/*************************************************************************** ** ** Copyright (C) 2013 Digia Plc and/or its subsidiary(-ies). ** Contact: http://www.qt-project.org/legal ** ** This file is part of the QtLocation module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and Digia. For licensing terms and ** conditions see http://qt.digia.com/licensing. For further information ** use the contact form at http://qt.digia.com/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Digia gives you certain additional ** rights. These rights are described in the Digia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3.0 as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU General Public License version 3.0 requirements will be ** met: http://www.gnu.org/copyleft/gpl.html. ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qdeclarativecirclemapitem_p.h" #include "qdeclarativegeomapquickitem_p.h" #include "qdeclarativepolygonmapitem_p.h" #include "qgeocameracapabilities_p.h" #include "qgeoprojection_p.h" #include #include #include #include #include "qdoublevector2d_p.h" /* poly2tri triangulator includes */ #include "../../3rdparty/poly2tri/common/shapes.h" #include "../../3rdparty/poly2tri/sweep/cdt.h" QT_BEGIN_NAMESPACE /*! \qmltype MapCircle \instantiates QDeclarativeCircleMapItem \inqmlmodule QtLocation \ingroup qml-QtLocation5-maps \since Qt Location 5.0 \brief The MapCircle type displays a geographic circle on a Map. The MapCircle type displays a geographic circle on a Map, which consists of all points that are within a set distance from one central point. Depending on map projection, a geographic circle may not always be a perfect circle on the screen: for instance, in the Mercator projection, circles become ovoid in shape as they near the poles. To display a perfect screen circle around a point, use a MapQuickItem containing a relevant Qt Quick type instead. By default, the circle is displayed as a 1 pixel black border with no fill. To change its appearance, use the color, border.color and border.width properties. Internally, a MapCircle is implemented as a many-sided polygon. To calculate the radius points it uses a spherical model of the Earth, similar to the atDistanceAndAzimuth method of the \l {coordinate} type. These two things can occasionally have implications for the accuracy of the circle's shape, depending on position and map projection. \note Dragging a MapCircle (through the use of \l MouseArea) causes new points to be generated at the same distance (in meters) from the center. This is in contrast to other map items which store their dimensions in terms of latitude and longitude differences between vertices. \section2 Performance MapCircle performance is almost equivalent to that of a MapPolygon with 125 vertices. There is a small amount of additional overhead with respect to calculating the vertices first. Like the other map objects, MapCircle is normally drawn without a smooth appearance. Setting the opacity property will force the object to be blended, which decreases performance considerably depending on the graphics hardware in use. \section2 Example Usage The following snippet shows a map containing a MapCircle, centered at the coordinate (-27, 153) with a radius of 5km. The circle is filled in green, with a 3 pixel black border. \code Map { MapCircle { center { latitude: -27.5 longitude: 153.0 } radius: 5000.0 color: 'green' border.width: 3 } } \endcode \image api-mapcircle.png */ #ifndef M_PI #define M_PI 3.14159265358979323846 #endif struct Vertex { QVector2D position; }; QGeoMapCircleGeometry::QGeoMapCircleGeometry() { } /*! \internal */ void QGeoMapCircleGeometry::updateScreenPointsInvert(const QGeoMap &map) { if (!screenDirty_) return; if (map.width() == 0 || map.height() == 0) { clear(); return; } QPointF origin = map.coordinateToScreenPosition(srcOrigin_, false).toPointF(); QPainterPath ppi = srcPath_; clear(); // a circle requires at least 3 points; if (ppi.elementCount() < 3) return; // translate the path into top-left-centric coordinates QRectF bb = ppi.boundingRect(); ppi.translate(-bb.left(), -bb.top()); firstPointOffset_ = -1 * bb.topLeft(); ppi.closeSubpath(); // calculate actual width of map on screen in pixels QGeoCoordinate mapCenter(0, map.cameraData().center().longitude()); QDoubleVector2D midPoint = map.coordinateToScreenPosition(mapCenter, false); QDoubleVector2D midPointPlusOne = QDoubleVector2D(midPoint.x() + 1.0, midPoint.y()); QGeoCoordinate coord1 = map.screenPositionToCoordinate(midPointPlusOne, false); double geoDistance = coord1.longitude() - map.cameraData().center().longitude(); if ( geoDistance < 0 ) geoDistance += 360.0; double mapWidth = 360.0 / geoDistance; qreal leftOffset = origin.x() - (map.width()/2.0 - mapWidth/2.0) - firstPointOffset_.x(); qreal topOffset = origin.y() - (midPoint.y() - mapWidth/2.0) - firstPointOffset_.y(); QPainterPath ppiBorder; ppiBorder.moveTo(QPointF(-leftOffset, -topOffset)); ppiBorder.lineTo(QPointF(mapWidth - leftOffset, -topOffset)); ppiBorder.lineTo(QPointF(mapWidth - leftOffset, mapWidth - topOffset)); ppiBorder.lineTo(QPointF(-leftOffset, mapWidth - topOffset)); screenOutline_ = ppiBorder; std::vector borderPts; borderPts.reserve(4); std::vector curPts; curPts.reserve(ppi.elementCount()); for (int i = 0; i < ppi.elementCount(); ++i) { const QPainterPath::Element e = ppi.elementAt(i); if (e.isMoveTo() || i == ppi.elementCount() - 1 || (qAbs(e.x - curPts.front()->x) < 0.1 && qAbs(e.y - curPts.front()->y) < 0.1)) { if (curPts.size() > 2) { for (int j = 0; j < 4; ++j) { const QPainterPath::Element e2 = ppiBorder.elementAt(j); borderPts.push_back(new p2t::Point(e2.x, e2.y)); } p2t::CDT *cdt = new p2t::CDT(borderPts); cdt->AddHole(curPts); cdt->Triangulate(); std::vector tris = cdt->GetTriangles(); screenVertices_.reserve(screenVertices_.size() + int(tris.size())); for (size_t i = 0; i < tris.size(); ++i) { p2t::Triangle *t = tris.at(i); for (int j = 0; j < 3; ++j) { p2t::Point *p = t->GetPoint(j); screenVertices_ << QPointF(p->x, p->y); } } delete cdt; } curPts.clear(); curPts.reserve(ppi.elementCount() - i); curPts.push_back(new p2t::Point(e.x, e.y)); } else if (e.isLineTo()) { curPts.push_back(new p2t::Point(e.x, e.y)); } else { qWarning("Unhandled element type in circle painterpath"); } } if (curPts.size() > 0) { qDeleteAll(curPts.begin(), curPts.end()); curPts.clear(); } if (borderPts.size() > 0) { qDeleteAll(borderPts.begin(), borderPts.end()); borderPts.clear(); } screenBounds_ = ppiBorder.boundingRect(); } static const qreal qgeocoordinate_EARTH_MEAN_RADIUS = 6371.0072; inline static qreal qgeocoordinate_degToRad(qreal deg) { return deg * M_PI / 180; } inline static qreal qgeocoordinate_radToDeg(qreal rad) { return rad * 180 / M_PI; } static bool crossEarthPole(const QGeoCoordinate ¢er, qreal distance) { qreal poleLat = 90; QGeoCoordinate northPole = QGeoCoordinate(poleLat, center.longitude()); QGeoCoordinate southPole = QGeoCoordinate(-poleLat, center.longitude()); // approximate using great circle distance qreal distanceToNorthPole = center.distanceTo(northPole); qreal distanceToSouthPole = center.distanceTo(southPole); if (distanceToNorthPole < distance || distanceToSouthPole < distance) return true; return false; } static void calculatePeripheralPoints(QList &path, const QGeoCoordinate ¢er, qreal distance, int steps) { // Calculate points based on great-circle distance // Calculation is the same as GeoCoordinate's atDistanceAndAzimuth function // but