summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/enc/picture.c
blob: 011690d065df9afd238eef18b20889eadc566e7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// WebPPicture utils: colorspace conversion, crop, ...
//
// Author: Skal (pascal.massimino@gmail.com)

#include <assert.h>
#include <stdlib.h>
#include <math.h>

#include "./vp8enci.h"
#include "../utils/alpha_processing.h"
#include "../utils/random.h"
#include "../utils/rescaler.h"
#include "../utils/utils.h"
#include "../dsp/dsp.h"
#include "../dsp/yuv.h"

// Uncomment to disable gamma-compression during RGB->U/V averaging
#define USE_GAMMA_COMPRESSION

#define HALVE(x) (((x) + 1) >> 1)
#define IS_YUV_CSP(csp, YUV_CSP) (((csp) & WEBP_CSP_UV_MASK) == (YUV_CSP))

static const union {
  uint32_t argb;
  uint8_t  bytes[4];
} test_endian = { 0xff000000u };
#define ALPHA_IS_LAST (test_endian.bytes[3] == 0xff)

static WEBP_INLINE uint32_t MakeARGB32(int r, int g, int b) {
  return (0xff000000u | (r << 16) | (g << 8) | b);
}

//------------------------------------------------------------------------------
// WebPPicture
//------------------------------------------------------------------------------

int WebPPictureAlloc(WebPPicture* picture) {
  if (picture != NULL) {
    const WebPEncCSP uv_csp = picture->colorspace & WEBP_CSP_UV_MASK;
    const int has_alpha = picture->colorspace & WEBP_CSP_ALPHA_BIT;
    const int width = picture->width;
    const int height = picture->height;

    if (!picture->use_argb) {
      const int y_stride = width;
      const int uv_width = HALVE(width);
      const int uv_height = HALVE(height);
      const int uv_stride = uv_width;
      int uv0_stride = 0;
      int a_width, a_stride;
      uint64_t y_size, uv_size, uv0_size, a_size, total_size;
      uint8_t* mem;

      // U/V
      switch (uv_csp) {
        case WEBP_YUV420:
          break;
#ifdef WEBP_EXPERIMENTAL_FEATURES
        case WEBP_YUV400:    // for now, we'll just reset the U/V samples
          break;
        case WEBP_YUV422:
          uv0_stride = uv_width;
          break;
        case WEBP_YUV444:
          uv0_stride = width;
          break;
#endif
        default:
          return 0;
      }
      uv0_size = height * uv0_stride;

      // alpha
      a_width = has_alpha ? width : 0;
      a_stride = a_width;
      y_size = (uint64_t)y_stride * height;
      uv_size = (uint64_t)uv_stride * uv_height;
      a_size =  (uint64_t)a_stride * height;

      total_size = y_size + a_size + 2 * uv_size + 2 * uv0_size;

      // Security and validation checks
      if (width <= 0 || height <= 0 ||         // luma/alpha param error
          uv_width < 0 || uv_height < 0) {     // u/v param error
        return 0;
      }
      // Clear previous buffer and allocate a new one.
      WebPPictureFree(picture);   // erase previous buffer
      mem = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*mem));
      if (mem == NULL) return 0;

      // From now on, we're in the clear, we can no longer fail...
      picture->memory_ = (void*)mem;
      picture->y_stride  = y_stride;
      picture->uv_stride = uv_stride;
      picture->a_stride  = a_stride;
      picture->uv0_stride = uv0_stride;
      // TODO(skal): we could align the y/u/v planes and adjust stride.
      picture->y = mem;
      mem += y_size;

      picture->u = mem;
      mem += uv_size;
      picture->v = mem;
      mem += uv_size;

      if (a_size) {
        picture->a = mem;
        mem += a_size;
      }
      if (uv0_size) {
        picture->u0 = mem;
        mem += uv0_size;
        picture->v0 = mem;
        mem += uv0_size;
      }
      (void)mem;  // makes the static analyzer happy
    } else {
      void* memory;
      const uint64_t argb_size = (uint64_t)width * height;
      if (width <= 0 || height <= 0) {
        return 0;
      }
      // Clear previous buffer and allocate a new one.
      WebPPictureFree(picture);   // erase previous buffer
      memory = WebPSafeMalloc(argb_size, sizeof(*picture->argb));
      if (memory == NULL) return 0;

      // TODO(skal): align plane to cache line?
      picture->memory_argb_ = memory;
      picture->argb = (uint32_t*)memory;
      picture->argb_stride = width;
    }
  }
  return 1;
}

// Remove reference to the ARGB buffer (doesn't free anything).
static void PictureResetARGB(WebPPicture* const picture) {
  picture->memory_argb_ = NULL;
  picture->argb = NULL;
  picture->argb_stride = 0;
}

// Remove reference to the YUVA buffer (doesn't free anything).
static void PictureResetYUVA(WebPPicture* const picture) {
  picture->memory_ = NULL;
  picture->y = picture->u = picture->v = picture->a = NULL;
  picture->u0 = picture->v0 = NULL;
  picture->y_stride = picture->uv_stride = 0;
  picture->a_stride = 0;
  picture->uv0_stride = 0;
}

// Grab the 'specs' (writer, *opaque, width, height...) from 'src' and copy them
// into 'dst'. Mark 'dst' as not owning any memory.
static void WebPPictureGrabSpecs(const WebPPicture* const src,
                                 WebPPicture* const dst) {
  assert(src != NULL && dst != NULL);
  *dst = *src;
  PictureResetYUVA(dst);
  PictureResetARGB(dst);
}

// Allocate a new argb buffer, discarding any existing one and preserving
// the other YUV(A) buffer.
static int PictureAllocARGB(WebPPicture* const picture) {
  WebPPicture tmp;
  free(picture->memory_argb_);
  PictureResetARGB(picture);
  picture->use_argb = 1;
  WebPPictureGrabSpecs(picture, &tmp);
  if (!WebPPictureAlloc(&tmp)) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
  }
  picture->memory_argb_ = tmp.memory_argb_;
  picture->argb = tmp.argb;
  picture->argb_stride = tmp.argb_stride;
  return 1;
}

