summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/enc/backward_references.c
blob: a3c30aa0710e327eebe2234c25d3d6bb5ddba4a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//

#include <assert.h>
#include <math.h>

#include "./backward_references.h"
#include "./histogram.h"
#include "../dsp/lossless.h"
#include "../utils/color_cache.h"
#include "../utils/utils.h"

#define VALUES_IN_BYTE 256

#define HASH_MULTIPLIER (0xc6a4a7935bd1e995ULL)

#define MIN_BLOCK_SIZE 256  // minimum block size for backward references

#define MAX_ENTROPY    (1e30f)

// 1M window (4M bytes) minus 120 special codes for short distances.
#define WINDOW_SIZE ((1 << 20) - 120)

// Bounds for the match length.
#define MIN_LENGTH 2
#define MAX_LENGTH 4096

// -----------------------------------------------------------------------------

static const uint8_t plane_to_code_lut[128] = {
 96,   73,  55,  39,  23,  13,   5,  1,  255, 255, 255, 255, 255, 255, 255, 255,
 101,  78,  58,  42,  26,  16,   8,  2,    0,   3,  9,   17,  27,  43,  59,  79,
 102,  86,  62,  46,  32,  20,  10,  6,    4,   7,  11,  21,  33,  47,  63,  87,
 105,  90,  70,  52,  37,  28,  18,  14,  12,  15,  19,  29,  38,  53,  71,  91,
 110,  99,  82,  66,  48,  35,  30,  24,  22,  25,  31,  36,  49,  67,  83, 100,
 115, 108,  94,  76,  64,  50,  44,  40,  34,  41,  45,  51,  65,  77,  95, 109,
 118, 113, 103,  92,  80,  68,  60,  56,  54,  57,  61,  69,  81,  93, 104, 114,
 119, 116, 111, 106,  97,  88,  84,  74,  72,  75,  85,  89,  98, 107, 112, 117
};

static int DistanceToPlaneCode(int xsize, int dist) {
  const int yoffset = dist / xsize;
  const int xoffset = dist - yoffset * xsize;
  if (xoffset <= 8 && yoffset < 8) {
    return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1;
  } else if (xoffset > xsize - 8 && yoffset < 7) {
    return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1;
  }
  return dist + 120;
}

static WEBP_INLINE int FindMatchLength(const uint32_t* const array1,
                                       const uint32_t* const array2,
                                       const int max_limit) {
  int match_len = 0;
  while (match_len < max_limit && array1[match_len] == array2[match_len]) {
    ++match_len;
  }
  return match_len;
}

// -----------------------------------------------------------------------------
//  VP8LBackwardRefs

struct PixOrCopyBlock {
  PixOrCopyBlock* next_;   // next block (or NULL)
  PixOrCopy* start_;       // data start
  int size_;               // currently used size
};

static void ClearBackwardRefs(VP8LBackwardRefs* const refs) {
  assert(refs != NULL);
  if (refs->tail_ != NULL) {
    *refs->tail_ = refs->free_blocks_;  // recycle all blocks at once
  }
  refs->free_blocks_ = refs->refs_;
  refs->tail_ = &refs->refs_;
  refs->last_block_ = NULL;
  refs->refs_ = NULL;
}

void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) {
  assert(refs != NULL);
  ClearBackwardRefs(refs);
  while (refs->free_blocks_ != NULL) {
    PixOrCopyBlock* const next = refs->free_blocks_->next_;
    WebPSafeFree(refs->free_blocks_);
    refs->free_blocks_ = next;
  }
}

void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) {
  assert(refs != NULL);
  memset(refs, 0, sizeof(*refs));
  refs->tail_ = &refs->refs_;
  refs->block_size_ =
      (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size;
}

VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) {
  VP8LRefsCursor c;
  c.cur_block_ = refs->refs_;
  if (refs->refs_ != NULL) {
    c.cur_pos = c.cur_block_->start_;
    c.last_pos_ = c.cur_pos + c.cur_block_->size_;
  } else {
    c.cur_pos = NULL;
    c.last_pos_ = NULL;
  }
  return c;
}

void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) {
  PixOrCopyBlock* const b = c->cur_block_->next_;
  c->cur_pos = (b == NULL) ? NULL : b->start_;
  c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_;
  c->cur_block_ = b;
}

