summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/enc/quant.c
blob: e1d202b5a3b500758645b7a089369e4710b3eeb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
//   Quantization
//
// Author: Skal (pascal.massimino@gmail.com)

#include <assert.h>
#include <math.h>
#include <stdlib.h>  // for abs()

#include "./vp8enci.h"
#include "./cost.h"

#define DO_TRELLIS_I4  1
#define DO_TRELLIS_I16 1   // not a huge gain, but ok at low bitrate.
#define DO_TRELLIS_UV  0   // disable trellis for UV. Risky. Not worth.
#define USE_TDISTO 1

#define MID_ALPHA 64      // neutral value for susceptibility
#define MIN_ALPHA 30      // lowest usable value for susceptibility
#define MAX_ALPHA 100     // higher meaningful value for susceptibility

#define SNS_TO_DQ 0.9     // Scaling constant between the sns value and the QP
                          // power-law modulation. Must be strictly less than 1.

#define I4_PENALTY 4000   // Rate-penalty for quick i4/i16 decision

// number of non-zero coeffs below which we consider the block very flat
// (and apply a penalty to complex predictions)
#define FLATNESS_LIMIT_I16 10      // I16 mode
#define FLATNESS_LIMIT_I4  3       // I4 mode
#define FLATNESS_LIMIT_UV  2       // UV mode
#define FLATNESS_PENALTY   140     // roughly ~1bit per block

#define MULT_8B(a, b) (((a) * (b) + 128) >> 8)

// #define DEBUG_BLOCK

//------------------------------------------------------------------------------

#if defined(DEBUG_BLOCK)

#include <stdio.h>
#include <stdlib.h>

static void PrintBlockInfo(const VP8EncIterator* const it,
                           const VP8ModeScore* const rd) {
  int i, j;
  const int is_i16 = (it->mb_->type_ == 1);
  printf("SOURCE / OUTPUT / ABS DELTA\n");
  for (j = 0; j < 24; ++j) {
    if (j == 16) printf("\n");   // newline before the U/V block
    for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_in_[i + j * BPS]);
    printf("     ");
    for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_out_[i + j * BPS]);
    printf("     ");
    for (i = 0; i < 16; ++i) {
      printf("%1d ", abs(it->yuv_out_[i + j * BPS] - it->yuv_in_[i + j * BPS]));
    }
    printf("\n");
  }
  printf("\nD:%d SD:%d R:%d H:%d nz:0x%x score:%d\n",
    (int)rd->D, (int)rd->SD, (int)rd->R, (int)rd->H, (int)rd->nz,
    (int)rd->score);
  if (is_i16) {
    printf("Mode: %d\n", rd->mode_i16);
    printf("y_dc_levels:");
    for (i = 0; i < 16; ++i) printf("%3d ", rd->y_dc_levels[i]);
    printf("\n");
  } else {
    printf("Modes[16]: ");
    for (i = 0; i < 16; ++i) printf("%d ", rd->modes_i4[i]);
    printf("\n");
  }
  printf("y_ac_levels:\n");
  for (j = 0; j < 16; ++j) {
    for (i = is_i16 ? 1 : 0; i < 16; ++i) {
      printf("%4d ", rd->y_ac_levels[j][i]);
    }
    printf("\n");
  }
  printf("\n");
  printf("uv_levels (mode=%d):\n", rd->mode_uv);
  for (j = 0; j < 8; ++j) {
    for (i = 0; i < 16; ++i) {
      printf("%4d ", rd->uv_levels[j][i]);
    }
    printf("\n");
  }
}

#endif   // DEBUG_BLOCK

//------------------------------------------------------------------------------

static WEBP_INLINE int clip(int v, int m, int M) {
  return v < m ? m : v > M ? M : v;
}

static const uint8_t kZigzag[16] = {
  0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
};

static const uint8_t kDcTable[128] = {
  4,     5,   6,   7,   8,   9,  10,  10,
  11,   12,  13,  14,  15,  16,  17,  17,
  18,   19,  20,  20,  21,  21,  22,  22,
  23,   23,  24,  25,  25,  26,  27,  28,
  29,   30,  31,  32,  33,  34,  35,  36,
  37,   37,  38,  39,  40,  41,  42,  43,
  44,   45,  46,  46,  47,  48,  49,  50,
  51,   52,  53,  54,  55,  56,  57,  58,
  59,   60,  61,  62,  63,  64,  65,  66,
  67,   68,  69,  70,  71,  72,  73,  74,
  75,   76,  76,  77,  78,  79,  80,  81,
  82,   83,  84,  85,  86,  87,  88,  89,
  91,   93,  95,  96,  98, 100, 101, 102,
  104, 106, 108, 110, 112, 114, 116, 118,
  122, 124, 126, 128, 130, 132, 134, 136,
  138, 140, 143, 145, 148, 151, 154, 157
};

