/**************************************************************************** ** ** Copyright (C) 2015 The Qt Company Ltd. ** Copyright (C) 2013 Ivan Komissarov. ** Contact: http://www.qt.io/licensing/ ** ** This file is part of the DDS plugin in the Qt ImageFormats module. ** ** $QT_BEGIN_LICENSE:LGPL21$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see http://www.qt.io/terms-conditions. For further ** information use the contact form at http://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 or version 3 as published by the Free ** Software Foundation and appearing in the file LICENSE.LGPLv21 and ** LICENSE.LGPLv3 included in the packaging of this file. Please review the ** following information to ensure the GNU Lesser General Public License ** requirements will be met: https://www.gnu.org/licenses/lgpl.html and ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** As a special exception, The Qt Company gives you certain additional ** rights. These rights are described in The Qt Company LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qddshandler.h" #include #include #include #include "ddsheader.h" #include #ifndef QT_NO_DATASTREAM QT_BEGIN_NAMESPACE enum Colors { Red = 0, Green, Blue, Alpha, ColorCount }; enum DXTVersions { One = 1, Two = 2, Three = 3, Four = 4, Five = 5, RXGB = 6 }; // All magic numbers are little-endian as long as dds format has little // endian byte order static const quint32 ddsMagic = 0x20534444; // "DDS " static const quint32 dx10Magic = 0x30315844; // "DX10" static const qint64 headerSize = 128; static const quint32 ddsSize = 124; // headerSize without magic static const quint32 pixelFormatSize = 32; struct FaceOffset { int x, y; }; static const FaceOffset faceOffsets[6] = { {2, 1}, {0, 1}, {1, 0}, {1, 2}, {1, 1}, {3, 1} }; static int faceFlags[6] = { DDSHeader::Caps2CubeMapPositiveX, DDSHeader::Caps2CubeMapNegativeX, DDSHeader::Caps2CubeMapPositiveY, DDSHeader::Caps2CubeMapNegativeY, DDSHeader::Caps2CubeMapPositiveZ, DDSHeader::Caps2CubeMapNegativeZ }; struct FormatInfo { Format format; quint32 flags; quint32 bitCount; quint32 rBitMask; quint32 gBitMask; quint32 bBitMask; quint32 aBitMask; }; static const FormatInfo formatInfos[] = { { FormatA8R8G8B8, DDSPixelFormat::FlagRGBA, 32, 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 }, { FormatX8R8G8B8, DDSPixelFormat::FlagRGB, 32, 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, { FormatA2B10G10R10, DDSPixelFormat::FlagRGBA, 32, 0x000003ff, 0x000ffc00, 0x3ff00000, 0xc0000000 }, { FormatA8B8G8R8, DDSPixelFormat::FlagRGBA, 32, 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000 }, { FormatX8B8G8R8, DDSPixelFormat::FlagRGB, 32, 0x000000ff, 0x0000ff00, 0x00ff0000, 0x00000000 }, { FormatG16R16, DDSPixelFormat::FlagRGBA, 32, 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, { FormatG16R16, DDSPixelFormat::FlagRGB, 32, 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, { FormatA2R10G10B10, DDSPixelFormat::FlagRGBA, 32, 0x3ff00000, 0x000ffc00, 0x000003ff, 0xc0000000 }, { FormatR8G8B8, DDSPixelFormat::FlagRGB, 24, 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, { FormatR5G6B5, DDSPixelFormat::FlagRGB, 16, 0x0000f800, 0x000007e0, 0x0000001f, 0x00000000 }, { FormatX1R5G5B5, DDSPixelFormat::FlagRGB, 16, 0x00007c00, 0x000003e0, 0x0000001f, 0x00000000 }, { FormatA1R5G5B5, DDSPixelFormat::FlagRGBA, 16, 0x00007c00, 0x000003e0, 0x0000001f, 0x00008000 }, { FormatA4R4G4B4, DDSPixelFormat::FlagRGBA, 16, 0x00000f00, 0x000000f0, 0x0000000f, 0x0000f000 }, { FormatA8R3G3B2, DDSPixelFormat::FlagRGBA, 16, 0x000000e0, 0x0000001c, 0x00000003, 0x0000ff00 }, { FormatX4R4G4B4, DDSPixelFormat::FlagRGB, 16, 0x00000f00, 0x000000f0, 0x0000000f, 0x00000000 }, { FormatA8L8, DDSPixelFormat::FlagLA, 16, 0x000000ff, 0x00000000, 0x00000000, 0x0000ff00 }, { FormatL16, DDSPixelFormat::FlagLuminance, 16, 0x0000ffff, 0x00000000, 0x00000000, 0x00000000 }, { FormatR3G3B2, DDSPixelFormat::FlagRGB, 8, 0x000000e0, 0x0000001c, 0x00000003, 0x00000000 }, { FormatA8, DDSPixelFormat::FlagAlpha, 8, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, { FormatL8, DDSPixelFormat::FlagLuminance, 8, 0x000000ff, 0x00000000, 0x00000000, 0x00000000 }, { FormatA4L4, DDSPixelFormat::FlagLA, 8, 0x0000000f, 0x00000000, 0x00000000, 0x000000f0 }, { FormatV8U8, DDSPixelFormat::FlagNormal, 16, 0x000000ff, 0x0000ff00, 0x00000000, 0x00000000 }, { FormatL6V5U5, 0, 16, 0x0000001f, 0x000003e0, 0x0000fc00, 0x00000000 }, { FormatX8L8V8U8, 0, 32, 0x000000ff, 0x0000ff00, 0x00ff0000, 0x00000000 }, { FormatQ8W8V8U8, DDSPixelFormat::FlagNormal, 32, 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000 }, { FormatV16U16, DDSPixelFormat::FlagNormal, 32, 