// Release memory owned by 'picture' (both YUV and ARGB buffers).
void WebPPictureFree(WebPPicture* picture) {
  if (picture != NULL) {
    free(picture->memory_);
    free(picture->memory_argb_);
    PictureResetYUVA(picture);
    PictureResetARGB(picture);
  }
}

//------------------------------------------------------------------------------
// Picture copying

// Not worth moving to dsp/enc.c (only used here).
static void CopyPlane(const uint8_t* src, int src_stride,
                      uint8_t* dst, int dst_stride, int width, int height) {
  while (height-- > 0) {
    memcpy(dst, src, width);
    src += src_stride;
    dst += dst_stride;
  }
}

// Adjust top-left corner to chroma sample position.
static void SnapTopLeftPosition(const WebPPicture* const pic,
                                int* const left, int* const top) {
  if (!pic->use_argb) {
    const int is_yuv422 = IS_YUV_CSP(pic->colorspace, WEBP_YUV422);
    if (IS_YUV_CSP(pic->colorspace, WEBP_YUV420) || is_yuv422) {
      *left &= ~1;
      if (!is_yuv422) *top &= ~1;
    }
  }
}

// Adjust top-left corner and verify that the sub-rectangle is valid.
static int AdjustAndCheckRectangle(const WebPPicture* const pic,
                                   int* const left, int* const top,
                                   int width, int height) {
  SnapTopLeftPosition(pic, left, top);
  if ((*left) < 0 || (*top) < 0) return 0;
  if (width <= 0 || height <= 0) return 0;
  if ((*left) + width > pic->width) return 0;
  if ((*top) + height > pic->height) return 0;
  return 1;
}

int WebPPictureCopy(const WebPPicture* src, WebPPicture* dst) {
  if (src == NULL || dst == NULL) return 0;
  if (src == dst) return 1;

  WebPPictureGrabSpecs(src, dst);
  if (!WebPPictureAlloc(dst)) return 0;

  if (!src->use_argb) {
    CopyPlane(src->y, src->y_stride,
              dst->y, dst->y_stride, dst->width, dst->height);
    CopyPlane(src->u, src->uv_stride,
              dst->u, dst->uv_stride, HALVE(dst->width), HALVE(dst->height));
    CopyPlane(src->v, src->uv_stride,
              dst->v, dst->uv_stride, HALVE(dst->width), HALVE(dst->height));
    if (dst->a != NULL)  {
      CopyPlane(src->a, src->a_stride,
                dst->a, dst->a_stride, dst->width, dst->height);
    }
#ifdef WEBP_EXPERIMENTAL_FEATURES
    if (dst->u0 != NULL)  {
      int uv0_width = src->width;
      if (IS_YUV_CSP(dst->colorspace, WEBP_YUV422)) {
        uv0_width = HALVE(uv0_width);
      }
      CopyPlane(src->u0, src->uv0_stride,
                dst->u0, dst->uv0_stride, uv0_width, dst->height);
      CopyPlane(src->v0, src->uv0_stride,
                dst->v0, dst->uv0_stride, uv0_width, dst->height);
    }
#endif
  } else {
    CopyPlane((const uint8_t*)src->argb, 4 * src->argb_stride,
              (uint8_t*)dst->argb, 4 * dst->argb_stride,
              4 * dst->width, dst->height);
  }
  return 1;
}

int WebPPictureIsView(const WebPPicture* picture) {
  if (picture == NULL) return 0;
  if (picture->use_argb) {
    return (picture->memory_argb_ == NULL);
  }
  return (picture->memory_ == NULL);
}

int WebPPictureView(const WebPPicture* src,
                    int left, int top, int width, int height,
                    WebPPicture* dst) {
  if (src == NULL || dst == NULL) return 0;

  // verify rectangle position.
  if (!AdjustAndCheckRectangle(src, &left, &top, width, height)) return 0;

  if (src != dst) {  // beware of aliasing! We don't want to leak 'memory_'.
    WebPPictureGrabSpecs(src, dst);
  }
  dst->width = width;
  dst->height = height;
  if (!src->use_argb) {
    dst->y = src->y + top * src->y_stride + left;
    dst->u = src->u + (top >> 1) * src->uv_stride + (left >> 1);
    dst->v = src->v + (top >> 1) * src->uv_stride + (left >> 1);
    dst->y_stride = src->y_stride;
    dst->uv_stride = src->uv_stride;
    if (src->a != NULL) {
      dst->a = src->a + top * src->a_stride + left;
      dst->a_stride = src->a_stride;
    }
#ifdef WEBP_EXPERIMENTAL_FEATURES
    if (src->u0 != NULL) {
      const int left_pos =
          IS_YUV_CSP(dst->colorspace, WEBP_YUV422) ? (left >> 1) : left;
      dst->u0 = src->u0 + top * src->uv0_stride + left_pos;
      dst->v0 = src->v0 + top * src->uv0_stride + left_pos;
      dst->uv0_stride = src->uv0_stride;
    }
#endif
  } else {
    dst->argb = src->argb + top * src->argb_stride + left;
    dst->argb_stride = src->argb_stride;
  }
  return 1;
}

//------------------------------------------------------------------------------
// Picture cropping

int WebPPictureCrop(WebPPicture* pic,
                    int left, int top, int width, int height) {
  WebPPicture tmp;

  if (pic == NULL) return 0;
  if (!AdjustAndCheckRectangle(pic, &left, &top, width, height)) return 0;