// Create a new block, either from the free list or allocated
static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) {
  PixOrCopyBlock* b = refs->free_blocks_;
  if (b == NULL) {   // allocate new memory chunk
    const size_t total_size =
        sizeof(*b) + refs->block_size_ * sizeof(*b->start_);
    b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size);
    if (b == NULL) {
      refs->error_ |= 1;
      return NULL;
    }
    b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b));  // not always aligned
  } else {  // recycle from free-list
    refs->free_blocks_ = b->next_;
  }
  *refs->tail_ = b;
  refs->tail_ = &b->next_;
  refs->last_block_ = b;
  b->next_ = NULL;
  b->size_ = 0;
  return b;
}

static WEBP_INLINE void BackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
                                              const PixOrCopy v) {
  PixOrCopyBlock* b = refs->last_block_;
  if (b == NULL || b->size_ == refs->block_size_) {
    b = BackwardRefsNewBlock(refs);
    if (b == NULL) return;   // refs->error_ is set
  }
  b->start_[b->size_++] = v;
}

int VP8LBackwardRefsCopy(const VP8LBackwardRefs* const src,
                         VP8LBackwardRefs* const dst) {
  const PixOrCopyBlock* b = src->refs_;
  ClearBackwardRefs(dst);
  assert(src->block_size_ == dst->block_size_);
  while (b != NULL) {
    PixOrCopyBlock* const new_b = BackwardRefsNewBlock(dst);
    if (new_b == NULL) return 0;   // dst->error_ is set
    memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_));
    new_b->size_ = b->size_;
    b = b->next_;
  }
  return 1;
}

// -----------------------------------------------------------------------------
// Hash chains

// initialize as empty
static void HashChainInit(VP8LHashChain* const p) {
  int i;
  assert(p != NULL);
  for (i = 0; i < p->size_; ++i) {
    p->chain_[i] = -1;
  }
  for (i = 0; i < HASH_SIZE; ++i) {
    p->hash_to_first_index_[i] = -1;
  }
}

int VP8LHashChainInit(VP8LHashChain* const p, int size) {
  assert(p->size_ == 0);
  assert(p->chain_ == NULL);
  assert(size > 0);
  p->chain_ = (int*)WebPSafeMalloc(size, sizeof(*p->chain_));
  if (p->chain_ == NULL) return 0;
  p->size_ = size;
  HashChainInit(p);
  return 1;
}

void VP8LHashChainClear(VP8LHashChain* const p) {
  assert(p != NULL);
  WebPSafeFree(p->chain_);
  p->size_ = 0;
  p->chain_ = NULL;
}

// -----------------------------------------------------------------------------

static WEBP_INLINE uint64_t GetPixPairHash64(const uint32_t* const argb) {
  uint64_t key = ((uint64_t)argb[1] << 32) | argb[0];
  key = (key * HASH_MULTIPLIER) >> (64 - HASH_BITS);
  return key;
}

// Insertion of two pixels at a time.
static void HashChainInsert(VP8LHashChain* const p,
                            const uint32_t* const argb, int pos) {
  const uint64_t hash_code = GetPixPairHash64(argb);
  p->chain_[pos] = p->hash_to_first_index_[hash_code];
  p->hash_to_first_index_[hash_code] = pos;
}

static void GetParamsForHashChainFindCopy(int quality, int xsize,
                                          int cache_bits, int* window_size,
                                          int* iter_pos, int* iter_limit) {
  const int iter_mult = (quality < 27) ? 1 : 1 + ((quality - 27) >> 4);
  const int iter_neg = -iter_mult * (quality >> 1);
  // Limit the backward-ref window size for lower qualities.
  const int max_window_size = (quality > 50) ? WINDOW_SIZE
                            : (quality > 25) ? (xsize << 8)
                            : (xsize << 4);
  assert(xsize > 0);
  *window_size = (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE
               : max_window_size;
  *iter_pos = 8 + (quality >> 3);
  // For lower entropy images, the rigorous search loop in HashChainFindCopy
  // can be relaxed.
  *iter_limit = (cache_bits > 0) ? iter_neg : iter_neg / 2;
}