static const uint16_t kAcTable[128] = {
  4,     5,   6,   7,   8,   9,  10,  11,
  12,   13,  14,  15,  16,  17,  18,  19,
  20,   21,  22,  23,  24,  25,  26,  27,
  28,   29,  30,  31,  32,  33,  34,  35,
  36,   37,  38,  39,  40,  41,  42,  43,
  44,   45,  46,  47,  48,  49,  50,  51,
  52,   53,  54,  55,  56,  57,  58,  60,
  62,   64,  66,  68,  70,  72,  74,  76,
  78,   80,  82,  84,  86,  88,  90,  92,
  94,   96,  98, 100, 102, 104, 106, 108,
  110, 112, 114, 116, 119, 122, 125, 128,
  131, 134, 137, 140, 143, 146, 149, 152,
  155, 158, 161, 164, 167, 170, 173, 177,
  181, 185, 189, 193, 197, 201, 205, 209,
  213, 217, 221, 225, 229, 234, 239, 245,
  249, 254, 259, 264, 269, 274, 279, 284
};

static const uint16_t kAcTable2[128] = {
  8,     8,   9,  10,  12,  13,  15,  17,
  18,   20,  21,  23,  24,  26,  27,  29,
  31,   32,  34,  35,  37,  38,  40,  41,
  43,   44,  46,  48,  49,  51,  52,  54,
  55,   57,  58,  60,  62,  63,  65,  66,
  68,   69,  71,  72,  74,  75,  77,  79,
  80,   82,  83,  85,  86,  88,  89,  93,
  96,   99, 102, 105, 108, 111, 114, 117,
  120, 124, 127, 130, 133, 136, 139, 142,
  145, 148, 151, 155, 158, 161, 164, 167,
  170, 173, 176, 179, 184, 189, 193, 198,
  203, 207, 212, 217, 221, 226, 230, 235,
  240, 244, 249, 254, 258, 263, 268, 274,
  280, 286, 292, 299, 305, 311, 317, 323,
  330, 336, 342, 348, 354, 362, 370, 379,
  385, 393, 401, 409, 416, 424, 432, 440
};

static const uint8_t kBiasMatrices[3][2] = {  // [luma-ac,luma-dc,chroma][dc,ac]
  { 96, 110 }, { 96, 108 }, { 110, 115 }
};

// Sharpening by (slightly) raising the hi-frequency coeffs.
// Hack-ish but helpful for mid-bitrate range. Use with care.
#define SHARPEN_BITS 11  // number of descaling bits for sharpening bias
static const uint8_t kFreqSharpening[16] = {
  0,  30, 60, 90,
  30, 60, 90, 90,
  60, 90, 90, 90,
  90, 90, 90, 90
};

//------------------------------------------------------------------------------
// Initialize quantization parameters in VP8Matrix

// Returns the average quantizer
static int ExpandMatrix(VP8Matrix* const m, int type) {
  int i, sum;
  for (i = 0; i < 2; ++i) {
    const int is_ac_coeff = (i > 0);
    const int bias = kBiasMatrices[type][is_ac_coeff];
    m->iq_[i] = (1 << QFIX) / m->q_[i];
    m->bias_[i] = BIAS(bias);
    // zthresh_ is the exact value such that QUANTDIV(coeff, iQ, B) is:
    //   * zero if coeff <= zthresh
    //   * non-zero if coeff > zthresh
    m->zthresh_[i] = ((1 << QFIX) - 1 - m->bias_[i]) / m->iq_[i];
  }
  for (i = 2; i < 16; ++i) {
    m->q_[i] = m->q_[1];
    m->iq_[i] = m->iq_[1];
    m->bias_[i] = m->bias_[1];
    m->zthresh_[i] = m->zthresh_[1];
  }
  for (sum = 0, i = 0; i < 16; ++i) {
    if (type == 0) {  // we only use sharpening for AC luma coeffs
      m->sharpen_[i] = (kFreqSharpening[i] * m->q_[i]) >> SHARPEN_BITS;
    } else {
      m->sharpen_[i] = 0;
    }
    sum += m->q_[i];
  }
  return (sum + 8) >> 4;
}

static void SetupMatrices(VP8Encoder* enc) {
  int i;
  const int tlambda_scale =
    (enc->method_ >= 4) ? enc->config_->sns_strength
                        : 0;
  const int num_segments = enc->segment_hdr_.num_segments_;
  for (i = 0; i < num_segments; ++i) {
    VP8SegmentInfo* const m = &enc->dqm_[i];
    const int q = m->quant_;
    int q4, q16, quv;
    m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)];
    m->y1_.q_[1] = kAcTable[clip(q,                  0, 127)];

    m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2;
    m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)];

    m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)];
    m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)];

    q4  = ExpandMatrix(&m->y1_, 0);
    q16 = ExpandMatrix(&m->y2_, 1);
    quv = ExpandMatrix(&m->uv_, 2);

    m->lambda_i4_          = (3 * q4 * q4) >> 7;
    m->lambda_i16_         = (3 * q16 * q16);
    m->lambda_uv_          = (3 * quv * quv) >> 6;
    m->lambda_mode_        = (1 * q4 * q4) >> 7;
    m->lambda_trellis_i4_  = (7 * q4 * q4) >> 3;
    m->lambda_trellis_i16_ = (q16 * q16) >> 2;
    m->lambda_trellis_uv_  = (quv *quv) << 1;
    m->tlambda_            = (tlambda_scale * q4) >> 5;

    m->min_disto_ = 10 * m->y1_.q_[0];   // quantization-aware min disto
    m->max_edge_  = 0;
  }
}