  WebPPictureGrabSpecs(pic, &tmp);
  tmp.width = width;
  tmp.height = height;
  if (!WebPPictureAlloc(&tmp)) return 0;

  if (!pic->use_argb) {
    const int y_offset = top * pic->y_stride + left;
    const int uv_offset = (top / 2) * pic->uv_stride + left / 2;
    CopyPlane(pic->y + y_offset, pic->y_stride,
              tmp.y, tmp.y_stride, width, height);
    CopyPlane(pic->u + uv_offset, pic->uv_stride,
              tmp.u, tmp.uv_stride, HALVE(width), HALVE(height));
    CopyPlane(pic->v + uv_offset, pic->uv_stride,
              tmp.v, tmp.uv_stride, HALVE(width), HALVE(height));

    if (tmp.a != NULL) {
      const int a_offset = top * pic->a_stride + left;
      CopyPlane(pic->a + a_offset, pic->a_stride,
                tmp.a, tmp.a_stride, width, height);
    }
#ifdef WEBP_EXPERIMENTAL_FEATURES
    if (tmp.u0 != NULL) {
      int w = width;
      int left_pos = left;
      if (IS_YUV_CSP(tmp.colorspace, WEBP_YUV422)) {
        w = HALVE(w);
        left_pos = HALVE(left_pos);
      }
      CopyPlane(pic->u0 + top * pic->uv0_stride + left_pos, pic->uv0_stride,
                tmp.u0, tmp.uv0_stride, w, height);
      CopyPlane(pic->v0 + top * pic->uv0_stride + left_pos, pic->uv0_stride,
                tmp.v0, tmp.uv0_stride, w, height);
    }
#endif
  } else {
    const uint8_t* const src =
        (const uint8_t*)(pic->argb + top * pic->argb_stride + left);
    CopyPlane(src, pic->argb_stride * 4,
              (uint8_t*)tmp.argb, tmp.argb_stride * 4,
              width * 4, height);
  }
  WebPPictureFree(pic);
  *pic = tmp;
  return 1;
}

//------------------------------------------------------------------------------
// Simple picture rescaler

static void RescalePlane(const uint8_t* src,
                         int src_width, int src_height, int src_stride,
                         uint8_t* dst,
                         int dst_width, int dst_height, int dst_stride,
                         int32_t* const work,
                         int num_channels) {
  WebPRescaler rescaler;
  int y = 0;
  WebPRescalerInit(&rescaler, src_width, src_height,
                   dst, dst_width, dst_height, dst_stride,
                   num_channels,
                   src_width, dst_width,
                   src_height, dst_height,
                   work);
  memset(work, 0, 2 * dst_width * num_channels * sizeof(*work));
  while (y < src_height) {
    y += WebPRescalerImport(&rescaler, src_height - y,
                            src + y * src_stride, src_stride);
    WebPRescalerExport(&rescaler);
  }
}

static void AlphaMultiplyARGB(WebPPicture* const pic, int inverse) {
  uint32_t* ptr = pic->argb;
  int y;
  for (y = 0; y < pic->height; ++y) {
    WebPMultARGBRow(ptr, pic->width, inverse);
    ptr += pic->argb_stride;
  }
}

static void AlphaMultiplyY(WebPPicture* const pic, int inverse) {
  const uint8_t* ptr_a = pic->a;
  if (ptr_a != NULL) {
    uint8_t* ptr_y = pic->y;
    int y;
    for (y = 0; y < pic->height; ++y) {
      WebPMultRow(ptr_y, ptr_a, pic->width, inverse);
      ptr_y += pic->y_stride;
      ptr_a += pic->a_stride;
    }
  }
}

int WebPPictureRescale(WebPPicture* pic, int width, int height) {
  WebPPicture tmp;
  int prev_width, prev_height;
  int32_t* work;

  if (pic == NULL) return 0;
  prev_width = pic->width;
  prev_height = pic->height;
  // if width is unspecified, scale original proportionally to height ratio.
  if (width == 0) {
    width = (prev_width * height + prev_height / 2) / prev_height;
  }
  // if height is unspecified, scale original proportionally to width ratio.
  if (height == 0) {
    height = (prev_height * width + prev_width / 2) / prev_width;
  }
  // Check if the overall dimensions still make sense.
  if (width <= 0 || height <= 0) return 0;

  WebPPictureGrabSpecs(pic, &tmp);
  tmp.width = width;
  tmp.height = height;
  if (!WebPPictureAlloc(&tmp)) return 0;

  if (!pic->use_argb) {
    work = (int32_t*)WebPSafeMalloc(2ULL * width, sizeof(*work));
    if (work == NULL) {
      WebPPictureFree(&tmp);
      return 0;
    }
    // If present, we need to rescale alpha first (for AlphaMultiplyY).
    if (pic->a != NULL) {
      RescalePlane(pic->a, prev_width, prev_height, pic->a_stride,
                   tmp.a, width, height, tmp.a_stride, work, 1);
    }

    // We take transparency into account on the luma plane only. That's not
    // totally exact blending, but still is a good approximation.
    AlphaMultiplyY(pic, 0);
    RescalePlane(pic->y, prev_width, prev_height, pic->y_stride,
                 tmp.y, width, height, tmp.y_stride, work, 1);
    AlphaMultiplyY(&tmp, 1);

    RescalePlane(pic->u,
                 HALVE(prev_width), HALVE(prev_height), pic->uv_stride,
                 tmp.u,
                 HALVE(width), HALVE(height), tmp.uv_stride, work, 1);
    RescalePlane(pic->v,
                 HALVE(prev_width), HALVE(prev_height), pic->uv_stride,
                 tmp.v,
                 HALVE(width), HALVE(height), tmp.uv_stride, work, 1);

#ifdef WEBP_EXPERIMENTAL_FEATURES
    if (tmp.u0 != NULL) {
      const int s = IS_YUV_CSP(tmp.colorspace, WEBP_YUV422) ? 2 : 1;
      RescalePlane(
          pic->u0, (prev_width + s / 2) / s, prev_height, pic->uv0_stride,
          tmp.u0, (width + s / 2) / s, height, tmp.uv0_stride, work, 1);
      RescalePlane(
          pic->v0, (prev_width + s / 2) / s, prev_height, pic->uv0_stride,
          tmp.v0, (width + s / 2) / s, height, tmp.uv0_stride, work, 1);
    }
#endif
  } else {
    work = (int32_t*)WebPSafeMalloc(2ULL * width * 4, sizeof(*work));
    if (work == NULL) {
      WebPPictureFree(&tmp);
      return 0;
    }
    // In order to correctly interpolate colors, we need to apply the alpha
    // weighting first (black-matting), scale the RGB values, and remove
    // the premultiplication afterward (while preserving the alpha channel).
    AlphaMultiplyARGB(pic, 0);
    RescalePlane((const uint8_t*)pic->argb, prev_width, prev_height,
                 pic->argb_stride * 4,
                 (uint8_t*)tmp.argb, width, height,
                 tmp.argb_stride * 4,
                 work, 4);
    AlphaMultiplyARGB(&tmp, 1);
  }
  WebPPictureFree(pic);
  free(work);
  *pic = tmp;
  return 1;
}

