summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/dsp/yuv_sse2.c
blob: 6fe0f3b0d595c272019f53708985215de27ba8a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// YUV->RGB conversion functions
//
// Author: Skal (pascal.massimino@gmail.com)

#include "./yuv.h"

#if defined(WEBP_USE_SSE2)

#include <emmintrin.h>
#include <string.h>   // for memcpy

typedef union {   // handy struct for converting SSE2 registers
  int32_t i32[4];
  uint8_t u8[16];
  __m128i m;
} VP8kCstSSE2;

#if defined(WEBP_YUV_USE_SSE2_TABLES)

#include "./yuv_tables_sse2.h"

void VP8YUVInitSSE2(void) {}

#else

static int done_sse2 = 0;
static VP8kCstSSE2 VP8kUtoRGBA[256], VP8kVtoRGBA[256], VP8kYtoRGBA[256];

void VP8YUVInitSSE2(void) {
  if (!done_sse2) {
    int i;
    for (i = 0; i < 256; ++i) {
      VP8kYtoRGBA[i].i32[0] =
        VP8kYtoRGBA[i].i32[1] =
        VP8kYtoRGBA[i].i32[2] = (i - 16) * kYScale + YUV_HALF2;
      VP8kYtoRGBA[i].i32[3] = 0xff << YUV_FIX2;

      VP8kUtoRGBA[i].i32[0] = 0;
      VP8kUtoRGBA[i].i32[1] = -kUToG * (i - 128);
      VP8kUtoRGBA[i].i32[2] =  kUToB * (i - 128);
      VP8kUtoRGBA[i].i32[3] = 0;

      VP8kVtoRGBA[i].i32[0] =  kVToR * (i - 128);
      VP8kVtoRGBA[i].i32[1] = -kVToG * (i - 128);
      VP8kVtoRGBA[i].i32[2] = 0;
      VP8kVtoRGBA[i].i32[3] = 0;
    }
    done_sse2 = 1;

#if 0   // code used to generate 'yuv_tables_sse2.h'
    printf("static const VP8kCstSSE2 VP8kYtoRGBA[256] = {\n");
    for (i = 0; i < 256; ++i) {
      printf("  {{0x%.8x, 0x%.8x, 0x%.8x, 0x%.8x}},\n",
             VP8kYtoRGBA[i].i32[0], VP8kYtoRGBA[i].i32[1],
             VP8kYtoRGBA[i].i32[2], VP8kYtoRGBA[i].i32[3]);
    }
    printf("};\n\n");
    printf("static const VP8kCstSSE2 VP8kUtoRGBA[256] = {\n");
    for (i = 0; i < 256; ++i) {
      printf("  {{0, 0x%.8x, 0x%.8x, 0}},\n",
             VP8kUtoRGBA[i].i32[1], VP8kUtoRGBA[i].i32[2]);
    }
    printf("};\n\n");
    printf("static VP8kCstSSE2 VP8kVtoRGBA[256] = {\n");
    for (i = 0; i < 256; ++i) {
      printf("  {{0x%.8x, 0x%.8x, 0, 0}},\n",
             VP8kVtoRGBA[i].i32[0], VP8kVtoRGBA[i].i32[1]);
    }
    printf("};\n\n");
#endif
  }
}

#endif  // WEBP_YUV_USE_SSE2_TABLES

//-----------------------------------------------------------------------------

static WEBP_INLINE __m128i LoadUVPart(int u, int v) {
  const __m128i u_part = _mm_loadu_si128(&VP8kUtoRGBA[u].m);
  const __m128i v_part = _mm_loadu_si128(&VP8kVtoRGBA[v].m);
  const __m128i uv_part = _mm_add_epi32(u_part, v_part);
  return uv_part;
}

static WEBP_INLINE __m128i GetRGBA32bWithUV(int y, const __m128i uv_part) {
  const __m128i y_part = _mm_loadu_si128(&VP8kYtoRGBA[y].m);
  const __m128i rgba1 = _mm_add_epi32(y_part, uv_part);
  const __m128i rgba2 = _mm_srai_epi32(rgba1, YUV_FIX2);
  return rgba2;
}

static WEBP_INLINE __m128i GetRGBA32b(int y, int u, int v) {
  const __m128i uv_part = LoadUVPart(u, v);
  return GetRGBA32bWithUV(y, uv_part);
}

static WEBP_INLINE void YuvToRgbSSE2(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const rgb) {
  const __m128i tmp0 = GetRGBA32b(y, u, v);
  const __m128i tmp1 = _mm_packs_epi32(tmp0, tmp0);
  const __m128i tmp2 = _mm_packus_epi16(tmp1, tmp1);
  // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
  _mm_storel_epi64((__m128i*)rgb, tmp2);
}

static WEBP_INLINE void YuvToBgrSSE2(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const bgr) {
  const __m128i tmp0 = GetRGBA32b(y, u, v);
  const __m128i tmp1 = _mm_shuffle_epi32(tmp0, _MM_SHUFFLE(3, 0, 1, 2));
  const __m128i tmp2 = _mm_packs_epi32(tmp1, tmp1);
  const __m128i tmp3 = _mm_packus_epi16(tmp2, tmp2);
  // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
  _mm_storel_epi64((__m128i*)bgr, tmp3);
}

//-----------------------------------------------------------------------------
// Convert spans of 32 pixels to various RGB formats for the fancy upsampler.