//------------------------------------------------------------------------------
// Initialize filtering parameters

// Very small filter-strength values have close to no visual effect. So we can
// save a little decoding-CPU by turning filtering off for these.
#define FSTRENGTH_CUTOFF 2

static void SetupFilterStrength(VP8Encoder* const enc) {
  int i;
  // level0 is in [0..500]. Using '-f 50' as filter_strength is mid-filtering.
  const int level0 = 5 * enc->config_->filter_strength;
  for (i = 0; i < NUM_MB_SEGMENTS; ++i) {
    VP8SegmentInfo* const m = &enc->dqm_[i];
    // We focus on the quantization of AC coeffs.
    const int qstep = kAcTable[clip(m->quant_, 0, 127)] >> 2;
    const int base_strength =
        VP8FilterStrengthFromDelta(enc->filter_hdr_.sharpness_, qstep);
    // Segments with lower complexity ('beta') will be less filtered.
    const int f = base_strength * level0 / (256 + m->beta_);
    m->fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f;
  }
  // We record the initial strength (mainly for the case of 1-segment only).
  enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_;
  enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0);
  enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness;
}

//------------------------------------------------------------------------------

// Note: if you change the values below, remember that the max range
// allowed by the syntax for DQ_UV is [-16,16].
#define MAX_DQ_UV (6)
#define MIN_DQ_UV (-4)

// We want to emulate jpeg-like behaviour where the expected "good" quality
// is around q=75. Internally, our "good" middle is around c=50. So we
// map accordingly using linear piece-wise function
static double QualityToCompression(double c) {
  const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.;
  // The file size roughly scales as pow(quantizer, 3.). Actually, the
  // exponent is somewhere between 2.8 and 3.2, but we're mostly interested
  // in the mid-quant range. So we scale the compressibility inversely to
  // this power-law: quant ~= compression ^ 1/3. This law holds well for
  // low quant. Finer modeling for high-quant would make use of kAcTable[]
  // more explicitly.
  const double v = pow(linear_c, 1 / 3.);
  return v;
}

static double QualityToJPEGCompression(double c, double alpha) {
  // We map the complexity 'alpha' and quality setting 'c' to a compression
  // exponent empirically matched to the compression curve of libjpeg6b.
  // On average, the WebP output size will be roughly similar to that of a
  // JPEG file compressed with same quality factor.
  const double amin = 0.30;
  const double amax = 0.85;
  const double exp_min = 0.4;
  const double exp_max = 0.9;
  const double slope = (exp_min - exp_max) / (amax - amin);
  // Linearly interpolate 'expn' from exp_min to exp_max
  // in the [amin, amax] range.
  const double expn = (alpha > amax) ? exp_min
                    : (alpha < amin) ? exp_max
                    : exp_max + slope * (alpha - amin);
  const double v = pow(c, expn);
  return v;
}

static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1,
                                 const VP8SegmentInfo* const S2) {
  return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_);
}

static void SimplifySegments(VP8Encoder* const enc) {
  int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 };
  const int num_segments = enc->segment_hdr_.num_segments_;
  int num_final_segments = 1;
  int s1, s2;
  for (s1 = 1; s1 < num_segments; ++s1) {    // find similar segments
    const VP8SegmentInfo* const S1 = &enc->dqm_[s1];
    int found = 0;
    // check if we already have similar segment
    for (s2 = 0; s2 < num_final_segments; ++s2) {
      const VP8SegmentInfo* const S2 = &enc->dqm_[s2];
      if (SegmentsAreEquivalent(S1, S2)) {
        found = 1;
        break;
      }
    }
    map[s1] = s2;
    if (!found) {
      if (num_final_segments != s1) {
        enc->dqm_[num_final_segments] = enc->dqm_[s1];
      }
      ++num_final_segments;
    }
  }
  if (num_final_segments < num_segments) {  // Remap
    int i = enc->mb_w_ * enc->mb_h_;
    while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_];
    enc->segment_hdr_.num_segments_ = num_final_segments;
    // Replicate the trailing segment infos (it's mostly cosmetics)
    for (i = num_final_segments; i < num_segments; ++i) {
      enc->dqm_[i] = enc->dqm_[num_final_segments - 1];
    }
  }
}

void VP8SetSegmentParams(VP8Encoder* const enc, float quality) {
  int i;
  int dq_uv_ac, dq_uv_dc;
  const int num_segments = enc->segment_hdr_.num_segments_;
  const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.;
  const double Q = quality / 100.;
  const double c_base = enc->config_->emulate_jpeg_size ?
      QualityToJPEGCompression(Q, enc->alpha_ / 255.) :
      QualityToCompression(Q);
  for (i = 0; i < num_segments; ++i) {
    // We modulate the base coefficient to accommodate for the quantization
    // susceptibility and allow denser segments to be quantized more.
    const double expn = 1. - amp * enc->dqm_[i].alpha_;
    const double c = pow(c_base, expn);
    const int q = (int)(127. * (1. - c));
    assert(expn > 0.);
    enc->dqm_[i].quant_ = clip(q, 0, 127);
  }

  // purely indicative in the bitstream (except for the 1-segment case)
  enc->base_quant_ = enc->dqm_[0].quant_;