//------------------------------------------------------------------------------
// WebPMemoryWriter: Write-to-memory

void WebPMemoryWriterInit(WebPMemoryWriter* writer) {
  writer->mem = NULL;
  writer->size = 0;
  writer->max_size = 0;
}

int WebPMemoryWrite(const uint8_t* data, size_t data_size,
                    const WebPPicture* picture) {
  WebPMemoryWriter* const w = (WebPMemoryWriter*)picture->custom_ptr;
  uint64_t next_size;
  if (w == NULL) {
    return 1;
  }
  next_size = (uint64_t)w->size + data_size;
  if (next_size > w->max_size) {
    uint8_t* new_mem;
    uint64_t next_max_size = 2ULL * w->max_size;
    if (next_max_size < next_size) next_max_size = next_size;
    if (next_max_size < 8192ULL) next_max_size = 8192ULL;
    new_mem = (uint8_t*)WebPSafeMalloc(next_max_size, 1);
    if (new_mem == NULL) {
      return 0;
    }
    if (w->size > 0) {
      memcpy(new_mem, w->mem, w->size);
    }
    free(w->mem);
    w->mem = new_mem;
    // down-cast is ok, thanks to WebPSafeMalloc
    w->max_size = (size_t)next_max_size;
  }
  if (data_size > 0) {
    memcpy(w->mem + w->size, data, data_size);
    w->size += data_size;
  }
  return 1;
}

//------------------------------------------------------------------------------
// Detection of non-trivial transparency

// Returns true if alpha[] has non-0xff values.
static int CheckNonOpaque(const uint8_t* alpha, int width, int height,
                          int x_step, int y_step) {
  if (alpha == NULL) return 0;
  while (height-- > 0) {
    int x;
    for (x = 0; x < width * x_step; x += x_step) {
      if (alpha[x] != 0xff) return 1;  // TODO(skal): check 4/8 bytes at a time.
    }
    alpha += y_step;
  }
  return 0;
}

// Checking for the presence of non-opaque alpha.
int WebPPictureHasTransparency(const WebPPicture* picture) {
  if (picture == NULL) return 0;
  if (!picture->use_argb) {
    return CheckNonOpaque(picture->a, picture->width, picture->height,
                          1, picture->a_stride);
  } else {
    int x, y;
    const uint32_t* argb = picture->argb;
    if (argb == NULL) return 0;
    for (y = 0; y < picture->height; ++y) {
      for (x = 0; x < picture->width; ++x) {
        if (argb[x] < 0xff000000u) return 1;   // test any alpha values != 0xff
      }
      argb += picture->argb_stride;
    }
  }
  return 0;
}

//------------------------------------------------------------------------------
// RGB -> YUV conversion

static int RGBToY(int r, int g, int b, VP8Random* const rg) {
  return VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX));
}

static int RGBToU(int r, int g, int b, VP8Random* const rg) {
  return VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2));
}

static int RGBToV(int r, int g, int b, VP8Random* const rg) {
  return VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2));
}

//------------------------------------------------------------------------------

#if defined(USE_GAMMA_COMPRESSION)

// gamma-compensates loss of resolution during chroma subsampling
#define kGamma 0.80
#define kGammaFix 12     // fixed-point precision for linear values
#define kGammaScale ((1 << kGammaFix) - 1)
#define kGammaTabFix 7   // fixed-point fractional bits precision
#define kGammaTabScale (1 << kGammaTabFix)
#define kGammaTabRounder (kGammaTabScale >> 1)
#define kGammaTabSize (1 << (kGammaFix - kGammaTabFix))

static int kLinearToGammaTab[kGammaTabSize + 1];
static uint16_t kGammaToLinearTab[256];
static int kGammaTablesOk = 0;

static void InitGammaTables(void) {
  if (!kGammaTablesOk) {
    int v;
    const double scale = 1. / kGammaScale;
    for (v = 0; v <= 255; ++v) {
      kGammaToLinearTab[v] =
          (uint16_t)(pow(v / 255., kGamma) * kGammaScale + .5);
    }
    for (v = 0; v <= kGammaTabSize; ++v) {
      const double x = scale * (v << kGammaTabFix);
      kLinearToGammaTab[v] = (int)(pow(x, 1. / kGamma) * 255. + .5);
    }
    kGammaTablesOk = 1;
  }
}

static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) {
  return kGammaToLinearTab[v];
}

// Convert a linear value 'v' to YUV_FIX+2 fixed-point precision
// U/V value, suitable for RGBToU/V calls.
static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
  const int v = base_value << shift;              // final uplifted value
  const int tab_pos = v >> (kGammaTabFix + 2);    // integer part
  const int x = v & ((kGammaTabScale << 2) - 1);  // fractional part
  const int v0 = kLinearToGammaTab[tab_pos];
  const int v1 = kLinearToGammaTab[tab_pos + 1];
  const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x);   // interpolate
  return (y + kGammaTabRounder) >> kGammaTabFix;             // descale
}

#else

static void InitGammaTables(void) {}
static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; }
static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
  (void)shift;
  return v;
}

#endif    // USE_GAMMA_COMPRESSION

//------------------------------------------------------------------------------

#define SUM4(ptr) LinearToGamma(                         \
    GammaToLinear((ptr)[0]) +                            \
    GammaToLinear((ptr)[step]) +                         \
    GammaToLinear((ptr)[rgb_stride]) +                   \
    GammaToLinear((ptr)[rgb_stride + step]), 0)          \

#define SUM2H(ptr) \
    LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[step]), 1)
#define SUM2V(ptr) \
    LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1)
#define SUM1(ptr)  \
    LinearToGamma(GammaToLinear((ptr)[0]), 2)