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, { FormatA2W10V10U10, DDSPixelFormat::FlagNormal, 32, 0x3ff00000, 0x000ffc00, 0x000003ff, 0xc0000000 } }; static const size_t formatInfosSize = sizeof(formatInfos)/sizeof(FormatInfo); static const Format knownFourCCs[] = { FormatA16B16G16R16, FormatV8U8, FormatUYVY, FormatR8G8B8G8, FormatYUY2, FormatG8R8G8B8, FormatDXT1, FormatDXT2, FormatDXT3, FormatDXT4, FormatDXT5, FormatRXGB, FormatATI2, FormatQ16W16V16U16, FormatR16F, FormatG16R16F, FormatA16B16G16R16F, FormatR32F, FormatG32R32F, FormatA32B32G32R32F, FormatCxV8U8 }; static const size_t knownFourCCsSize = sizeof(knownFourCCs)/sizeof(Format); struct FormatName { Format format; const char *const name; }; static const FormatName formatNames[] = { { FormatUnknown, "unknown" }, { FormatR8G8B8, "R8G8B8" }, { FormatA8R8G8B8, "A8R8G8B8" }, { FormatX8R8G8B8, "X8R8G8B8" }, { FormatR5G6B5, "R5G6B5" }, { FormatX1R5G5B5, "X1R5G5B5" }, { FormatA1R5G5B5, "A1R5G5B5" }, { FormatA4R4G4B4, "A4R4G4B4" }, { FormatR3G3B2, "R3G3B2" }, { FormatA8, "A8" }, { FormatA8R3G3B2, "A8R3G3B2" }, { FormatX4R4G4B4, "X4R4G4B4" }, { FormatA2B10G10R10, "A2B10G10R10" }, { FormatA8B8G8R8, "A8B8G8R8" }, { FormatX8B8G8R8, "X8B8G8R8" }, { FormatG16R16, "G16R16" }, { FormatA2R10G10B10, "A2R10G10B10" }, { FormatA16B16G16R16, "A16B16G16R16" }, { FormatA8P8, "A8P8" }, { FormatP8, "P8" }, { FormatL8, "L8" }, { FormatA8L8, "A8L8" }, { FormatA4L4, "A4L4" }, { FormatV8U8, "V8U8" }, { FormatL6V5U5, "L6V5U5" }, { FormatX8L8V8U8, "X8L8V8U8" }, { FormatQ8W8V8U8, "Q8W8V8U8" }, { FormatV16U16, "V16U16" }, { FormatA2W10V10U10, "A2W10V10U10" }, { FormatUYVY, "UYVY" }, { FormatR8G8B8G8, "R8G8_B8G8" }, { FormatYUY2, "YUY2" }, { FormatG8R8G8B8, "G8R8_G8B8" }, { FormatDXT1, "DXT1" }, { FormatDXT2, "DXT2" }, { FormatDXT3, "DXT3" }, { FormatDXT4, "DXT4" }, { FormatDXT5, "DXT5" }, { FormatRXGB, "RXGB" }, { FormatATI2, "ATI2" }, { FormatD16Lockable, "D16Lockable" }, { FormatD32, "D32" }, { FormatD15S1, "D15S1" }, { FormatD24S8, "D24S8" }, { FormatD24X8, "D24X8" }, { FormatD24X4S4, "D24X4S4" }, { FormatD16, "D16" }, { FormatD32FLockable, "D32FLockable" }, { FormatD24FS8, "D24FS8" }, { FormatD32Lockable, "D32Lockable" }, { FormatS8Lockable, "S8Lockable" }, { FormatL16, "L16" }, { FormatVertexData, "VertexData" }, { FormatIndex32, "Index32" }, { FormatIndex32, "Index32" }, { FormatQ16W16V16U16, "Q16W16V16U16" }, { FormatMulti2ARGB8, "Multi2ARGB8" }, { FormatR16F, "R16F" }, { FormatG16R16F, "G16R16F" }, { FormatA16B16G16R16F, "A16B16G16R16F" }, { FormatR32F, "R32F" }, { FormatG32R32F, "G32R32F" }, { FormatA32B32G32R32F, "A32B32G32R32F" }, { FormatCxV8U8, "CxV8U8" }, { FormatA1, "A1" }, { FormatA2B10G10R10_XR_BIAS, "A2B10G10R10_XR_BIAS" }, { FormatBinaryBuffer, "BinaryBuffer" }, { FormatP4, "P4" }, { FormatA4P4, "A4P4" } }; static const size_t formatNamesSize = sizeof(formatNames)/sizeof(FormatName); static inline int maskToShift(quint32 mask) { if (mask == 0) return 0; int result = 0; while (!((mask >> result) & 1)) result++; return result; } static inline int maskLength(quint32 mask) { int result = 0; while (mask) { if (mask & 1) result++; mask >>= 1; } return result; } static inline quint32 readValue(QDataStream &s, quint32 size) { Q_ASSERT(size == 8 || size == 16 || size == 24 || size == 32); quint32 value = 0; quint8 tmp; for (unsigned bit = 0; bit < size; bit += 8) { s >> tmp; value += (quint32(tmp) << bit); } return value; } static inline bool hasAlpha(const DDSHeader &dds) { return (dds.pixelFormat.flags & (DDSPixelFormat::FlagAlphaPixels | DDSPixelFormat::FlagAlpha)) != 0; } static inline bool isCubeMap(const DDSHeader &dds) { return (dds.caps2 & DDSHeader::Caps2CubeMap) != 0; } static inline QRgb yuv2rgb(quint8 Y, quint8 U, quint8 V) { return qRgb(quint8(Y + 1.13983 * (V - 128)), quint8(Y - 0.39465 * (U - 128) - 0.58060 * (V - 128)), quint8(Y + 2.03211 * (U - 128))); } static Format getFormat(const DDSHeader &dds) { const DDSPixelFormat &format = dds.pixelFormat; if (format.flags & DDSPixelFormat::FlagPaletteIndexed4) { return FormatP4; } else if (format.flags & DDSPixelFormat::FlagPaletteIndexed8) { return FormatP8; } else if (format.flags & DDSPixelFormat::FlagFourCC) { for (size_t i = 0; i < knownFourCCsSize; ++i) { if (dds.pixelFormat.fourCC == knownFourCCs[i]) return knownFourCCs[i]; } } else { for (size_t i = 0; i < formatInfosSize; ++i) { const FormatInfo &info = formatInfos[i]; if ((format.flags & info.flags) == info.flags && format.rgbBitCount == info.bitCount && format.rBitMask == info.rBitMask && format.gBitMask == info.gBitMask && format.bBitMask == info.bBitMask && format.aBitMask == info.aBitMask) { return info.format; } } } return FormatUnknown; } static inline quint8 getNormalZ(quint8 nx, quint8 ny) { const double fx = nx / 127.5 - 1.0; const double fy = ny / 127.5 - 1.0; const double fxfy = 1.0 - fx * fx - fy * fy; return fxfy > 0 ? 