  // fill-in values for the unused segments (required by the syntax)
  for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) {
    enc->dqm_[i].quant_ = enc->base_quant_;
  }

  // uv_alpha_ is normally spread around ~60. The useful range is
  // typically ~30 (quite bad) to ~100 (ok to decimate UV more).
  // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv.
  dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV)
                                          / (MAX_ALPHA - MIN_ALPHA);
  // we rescale by the user-defined strength of adaptation
  dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100;
  // and make it safe.
  dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV);
  // We also boost the dc-uv-quant a little, based on sns-strength, since
  // U/V channels are quite more reactive to high quants (flat DC-blocks
  // tend to appear, and are displeasant).
  dq_uv_dc = -4 * enc->config_->sns_strength / 100;
  dq_uv_dc = clip(dq_uv_dc, -15, 15);   // 4bit-signed max allowed

  enc->dq_y1_dc_ = 0;       // TODO(skal): dq-lum
  enc->dq_y2_dc_ = 0;
  enc->dq_y2_ac_ = 0;
  enc->dq_uv_dc_ = dq_uv_dc;
  enc->dq_uv_ac_ = dq_uv_ac;

  SetupFilterStrength(enc);   // initialize segments' filtering, eventually

  if (num_segments > 1) SimplifySegments(enc);

  SetupMatrices(enc);         // finalize quantization matrices
}

//------------------------------------------------------------------------------
// Form the predictions in cache

// Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index
const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 };
const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 };

// Must be indexed using {B_DC_PRED -> B_HU_PRED} as index
const int VP8I4ModeOffsets[NUM_BMODES] = {
  I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4
};

void VP8MakeLuma16Preds(const VP8EncIterator* const it) {
  const uint8_t* const left = it->x_ ? it->y_left_ : NULL;
  const uint8_t* const top = it->y_ ? it->y_top_ : NULL;
  VP8EncPredLuma16(it->yuv_p_, left, top);
}

void VP8MakeChroma8Preds(const VP8EncIterator* const it) {
  const uint8_t* const left = it->x_ ? it->u_left_ : NULL;
  const uint8_t* const top = it->y_ ? it->uv_top_ : NULL;
  VP8EncPredChroma8(it->yuv_p_, left, top);
}

void VP8MakeIntra4Preds(const VP8EncIterator* const it) {
  VP8EncPredLuma4(it->yuv_p_, it->i4_top_);
}

//------------------------------------------------------------------------------
// Quantize

// Layout:
// +----+
// |YYYY| 0
// |YYYY| 4
// |YYYY| 8
// |YYYY| 12
// +----+
// |UUVV| 16
// |UUVV| 20
// +----+

const int VP8Scan[16 + 4 + 4] = {
  // Luma
  0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
  0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
  0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
  0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,

  0 + 0 * BPS,   4 + 0 * BPS, 0 + 4 * BPS,  4 + 4 * BPS,    // U
  8 + 0 * BPS,  12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS     // V
};

//------------------------------------------------------------------------------
// Distortion measurement

static const uint16_t kWeightY[16] = {
  38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2
};

static const uint16_t kWeightTrellis[16] = {
#if USE_TDISTO == 0
  16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
#else
  30, 27, 19, 11,
  27, 24, 17, 10,
  19, 17, 12,  8,
  11, 10,  8,  6
#endif
};

// Init/Copy the common fields in score.
static void InitScore(VP8ModeScore* const rd) {
  rd->D  = 0;
  rd->SD = 0;
  rd->R  = 0;
  rd->H  = 0;
  rd->nz = 0;
  rd->score = MAX_COST;
}

static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
  dst->D  = src->D;
  dst->SD = src->SD;
  dst->R  = src->R;
  dst->H  = src->H;
  dst->nz = src->nz;      // note that nz is not accumulated, but just copied.
  dst->score = src->score;
}

static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
  dst->D  += src->D;
  dst->SD += src->SD;
  dst->R  += src->R;
  dst->H  += src->H;
  dst->nz |= src->nz;     // here, new nz bits are accumulated.
  dst->score += src->score;
}

//------------------------------------------------------------------------------
// Performs trellis-optimized quantization.

// Trellis

typedef struct {
  int prev;        // best previous
  int level;       // level
  int sign;        // sign of coeff_i
  score_t cost;    // bit cost
  score_t error;   // distortion = sum of (|coeff_i| - level_i * Q_i)^2
  int ctx;         // context (only depends on 'level'. Could be spared.)
} Node;

// If a coefficient was quantized to a value Q (using a neutral bias),
// we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA]
// We don't test negative values though.
#define MIN_DELTA 0   // how much lower level to try
#define MAX_DELTA 1   // how much higher
#define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA)
#define NODE(n, l) (nodes[(n) + 1][(l) + MIN_DELTA])

static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) {
  // TODO: incorporate the "* 256" in the tables?
  rd->score = (rd->R + rd->H) * lambda + 256 * (rd->D + rd->SD);
}

static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate,
                                          score_t distortion) {
  return rate * lambda + 256 * distortion;
}

static int TrellisQuantizeBlock(const VP8EncIterator* const it,
                                int16_t in[16], int16_t out[16],
                                int ctx0, int coeff_type,
                                const VP8Matrix* const mtx,
                                int lambda) {
  ProbaArray* const last_costs = it->enc_->proba_.coeffs_[coeff_type];
  CostArray* const costs = it->enc_->proba_.level_cost_[coeff_type];
  const int first = (coeff_type == 0) ? 1 : 0;
  Node nodes[17][NUM_NODES];
  int best_path[3] = {-1, -1, -1};   // store best-last/best-level/best-previous
  score_t best_score;
  int best_node;
  int last = first - 1;
  int n, m, p, nz;

