = 0; i < length; ++i) dst[i] = src[i] - pred[i]; } } //------------------------------------------------------------------------------ // Horizontal filter. static WEBP_INLINE void DoHorizontalFilter(const uint8_t* in, int width, int height, int stride, int row, int num_rows, int inverse, uint8_t* out) { const uint8_t* preds; const size_t start_offset = row * stride; const int last_row = row + num_rows; SANITY_CHECK(in, out); in += start_offset; out += start_offset; preds = inverse ? out : in; if (row == 0) { // Leftmost pixel is the same as input for topmost scanline. out[0] = in[0]; PredictLine(in + 1, preds, out + 1, width - 1, inverse); row = 1; preds += stride; in += stride; out += stride; } // Filter line-by-line. while (row < last_row) { // Leftmost pixel is predicted from above. PredictLine(in, preds - stride, out, 1, inverse); PredictLine(in + 1, preds, out + 1, width - 1, inverse); ++row; preds += stride; in += stride; out += stride; } } static void HorizontalFilter(const uint8_t* data, int width, int height, int stride, uint8_t* filtered_data) { DoHorizontalFilter(data, width, height, stride, 0, height, 0, filtered_data); } static void HorizontalUnfilter(int width, int height, int stride, int row, int num_rows, uint8_t* data) { DoHorizontalFilter(data, width, height, stride, row, num_rows, 1, data); } //------------------------------------------------------------------------------ // Vertical filter. static WEBP_INLINE void DoVerticalFilter(const uint8_t* in, int width, int height, int stride, int row, int num_rows, int inverse, uint8_t* out) { const uint8_t* preds; const size_t start_offset = row * stride; const int last_row = row + num_rows; SANITY_CHECK(in, out); in += start_offset; out += start_offset; preds = inverse ? out : in; if (row == 0) { // Very first top-left pixel is copied. out[0] = in[0]; // Rest of top scan-line is left-predicted. PredictLine(in + 1, preds, out + 1, width - 1, inverse); row = 1; in += stride; out += stride; } else { // We are starting from in-between. Make sure 'preds' points to prev row. preds -= stride; } // Filter line-by-line. while (row < last_row) { PredictLine(in, preds, out, width, inverse); ++row; preds += stride; in += stride; out += stride; } } static void VerticalFilter(const uint8_t* data, int width, int height, int stride, uint8_t* filtered_data) { DoVerticalFilter(data, width, height, stride, 0, height, 0, filtered_data); } static void VerticalUnfilter(int width, int height, int stride, int row, int num_rows, uint8_t* data) { DoVerticalFilter(data, width, height, stride, row, num_rows, 1, data); } //------------------------------------------------------------------------------ // Gradient filter. static WEBP_INLINE int GradientPredictor(uint8_t a, uint8_t b, uint8_t c) { const int g = a + b - c; return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255; // clip to 8bit } static WEBP_INLINE void DoGradientFilter(const uint8_t* in, int width, int height, int stride, int row, int num_rows, int inverse, uint8_t* out) { const uint8_t* preds; const size_t start_offset = row * stride; const int last_row = row + num_rows; SANITY_CHECK(in, out); in += start_offset; out += start_offset; preds = inverse ? out : in; // left prediction for top scan-line if (row == 0) { out[0] = in[0]; PredictLine(in + 1, preds, out + 1, width - 1, inverse); row = 1; preds += stride; in += stride; out += stride; } // Filter line-by-line. while (row < last_row) { int w; // leftmost pixel: predict from above. PredictLine(in, preds - stride, out, 1, inverse); for (w = 1; w < width; ++w) { const int pred = GradientPredictor(preds[w - 1], preds[w - stride], preds[w - stride - 1]); out[w] = in[w] + (inverse ? pred : -pred); } ++row; preds += stride; in += stride; out += stride; } } static void GradientFilter(const uint8_t* data, int width, int height, int stride, uint8_t* filtered_data) { DoGradientFilter(data, width, height, stride, 0, height, 0, filtered_data); } static void GradientUnfilter(int width, int height, int stride, int row, int num_rows, uint8_t* data) { DoGradientFilter(data, width, height, stride, row, num_rows, 1, data); } #undef SANITY_CHECK // ----------------------------------------------------------------------------- // Quick estimate of a potentially interesting filter mode to try. #define SMAX 16 #define SDIFF(a, b) (abs((a) - (b)) >> 4) // Scoring diff, in [0..SMAX) WEBP_FILTER_TYPE EstimateBestFilter(const uint8_t* data, int width, int height, int stride) { int i, j; int bins[WEBP_FILTER_LAST][SMAX]; memset(bins, 0, sizeof(bins)); // We only sample every other pixels. That's enough. for (j = 2; j < height - 1; j += 2) { const uint8_t* const p = data + j * stride; int mean = p[0]; for (i = 2; i < width - 1; i += 2) { const int diff0 = SDIFF(p[i], mean); const int diff1 = SDIFF(p[i], p[i - 1]); const int diff2 = SDIFF(p[i], p[i - width]); const int grad_pred = GradientPredictor(p[i - 1], p[i - width], p[i - width - 1]); const int diff3 = SDIFF(p[i], grad_pred); bins[WEBP_FILTER_NONE][diff0] = 1; bins[WEBP_FILTER_HORIZONTAL][diff1] = 1; bins[WEBP_FILTER_VERTICAL][diff2] = 1; bins[WEBP_FILTER_GRADIENT][diff3] = 1; mean = (3 * mean + p[i] + 2) >> 2; } } { int filter; WEBP_FILTER_TYPE best_filter = WEBP_FILTER_NONE; int best_score = 0x7fffffff; for (filter = WEBP_FILTER_NONE; filter < WEBP_FILTER_LAST; ++filter) { int score = 0; for (i = 0; i < SMAX; ++i) { if (bins[filter][i] > 0) { score += i; } } if (score < best_score) { best_score = score; best_filter = (WEBP_FILTER_TYPE)filter; } } return best_filter; } } #undef SMAX #undef SDIFF //------------------------------------------------------------------------------ const WebPFilterFunc WebPFilters[WEBP_FILTER_LAST] = { NULL, // WEBP_FILTER_NONE HorizontalFilter, // WEBP_FILTER_HORIZONTAL VerticalFilter, // WEBP_FILTER_VERTICAL GradientFilter // WEBP_FILTER_GRADIENT }; const WebPUnfilterFunc WebPUnfilters[WEBP_FILTER_LAST] = { NULL, // WEBP_FILTER_NONE HorizontalUnfilter, // WEBP_FILTER_HORIZONTAL VerticalUnfilter, // WEBP_FILTER_VERTICAL GradientUnfilter // WEBP_FILTER_GRADIENT }; //------------------------------------------------------------------------------