255 * std::sqrt(fxfy) : 0; } static inline void decodeColor(quint16 color, quint8 &red, quint8 &green, quint8 &blue) { red = ((color >> 11) & 0x1f) << 3; green = ((color >> 5) & 0x3f) << 2; blue = (color & 0x1f) << 3; } static inline quint8 calcC2(quint8 c0, quint8 c1) { return 2.0 * c0 / 3.0 + c1 / 3.0; } static inline quint8 calcC2a(quint8 c0, quint8 c1) { return c0 / 2.0 + c1 / 2.0; } static inline quint8 calcC3(quint8 c0, quint8 c1) { return c0 / 3.0 + 2.0 * c1 / 3.0; } static void DXTFillColors(QRgb *result, quint16 c0, quint16 c1, quint32 table, bool dxt1a = false) { quint8 r[4]; quint8 g[4]; quint8 b[4]; quint8 a[4]; a[0] = a[1] = a[2] = a[3] = 255; decodeColor(c0, r[0], g[0], b[0]); decodeColor(c1, r[1], g[1], b[1]); if (!dxt1a) { r[2] = calcC2(r[0], r[1]); g[2] = calcC2(g[0], g[1]); b[2] = calcC2(b[0], b[1]); r[3] = calcC3(r[0], r[1]); g[3] = calcC3(g[0], g[1]); b[3] = calcC3(b[0], b[1]); } else { r[2] = calcC2a(r[0], r[1]); g[2] = calcC2a(g[0], g[1]); b[2] = calcC2a(b[0], b[1]); r[3] = g[3] = b[3] = a[3] = 0; } for (int k = 0; k < 4; k++) for (int l = 0; l < 4; l++) { unsigned index = table & 0x0003; table >>= 2; result[k * 4 + l] = qRgba(r[index], g[index], b[index], a[index]); } } template inline void setAlphaDXT32Helper(QRgb *rgbArr, quint64 alphas) { Q_STATIC_ASSERT(version == Two || version == Three); for (int i = 0; i < 16; i++) { quint8 alpha = 16 * (alphas & 0x0f); QRgb rgb = rgbArr[i]; if (version == Two) // DXT2 rgbArr[i] = qRgba(qRed(rgb) * alpha / 0xff, qGreen(rgb) * alpha / 0xff, qBlue(rgb) * alpha / 0xff, alpha); else if (version == Three) // DXT3 rgbArr[i] = qRgba(qRed(rgb), qGreen(rgb), qBlue(rgb), alpha); alphas = alphas >> 4; } } template inline void setAlphaDXT45Helper(QRgb *rgbArr, quint64 alphas) { Q_STATIC_ASSERT(version == Four || version == Five); quint8 a[8]; a[0] = alphas & 0xff; a[1] = (alphas >> 8) & 0xff; if (a[0] > a[1]) { a[2] = (6*a[0] + 1*a[1]) / 7; a[3] = (5*a[0] + 2*a[1]) / 7; a[4] = (4*a[0] + 3*a[1]) / 7; a[5] = (3*a[0] + 4*a[1]) / 7; a[6] = (2*a[0] + 5*a[1]) / 7; a[7] = (1*a[0] + 6*a[1]) / 7; } else { a[2] = (4*a[0] + 1*a[1]) / 5; a[3] = (3*a[0] + 2*a[1]) / 5; a[4] = (2*a[0] + 3*a[1]) / 5; a[5] = (1*a[0] + 4*a[1]) / 5; a[6] = 0; a[7] = 255; } alphas >>= 16; for (int i = 0; i < 16; i++) { quint8 index = alphas & 0x07; quint8 alpha = a[index]; QRgb rgb = rgbArr[i]; if (version == Four) // DXT4 rgbArr[i] = qRgba(qRed(rgb) * alpha / 0xff, qGreen(rgb) * alpha / 0xff, qBlue(rgb) * alpha / 0xff, alpha); else if (version == Five) // DXT5 rgbArr[i] = qRgba(qRed(rgb), qGreen(rgb), qBlue(rgb), alpha); alphas = alphas >> 3; } } template inline void setAlphaDXT(QRgb *rgbArr, quint64 alphas) { Q_UNUSED(rgbArr); Q_UNUSED(alphas); } template <> inline void setAlphaDXT(QRgb *rgbArr, quint64 alphas) { setAlphaDXT32Helper(rgbArr, alphas); } template <> inline void setAlphaDXT(QRgb *rgbArr, quint64 alphas) { setAlphaDXT32Helper(rgbArr, alphas); } template <> inline void setAlphaDXT(QRgb *rgbArr, quint64 alphas) { setAlphaDXT45Helper(rgbArr, alphas); } template <> inline void setAlphaDXT(QRgb *rgbArr, quint64 alphas) { setAlphaDXT45Helper(rgbArr, alphas); } template <> inline void setAlphaDXT(QRgb *rgbArr, quint64 alphas) { setAlphaDXT45Helper(rgbArr, alphas); } static inline QRgb invertRXGBColors(QRgb pixel) { return qRgb(qAlpha(pixel), qGreen(pixel), qBlue(pixel)); } template static QImage readDXT(QDataStream &s, quint32 width, quint32 height) { QImage::Format format = (version == Two || version == Four) ? QImage::Format_ARGB32_Premultiplied : QImage::Format_ARGB32; QImage image(width, height, format); for (quint32 i = 0; i < height; i += 4) { for (quint32 j = 0; j < width; j += 4) { quint64 alpha = 0; quint16 c0, c1; quint32 table; if (version != One) s >> alpha; s >> c0; s >> c1; s >> table; QRgb arr[16]; DXTFillColors(arr, c0, c1, table, version == One && c0 <= c1); setAlphaDXT(arr, alpha); const quint32 kMax = qMin(4, height - i); const quint32 lMax = qMin(4, width - j); for (quint32 k = 0; k < kMax; k++) { QRgb *line = reinterpret_cast(image.scanLine(i + k)); for (quint32 l = 0; l < lMax; l++) { QRgb pixel = arr[k * 4 + l]; if (version == RXGB) pixel = invertRXGBColors(pixel); line[j + l] = pixel; } } } } return image; } static inline QImage readDXT1(QDataStream &s, quint32 width, quint32 height) { return readDXT(s, width, height); } static inline QImage readDXT2(QDataStream &s, quint32 width, quint32 height) { return readDXT(s, width, height); } static inline QImage readDXT3(QDataStream &s, quint32 width, quint32 