#define RGB_TO_UV(x, y, SUM) {                           \
  const int src = (2 * (step * (x) + (y) * rgb_stride)); \
  const int dst = (x) + (y) * picture->uv_stride;        \
  const int r = SUM(r_ptr + src);                        \
  const int g = SUM(g_ptr + src);                        \
  const int b = SUM(b_ptr + src);                        \
  picture->u[dst] = RGBToU(r, g, b, &rg);                \
  picture->v[dst] = RGBToV(r, g, b, &rg);                \
}

#define RGB_TO_UV0(x_in, x_out, y, SUM) {                \
  const int src = (step * (x_in) + (y) * rgb_stride);    \
  const int dst = (x_out) + (y) * picture->uv0_stride;   \
  const int r = SUM(r_ptr + src);                        \
  const int g = SUM(g_ptr + src);                        \
  const int b = SUM(b_ptr + src);                        \
  picture->u0[dst] = RGBToU(r, g, b, &rg);               \
  picture->v0[dst] = RGBToV(r, g, b, &rg);               \
}

static void MakeGray(WebPPicture* const picture) {
  int y;
  const int uv_width = HALVE(picture->width);
  const int uv_height = HALVE(picture->height);
  for (y = 0; y < uv_height; ++y) {
    memset(picture->u + y * picture->uv_stride, 128, uv_width);
    memset(picture->v + y * picture->uv_stride, 128, uv_width);
  }
}

static int ImportYUVAFromRGBA(const uint8_t* const r_ptr,
                              const uint8_t* const g_ptr,
                              const uint8_t* const b_ptr,
                              const uint8_t* const a_ptr,
                              int step,         // bytes per pixel
                              int rgb_stride,   // bytes per scanline
                              float dithering,
                              WebPPicture* const picture) {
  const WebPEncCSP uv_csp = picture->colorspace & WEBP_CSP_UV_MASK;
  int x, y;
  const int width = picture->width;
  const int height = picture->height;
  const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride);
  VP8Random rg;

  picture->colorspace = uv_csp;
  picture->use_argb = 0;
  if (has_alpha) {
    picture->colorspace |= WEBP_CSP_ALPHA_BIT;
  }
  if (!WebPPictureAlloc(picture)) return 0;

  VP8InitRandom(&rg, dithering);
  InitGammaTables();

  // Import luma plane
  for (y = 0; y < height; ++y) {
    for (x = 0; x < width; ++x) {
      const int offset = step * x + y * rgb_stride;
      picture->y[x + y * picture->y_stride] =
          RGBToY(r_ptr[offset], g_ptr[offset], b_ptr[offset], &rg);
    }
  }

  // Downsample U/V plane
  if (uv_csp != WEBP_YUV400) {
    for (y = 0; y < (height >> 1); ++y) {
      for (x = 0; x < (width >> 1); ++x) {
        RGB_TO_UV(x, y, SUM4);
      }
      if (width & 1) {
        RGB_TO_UV(x, y, SUM2V);
      }
    }
    if (height & 1) {
      for (x = 0; x < (width >> 1); ++x) {
        RGB_TO_UV(x, y, SUM2H);
      }
      if (width & 1) {
        RGB_TO_UV(x, y, SUM1);
      }
    }

#ifdef WEBP_EXPERIMENTAL_FEATURES
    // Store original U/V samples too
    if (uv_csp == WEBP_YUV422) {
      for (y = 0; y < height; ++y) {
        for (x = 0; x < (width >> 1); ++x) {
          RGB_TO_UV0(2 * x, x, y, SUM2H);
        }
        if (width & 1) {
          RGB_TO_UV0(2 * x, x, y, SUM1);
        }
      }
    } else if (uv_csp == WEBP_YUV444) {
      for (y = 0; y < height; ++y) {
        for (x = 0; x < width; ++x) {
          RGB_TO_UV0(x, x, y, SUM1);
        }
      }
    }
#endif
  } else {
    MakeGray(picture);
  }

  if (has_alpha) {
    assert(step >= 4);
    assert(picture->a != NULL);
    for (y = 0; y < height; ++y) {
      for (x = 0; x < width; ++x) {
        picture->a[x + y * picture->a_stride] =
            a_ptr[step * x + y * rgb_stride];
      }
    }
  }
  return 1;
}

static int Import(WebPPicture* const picture,
                  const uint8_t* const rgb, int rgb_stride,
                  int step, int swap_rb, int import_alpha) {
  const uint8_t* const r_ptr = rgb + (swap_rb ? 2 : 0);
  const uint8_t* const g_ptr = rgb + 1;
  const uint8_t* const b_ptr = rgb + (swap_rb ? 0 : 2);
  const uint8_t* const a_ptr = import_alpha ? rgb + 3 : NULL;
  const int width = picture->width;
  const int height = picture->height;

  if (!picture->use_argb) {
    return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride,
                              0.f /* no dithering */, picture);
  }
  if (import_alpha) {
    picture->colorspace |= WEBP_CSP_ALPHA_BIT;
  } else {
    picture->colorspace &= ~WEBP_CSP_ALPHA_BIT;
  }
  if (!WebPPictureAlloc(picture)) return 0;

  if (!import_alpha) {
    int x, y;
    for (y = 0; y < height; ++y) {
      for (x = 0; x < width; ++x) {
        const int offset = step * x + y * rgb_stride;
        const uint32_t argb =
            MakeARGB32(r_ptr[offset], g_ptr[offset], b_ptr[offset]);
        picture->argb[x + y * picture->argb_stride] = argb;
      }
    }
  } else {
    int x, y;
    assert(step >= 4);
    for (y = 0; y < height; ++y) {
      for (x = 0; x < width; ++x) {
        const int offset = step * x + y * rgb_stride;
        const uint32_t argb = ((uint32_t)a_ptr[offset] << 24) |
                              (r_ptr[offset] << 16) |
                              (g_ptr[offset] <<  8) |
                              (b_ptr[offset]);
        picture->argb[x + y * picture->argb_stride] = argb;
      }
    }
  }
  return 1;
}
#undef SUM4
#undef SUM2V
#undef SUM2H
#undef SUM1
#undef RGB_TO_UV