  {
    score_t cost;
    score_t max_error;
    const int thresh = mtx->q_[1] * mtx->q_[1] / 4;
    const int last_proba = last_costs[VP8EncBands[first]][ctx0][0];

    // compute maximal distortion.
    max_error = 0;
    for (n = first; n < 16; ++n) {
      const int j  = kZigzag[n];
      const int err = in[j] * in[j];
      max_error += kWeightTrellis[j] * err;
      if (err > thresh) last = n;
    }
    // we don't need to go inspect up to n = 16 coeffs. We can just go up
    // to last + 1 (inclusive) without losing much.
    if (last < 15) ++last;

    // compute 'skip' score. This is the max score one can do.
    cost = VP8BitCost(0, last_proba);
    best_score = RDScoreTrellis(lambda, cost, max_error);

    // initialize source node.
    n = first - 1;
    for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
      NODE(n, m).cost = 0;
      NODE(n, m).error = max_error;
      NODE(n, m).ctx = ctx0;
    }
  }

  // traverse trellis.
  for (n = first; n <= last; ++n) {
    const int j  = kZigzag[n];
    const int Q  = mtx->q_[j];
    const int iQ = mtx->iq_[j];
    const int B = BIAS(0x00);     // neutral bias
    // note: it's important to take sign of the _original_ coeff,
    // so we don't have to consider level < 0 afterward.
    const int sign = (in[j] < 0);
    const int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
    int level0 = QUANTDIV(coeff0, iQ, B);
    if (level0 > MAX_LEVEL) level0 = MAX_LEVEL;

    // test all alternate level values around level0.
    for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
      Node* const cur = &NODE(n, m);
      int delta_error, new_error;
      score_t cur_score = MAX_COST;
      int level = level0 + m;
      int last_proba;

      cur->sign = sign;
      cur->level = level;
      cur->ctx = (level == 0) ? 0 : (level == 1) ? 1 : 2;
      if (level > MAX_LEVEL || level < 0) {   // node is dead?
        cur->cost = MAX_COST;
        continue;
      }
      last_proba = last_costs[VP8EncBands[n + 1]][cur->ctx][0];

      // Compute delta_error = how much coding this level will
      // subtract as distortion to max_error
      new_error = coeff0 - level * Q;
      delta_error =
        kWeightTrellis[j] * (coeff0 * coeff0 - new_error * new_error);

      // Inspect all possible non-dead predecessors. Retain only the best one.
      for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) {
        const Node* const prev = &NODE(n - 1, p);
        const int prev_ctx = prev->ctx;
        const uint16_t* const tcost = costs[VP8EncBands[n]][prev_ctx];
        const score_t total_error = prev->error - delta_error;
        score_t cost, base_cost, score;

        if (prev->cost >= MAX_COST) {   // dead node?
          continue;
        }

        // Base cost of both terminal/non-terminal
        base_cost = prev->cost + VP8LevelCost(tcost, level);

        // Examine node assuming it's a non-terminal one.
        cost = base_cost;
        if (level && n < 15) {
          cost += VP8BitCost(1, last_proba);
        }
        score = RDScoreTrellis(lambda, cost, total_error);
        if (score < cur_score) {
          cur_score = score;
          cur->cost  = cost;
          cur->error = total_error;
          cur->prev  = p;
        }

        // Now, record best terminal node (and thus best entry in the graph).
        if (level) {
          cost = base_cost;
          if (n < 15) cost += VP8BitCost(0, last_proba);
          score = RDScoreTrellis(lambda, cost, total_error);
          if (score < best_score) {
            best_score = score;
            best_path[0] = n;   // best eob position
            best_path[1] = m;   // best level
            best_path[2] = p;   // best predecessor
          }
        }
      }
    }
  }

  // Fresh start
  memset(in + first, 0, (16 - first) * sizeof(*in));
  memset(out + first, 0, (16 - first) * sizeof(*out));
  if (best_path[0] == -1) {
    return 0;   // skip!
  }

  // Unwind the best path.
  // Note: best-prev on terminal node is not necessarily equal to the
  // best_prev for non-terminal. So we patch best_path[2] in.
  n = best_path[0];
  best_node = best_path[1];
  NODE(n, best_node).prev = best_path[2];   // force best-prev for terminal
  nz = 0;

  for (; n >= first; --n) {
    const Node* const node = &NODE(n, best_node);
    const int j = kZigzag[n];
    out[n] = node->sign ? -node->level : node->level;
    nz |= (node->level != 0);
    in[j] = out[n] * mtx->q_[j];
    best_node = node->prev;
  }
  return nz;
}

#undef NODE

//------------------------------------------------------------------------------
// Performs: difference, transform, quantize, back-transform, add
// all at once. Output is the reconstructed block in *yuv_out, and the
// quantized levels in *levels.