height) { return readDXT(s, width, height); } static inline QImage readDXT4(QDataStream &s, quint32 width, quint32 height) { return readDXT(s, width, height); } static inline QImage readDXT5(QDataStream &s, quint32 width, quint32 height) { return readDXT(s, width, height); } static inline QImage readRXGB(QDataStream &s, quint32 width, quint32 height) { return readDXT(s, width, height); } static QImage readATI2(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_RGB32); for (quint32 i = 0; i < height; i += 4) { for (quint32 j = 0; j < width; j += 4) { quint64 alpha1; quint64 alpha2; s >> alpha1; s >> alpha2; QRgb arr[16]; memset(arr, 0, sizeof(QRgb) * 16); setAlphaDXT(arr, alpha1); for (int k = 0; k < 16; ++k) { quint8 a = qAlpha(arr[k]); arr[k] = qRgba(0, 0, a, 0); } setAlphaDXT(arr, alpha2); const quint32 kMax = qMin(4, height - i); const quint32 lMax = qMin(4, width - j); for (quint32 k = 0; k < kMax; k++) { QRgb *line = reinterpret_cast(image.scanLine(i + k)); for (quint32 l = 0; l < lMax; l++) { QRgb pixel = arr[k * 4 + l]; const quint8 nx = qAlpha(pixel); const quint8 ny = qBlue(pixel); const quint8 nz = getNormalZ(nx, ny); line[j + l] = qRgb(nx, ny, nz); } } } } return image; } static QImage readUnsignedImage(QDataStream &s, const DDSHeader &dds, quint32 width, quint32 height, bool hasAlpha) { quint32 flags = dds.pixelFormat.flags; quint32 masks[ColorCount]; quint8 shifts[ColorCount]; quint8 bits[ColorCount]; masks[Red] = dds.pixelFormat.rBitMask; masks[Green] = dds.pixelFormat.gBitMask; masks[Blue] = dds.pixelFormat.bBitMask; masks[Alpha] = hasAlpha ? dds.pixelFormat.aBitMask : 0; for (int i = 0; i < ColorCount; ++i) { shifts[i] = maskToShift(masks[i]); bits[i] = maskLength(masks[i]); // move mask to the left if (bits[i] <= 8) masks[i] = (masks[i] >> shifts[i]) << (8 - bits[i]); } const QImage::Format format = hasAlpha ? QImage::Format_ARGB32 : QImage::Format_RGB32; QImage image(width, height, format); for (quint32 y = 0; y < height; y++) { for (quint32 x = 0; x < width; x++) { QRgb *line = reinterpret_cast(image.scanLine(y)); quint32 value = readValue(s, dds.pixelFormat.rgbBitCount); quint8 colors[ColorCount]; for (int c = 0; c < ColorCount; ++c) { if (bits[c] > 8) { // truncate unneseccary bits colors[c] = (value & masks[c]) >> shifts[c] >> (bits[c] - 8); } else { // move color to the left quint8 color = value >> shifts[c] << (8 - bits[c]) & masks[c]; if (masks[c]) colors[c] = color * 0xff / masks[c]; else colors[c] = 0; } } if (flags & DDSPixelFormat::FlagLuminance) line[x] = qRgba(colors[Red], colors[Red], colors[Red], colors[Alpha]); else if (flags & DDSPixelFormat::FlagYUV) line[x] = yuv2rgb(colors[Red], colors[Green], colors[Blue]); else line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]); } } return image; } static double readFloat16(QDataStream &s) { quint16 value; s >> value; double sign = (value & 0x8000) == 0x8000 ? -1.0 : 1.0; qint8 exp = (value & 0x7C00) >> 10; quint16 fraction = value & 0x3FF; if (exp == 0) return sign * std::pow(2.0, -14.0) * fraction / 1024.0; else return sign * std::pow(2.0, exp - 15) * (1 + fraction / 1024.0); } static inline float readFloat32(QDataStream &s) { Q_ASSERT(sizeof(float) == 4); float value; // TODO: find better way to avoid setting precision each time QDataStream::FloatingPointPrecision precision = s.floatingPointPrecision(); s.setFloatingPointPrecision(QDataStream::SinglePrecision); s >> value; s.setFloatingPointPrecision(precision); return value; } static QImage readR16F(QDataStream &s, const quint32 width, const quint32 height) { QImage image(width, height, QImage::Format_RGB32); for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { quint8 r = readFloat16(s) * 255; line[x] = qRgba(r, 0, 0, 0); } } return image; } static QImage readRG16F(QDataStream &s, const quint32 width, const quint32 height) { QImage image(width, height, QImage::Format_RGB32); for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { quint8 r = readFloat16(s) * 255; quint8 g = readFloat16(s) * 255; line[x] = qRgba(r, g, 0, 0); } } return image; } static QImage readARGB16F(QDataStream &s, const quint32 width, const quint32 height) { QImage image(width, height, QImage::Format_ARGB32); for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { quint8 colors[ColorCount]; for (int c = 0; c < ColorCount; ++c) colors[c] = readFloat16(s) * 255; line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]); } } return image; } static QImage readR32F(QDataStream &s, const quint32 width, const quint32 height) { QImage image(width, height, QImage::Format_RGB32); for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { quint8 r = readFloat32(s) * 255; line[x] = qRgba(r, 0, 0, 0); } } return