static int HashChainFindCopy(const VP8LHashChain* const p,
                             int base_position, int xsize_signed,
                             const uint32_t* const argb, int max_len,
                             int window_size, int iter_pos, int iter_limit,
                             int* const distance_ptr,
                             int* const length_ptr) {
  const uint32_t* const argb_start = argb + base_position;
  uint64_t best_val = 0;
  uint32_t best_length = 1;
  uint32_t best_distance = 0;
  const uint32_t xsize = (uint32_t)xsize_signed;
  const int min_pos =
      (base_position > window_size) ? base_position - window_size : 0;
  int pos;
  assert(xsize > 0);
  if (max_len > MAX_LENGTH) {
    max_len = MAX_LENGTH;
  }
  for (pos = p->hash_to_first_index_[GetPixPairHash64(argb_start)];
       pos >= min_pos;
       pos = p->chain_[pos]) {
    uint64_t val;
    uint32_t curr_length;
    uint32_t distance;
    const uint32_t* const ptr1 = (argb + pos + best_length - 1);
    const uint32_t* const ptr2 = (argb_start + best_length - 1);

    if (iter_pos < 0) {
      if (iter_pos < iter_limit || best_val >= 0xff0000) {
        break;
      }
    }
    --iter_pos;

    // Before 'expensive' linear match, check if the two arrays match at the
    // current best length index and also for the succeeding elements.
    if (ptr1[0] != ptr2[0] || ptr1[1] != ptr2[1]) continue;

    curr_length = FindMatchLength(argb + pos, argb_start, max_len);
    if (curr_length < best_length) continue;

    distance = (uint32_t)(base_position - pos);
    val = curr_length << 16;
    // Favoring 2d locality here gives savings for certain images.
    if (distance < 9 * xsize) {
      const uint32_t y = distance / xsize;
      uint32_t x = distance % xsize;
      if (x > (xsize >> 1)) {
        x = xsize - x;
      }
      if (x <= 7) {
        val += 9 * 9 + 9 * 9;
        val -= y * y + x * x;
      }
    }
    if (best_val < val) {
      best_val = val;
      best_length = curr_length;
      best_distance = distance;
      if (curr_length >= (uint32_t)max_len) {
        break;
      }
      if ((best_distance == 1 || distance == xsize) &&
          best_length >= 128) {
        break;
      }
    }
  }
  *distance_ptr = (int)best_distance;
  *length_ptr = best_length;
  return (best_length >= MIN_LENGTH);
}

static WEBP_INLINE void PushBackCopy(VP8LBackwardRefs* const refs, int length) {
  while (length >= MAX_LENGTH) {
    BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, MAX_LENGTH));
    length -= MAX_LENGTH;
  }
  if (length > 0) {
    BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, length));
  }
}

static int BackwardReferencesRle(int xsize, int ysize,
                                 const uint32_t* const argb,
                                 VP8LBackwardRefs* const refs) {
  const int pix_count = xsize * ysize;
  int match_len = 0;
  int i;
  ClearBackwardRefs(refs);
  PushBackCopy(refs, match_len);    // i=0 case
  BackwardRefsCursorAdd(refs, PixOrCopyCreateLiteral(argb[0]));
  for (i = 1; i < pix_count; ++i) {
    if (argb[i] == argb[i - 1]) {
      ++match_len;
    } else {
      PushBackCopy(refs, match_len);
      match_len = 0;
      BackwardRefsCursorAdd(refs, PixOrCopyCreateLiteral(argb[i]));
    }
  }
  PushBackCopy(refs, match_len);
  return !refs->error_;
}

static int BackwardReferencesHashChain(int xsize, int ysize,
                                       const uint32_t* const argb,
                                       int cache_bits, int quality,
                                       VP8LHashChain* const hash_chain,
                                       VP8LBackwardRefs* const refs) {
  int i;
  int ok = 0;
  int cc_init = 0;
  const int use_color_cache = (cache_bits > 0);
  const int pix_count = xsize * ysize;
  VP8LColorCache hashers;
  int window_size = WINDOW_SIZE;
  int iter_pos = 1;
  int iter_limit = -1;

  if (use_color_cache) {
    cc_init = VP8LColorCacheInit(&hashers, cache_bits);
    if (!cc_init) goto Error;
  }