#ifdef FANCY_UPSAMPLING

void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                    uint8_t* dst) {
  int n;
  for (n = 0; n < 32; n += 4) {
    const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
    const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
    const __m128i tmp0_3 = GetRGBA32b(y[n + 2], u[n + 2], v[n + 2]);
    const __m128i tmp0_4 = GetRGBA32b(y[n + 3], u[n + 3], v[n + 3]);
    const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2);
    const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4);
    const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2);
    _mm_storeu_si128((__m128i*)dst, tmp2);
    dst += 4 * 4;
  }
}

void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                    uint8_t* dst) {
  int n;
  for (n = 0; n < 32; n += 2) {
    const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
    const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
    const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2));
    const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2));
    const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
    const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
    _mm_storel_epi64((__m128i*)dst, tmp3);
    dst += 4 * 2;
  }
}

void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                   uint8_t* dst) {
  int n;
  uint8_t tmp0[2 * 3 + 5 + 15];
  uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15);  // align
  for (n = 0; n < 30; ++n) {   // we directly stomp the *dst memory
    YuvToRgbSSE2(y[n], u[n], v[n], dst + n * 3);
  }
  // Last two pixels are special: we write in a tmp buffer before sending
  // to dst.
  YuvToRgbSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
  YuvToRgbSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
  memcpy(dst + n * 3, tmp, 2 * 3);
}

void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                   uint8_t* dst) {
  int n;
  uint8_t tmp0[2 * 3 + 5 + 15];
  uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15);  // align
  for (n = 0; n < 30; ++n) {
    YuvToBgrSSE2(y[n], u[n], v[n], dst + n * 3);
  }
  YuvToBgrSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
  YuvToBgrSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
  memcpy(dst + n * 3, tmp, 2 * 3);
}

#endif  // FANCY_UPSAMPLING

//-----------------------------------------------------------------------------
// Arbitrary-length row conversion functions

static void YuvToRgbaRowSSE2(const uint8_t* y,
                             const uint8_t* u, const uint8_t* v,
                             uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 4 <= len; n += 4) {
    const __m128i uv_0 = LoadUVPart(u[0], v[0]);
    const __m128i uv_1 = LoadUVPart(u[1], v[1]);
    const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
    const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
    const __m128i tmp0_3 = GetRGBA32bWithUV(y[2], uv_1);
    const __m128i tmp0_4 = GetRGBA32bWithUV(y[3], uv_1);
    const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2);
    const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4);
    const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2);
    _mm_storeu_si128((__m128i*)dst, tmp2);
    dst += 4 * 4;
    y += 4;
    u += 2;
    v += 2;
  }
  // Finish off
  while (n < len) {
    VP8YuvToRgba(y[0], u[0], v[0], dst);
    dst += 4;
    ++y;
    u += (n & 1);
    v += (n & 1);
    ++n;
  }
}

static void YuvToBgraRowSSE2(const uint8_t* y,
                             const uint8_t* u, const uint8_t* v,
                             uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 2 <= len; n += 2) {
    const __m128i uv_0 = LoadUVPart(u[0], v[0]);
    const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
    const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
    const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2));
    const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2));
    const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
    const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
    _mm_storel_epi64((__m128i*)dst, tmp3);
    dst += 4 * 2;
    y += 2;
    ++u;
    ++v;
  }
  // Finish off
  if (len & 1) {
    VP8YuvToBgra(y[0], u[0], v[0], dst);
  }
}

static void YuvToArgbRowSSE2(const uint8_t* y,
                             const uint8_t* u, const uint8_t* v,
                             uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 2 <= len; n += 2) {
    const __m128i uv_0 = LoadUVPart(u[0], v[0]);
    const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
    const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
    const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(2, 1, 0, 3));
    const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(2, 1, 0, 3));
    const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
    const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
    _mm_storel_epi64((__m128i*)dst, tmp3);
    dst += 4 * 2;
    y += 2;
    ++u;
    ++v;
  }
  // Finish off
  if (len & 1) {
    VP8YuvToArgb(y[0], u[0], v[0], dst);
  }
}

static void YuvToRgbRowSSE2(const uint8_t* y,
                            const uint8_t* u, const uint8_t* v,
                            uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 2 < len; ++n) {   // we directly stomp the *dst memory
    YuvToRgbSSE2(y[0], u[0], v[0], dst);  // stomps 8 bytes
    dst += 3;
    ++y;
    u += (n & 1);
    v += (n & 1);
  }
  VP8YuvToRgb(y[0], u[0], v[0], dst);
  if (len > 1) {
    VP8YuvToRgb(y[1], u[n & 1], v[n & 1], dst + 3);
  }
}

static void YuvToBgrRowSSE2(const uint8_t* y,
                            const uint8_t* u, const uint8_t* v,
                            uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 2 < len; ++n) {   // we directly stomp the *dst memory
    YuvToBgrSSE2(y[0], u[0], v[0], dst);  // stomps 8 bytes
    dst += 3;
    ++y;
    u += (n & 1);
    v += (n & 1);
  }
  VP8YuvToBgr(y[0], u[0], v[0], dst + 0);
  if (len > 1) {
    VP8YuvToBgr(y[1], u[n & 1], v[n & 1], dst + 3);
  }
}

#endif  // WEBP_USE_SSE2

//------------------------------------------------------------------------------
// Entry point

extern void WebPInitSamplersSSE2(void);

void WebPInitSamplersSSE2(void) {
#if defined(WEBP_USE_SSE2)
  WebPSamplers[MODE_RGB]  = YuvToRgbRowSSE2;
  WebPSamplers[MODE_RGBA] = YuvToRgbaRowSSE2;
  WebPSamplers[MODE_BGR]  = YuvToBgrRowSSE2;
  WebPSamplers[MODE_BGRA] = YuvToBgraRowSSE2;
  WebPSamplers[MODE_ARGB] = YuvToArgbRowSSE2;
#endif  // WEBP_USE_SSE2
}