image; } static QImage readRG32F(QDataStream &s, const quint32 width, const quint32 height) { QImage image(width, height, QImage::Format_RGB32); for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { quint8 r = readFloat32(s) * 255; quint8 g = readFloat32(s) * 255; line[x] = qRgba(r, g, 0, 0); } } return image; } static QImage readARGB32F(QDataStream &s, const quint32 width, const quint32 height) { QImage image(width, height, QImage::Format_ARGB32); for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { quint8 colors[ColorCount]; for (int c = 0; c < ColorCount; ++c) colors[c] = readFloat32(s) * 255; line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]); } } return image; } static QImage readQ16W16V16U16(QDataStream &s, const quint32 width, const quint32 height) { QImage image(width, height, QImage::Format_ARGB32); quint8 colors[ColorCount]; qint16 tmp; for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { for (int i = 0; i < ColorCount; i++) { s >> tmp; colors[i] = (tmp + 0x7FFF) >> 8; } line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]); } } return image; } static QImage readCxV8U8(QDataStream &s, const quint32 width, const quint32 height) { QImage image(width, height, QImage::Format_RGB32); for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { qint8 v, u; s >> v >> u; const quint8 vn = v + 128; const quint8 un = u + 128; const quint8 c = getNormalZ(vn, un); line[x] = qRgb(vn, un, c); } } return image; } static QImage readPalette8Image(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_Indexed8); for (int i = 0; i < 256; ++i) { quint8 r, g, b, a; s >> r >> g >> b >> a; image.setColor(i, qRgba(r, g, b, a)); } for (quint32 y = 0; y < height; y++) { for (quint32 x = 0; x < width; x++) { quint8 index; s >> index; image.setPixel(x, y, index); } } return image; } static QImage readPalette4Image(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_Indexed8); for (int i = 0; i < 16; ++i) { quint8 r, g, b, a; s >> r >> g >> b >> a; image.setColor(i, qRgba(r, g, b, a)); } for (quint32 y = 0; y < height; y++) { quint8 index; for (quint32 x = 0; x < width - 1; ) { s >> index; image.setPixel(x++, y, (index & 0x0f) >> 0); image.setPixel(x++, y, (index & 0xf0) >> 4); } if (width % 2 == 1) { s >> index; image.setPixel(width - 1, y, (index & 0x0f) >> 0); } } return image; } static QImage readARGB16(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_ARGB32); for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { quint8 colors[ColorCount]; for (int i = 0; i < ColorCount; ++i) { quint16 color; s >> color; colors[i] = quint8(color >> 8); } line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]); } } return image; } static QImage readV8U8(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_RGB32); for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { qint8 v, u; s >> v >> u; line[x] = qRgb(v + 128, u + 128, 255); } } return image; } static QImage readL6V5U5(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_ARGB32); quint16 tmp; for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { s >> tmp; quint8 r = qint8((tmp & 0x001f) >> 0) * 0xff/0x1f + 128; quint8 g = qint8((tmp & 0x03e0) >> 5) * 0xff/0x1f + 128; quint8 b = quint8((tmp & 0xfc00) >> 10) * 0xff/0x3f; line[x] = qRgba(r, g, 0xff, b); } } return image; } static QImage readX8L8V8U8(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_ARGB32); quint8 a, l; qint8 v, u; for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { s >> v >> u >> a >> l; line[x] = qRgba(v + 128, u + 128, 255, a); } } return image; } static QImage readQ8W8V8U8(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_ARGB32); quint8 colors[ColorCount]; qint8 tmp; for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { for (int i = 0; i < ColorCount; i++) { s >> tmp; colors[i] = tmp + 128; } line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]); } } return image; } static QImage readV16U16(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_RGB32); for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { qint16 v, u; s >> v >> u; v = (v + 0x8000) >> 8; u = (u + 0x8000) >> 8; line[x] = qRgb(v, u, 255); } } return image; } static QImage readA2W10V10U10(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_ARGB32); quint32 tmp; for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { s >> tmp; quint8 r = qint8((tmp & 0x3ff00000) >> 20 >> 2) + 128; quint8 g = qint8((tmp & 0x000ffc00) >> 10 >> 2) + 128; quint8 b = qint8((tmp & 0x000003ff) >> 0 >> 2) + 128; quint8 a = 0xff * ((tmp & 0xc0000000) >> 30) / 3; // dunno why we should swap b and r here line[x] = qRgba(b, g, r, a); } } return image; } static QImage readUYVY(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_RGB32); quint8 