  ClearBackwardRefs(refs);
  GetParamsForHashChainFindCopy(quality, xsize, cache_bits,
                                &window_size, &iter_pos, &iter_limit);
  HashChainInit(hash_chain);
  for (i = 0; i < pix_count; ) {
    // Alternative#1: Code the pixels starting at 'i' using backward reference.
    int offset = 0;
    int len = 0;
    if (i < pix_count - 1) {  // FindCopy(i,..) reads pixels at [i] and [i + 1].
      int max_len = pix_count - i;
      HashChainFindCopy(hash_chain, i, xsize, argb, max_len,
                        window_size, iter_pos, iter_limit,
                        &offset, &len);
    }
    if (len >= MIN_LENGTH) {
      // Alternative#2: Insert the pixel at 'i' as literal, and code the
      // pixels starting at 'i + 1' using backward reference.
      int offset2 = 0;
      int len2 = 0;
      int k;
      HashChainInsert(hash_chain, &argb[i], i);
      if (i < pix_count - 2) {  // FindCopy(i+1,..) reads [i + 1] and [i + 2].
        int max_len = pix_count - (i + 1);
        HashChainFindCopy(hash_chain, i + 1, xsize, argb, max_len,
                          window_size, iter_pos, iter_limit,
                          &offset2, &len2);
        if (len2 > len + 1) {
          const uint32_t pixel = argb[i];
          // Alternative#2 is a better match. So push pixel at 'i' as literal.
          PixOrCopy v;
          if (use_color_cache && VP8LColorCacheContains(&hashers, pixel)) {
            const int ix = VP8LColorCacheGetIndex(&hashers, pixel);
            v = PixOrCopyCreateCacheIdx(ix);
          } else {
            if (use_color_cache) VP8LColorCacheInsert(&hashers, pixel);
            v = PixOrCopyCreateLiteral(pixel);
          }
          BackwardRefsCursorAdd(refs, v);
          i++;  // Backward reference to be done for next pixel.
          len = len2;
          offset = offset2;
        }
      }
      if (len >= MAX_LENGTH) {
        len = MAX_LENGTH - 1;
      }
      BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
      if (use_color_cache) {
        for (k = 0; k < len; ++k) {
          VP8LColorCacheInsert(&hashers, argb[i + k]);
        }
      }
      // Add to the hash_chain (but cannot add the last pixel).
      {
        const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i;
        for (k = 1; k < last; ++k) {
          HashChainInsert(hash_chain, &argb[i + k], i + k);
        }
      }
      i += len;
    } else {
      const uint32_t pixel = argb[i];
      PixOrCopy v;
      if (use_color_cache && VP8LColorCacheContains(&hashers, pixel)) {
        // push pixel as a PixOrCopyCreateCacheIdx pixel
        const int ix = VP8LColorCacheGetIndex(&hashers, pixel);
        v = PixOrCopyCreateCacheIdx(ix);
      } else {
        if (use_color_cache) VP8LColorCacheInsert(&hashers, pixel);
        v = PixOrCopyCreateLiteral(pixel);
      }
      BackwardRefsCursorAdd(refs, v);
      if (i + 1 < pix_count) {
        HashChainInsert(hash_chain, &argb[i], i);
      }
      ++i;
    }
  }
  ok = !refs->error_;
Error:
  if (cc_init) VP8LColorCacheClear(&hashers);
  return ok;
}

// -----------------------------------------------------------------------------

typedef struct {
  double alpha_[VALUES_IN_BYTE];
  double red_[VALUES_IN_BYTE];
  double literal_[PIX_OR_COPY_CODES_MAX];
  double blue_[VALUES_IN_BYTE];
  double distance_[NUM_DISTANCE_CODES];
} CostModel;

static int BackwardReferencesTraceBackwards(
    int xsize, int ysize, int recursive_cost_model,
    const uint32_t* const argb, int quality, int cache_bits,
    VP8LHashChain* const hash_chain,
    VP8LBackwardRefs* const refs);

static void ConvertPopulationCountTableToBitEstimates(
    int num_symbols, const uint32_t population_counts[], double output[]) {
  uint32_t sum = 0;
  int nonzeros = 0;
  int i;
  for (i = 0; i < num_symbols; ++i) {
    sum += population_counts[i];
    if (population_counts[i] > 0) {
      ++nonzeros;
    }
  }
  if (nonzeros <= 1) {
    memset(output, 0, num_symbols * sizeof(*output));
  } else {
    const double logsum = VP8LFastLog2(sum);
    for (i = 0; i < num_symbols; ++i) {
      output[i] = logsum - VP8LFastLog2(population_counts[i]);
    }
  }
}

static int CostModelBuild(CostModel* const m, int xsize, int ysize,
                          int recursion_level, const uint32_t* const argb,
                          int quality, int cache_bits,
                          VP8LHashChain* const hash_chain,
                          VP8LBackwardRefs* const refs) {
  int ok = 0;
  VP8LHistogram* histo = NULL;