int WebPPictureImportRGB(WebPPicture* picture,
                         const uint8_t* rgb, int rgb_stride) {
  return Import(picture, rgb, rgb_stride, 3, 0, 0);
}

int WebPPictureImportBGR(WebPPicture* picture,
                         const uint8_t* rgb, int rgb_stride) {
  return Import(picture, rgb, rgb_stride, 3, 1, 0);
}

int WebPPictureImportRGBA(WebPPicture* picture,
                          const uint8_t* rgba, int rgba_stride) {
  return Import(picture, rgba, rgba_stride, 4, 0, 1);
}

int WebPPictureImportBGRA(WebPPicture* picture,
                          const uint8_t* rgba, int rgba_stride) {
  return Import(picture, rgba, rgba_stride, 4, 1, 1);
}

int WebPPictureImportRGBX(WebPPicture* picture,
                          const uint8_t* rgba, int rgba_stride) {
  return Import(picture, rgba, rgba_stride, 4, 0, 0);
}

int WebPPictureImportBGRX(WebPPicture* picture,
                          const uint8_t* rgba, int rgba_stride) {
  return Import(picture, rgba, rgba_stride, 4, 1, 0);
}

//------------------------------------------------------------------------------
// Automatic YUV <-> ARGB conversions.

int WebPPictureYUVAToARGB(WebPPicture* picture) {
  if (picture == NULL) return 0;
  if (picture->y == NULL || picture->u == NULL || picture->v == NULL) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
  }
  if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
  }
  if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION);
  }
  // Allocate a new argb buffer (discarding the previous one).
  if (!PictureAllocARGB(picture)) return 0;

  // Convert
  {
    int y;
    const int width = picture->width;
    const int height = picture->height;
    const int argb_stride = 4 * picture->argb_stride;
    uint8_t* dst = (uint8_t*)picture->argb;
    const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y;
    WebPUpsampleLinePairFunc upsample = WebPGetLinePairConverter(ALPHA_IS_LAST);

    // First row, with replicated top samples.
    upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width);
    cur_y += picture->y_stride;
    dst += argb_stride;
    // Center rows.
    for (y = 1; y + 1 < height; y += 2) {
      const uint8_t* const top_u = cur_u;
      const uint8_t* const top_v = cur_v;
      cur_u += picture->uv_stride;
      cur_v += picture->uv_stride;
      upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v,
               dst, dst + argb_stride, width);
      cur_y += 2 * picture->y_stride;
      dst += 2 * argb_stride;
    }
    // Last row (if needed), with replicated bottom samples.
    if (height > 1 && !(height & 1)) {
      upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width);
    }
    // Insert alpha values if needed, in replacement for the default 0xff ones.
    if (picture->colorspace & WEBP_CSP_ALPHA_BIT) {
      for (y = 0; y < height; ++y) {
        uint32_t* const argb_dst = picture->argb + y * picture->argb_stride;
        const uint8_t* const src = picture->a + y * picture->a_stride;
        int x;
        for (x = 0; x < width; ++x) {
          argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24);
        }
      }
    }
  }
  return 1;
}

int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace,
                                  float dithering) {
  if (picture == NULL) return 0;
  if (picture->argb == NULL) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
  } else {
    const uint8_t* const argb = (const uint8_t*)picture->argb;
    const uint8_t* const r = ALPHA_IS_LAST ? argb + 2 : argb + 1;
    const uint8_t* const g = ALPHA_IS_LAST ? argb + 1 : argb + 2;
    const uint8_t* const b = ALPHA_IS_LAST ? argb + 0 : argb + 3;
    const uint8_t* const a = ALPHA_IS_LAST ? argb + 3 : argb + 0;
    // We work on a tmp copy of 'picture', because ImportYUVAFromRGBA()
    // would be calling WebPPictureFree(picture) otherwise.
    WebPPicture tmp = *picture;
    PictureResetARGB(&tmp);  // reset ARGB buffer so that it's not free()'d.
    tmp.use_argb = 0;
    tmp.colorspace = colorspace & WEBP_CSP_UV_MASK;
    if (!ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride, dithering,
                            &tmp)) {
      return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
    }
    // Copy back the YUV specs into 'picture'.
    tmp.argb = picture->argb;
    tmp.argb_stride = picture->argb_stride;
    tmp.memory_argb_ = picture->memory_argb_;
    *picture = tmp;
  }
  return 1;
}

int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) {
  return WebPPictureARGBToYUVADithered(picture, colorspace, 0.f);
}

//------------------------------------------------------------------------------
// Helper: clean up fully transparent area to help compressibility.

#define SIZE 8
#define SIZE2 (SIZE / 2)
static int is_transparent_area(const uint8_t* ptr, int stride, int size) {
  int y, x;
  for (y = 0; y < size; ++y) {
    for (x = 0; x < size; ++x) {
      if (ptr[x]) {
        return 0;
      }
    }
    ptr += stride;
  }
  return 1;
}

static WEBP_INLINE void flatten(uint8_t* ptr, int v, int stride, int size) {
  int y;
  for (y = 0; y < size; ++y) {
    memset(ptr, v, size);
    ptr += stride;
  }
}

void WebPCleanupTransparentArea(WebPPicture* pic) {
  int x, y, w, h;
  const uint8_t* a_ptr;
  int values[3] = { 0 };

  if (pic == NULL) return;

  a_ptr = pic->a;
  if (a_ptr == NULL) return;    // nothing to do

  w = pic->width / SIZE;
  h = pic->height / SIZE;
  for (y = 0; y < h; ++y) {
    int need_reset = 1;
    for (x = 0; x < w; ++x) {
      const int off_a = (y * pic->a_stride + x) * SIZE;
      const int off_y = (y * pic->y_stride + x) * SIZE;
      const int off_uv = (y * pic->uv_stride + x) * SIZE2;
      if (is_transparent_area(a_ptr + off_a, pic->a_stride, SIZE)) {
        if (need_reset) {
          values[0] = pic->y[off_y];
          values[1] = pic->u[off_uv];
          values[2] = pic->v[off_uv];
          need_reset = 0;
        }
        flatten(pic->y + off_y, values[0], pic->y_stride, SIZE);
        flatten(pic->u + off_uv, values[1], pic->uv_stride, SIZE2);
        flatten(pic->v + off_uv, values[2], pic->uv_stride, SIZE2);
      } else {
        need_reset = 1;
      }
    }
    // ignore the left-overs on right/bottom
  }
}