uyvy[4]; for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width - 1; ) { s >> uyvy[0] >> uyvy[1] >> uyvy[2] >> uyvy[3]; line[x++] = yuv2rgb(uyvy[1], uyvy[0], uyvy[2]); line[x++] = yuv2rgb(uyvy[3], uyvy[0], uyvy[2]); } if (width % 2 == 1) { s >> uyvy[0] >> uyvy[1] >> uyvy[2] >> uyvy[3]; line[width - 1] = yuv2rgb(uyvy[1], uyvy[0], uyvy[2]); } } return image; } static QImage readR8G8B8G8(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_RGB32); quint8 rgbg[4]; for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width - 1; ) { s >> rgbg[1] >> rgbg[0] >> rgbg[3] >> rgbg[2]; line[x++] = qRgb(rgbg[0], rgbg[1], rgbg[2]); line[x++] = qRgb(rgbg[0], rgbg[3], rgbg[2]); } if (width % 2 == 1) { s >> rgbg[1] >> rgbg[0] >> rgbg[3] >> rgbg[2]; line[width - 1] = qRgb(rgbg[0], rgbg[1], rgbg[2]); } } return image; } static QImage readYUY2(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_RGB32); quint8 yuyv[4]; for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width - 1; ) { s >> yuyv[0] >> yuyv[1] >> yuyv[2] >> yuyv[3]; line[x++] = yuv2rgb(yuyv[0], yuyv[1], yuyv[3]); line[x++] = yuv2rgb(yuyv[2], yuyv[1], yuyv[3]); } if (width % 2 == 1) { s >> yuyv[0] >> yuyv[1] >> yuyv[2] >> yuyv[3]; line[width - 1] = yuv2rgb(yuyv[2], yuyv[1], yuyv[3]); } } return image; } static QImage readG8R8G8B8(QDataStream &s, quint32 width, quint32 height) { QImage image(width, height, QImage::Format_RGB32); quint8 grgb[4]; for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width - 1; ) { s >> grgb[1] >> grgb[0] >> grgb[3] >> grgb[2]; line[x++] = qRgb(grgb[1], grgb[0], grgb[3]); line[x++] = qRgb(grgb[1], grgb[2], grgb[3]); } if (width % 2 == 1) { s >> grgb[1] >> grgb[0] >> grgb[3] >> grgb[2]; line[width - 1] = qRgb(grgb[1], grgb[0], grgb[3]); } } return image; } static QImage readA2R10G10B10(QDataStream &s, const DDSHeader &dds, quint32 width, quint32 height) { QImage image = readUnsignedImage(s, dds, width, height, true); for (quint32 y = 0; y < height; y++) { QRgb *line = reinterpret_cast(image.scanLine(y)); for (quint32 x = 0; x < width; x++) { QRgb pixel = image.pixel(x, y); line[x] = qRgba(qBlue(pixel), qGreen(pixel), qRed(pixel), qAlpha(pixel)); } } return image; } static QImage readLayer(QDataStream &s, const DDSHeader &dds, const int format, quint32 width, quint32 height) { if (width * height == 0) return QImage(); switch (format) { case FormatR8G8B8: case FormatX8R8G8B8: case FormatR5G6B5: case FormatR3G3B2: case FormatX1R5G5B5: case FormatX4R4G4B4: case FormatX8B8G8R8: case FormatG16R16: case FormatL8: case FormatL16: return readUnsignedImage(s, dds, width, height, false); case FormatA8R8G8B8: case FormatA1R5G5B5: case FormatA4R4G4B4: case FormatA8: case FormatA8R3G3B2: case FormatA8B8G8R8: case FormatA8L8: case FormatA4L4: return readUnsignedImage(s, dds, width, height, true); case FormatA2R10G10B10: case FormatA2B10G10R10: return readA2R10G10B10(s, dds, width, height); case FormatP8: case FormatA8P8: return readPalette8Image(s, width, height); case FormatP4: case FormatA4P4: return readPalette4Image(s, width, height); case FormatA16B16G16R16: return readARGB16(s, width, height); case FormatV8U8: return readV8U8(s, width, height); case FormatL6V5U5: return readL6V5U5(s, width, height); case FormatX8L8V8U8: return readX8L8V8U8(s, width, height); case FormatQ8W8V8U8: return readQ8W8V8U8(s, width, height); case FormatV16U16: return readV16U16(s, width, height); case FormatA2W10V10U10: return readA2W10V10U10(s, width, height); case FormatUYVY: return readUYVY(s, width, height); case FormatR8G8B8G8: return readR8G8B8G8(s, width, height); case FormatYUY2: return readYUY2(s, width, height); case FormatG8R8G8B8: return readG8R8G8B8(s, width, height); case FormatDXT1: return readDXT1(s, width, height); case FormatDXT2: return readDXT2(s, width, height); case FormatDXT3: return readDXT3(s, width, height); case FormatDXT4: return readDXT4(s, width, height); case FormatDXT5: return readDXT5(s, width, height); case FormatRXGB: return readRXGB(s, width, height); case FormatATI2: return readATI2(s, width, height); case FormatR16F: return readR16F(s, width, height); case FormatG16R16F: return readRG16F(s, width, height); case FormatA16B16G16R16F: return readARGB16F(s, width, height); case FormatR32F: return readR32F(s, width, height); case FormatG32R32F: return readRG32F(s, width, height); case FormatA32B32G32R32F: return readARGB32F(s, width, height); case FormatD16Lockable: case FormatD32: case FormatD15S1: case FormatD24S8: case FormatD24X8: case FormatD24X4S4: case FormatD16: case FormatD32FLockable: case FormatD24FS8: case FormatD32Lockable: case FormatS8Lockable: case FormatVertexData: case