tweaked here for computing multiple points // pre-calculate qreal latRad = qgeocoordinate_degToRad(center.latitude()); qreal lonRad = qgeocoordinate_degToRad(center.longitude()); qreal cosLatRad = cos(latRad); qreal sinLatRad = sin(latRad); qreal ratio = (distance / (qgeocoordinate_EARTH_MEAN_RADIUS * 1000.0)); qreal cosRatio = cos(ratio); qreal sinRatio = sin(ratio); qreal sinLatRad_x_cosRatio = sinLatRad * cosRatio; qreal cosLatRad_x_sinRatio = cosLatRad * sinRatio; for (int i = 0; i < steps; ++i) { qreal azimuthRad = 2 * M_PI * i / steps; qreal resultLatRad = asin(sinLatRad_x_cosRatio + cosLatRad_x_sinRatio * cos(azimuthRad)); qreal resultLonRad = lonRad + atan2(sin(azimuthRad) * cosLatRad_x_sinRatio, cosRatio - sinLatRad * sin(resultLatRad)); qreal lat2 = qgeocoordinate_radToDeg(resultLatRad); qreal lon2 = qgeocoordinate_radToDeg(resultLonRad); if (lon2 < -180.0) { lon2 += 360.0; } else if (lon2 > 180.0) { lon2 -= 360.0; } path << QGeoCoordinate(lat2, lon2, center.altitude()); } } QDeclarativeCircleMapItem::QDeclarativeCircleMapItem(QQuickItem *parent) : QDeclarativeGeoMapItemBase(parent), color_(Qt::transparent), radius_(0), dirtyMaterial_(true), updatingGeometry_(false) { setFlag(ItemHasContents, true); QObject::connect(&border_, SIGNAL(colorChanged(QColor)), this, SLOT(updateMapItemAssumeDirty())); QObject::connect(&border_, SIGNAL(widthChanged(qreal)), this, SLOT(updateMapItemAssumeDirty())); // assume that circles are not self-intersecting // to speed up processing // FIXME: unfortunately they self-intersect at the poles due to current drawing method // so the line is commented out until fixed //geometry_.setAssumeSimple(true); } QDeclarativeCircleMapItem::~QDeclarativeCircleMapItem() { } /*! \qmlpropertygroup Location::MapCircle::border \qmlproperty int MapCircle::border.width \qmlproperty color MapCircle::border.color This property is part of the border group property. The border property holds the width and color used to draw the border of the circle. The width is in pixels and is independent of the zoom level of the map. The default values correspond to a black border with a width of 1 pixel. For no line, use a width of 0 or a transparent color. */ QDeclarativeMapLineProperties *QDeclarativeCircleMapItem::border() { return &border_; } void QDeclarativeCircleMapItem::updateMapItemAssumeDirty() { geometry_.markSourceDirty(); borderGeometry_.markSourceDirty(); updateMapItem(); } void QDeclarativeCircleMapItem::setMap(QDeclarativeGeoMap *quickMap, QGeoMap *map) { QDeclarativeGeoMapItemBase::setMap(quickMap,map); if (map) { geometry_.markSourceDirty(); borderGeometry_.markSourceDirty(); updateMapItem(); } } /*! \qmlproperty coordinate MapCircle::center This property holds the central point about which the circle is defined. \sa radius */ void QDeclarativeCircleMapItem::setCenter(const QGeoCoordinate ¢er) { if (center_ == center) return; center_ = center; geometry_.markSourceDirty(); borderGeometry_.markSourceDirty(); updateMapItem(); emit centerChanged(center_); } QGeoCoordinate QDeclarativeCircleMapItem::center() { return center_; } /*! \qmlproperty color MapCircle::color This property holds the fill color of the circle when drawn. For no fill, use a transparent color. */ void QDeclarativeCircleMapItem::setColor(const QColor &color) { if (color_ == color) return; color_ = color; dirtyMaterial_ = true; updateMapItem(); emit colorChanged(color_); } QColor QDeclarativeCircleMapItem::color() const { return color_; } /*! \qmlproperty real MapCircle::radius This property holds the radius of the circle, in meters on the ground. \sa center */ void QDeclarativeCircleMapItem::setRadius(qreal radius) { if (radius_ == radius) return; radius_ = radius; geometry_.markSourceDirty(); borderGeometry_.markSourceDirty(); updateMapItem(); emit radiusChanged(radius); } qreal QDeclarativeCircleMapItem::radius() const { return radius_; } /*! \qmlproperty real MapCircle::opacity This property holds the opacity of the item. Opacity is specified as a number between 0 (fully transparent) and 1 (fully opaque). The default is 1. An item with 0 opacity will still receive mouse events. To stop mouse events, set the visible property of the item to false. */ /*! \internal */ QSGNode *QDeclarativeCircleMapItem::updateMapItemPaintNode(QSGNode *oldNode, UpdatePaintNodeData *data) { Q_UNUSED(data); MapPolygonNode *node = static_cast(oldNode); if (!node) node = new MapPolygonNode(); //TODO: update only material if (geometry_.isScreenDirty() || borderGeometry_.isScreenDirty() || dirtyMaterial_) { node->update(color_, border_.color(), &geometry_, &borderGeometry_); geometry_.setPreserveGeometry(false); borderGeometry_.setPreserveGeometry(false); geometry_.markClean(); borderGeometry_.markClean(); dirtyMaterial_ = false; } return node; } /*! \internal */ void QDeclarativeCircleMapItem::updateMapItem() { if (!map() || !center().isValid()) return; QScopedValueRollback rollback(updatingGeometry_); updatingGeometry_ = true; if (geometry_.isSourceDirty()) { circlePath_.clear(); calculatePeripheralPoints(circlePath_, center_, radius_, 125); } QGeoCoordinate leftBoundCoord; int pathCount = circlePath_.size(); bool preserve = preserveCircleGeometry(circlePath_, center_, radius_, leftBoundCoord); geometry_.setPreserveGeometry(preserve, leftBoundCoord); geometry_.updateSourcePoints(*map(), circlePath_); if (crossEarthPole(center_, radius_) && circlePath_.size() == pathCount) geometry_.updateScreenPointsInvert(*map()); // invert fill area for really huge circles else geometry_.updateScreenPoints(*map()); if (border_.color() != Qt::transparent && border_.width() > 0) { QList closedPath = circlePath_; closedPath << closedPath.first(); borderGeometry_.setPreserveGeometry(preserve, leftBoundCoord); borderGeometry_.updateSourcePoints(*map(), closedPath); borderGeometry_.updateScreenPoints(*map(), border_.width()); QList geoms; geoms << &geometry_ << &borderGeometry_; QRectF combined = QGeoMapItemGeometry::translateToCommonOrigin(geoms); setWidth(combined.width()); setHeight(combined.height()); } else { borderGeometry_.clear(); setWidth(geometry_.screenBoundingBox().width()); setHeight(geometry_.screenBoundingBox().height()); } setPositionOnMap(circlePath_.at(0), geometry_.firstPointOffset()); update(); } /*! \internal */ void QDeclarativeCircleMapItem::afterViewportChanged(const QGeoMapViewportChangeEvent &event) { if (event.mapSize.width() <= 0 || event.mapSize.height() <= 0) return; // if the scene is tilted, we must regenerate our geometry every frame if (map()->cameraCapabilities().supportsTilting() && (event.cameraData.tilt() > 0.1 || event.cameraData.tilt() < -0.1)) { geometry_.markSourceDirty(); borderGeometry_.markSourceDirty(); } // if the scene is rolled, we must regen too if (map()->cameraCapabilities().supportsRolling() && (event.cameraData.roll() > 0.1 || event.cameraData.roll() < -0.1)) { geometry_.markSourceDirty(); borderGeometry_.markSourceDirty(); } // otherwise, only regen on rotate, resize and zoom if (event.bearingChanged || event.mapSizeChanged || event.zoomLevelChanged) { geometry_.markSourceDirty(); borderGeometry_.markSourceDirty(); } if (event.centerChanged && crossEarthPole(center_, radius_)) { geometry_.markSourceDirty(); borderGeometry_.markSourceDirty(); } geometry_.markScreenDirty(); borderGeometry_.markScreenDirty(); updateMapItem(); } /*! \internal */ bool QDeclarativeCircleMapItem::contains(const QPointF &point) const { return (geometry_.contains(point) || borderGeometry_.contains(point)); } /*! \internal */ void QDeclarativeCircleMapItem::geometryChanged(const QRectF &newGeometry, const QRectF &oldGeometry) { if (updatingGeometry_ || newGeometry == oldGeometry) { QDeclarativeGeoMapItemBase::geometryChanged(newGeometry, oldGeometry); return; } QDoubleVector2D newPoint = QDoubleVector2D(x(),y()) + QDoubleVector2D(width(), height()) / 2; QGeoCoordinate newCoordinate = map()->screenPositionToCoordinate(newPoint, false); if (newCoordinate.isValid()) setCenter(newCoordinate); // Not calling QDeclarativeGeoMapItemBase::geometryChanged() as it will be called from a nested // call to this function. } bool QDeclarativeCircleMapItem::preserveCircleGeometry (QList &path, const QGeoCoordinate ¢er, qreal distance, QGeoCoordinate &leftBoundCoord) { // if circle crosses north/south pole, then don't preserve circular shape, if ( crossEarthPole(center, distance)) { updateCirclePathForRendering(path, center, distance); return false; } // else find and set its left bound for (int i = 1; i < path.count(); ++i) { int iNext = (i + 1) % path.count(); if (path.at(iNext).longitude() > path.at(i).longitude() && path.at(i-1).longitude() > path.at(i).longitude()) { if (qAbs(path.at(iNext).longitude() - path.at(i-1).longitude()) < 180) leftBoundCoord = path.at(i); } } return true; } // A workaround for circle path to be drawn correctly using a polygon geometry void QDeclarativeCircleMapItem::updateCirclePathForRendering(QList &path, const QGeoCoordinate ¢er, qreal distance) { qreal poleLat = 90; qreal distanceToNorthPole = center.distanceTo(QGeoCoordinate(poleLat, 0)); qreal distanceToSouthPole = center.distanceTo(QGeoCoordinate(-poleLat, 0)); bool crossNorthPole = distanceToNorthPole < distance; bool crossSouthPole = distanceToSouthPole < distance; if (!crossNorthPole && !crossSouthPole) return; QList wrapPathIndex; // calculate actual width of map on screen in pixels QDoubleVector2D midPoint = map()->coordinateToScreenPosition(map()->cameraData().center(), false); QDoubleVector2D midPointPlusOne(midPoint.x() + 1.0, midPoint.y()); QGeoCoordinate coord1 = map()->screenPositionToCoordinate(midPointPlusOne, false); qreal geoDistance = coord1.longitude() - map()->cameraData().center().longitude(); if ( geoDistance < 0 ) geoDistance += 360; qreal mapWidth = 360.0 / geoDistance; mapWidth = qMin(static_cast(mapWidth), map()->width()); QDoubleVector2D prev = map()->coordinateToScreenPosition(path.at(0), false); // find the points in path where wrapping occurs for (int i = 1; i <= path.count(); ++i) { int index = i % path.count(); QDoubleVector2D point = map()->coordinateToScreenPosition(path.at(index), false); if ( (qAbs(point.x() - prev.x())) >= mapWidth/2.0 ) { wrapPathIndex << index; if (wrapPathIndex.size() == 2 || !(crossNorthPole && crossSouthPole)) break; } prev = point; } // insert two additional coords at top/bottom map corners of the map for shape // to be drawn correctly if (wrapPathIndex.size() > 0) { qreal newPoleLat = 90; QGeoCoordinate wrapCoord = path.at(wrapPathIndex[0]); if (wrapPathIndex.size() == 2) { QGeoCoordinate wrapCoord2 = path.at(wrapPathIndex[1]); if (wrapCoord2.latitude() > wrapCoord.latitude()) newPoleLat = -90; } else if (center.latitude() < 0) { newPoleLat = -90; } for (int i = 0; i < wrapPathIndex.size(); ++i) { int index = wrapPathIndex[i] == 0 ? 0 : wrapPathIndex[i] + i*2; int prevIndex = (index - 1) < 0 ? (path.count() - 1): index - 1; QGeoCoordinate coord0 = path.at(prevIndex); QGeoCoordinate coord1 = path.at(index); coord0.setLatitude(newPoleLat); coord1.setLatitude(newPoleLat); path.insert(index ,coord1); path.insert(index, coord0); newPoleLat = -newPoleLat; } } } ////////////////////////////////////////////////////////////////////// QT_END_NAMESPACE