  ClearBackwardRefs(refs);
  if (recursion_level > 0) {
    if (!BackwardReferencesTraceBackwards(xsize, ysize, recursion_level - 1,
                                          argb, quality, cache_bits, hash_chain,
                                          refs)) {
      goto Error;
    }
  } else {
    if (!BackwardReferencesHashChain(xsize, ysize, argb, cache_bits, quality,
                                     hash_chain, refs)) {
      goto Error;
    }
  }
  histo = VP8LAllocateHistogram(cache_bits);
  if (histo == NULL) goto Error;

  VP8LHistogramCreate(histo, refs, cache_bits);

  ConvertPopulationCountTableToBitEstimates(
      VP8LHistogramNumCodes(histo->palette_code_bits_),
      histo->literal_, m->literal_);
  ConvertPopulationCountTableToBitEstimates(
      VALUES_IN_BYTE, histo->red_, m->red_);
  ConvertPopulationCountTableToBitEstimates(
      VALUES_IN_BYTE, histo->blue_, m->blue_);
  ConvertPopulationCountTableToBitEstimates(
      VALUES_IN_BYTE, histo->alpha_, m->alpha_);
  ConvertPopulationCountTableToBitEstimates(
      NUM_DISTANCE_CODES, histo->distance_, m->distance_);
  ok = 1;

 Error:
  VP8LFreeHistogram(histo);
  return ok;
}

static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) {
  return m->alpha_[v >> 24] +
         m->red_[(v >> 16) & 0xff] +
         m->literal_[(v >> 8) & 0xff] +
         m->blue_[v & 0xff];
}

static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) {
  const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx;
  return m->literal_[literal_idx];
}

static WEBP_INLINE double GetLengthCost(const CostModel* const m,
                                        uint32_t length) {
  int code, extra_bits;
  VP8LPrefixEncodeBits(length, &code, &extra_bits);
  return m->literal_[VALUES_IN_BYTE + code] + extra_bits;
}

static WEBP_INLINE double GetDistanceCost(const CostModel* const m,
                                          uint32_t distance) {
  int code, extra_bits;
  VP8LPrefixEncodeBits(distance, &code, &extra_bits);
  return m->distance_[code] + extra_bits;
}

static int BackwardReferencesHashChainDistanceOnly(
    int xsize, int ysize, int recursive_cost_model, const uint32_t* const argb,
    int quality, int cache_bits, VP8LHashChain* const hash_chain,
    VP8LBackwardRefs* const refs, uint32_t* const dist_array) {
  int i;
  int ok = 0;
  int cc_init = 0;
  const int pix_count = xsize * ysize;
  const int use_color_cache = (cache_bits > 0);
  float* const cost =
      (float*)WebPSafeMalloc(pix_count, sizeof(*cost));
  CostModel* cost_model = (CostModel*)WebPSafeMalloc(1ULL, sizeof(*cost_model));
  VP8LColorCache hashers;
  const double mul0 = (recursive_cost_model != 0) ? 1.0 : 0.68;
  const double mul1 = (recursive_cost_model != 0) ? 1.0 : 0.82;
  const int min_distance_code = 2;  // TODO(vikasa): tune as function of quality
  int window_size = WINDOW_SIZE;
  int iter_pos = 1;
  int iter_limit = -1;

  if (cost == NULL || cost_model == NULL) goto Error;

  if (use_color_cache) {
    cc_init = VP8LColorCacheInit(&hashers, cache_bits);
    if (!cc_init) goto Error;
  }

  if (!CostModelBuild(cost_model, xsize, ysize, recursive_cost_model, argb,
                      quality, cache_bits, hash_chain, refs)) {
    goto Error;
  }

  for (i = 0; i < pix_count; ++i) cost[i] = 1e38f;