FormatIndex16: case FormatIndex32: break; case FormatQ16W16V16U16: return readQ16W16V16U16(s, width, height); case FormatMulti2ARGB8: break; case FormatCxV8U8: return readCxV8U8(s, width, height); case FormatA1: case FormatA2B10G10R10_XR_BIAS: case FormatBinaryBuffer: case FormatLast: break; } return QImage(); } static inline QImage readTexture(QDataStream &s, const DDSHeader &dds, const int format, const int mipmapLevel) { quint32 width = dds.width / (1 << mipmapLevel); quint32 height = dds.height / (1 << mipmapLevel); return readLayer(s, dds, format, width, height); } static qint64 mipmapSize(const DDSHeader &dds, const int format, const int level) { quint32 w = dds.width/(1 << level); quint32 h = dds.height/(1 << level); switch (format) { case FormatR8G8B8: case FormatX8R8G8B8: case FormatR5G6B5: case FormatX1R5G5B5: case FormatX4R4G4B4: case FormatX8B8G8R8: case FormatG16R16: case FormatL8: case FormatL16: return w * h * dds.pixelFormat.rgbBitCount / 8; case FormatA8R8G8B8: case FormatA1R5G5B5: case FormatA4R4G4B4: case FormatA8: case FormatA8R3G3B2: case FormatA2B10G10R10: case FormatA8B8G8R8: case FormatA2R10G10B10: case FormatA8L8: case FormatA4L4: return w * h * dds.pixelFormat.rgbBitCount / 8; case FormatP8: return 256 + w * h * 8; case FormatA16B16G16R16: return w * h * 4 * 2; case FormatA8P8: break; case FormatV8U8: case FormatL6V5U5: return w * h * 2; case FormatX8L8V8U8: case FormatQ8W8V8U8: case FormatV16U16: case FormatA2W10V10U10: return w * h * 4; case FormatUYVY: case FormatR8G8B8G8: case FormatYUY2: case FormatG8R8G8B8: return w * h * 2; case FormatDXT1: return ((w + 3)/4) * ((h + 3)/4) * 8; case FormatDXT2: case FormatDXT3: case FormatDXT4: case FormatDXT5: return ((w + 3)/4) * ((h + 3)/4) * 16; case FormatD16Lockable: case FormatD32: case FormatD15S1: case FormatD24S8: case FormatD24X8: case FormatD24X4S4: case FormatD16: case FormatD32FLockable: case FormatD24FS8: case FormatD32Lockable: case FormatS8Lockable: case FormatVertexData: case FormatIndex16: case FormatIndex32: break; case FormatQ16W16V16U16: return w * h * 4 * 2; case FormatMulti2ARGB8: break; case FormatR16F: return w * h * 1 * 2; case FormatG16R16F: return w * h * 2 * 2; case FormatA16B16G16R16F: return w * h * 4 * 2; case FormatR32F: return w * h * 1 * 4; case FormatG32R32F: return w * h * 2 * 4; case FormatA32B32G32R32F: return w * h * 4 * 4; case FormatCxV8U8: return w * h * 2; case FormatA1: case FormatA2B10G10R10_XR_BIAS: case FormatBinaryBuffer: case FormatLast: break; } return 0; } static qint64 mipmapOffset(const DDSHeader &dds, const int format, const int level) { qint64 result = 0; for (int i = 0; i < level; ++i) result += mipmapSize(dds, format, i); return result; } static QImage readCubeMap(QDataStream &s, const DDSHeader &dds, const int fmt) { QImage::Format format = hasAlpha(dds) ? QImage::Format_ARGB32 : QImage::Format_RGB32; QImage image(4 * dds.width, 3 * dds.height, format); image.fill(0); for (int i = 0; i < 6; i++) { if (!(dds.caps2 & faceFlags[i])) continue; // Skip face. const QImage face = readLayer(s, dds, fmt, dds.width, dds.height); // Compute face offsets. int offset_x = faceOffsets[i].x * dds.width; int offset_y = faceOffsets[i].y * dds.height; // Copy face on the image. for (quint32 y = 0; y < dds.height; y++) { const QRgb *src = reinterpret_cast(face.scanLine(y)); QRgb *dst = reinterpret_cast(image.scanLine(y + offset_y)) + offset_x; memcpy(dst, src, sizeof(QRgb) * dds.width); } } return image; } static QByteArray formatName(int format) { for (size_t i = 0; i < formatNamesSize; ++i) { if (formatNames[i].format == format) return formatNames[i].name; } return formatNames[0].name; } static int formatByName(const QByteArray &name) { const QByteArray loweredName = name.toLower(); for (size_t i = 0; i < formatNamesSize; ++i) { if (QByteArray(formatNames[i].name).toLower() == loweredName) return formatNames[i].format; } return FormatUnknown; } QDDSHandler::QDDSHandler() : m_format(FormatA8R8G8B8), m_currentImage(0), m_scanState(ScanNotScanned) { } QByteArray QDDSHandler::name() const { return QByteArrayLiteral("dds"); } bool QDDSHandler::canRead() const { if (m_scanState == ScanNotScanned && !canRead(device())) return false; if (m_scanState != ScanError) { setFormat(QByteArrayLiteral("dds")); return true; } return false; } bool QDDSHandler::read(QImage *outImage) { if (!ensureScanned() || device()->isSequential()) return false; qint64 pos = headerSize + mipmapOffset(m_header, m_format, m_currentImage); if (!device()->seek(pos)) return false; QDataStream s(device()); s.setByteOrder(QDataStream::LittleEndian); QImage image = isCubeMap(m_header) ? readCubeMap(s, m_header, m_format) : readTexture(s, m_header, m_format, m_currentImage); bool