static int ReconstructIntra16(VP8EncIterator* const it,
                              VP8ModeScore* const rd,
                              uint8_t* const yuv_out,
                              int mode) {
  VP8Encoder* const enc = it->enc_;
  const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
  const uint8_t* const src = it->yuv_in_ + Y_OFF;
  VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
  int nz = 0;
  int n;
  int16_t tmp[16][16], dc_tmp[16];

  for (n = 0; n < 16; ++n) {
    VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]);
  }
  VP8FTransformWHT(tmp[0], dc_tmp);
  nz |= VP8EncQuantizeBlockWHT(dc_tmp, rd->y_dc_levels, &dqm->y2_) << 24;

  if (DO_TRELLIS_I16 && it->do_trellis_) {
    int x, y;
    VP8IteratorNzToBytes(it);
    for (y = 0, n = 0; y < 4; ++y) {
      for (x = 0; x < 4; ++x, ++n) {
        const int ctx = it->top_nz_[x] + it->left_nz_[y];
        const int non_zero =
           TrellisQuantizeBlock(it, tmp[n], rd->y_ac_levels[n], ctx, 0,
                                &dqm->y1_, dqm->lambda_trellis_i16_);
        it->top_nz_[x] = it->left_nz_[y] = non_zero;
        nz |= non_zero << n;
      }
    }
  } else {
    for (n = 0; n < 16; ++n) {
      nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], 1, &dqm->y1_) << n;
    }
  }

  // Transform back
  VP8ITransformWHT(dc_tmp, tmp[0]);
  for (n = 0; n < 16; n += 2) {
    VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1);
  }

  return nz;
}

static int ReconstructIntra4(VP8EncIterator* const it,
                             int16_t levels[16],
                             const uint8_t* const src,
                             uint8_t* const yuv_out,
                             int mode) {
  const VP8Encoder* const enc = it->enc_;
  const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
  const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
  int nz = 0;
  int16_t tmp[16];

  VP8FTransform(src, ref, tmp);
  if (DO_TRELLIS_I4 && it->do_trellis_) {
    const int x = it->i4_ & 3, y = it->i4_ >> 2;
    const int ctx = it->top_nz_[x] + it->left_nz_[y];
    nz = TrellisQuantizeBlock(it, tmp, levels, ctx, 3, &dqm->y1_,
                              dqm->lambda_trellis_i4_);
  } else {
    nz = VP8EncQuantizeBlock(tmp, levels, 0, &dqm->y1_);
  }
  VP8ITransform(ref, tmp, yuv_out, 0);
  return nz;
}

static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
                         uint8_t* const yuv_out, int mode) {
  const VP8Encoder* const enc = it->enc_;
  const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode];
  const uint8_t* const src = it->yuv_in_ + U_OFF;
  const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
  int nz = 0;
  int n;
  int16_t tmp[8][16];

  for (n = 0; n < 8; ++n) {
    VP8FTransform(src + VP8Scan[16 + n], ref + VP8Scan[16 + n], tmp[n]);
  }
  if (DO_TRELLIS_UV && it->do_trellis_) {
    int ch, x, y;
    for (ch = 0, n = 0; ch <= 2; ch += 2) {
      for (y = 0; y < 2; ++y) {
        for (x = 0; x < 2; ++x, ++n) {
          const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
          const int non_zero =
            TrellisQuantizeBlock(it, tmp[n], rd->uv_levels[n], ctx, 2,
                                 &dqm->uv_, dqm->lambda_trellis_uv_);
          it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero;
          nz |= non_zero << n;
        }
      }
    }
  } else {
    for (n = 0; n < 8; ++n) {
      nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], 0, &dqm->uv_) << n;
    }
  }

  for (n = 0; n < 8; n += 2) {
    VP8ITransform(ref + VP8Scan[16 + n], tmp[n], yuv_out + VP8Scan[16 + n], 1);
  }
  return (nz << 16);
}

//------------------------------------------------------------------------------
// RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost.
// Pick the mode is lower RD-cost = Rate + lambda * Distortion.

static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) {
  // We look at the first three AC coefficients to determine what is the average
  // delta between each sub-4x4 block.
  const int v0 = abs(DCs[1]);
  const int v1 = abs(DCs[4]);
  const int v2 = abs(DCs[5]);
  int max_v = (v0 > v1) ? v1 : v0;
  max_v = (v2 > max_v) ? v2 : max_v;
  if (max_v > dqm->max_edge_) dqm->max_edge_ = max_v;
}

static void SwapPtr(uint8_t** a, uint8_t** b) {
  uint8_t* const tmp = *a;
  *a = *b;
  *b = tmp;
}

static void SwapOut(VP8EncIterator* const it) {
  SwapPtr(&it->yuv_out_, &it->yuv_out2_);
}

static score_t IsFlat(const int16_t* levels, int num_blocks, score_t thresh) {
  score_t score = 0;
  while (num_blocks-- > 0) {      // TODO(skal): refine positional scoring?
    int i;
    for (i = 1; i < 16; ++i) {    // omit DC, we're only interested in AC
      score += (levels[i] != 0);
      if (score > thresh) return 0;
    }
    levels += 16;
  }
  return 1;
}

static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) {
  const int kNumBlocks = 16;
  VP8Encoder* const enc = it->enc_;
  VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
  const int lambda = dqm->lambda_i16_;
  const int tlambda = dqm->tlambda_;
  const uint8_t* const src = it->yuv_in_ + Y_OFF;
  VP8ModeScore rd16;
  int mode;

  rd->mode_i16 = -1;
  for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
    uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF;  // scratch buffer
    int nz;