  // We loop one pixel at a time, but store all currently best points to
  // non-processed locations from this point.
  dist_array[0] = 0;
  GetParamsForHashChainFindCopy(quality, xsize, cache_bits,
                                &window_size, &iter_pos, &iter_limit);
  HashChainInit(hash_chain);
  for (i = 0; i < pix_count; ++i) {
    double prev_cost = 0.0;
    int shortmax;
    if (i > 0) {
      prev_cost = cost[i - 1];
    }
    for (shortmax = 0; shortmax < 2; ++shortmax) {
      int offset = 0;
      int len = 0;
      if (i < pix_count - 1) {  // FindCopy reads pixels at [i] and [i + 1].
        int max_len = shortmax ? 2 : pix_count - i;
        HashChainFindCopy(hash_chain, i, xsize, argb, max_len,
                          window_size, iter_pos, iter_limit,
                          &offset, &len);
      }
      if (len >= MIN_LENGTH) {
        const int code = DistanceToPlaneCode(xsize, offset);
        const double distance_cost =
            prev_cost + GetDistanceCost(cost_model, code);
        int k;
        for (k = 1; k < len; ++k) {
          const double cost_val = distance_cost + GetLengthCost(cost_model, k);
          if (cost[i + k] > cost_val) {
            cost[i + k] = (float)cost_val;
            dist_array[i + k] = k + 1;
          }
        }
        // This if is for speedup only. It roughly doubles the speed, and
        // makes compression worse by .1 %.
        if (len >= 128 && code <= min_distance_code) {
          // Long copy for short distances, let's skip the middle
          // lookups for better copies.
          // 1) insert the hashes.
          if (use_color_cache) {
            for (k = 0; k < len; ++k) {
              VP8LColorCacheInsert(&hashers, argb[i + k]);
            }
          }
          // 2) Add to the hash_chain (but cannot add the last pixel)
          {
            const int last = (len + i < pix_count - 1) ? len + i
                                                       : pix_count - 1;
            for (k = i; k < last; ++k) {
              HashChainInsert(hash_chain, &argb[k], k);
            }
          }
          // 3) jump.
          i += len - 1;  // for loop does ++i, thus -1 here.
          goto next_symbol;
        }
      }
    }
    if (i < pix_count - 1) {
      HashChainInsert(hash_chain, &argb[i], i);
    }
    {
      // inserting a literal pixel
      double cost_val = prev_cost;
      if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) {
        const int ix = VP8LColorCacheGetIndex(&hashers, argb[i]);
        cost_val += GetCacheCost(cost_model, ix) * mul0;
      } else {
        if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]);
        cost_val += GetLiteralCost(cost_model, argb[i]) * mul1;
      }
      if (cost[i] > cost_val) {
        cost[i] = (float)cost_val;
        dist_array[i] = 1;  // only one is inserted.
      }
    }
 next_symbol: ;
  }
  // Last pixel still to do, it can only be a single step if not reached
  // through cheaper means already.
  ok = !refs->error_;
Error:
  if (cc_init) VP8LColorCacheClear(&hashers);
  WebPSafeFree(cost_model);
  WebPSafeFree(cost);
  return ok;
}

// We pack the path at the end of *dist_array and return
// a pointer to this part of the array. Example:
// dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232]
static void TraceBackwards(uint32_t* const dist_array,
                           int dist_array_size,
                           uint32_t** const chosen_path,
                           int* const chosen_path_size) {
  uint32_t* path = dist_array + dist_array_size;
  uint32_t* cur = dist_array + dist_array_size - 1;
  while (cur >= dist_array) {
    const int k = *cur;
    --path;
    *path = k;
    cur -= k;
  }
  *chosen_path = path;
  *chosen_path_size = (int)(dist_array + dist_array_size - path);
}

static int BackwardReferencesHashChainFollowChosenPath(
    int xsize, int ysize, const uint32_t* const argb,
    int quality, int cache_bits,
    const uint32_t* const chosen_path, int chosen_path_size,
    VP8LHashChain* const hash_chain,
    VP8LBackwardRefs* const refs) {
  const int pix_count = xsize * ysize;
  const int use_color_cache = (cache_bits > 0);
  int size = 0;
  int i = 0;
  int k;
  int ix;
  int ok = 0;
  int cc_init = 0;
  int window_size = WINDOW_SIZE;
  int iter_pos = 1;
  int iter_limit = -1;
  VP8LColorCache hashers;

  if (use_color_cache) {
    cc_init = VP8LColorCacheInit(&hashers, cache_bits);
    if (!cc_init) goto Error;
  }