ok = s.status() == QDataStream::Ok && !image.isNull(); if (ok) *outImage = image; return ok; } bool QDDSHandler::write(const QImage &outImage) { if (m_format != FormatA8R8G8B8) { qWarning() << "Format" << formatName(m_format) << "is not supported"; return false; } const QImage image = outImage.convertToFormat(QImage::Format_ARGB32); QDataStream s(device()); s.setByteOrder(QDataStream::LittleEndian); DDSHeader dds; // Filling header dds.magic = ddsMagic; dds.size = 124; dds.flags = DDSHeader::FlagCaps | DDSHeader::FlagHeight | DDSHeader::FlagWidth | DDSHeader::FlagPixelFormat; dds.height = image.height(); dds.width = image.width(); dds.pitchOrLinearSize = 128; dds.depth = 0; dds.mipMapCount = 0; for (int i = 0; i < DDSHeader::ReservedCount; i++) dds.reserved1[i] = 0; dds.caps = DDSHeader::CapsTexture; dds.caps2 = 0; dds.caps3 = 0; dds.caps4 = 0; dds.reserved2 = 0; // Filling pixelformat dds.pixelFormat.size = 32; dds.pixelFormat.flags = DDSPixelFormat::FlagAlphaPixels | DDSPixelFormat::FlagRGB; dds.pixelFormat.fourCC = 0; dds.pixelFormat.rgbBitCount = 32; dds.pixelFormat.aBitMask = 0xff000000; dds.pixelFormat.rBitMask = 0x00ff0000; dds.pixelFormat.gBitMask = 0x0000ff00; dds.pixelFormat.bBitMask = 0x000000ff; s << dds; for (int height = 0; height < image.height(); height++) { for (int width = 0; width < image.width(); width++) { QRgb pixel = image.pixel(width, height); quint32 color; quint8 alpha = qAlpha(pixel); quint8 red = qRed(pixel); quint8 green = qGreen(pixel); quint8 blue = qBlue(pixel); color = (alpha << 24) + (red << 16) + (green << 8) + blue; s << color; } } return true; } QVariant QDDSHandler::option(QImageIOHandler::ImageOption option) const { if (!supportsOption(option) || !ensureScanned()) return QVariant(); switch (option) { case QImageIOHandler::Size: return QSize(m_header.width, m_header.height); case QImageIOHandler::SubType: return formatName(m_format); case QImageIOHandler::SupportedSubTypes: return QVariant::fromValue(QList() << formatName(FormatA8R8G8B8)); default: break; } return QVariant(); } void QDDSHandler::setOption(QImageIOHandler::ImageOption option, const QVariant &value) { if (option == QImageIOHandler::SubType) { const QByteArray subType = value.toByteArray(); m_format = formatByName(subType.toUpper()); if (m_format == FormatUnknown) qWarning() << "unknown format" << subType; } } bool QDDSHandler::supportsOption(QImageIOHandler::ImageOption option) const { return (option == QImageIOHandler::Size) || (option == QImageIOHandler::SubType) || (option == QImageIOHandler::SupportedSubTypes); } int QDDSHandler::imageCount() const { if (!ensureScanned()) return 0; return qMax(1, m_header.mipMapCount); } bool QDDSHandler::jumpToImage(int imageNumber) { if (imageNumber >= imageCount()) return false; m_currentImage = imageNumber; return true; } bool QDDSHandler::canRead(QIODevice *device) { if (!device) { qWarning() << "DDSHandler::canRead() called with no device"; return false; } if (device->isSequential()) return false; return device->peek(4) == QByteArrayLiteral("DDS "); } bool QDDSHandler::ensureScanned() const { if (m_scanState != ScanNotScanned) return m_scanState == ScanSuccess; m_scanState = ScanError; QDDSHandler *that = const_cast(this); that->m_format = FormatUnknown; if (device()->isSequential()) { qWarning() << "Sequential devices are not supported"; return false; } qint64 oldPos = device()->pos(); device()->seek(0); QDataStream s(device()); s.setByteOrder(QDataStream::LittleEndian); s >> that->m_header; if (m_header.pixelFormat.fourCC == dx10Magic) s >> that->m_header10; device()->seek(oldPos); if (s.status() != QDataStream::Ok) return false; if (!verifyHeader(m_header)) return false; that->m_format = getFormat(m_header); if (that->m_format == FormatUnknown) return false; m_scanState = ScanSuccess; return true; } bool QDDSHandler::verifyHeader(const DDSHeader &dds) const { quint32 flags = dds.flags; quint32 requiredFlags = DDSHeader::FlagCaps | DDSHeader::FlagHeight | DDSHeader::FlagWidth | DDSHeader::FlagPixelFormat; if ((flags & requiredFlags) != requiredFlags) { qWarning() << "Wrong dds.flags - not all required flags present. " "Actual flags :" << flags; return false; } if (dds.size != ddsSize) { qWarning() << "Wrong dds.size: actual =" << dds.size << "expected =" << ddsSize; return false; } if (dds.pixelFormat.size != pixelFormatSize) { qWarning() << "Wrong dds.pixelFormat.size: actual =" << dds.pixelFormat.size << "expected =" << pixelFormatSize; return false; } if (dds.width > INT_MAX || dds.height > INT_MAX) { qWarning() << "Can't read image with w/h bigger than INT_MAX"; return false; } return true; } QT_END_NAMESPACE #endif // QT_NO_DATASTREAM