#undef SIZE
#undef SIZE2

//------------------------------------------------------------------------------
// Blend color and remove transparency info

#define BLEND(V0, V1, ALPHA) \
    ((((V0) * (255 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 16)
#define BLEND_10BIT(V0, V1, ALPHA) \
    ((((V0) * (1020 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 18)

void WebPBlendAlpha(WebPPicture* pic, uint32_t background_rgb) {
  const int red = (background_rgb >> 16) & 0xff;
  const int green = (background_rgb >> 8) & 0xff;
  const int blue = (background_rgb >> 0) & 0xff;
  VP8Random rg;
  int x, y;
  if (pic == NULL) return;
  VP8InitRandom(&rg, 0.f);
  if (!pic->use_argb) {
    const int uv_width = (pic->width >> 1);  // omit last pixel during u/v loop
    const int Y0 = RGBToY(red, green, blue, &rg);
    // VP8RGBToU/V expects the u/v values summed over four pixels
    const int U0 = RGBToU(4 * red, 4 * green, 4 * blue, &rg);
    const int V0 = RGBToV(4 * red, 4 * green, 4 * blue, &rg);
    const int has_alpha = pic->colorspace & WEBP_CSP_ALPHA_BIT;
    if (!has_alpha || pic->a == NULL) return;    // nothing to do
    for (y = 0; y < pic->height; ++y) {
      // Luma blending
      uint8_t* const y_ptr = pic->y + y * pic->y_stride;
      uint8_t* const a_ptr = pic->a + y * pic->a_stride;
      for (x = 0; x < pic->width; ++x) {
        const int alpha = a_ptr[x];
        if (alpha < 0xff) {
          y_ptr[x] = BLEND(Y0, y_ptr[x], a_ptr[x]);
        }
      }
      // Chroma blending every even line
      if ((y & 1) == 0) {
        uint8_t* const u = pic->u + (y >> 1) * pic->uv_stride;
        uint8_t* const v = pic->v + (y >> 1) * pic->uv_stride;
        uint8_t* const a_ptr2 =
            (y + 1 == pic->height) ? a_ptr : a_ptr + pic->a_stride;
        for (x = 0; x < uv_width; ++x) {
          // Average four alpha values into a single blending weight.
          // TODO(skal): might lead to visible contouring. Can we do better?
          const int alpha =
              a_ptr[2 * x + 0] + a_ptr[2 * x + 1] +
              a_ptr2[2 * x + 0] + a_ptr2[2 * x + 1];
          u[x] = BLEND_10BIT(U0, u[x], alpha);
          v[x] = BLEND_10BIT(V0, v[x], alpha);
        }
        if (pic->width & 1) {   // rightmost pixel
          const int alpha = 2 * (a_ptr[2 * x + 0] + a_ptr2[2 * x + 0]);
          u[x] = BLEND_10BIT(U0, u[x], alpha);
          v[x] = BLEND_10BIT(V0, v[x], alpha);
        }
      }
      memset(a_ptr, 0xff, pic->width);
    }
  } else {
    uint32_t* argb = pic->argb;
    const uint32_t background = MakeARGB32(red, green, blue);
    for (y = 0; y < pic->height; ++y) {
      for (x = 0; x < pic->width; ++x) {
        const int alpha = (argb[x] >> 24) & 0xff;
        if (alpha != 0xff) {
          if (alpha > 0) {
            int r = (argb[x] >> 16) & 0xff;
            int g = (argb[x] >>  8) & 0xff;
            int b = (argb[x] >>  0) & 0xff;
            r = BLEND(red, r, alpha);
            g = BLEND(green, g, alpha);
            b = BLEND(blue, b, alpha);
            argb[x] = MakeARGB32(r, g, b);
          } else {
            argb[x] = background;
          }
        }
      }
      argb += pic->argb_stride;
    }
  }
}

#undef BLEND
#undef BLEND_10BIT

//------------------------------------------------------------------------------
// local-min distortion
//
// For every pixel in the *reference* picture, we search for the local best
// match in the compressed image. This is not a symmetrical measure.

// search radius. Shouldn't be too large.
#define RADIUS 2

static float AccumulateLSIM(const uint8_t* src, int src_stride,
                            const uint8_t* ref, int ref_stride,
                            int w, int h) {
  int x, y;
  double total_sse = 0.;
  for (y = 0; y < h; ++y) {
    const int y_0 = (y - RADIUS < 0) ? 0 : y - RADIUS;
    const int y_1 = (y + RADIUS + 1 >= h) ? h : y + RADIUS + 1;
    for (x = 0; x < w; ++x) {
      const int x_0 = (x - RADIUS < 0) ? 0 : x - RADIUS;
      const int x_1 = (x + RADIUS + 1 >= w) ? w : x + RADIUS + 1;
      double best_sse = 255. * 255.;
      const double value = (double)ref[y * ref_stride + x];
      int i, j;
      for (j = y_0; j < y_1; ++j) {
        const uint8_t* s = src + j * src_stride;
        for (i = x_0; i < x_1; ++i) {
          const double sse = (double)(s[i] - value) * (s[i] - value);
          if (sse < best_sse) best_sse = sse;
        }
      }
      total_sse += best_sse;
    }
  }
  return (float)total_sse;
}
#undef RADIUS

//------------------------------------------------------------------------------
// Distortion