  ClearBackwardRefs(refs);
  GetParamsForHashChainFindCopy(quality, xsize, cache_bits,
                                &window_size, &iter_pos, &iter_limit);
  HashChainInit(hash_chain);
  for (ix = 0; ix < chosen_path_size; ++ix, ++size) {
    int offset = 0;
    int len = 0;
    int max_len = chosen_path[ix];
    if (max_len != 1) {
      HashChainFindCopy(hash_chain, i, xsize, argb, max_len,
                        window_size, iter_pos, iter_limit,
                        &offset, &len);
      assert(len == max_len);
      BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
      if (use_color_cache) {
        for (k = 0; k < len; ++k) {
          VP8LColorCacheInsert(&hashers, argb[i + k]);
        }
      }
      {
        const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i;
        for (k = 0; k < last; ++k) {
          HashChainInsert(hash_chain, &argb[i + k], i + k);
        }
      }
      i += len;
    } else {
      PixOrCopy v;
      if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) {
        // push pixel as a color cache index
        const int idx = VP8LColorCacheGetIndex(&hashers, argb[i]);
        v = PixOrCopyCreateCacheIdx(idx);
      } else {
        if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]);
        v = PixOrCopyCreateLiteral(argb[i]);
      }
      BackwardRefsCursorAdd(refs, v);
      if (i + 1 < pix_count) {
        HashChainInsert(hash_chain, &argb[i], i);
      }
      ++i;
    }
  }
  ok = !refs->error_;
Error:
  if (cc_init) VP8LColorCacheClear(&hashers);
  return ok;
}

// Returns 1 on success.
static int BackwardReferencesTraceBackwards(int xsize, int ysize,
                                            int recursive_cost_model,
                                            const uint32_t* const argb,
                                            int quality, int cache_bits,
                                            VP8LHashChain* const hash_chain,
                                            VP8LBackwardRefs* const refs) {
  int ok = 0;
  const int dist_array_size = xsize * ysize;
  uint32_t* chosen_path = NULL;
  int chosen_path_size = 0;
  uint32_t* dist_array =
      (uint32_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array));

  if (dist_array == NULL) goto Error;

  if (!BackwardReferencesHashChainDistanceOnly(
      xsize, ysize, recursive_cost_model, argb, quality, cache_bits, hash_chain,
      refs, dist_array)) {
    goto Error;
  }
  TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size);
  if (!BackwardReferencesHashChainFollowChosenPath(
      xsize, ysize, argb, quality, cache_bits, chosen_path, chosen_path_size,
      hash_chain, refs)) {
    goto Error;
  }
  ok = 1;
 Error:
  WebPSafeFree(dist_array);
  return ok;
}

static void BackwardReferences2DLocality(int xsize,
                                         const VP8LBackwardRefs* const refs) {
  VP8LRefsCursor c = VP8LRefsCursorInit(refs);
  while (VP8LRefsCursorOk(&c)) {
    if (PixOrCopyIsCopy(c.cur_pos)) {
      const int dist = c.cur_pos->argb_or_distance;
      const int transformed_dist = DistanceToPlaneCode(xsize, dist);
      c.cur_pos->argb_or_distance = transformed_dist;
    }
    VP8LRefsCursorNext(&c);
  }
}

VP8LBackwardRefs* VP8LGetBackwardReferences(
    int width, int height, const uint32_t* const argb, int quality,
    int cache_bits, int use_2d_locality, VP8LHashChain* const hash_chain,
    VP8LBackwardRefs refs_array[2]) {
  int lz77_is_useful;
  const int num_pix = width * height;
  VP8LBackwardRefs* best = NULL;
  VP8LBackwardRefs* const refs_lz77 = &refs_array[0];
  VP8LBackwardRefs* const refs_rle = &refs_array[1];

  if (!BackwardReferencesHashChain(width, height, argb, cache_bits, quality,
                                   hash_chain, refs_lz77)) {
    return NULL;
  }
  if (!BackwardReferencesRle(width, height, argb, refs_rle)) {
    return NULL;
  }

  {
    double bit_cost_lz77, bit_cost_rle;
    VP8LHistogram* const histo = VP8LAllocateHistogram(cache_bits);
    if (histo == NULL) return NULL;
    // Evaluate LZ77 coding.
    VP8LHistogramCreate(histo, refs_lz77, cache_bits);
    bit_cost_lz77 = VP8LHistogramEstimateBits(histo);
    // Evaluate RLE coding.
    VP8LHistogramCreate(histo, refs_rle, cache_bits);
    bit_cost_rle = VP8LHistogramEstimateBits(histo);
    // Decide if LZ77 is useful.
    lz77_is_useful = (bit_cost_lz77 < bit_cost_rle);
    VP8LFreeHistogram(histo);
  }