    // Reconstruct
    nz = ReconstructIntra16(it, &rd16, tmp_dst, mode);

    // Measure RD-score
    rd16.D = VP8SSE16x16(src, tmp_dst);
    rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY))
            : 0;
    rd16.H = VP8FixedCostsI16[mode];
    rd16.R = VP8GetCostLuma16(it, &rd16);
    if (mode > 0 &&
        IsFlat(rd16.y_ac_levels[0], kNumBlocks, FLATNESS_LIMIT_I16)) {
      // penalty to avoid flat area to be mispredicted by complex mode
      rd16.R += FLATNESS_PENALTY * kNumBlocks;
    }

    // Since we always examine Intra16 first, we can overwrite *rd directly.
    SetRDScore(lambda, &rd16);
    if (mode == 0 || rd16.score < rd->score) {
      CopyScore(rd, &rd16);
      rd->mode_i16 = mode;
      rd->nz = nz;
      memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels));
      memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels));
      SwapOut(it);
    }
  }
  SetRDScore(dqm->lambda_mode_, rd);   // finalize score for mode decision.
  VP8SetIntra16Mode(it, rd->mode_i16);

  // we have a blocky macroblock (only DCs are non-zero) with fairly high
  // distortion, record max delta so we can later adjust the minimal filtering
  // strength needed to smooth these blocks out.
  if ((rd->nz & 0xffff) == 0 && rd->D > dqm->min_disto_) {
    StoreMaxDelta(dqm, rd->y_dc_levels);
  }
}

//------------------------------------------------------------------------------

// return the cost array corresponding to the surrounding prediction modes.
static const uint16_t* GetCostModeI4(VP8EncIterator* const it,
                                     const uint8_t modes[16]) {
  const int preds_w = it->enc_->preds_w_;
  const int x = (it->i4_ & 3), y = it->i4_ >> 2;
  const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1];
  const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4];
  return VP8FixedCostsI4[top][left];
}

static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) {
  const VP8Encoder* const enc = it->enc_;
  const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
  const int lambda = dqm->lambda_i4_;
  const int tlambda = dqm->tlambda_;
  const uint8_t* const src0 = it->yuv_in_ + Y_OFF;
  uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF;
  int total_header_bits = 0;
  VP8ModeScore rd_best;

  if (enc->max_i4_header_bits_ == 0) {
    return 0;
  }

  InitScore(&rd_best);
  rd_best.H = 211;  // '211' is the value of VP8BitCost(0, 145)
  SetRDScore(dqm->lambda_mode_, &rd_best);
  VP8IteratorStartI4(it);
  do {
    const int kNumBlocks = 1;
    VP8ModeScore rd_i4;
    int mode;
    int best_mode = -1;
    const uint8_t* const src = src0 + VP8Scan[it->i4_];
    const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4);
    uint8_t* best_block = best_blocks + VP8Scan[it->i4_];
    uint8_t* tmp_dst = it->yuv_p_ + I4TMP;    // scratch buffer.

    InitScore(&rd_i4);
    VP8MakeIntra4Preds(it);
    for (mode = 0; mode < NUM_BMODES; ++mode) {
      VP8ModeScore rd_tmp;
      int16_t tmp_levels[16];

      // Reconstruct
      rd_tmp.nz =
          ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_;

      // Compute RD-score
      rd_tmp.D = VP8SSE4x4(src, tmp_dst);
      rd_tmp.SD =
          tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY))
                  : 0;
      rd_tmp.H = mode_costs[mode];
      rd_tmp.R = VP8GetCostLuma4(it, tmp_levels);
      if (mode > 0 && IsFlat(tmp_levels, kNumBlocks, FLATNESS_LIMIT_I4)) {
        rd_tmp.R += FLATNESS_PENALTY * kNumBlocks;
      }

      SetRDScore(lambda, &rd_tmp);
      if (best_mode < 0 || rd_tmp.score < rd_i4.score) {
        CopyScore(&rd_i4, &rd_tmp);
        best_mode = mode;
        SwapPtr(&tmp_dst, &best_block);
        memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels));
      }
    }
    SetRDScore(dqm->lambda_mode_, &rd_i4);
    AddScore(&rd_best, &rd_i4);
    if (rd_best.score >= rd->score) {
      return 0;
    }
    total_header_bits += (int)rd_i4.H;   // <- equal to mode_costs[best_mode];
    if (total_header_bits > enc->max_i4_header_bits_) {
      return 0;
    }
    // Copy selected samples if not in the right place already.
    if (best_block != best_blocks + VP8Scan[it->i4_]) {
      VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]);
    }
    rd->modes_i4[it->i4_] = best_mode;
    it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0);
  } while (VP8IteratorRotateI4(it, best_blocks));

  // finalize state
  CopyScore(rd, &rd_best);
  VP8SetIntra4Mode(it, rd->modes_i4);
  SwapOut(it);
  memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels));
  return 1;   // select intra4x4 over intra16x16
}