// Max value returned in case of exact similarity.
static const double kMinDistortion_dB = 99.;
static float GetPSNR(const double v) {
  return (float)((v > 0.) ? -4.3429448 * log(v / (255 * 255.))
                          : kMinDistortion_dB);
}

int WebPPictureDistortion(const WebPPicture* src, const WebPPicture* ref,
                          int type, float result[5]) {
  DistoStats stats[5];
  int has_alpha;
  int uv_w, uv_h;

  if (src == NULL || ref == NULL ||
      src->width != ref->width || src->height != ref->height ||
      src->y == NULL || ref->y == NULL ||
      src->u == NULL || ref->u == NULL ||
      src->v == NULL || ref->v == NULL ||
      result == NULL) {
    return 0;
  }
  // TODO(skal): provide distortion for ARGB too.
  if (src->use_argb == 1 || src->use_argb != ref->use_argb) {
    return 0;
  }

  has_alpha = !!(src->colorspace & WEBP_CSP_ALPHA_BIT);
  if (has_alpha != !!(ref->colorspace & WEBP_CSP_ALPHA_BIT) ||
      (has_alpha && (src->a == NULL || ref->a == NULL))) {
    return 0;
  }

  memset(stats, 0, sizeof(stats));

  uv_w = HALVE(src->width);
  uv_h = HALVE(src->height);
  if (type >= 2) {
    float sse[4];
    sse[0] = AccumulateLSIM(src->y, src->y_stride,
                            ref->y, ref->y_stride, src->width, src->height);
    sse[1] = AccumulateLSIM(src->u, src->uv_stride,
                            ref->u, ref->uv_stride, uv_w, uv_h);
    sse[2] = AccumulateLSIM(src->v, src->uv_stride,
                            ref->v, ref->uv_stride, uv_w, uv_h);
    sse[3] = has_alpha ? AccumulateLSIM(src->a, src->a_stride,
                                        ref->a, ref->a_stride,
                                        src->width, src->height)
                       : 0.f;
    result[0] = GetPSNR(sse[0] / (src->width * src->height));
    result[1] = GetPSNR(sse[1] / (uv_w * uv_h));
    result[2] = GetPSNR(sse[2] / (uv_w * uv_h));
    result[3] = GetPSNR(sse[3] / (src->width * src->height));
    {
      double total_sse = sse[0] + sse[1] + sse[2];
      int total_pixels = src->width * src->height + 2 * uv_w * uv_h;
      if (has_alpha) {
        total_pixels += src->width * src->height;
        total_sse += sse[3];
      }
      result[4] = GetPSNR(total_sse / total_pixels);
    }
  } else {
    int c;
    VP8SSIMAccumulatePlane(src->y, src->y_stride,
                           ref->y, ref->y_stride,
                           src->width, src->height, &stats[0]);
    VP8SSIMAccumulatePlane(src->u, src->uv_stride,
                           ref->u, ref->uv_stride,
                           uv_w, uv_h, &stats[1]);
    VP8SSIMAccumulatePlane(src->v, src->uv_stride,
                           ref->v, ref->uv_stride,
                           uv_w, uv_h, &stats[2]);
    if (has_alpha) {
      VP8SSIMAccumulatePlane(src->a, src->a_stride,
                             ref->a, ref->a_stride,
                             src->width, src->height, &stats[3]);
    }
    for (c = 0; c <= 4; ++c) {
      if (type == 1) {
        const double v = VP8SSIMGet(&stats[c]);
        result[c] = (float)((v < 1.) ? -10.0 * log10(1. - v)
                                     : kMinDistortion_dB);
      } else {
        const double v = VP8SSIMGetSquaredError(&stats[c]);
        result[c] = GetPSNR(v);
      }
      // Accumulate forward
      if (c < 4) VP8SSIMAddStats(&stats[c], &stats[4]);
    }
  }
  return 1;
}

//------------------------------------------------------------------------------
// Simplest high-level calls:

typedef int (*Importer)(WebPPicture* const, const uint8_t* const, int);

static size_t Encode(const uint8_t* rgba, int width, int height, int stride,
                     Importer import, float quality_factor, int lossless,
                     uint8_t** output) {
  WebPPicture pic;
  WebPConfig config;
  WebPMemoryWriter wrt;
  int ok;

  if (!WebPConfigPreset(&config, WEBP_PRESET_DEFAULT, quality_factor) ||
      !WebPPictureInit(&pic)) {
    return 0;  // shouldn't happen, except if system installation is broken
  }

  config.lossless = !!lossless;
  pic.use_argb = !!lossless;
  pic.width = width;
  pic.height = height;
  pic.writer = WebPMemoryWrite;
  pic.custom_ptr = &wrt;
  WebPMemoryWriterInit(&wrt);

  ok = import(&pic, rgba, stride) && WebPEncode(&config, &pic);
  WebPPictureFree(&pic);
  if (!ok) {
    free(wrt.mem);
    *output = NULL;
    return 0;
  }
  *output = wrt.mem;
  return wrt.size;
}

#define ENCODE_FUNC(NAME, IMPORTER)                                     \
size_t NAME(const uint8_t* in, int w, int h, int bps, float q,          \
            uint8_t** out) {                                            \
  return Encode(in, w, h, bps, IMPORTER, q, 0, out);                    \
}

ENCODE_FUNC(WebPEncodeRGB, WebPPictureImportRGB)
ENCODE_FUNC(WebPEncodeBGR, WebPPictureImportBGR)
ENCODE_FUNC(WebPEncodeRGBA, WebPPictureImportRGBA)
ENCODE_FUNC(WebPEncodeBGRA, WebPPictureImportBGRA)

#undef ENCODE_FUNC

#define LOSSLESS_DEFAULT_QUALITY 70.
#define LOSSLESS_ENCODE_FUNC(NAME, IMPORTER)                                 \
size_t NAME(const uint8_t* in, int w, int h, int bps, uint8_t** out) {       \
  return Encode(in, w, h, bps, IMPORTER, LOSSLESS_DEFAULT_QUALITY, 1, out);  \
}

LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessRGB, WebPPictureImportRGB)
LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessBGR, WebPPictureImportBGR)
LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessRGBA, WebPPictureImportRGBA)
LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessBGRA, WebPPictureImportBGRA)

#undef LOSSLESS_ENCODE_FUNC

//------------------------------------------------------------------------------