  // Choose appropriate backward reference.
  if (lz77_is_useful) {
    // TraceBackwards is costly. Don't execute it at lower quality.
    const int try_lz77_trace_backwards = (quality >= 25);
    best = refs_lz77;   // default guess: lz77 is better
    if (try_lz77_trace_backwards) {
      // Set recursion level for large images using a color cache.
      const int recursion_level =
          (num_pix < 320 * 200) && (cache_bits > 0) ? 1 : 0;
      VP8LBackwardRefs* const refs_trace = &refs_array[1];
      ClearBackwardRefs(refs_trace);
      if (BackwardReferencesTraceBackwards(width, height, recursion_level, argb,
                                           quality, cache_bits, hash_chain,
                                           refs_trace)) {
        best = refs_trace;
      }
    }
  } else {
    best = refs_rle;
  }

  if (use_2d_locality) BackwardReferences2DLocality(width, best);

  return best;
}

// Returns entropy for the given cache bits.
static double ComputeCacheEntropy(const uint32_t* const argb,
                                  int xsize, int ysize,
                                  const VP8LBackwardRefs* const refs,
                                  int cache_bits) {
  int pixel_index = 0;
  uint32_t k;
  const int use_color_cache = (cache_bits > 0);
  int cc_init = 0;
  double entropy = MAX_ENTROPY;
  const double kSmallPenaltyForLargeCache = 4.0;
  VP8LColorCache hashers;
  VP8LRefsCursor c = VP8LRefsCursorInit(refs);
  VP8LHistogram* histo = VP8LAllocateHistogram(cache_bits);
  if (histo == NULL) goto Error;

  if (use_color_cache) {
    cc_init = VP8LColorCacheInit(&hashers, cache_bits);
    if (!cc_init) goto Error;
  }

  while (VP8LRefsCursorOk(&c)) {
    const PixOrCopy* const v = c.cur_pos;
    if (PixOrCopyIsLiteral(v)) {
      if (use_color_cache &&
          VP8LColorCacheContains(&hashers, argb[pixel_index])) {
        // push pixel as a cache index
        const int ix = VP8LColorCacheGetIndex(&hashers, argb[pixel_index]);
        const PixOrCopy token = PixOrCopyCreateCacheIdx(ix);
        VP8LHistogramAddSinglePixOrCopy(histo, &token);
      } else {
        VP8LHistogramAddSinglePixOrCopy(histo, v);
      }
    } else {
      VP8LHistogramAddSinglePixOrCopy(histo, v);
    }
    if (use_color_cache) {
      for (k = 0; k < PixOrCopyLength(v); ++k) {
        VP8LColorCacheInsert(&hashers, argb[pixel_index + k]);
      }
    }
    pixel_index += PixOrCopyLength(v);
    VP8LRefsCursorNext(&c);
  }
  assert(pixel_index == xsize * ysize);
  (void)xsize;  // xsize is not used in non-debug compilations otherwise.
  (void)ysize;  // ysize is not used in non-debug compilations otherwise.
  entropy = VP8LHistogramEstimateBits(histo) +
      kSmallPenaltyForLargeCache * cache_bits;
 Error:
  if (cc_init) VP8LColorCacheClear(&hashers);
  VP8LFreeHistogram(histo);
  return entropy;
}

// *best_cache_bits will contain how many bits are to be used for a color cache.
// Returns 0 in case of memory error.
int VP8LCalculateEstimateForCacheSize(const uint32_t* const argb,
                                      int xsize, int ysize, int quality,
                                      VP8LHashChain* const hash_chain,
                                      VP8LBackwardRefs* const refs,
                                      int* const best_cache_bits) {
  int eval_low = 1;
  int eval_high = 1;
  double entropy_low = MAX_ENTROPY;
  double entropy_high = MAX_ENTROPY;
  int cache_bits_low = 0;
  int cache_bits_high = MAX_COLOR_CACHE_BITS;

  if (!BackwardReferencesHashChain(xsize, ysize, argb, 0, quality, hash_chain,
                                   refs)) {
    return 0;
  }
  // Do a binary search to find the optimal entropy for cache_bits.
  while (cache_bits_high - cache_bits_low > 1) {
    if (eval_low) {
      entropy_low =
          ComputeCacheEntropy(argb, xsize, ysize, refs, cache_bits_low);
      eval_low = 0;
    }
    if (eval_high) {
      entropy_high =
          ComputeCacheEntropy(argb, xsize, ysize, refs, cache_bits_high);
      eval_high = 0;
    }
    if (entropy_high < entropy_low) {
      *best_cache_bits = cache_bits_high;
      cache_bits_low = (cache_bits_low + cache_bits_high) / 2;
      eval_low = 1;
    } else {
      *best_cache_bits = cache_bits_low;
      cache_bits_high = (cache_bits_low + cache_bits_high) / 2;
      eval_high = 1;
    }
  }
  return 1;
}