//------------------------------------------------------------------------------

static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) {
  const int kNumBlocks = 8;
  const VP8Encoder* const enc = it->enc_;
  const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
  const int lambda = dqm->lambda_uv_;
  const uint8_t* const src = it->yuv_in_ + U_OFF;
  uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF;  // scratch buffer
  uint8_t* const dst0 = it->yuv_out_ + U_OFF;
  VP8ModeScore rd_best;
  int mode;

  rd->mode_uv = -1;
  InitScore(&rd_best);
  for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
    VP8ModeScore rd_uv;

    // Reconstruct
    rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode);

    // Compute RD-score
    rd_uv.D  = VP8SSE16x8(src, tmp_dst);
    rd_uv.SD = 0;    // TODO: should we call TDisto? it tends to flatten areas.
    rd_uv.H  = VP8FixedCostsUV[mode];
    rd_uv.R  = VP8GetCostUV(it, &rd_uv);
    if (mode > 0 && IsFlat(rd_uv.uv_levels[0], kNumBlocks, FLATNESS_LIMIT_UV)) {
      rd_uv.R += FLATNESS_PENALTY * kNumBlocks;
    }

    SetRDScore(lambda, &rd_uv);
    if (mode == 0 || rd_uv.score < rd_best.score) {
      CopyScore(&rd_best, &rd_uv);
      rd->mode_uv = mode;
      memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels));
      memcpy(dst0, tmp_dst, UV_SIZE);   //  TODO: SwapUVOut() ?
    }
  }
  VP8SetIntraUVMode(it, rd->mode_uv);
  AddScore(rd, &rd_best);
}

//------------------------------------------------------------------------------
// Final reconstruction and quantization.

static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) {
  const VP8Encoder* const enc = it->enc_;
  const int is_i16 = (it->mb_->type_ == 1);
  int nz = 0;

  if (is_i16) {
    nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]);
  } else {
    VP8IteratorStartI4(it);
    do {
      const int mode =
          it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_];
      const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
      uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_];
      VP8MakeIntra4Preds(it);
      nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_],
                              src, dst, mode) << it->i4_;
    } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF));
  }

  nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_);
  rd->nz = nz;
}

// Refine intra16/intra4 sub-modes based on distortion only (not rate).
static void DistoRefine(VP8EncIterator* const it, int try_both_i4_i16) {
  const int is_i16 = (it->mb_->type_ == 1);
  score_t best_score = MAX_COST;

  if (try_both_i4_i16 || is_i16) {
    int mode;
    int best_mode = -1;
    for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
      const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
      const uint8_t* const src = it->yuv_in_ + Y_OFF;
      const score_t score = VP8SSE16x16(src, ref);
      if (score < best_score) {
        best_mode = mode;
        best_score = score;
      }
    }
    VP8SetIntra16Mode(it, best_mode);
  }
  if (try_both_i4_i16 || !is_i16) {
    uint8_t modes_i4[16];
    // We don't evaluate the rate here, but just account for it through a
    // constant penalty (i4 mode usually needs more bits compared to i16).
    score_t score_i4 = (score_t)I4_PENALTY;

    VP8IteratorStartI4(it);
    do {
      int mode;
      int best_sub_mode = -1;
      score_t best_sub_score = MAX_COST;
      const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];

      // TODO(skal): we don't really need the prediction pixels here,
      // but just the distortion against 'src'.
      VP8MakeIntra4Preds(it);
      for (mode = 0; mode < NUM_BMODES; ++mode) {
        const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
        const score_t score = VP8SSE4x4(src, ref);
        if (score < best_sub_score) {
          best_sub_mode = mode;
          best_sub_score = score;
        }
      }
      modes_i4[it->i4_] = best_sub_mode;
      score_i4 += best_sub_score;
      if (score_i4 >= best_score) break;
    } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
    if (score_i4 < best_score) {
      VP8SetIntra4Mode(it, modes_i4);
    }
  }
}

//------------------------------------------------------------------------------
// Entry point

int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd,
                VP8RDLevel rd_opt) {
  int is_skipped;
  const int method = it->enc_->method_;

  InitScore(rd);

  // We can perform predictions for Luma16x16 and Chroma8x8 already.
  // Luma4x4 predictions needs to be done as-we-go.
  VP8MakeLuma16Preds(it);
  VP8MakeChroma8Preds(it);

  if (rd_opt > RD_OPT_NONE) {
    it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL);
    PickBestIntra16(it, rd);
    if (method >= 2) {
      PickBestIntra4(it, rd);
    }
    PickBestUV(it, rd);
    if (rd_opt == RD_OPT_TRELLIS) {   // finish off with trellis-optim now
      it->do_trellis_ = 1;
      SimpleQuantize(it, rd);
    }
  } else {
    // For method == 2, pick the best intra4/intra16 based on SSE (~tad slower).
    // For method <= 1, we refine intra4 or intra16 (but don't re-examine mode).
    DistoRefine(it, (method >= 2));
    SimpleQuantize(it, rd);
  }
  is_skipped = (rd->nz == 0);
  VP8SetSkip(it, is_skipped);
  return is_skipped;
}