/* Copyright 2018 Google Inc. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS-IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "dsp/multi_channel_iir.h" #include #include #include "base/constants_and_types.h" #include "base/logging.h" #include "base/simd_macros.h" namespace vraudio { std::unique_ptr MultiChannelIir::Create( size_t num_channels, size_t frames_per_buffer, const std::vector>& numerators, const std::vector>& denominators) { CHECK_EQ(denominators.size(), numerators.size()); CHECK_EQ(denominators.size(), num_channels); CHECK_EQ(num_channels % SIMD_LENGTH, 0U); CHECK_GT(num_channels, 0U); for (size_t channel = 0; channel < num_channels; ++channel) { CHECK_GT(denominators[channel].size(), 0U); CHECK_GT(std::abs(denominators[channel][0]), std::numeric_limits::epsilon()); CHECK_EQ(denominators[channel].size(), numerators[channel].size()); } std::unique_ptr multi_channel_iir(new MultiChannelIir( num_channels, frames_per_buffer, numerators[0].size())); CHECK(multi_channel_iir); for (size_t channel = 0; channel < num_channels; ++channel) { size_t interleaved_index = channel; for (size_t i = 0; i < numerators[channel].size(); ++i) { // Make the denominator polynomials monic, (divide all coefficients by the // the first denominator coefficients). Furthermore negate all // coefficients beyond the first (see equation in Process method). // Copy the coefficients into the |numerator_| and |denominator_| buffers. multi_channel_iir->numerator_[0][interleaved_index] = numerators[channel][i] / denominators[channel][0]; multi_channel_iir->denominator_[0][interleaved_index] = denominators[channel][i] / ((i > 0) ? -denominators[channel][0] : denominators[channel][0]); interleaved_index += num_channels; } } multi_channel_iir->delay_line_.Clear(); return multi_channel_iir; } void MultiChannelIir::Process(AudioBuffer::Channel* interleaved_buffer) { DCHECK(interleaved_buffer); DCHECK_EQ(interleaved_buffer->size(), num_channels_ * frames_per_buffer_); const SimdVector* simd_numerator = reinterpret_cast(&(numerator_[0][0])); const SimdVector* simd_denominator = reinterpret_cast(&(denominator_[0][0])); SimdVector* simd_delay_line = reinterpret_cast(&(delay_line_[0][0])); SimdVector* simd_buffer = reinterpret_cast(&((*interleaved_buffer)[0])); const size_t num_channel_chunks = num_channels_ / SIMD_LENGTH; const size_t num_buffer_chunks = interleaved_buffer->size() / SIMD_LENGTH; const size_t delay_length_in_chunks = num_channel_chunks * num_coefficients_; for (size_t current_frame = 0, individual_frame = 0; current_frame < num_buffer_chunks; current_frame += num_channel_chunks, individual_frame += num_channels_) { DCHECK_LT(individual_frame, interleaved_buffer->size()); // Copy the current sample into the delay line at the very start. // {x[n], w[n-1], w[n-2], . . .} where each x, w represents all channels. std::copy_n(interleaved_buffer->begin() + individual_frame, num_channels_, delay_line_[0].begin() + (delay_line_front_ * SIMD_LENGTH)); // Using A Direct Form II implementation difference equation: // Source: Digital Signal Processing Principles Algorithms & Applications // Fourth Edition. John G. Prolakis and Dimitris G. Manolakis - Chap 9 // w[n] = x[n] - (a1/a0)*w[n-1] - (a2/a0)*w[n-2] - . . . // y(n) = (b0/a0)*w[n] + (b1/a0)*w[n-1] + (b2/a0)*w[n-2] + . . . // where x[n] is input, w[n] is storage and y[n] is output. // The division by a0 has been performed in the constructor along with the // negation of the denominator coefficients beyond the first. Note also // that each term here refers to a set of channels. for (size_t channel_chunk = 0; channel_chunk < num_channel_chunks; ++channel_chunk) { // First zero out the relevant section of the buffer before accumulation. // Zero constant used for loading zeros into a neon simd array, as the // |vld1q_dup_f32| neon intrinsic requires an lvalue parameter. const float kZerof = 0.0f; simd_buffer[current_frame + channel_chunk] = SIMD_LOAD_ONE_FLOAT(kZerof); for (size_t coeff_offset = num_channel_chunks; coeff_offset < delay_length_in_chunks; coeff_offset += num_channel_chunks) { // Denominator part. const size_t multiplication_index = channel_chunk + coeff_offset; const size_t delay_multiplication_index = (multiplication_index + delay_line_front_) % delay_length_in_chunks; const size_t delay_write_index = channel_chunk + delay_line_front_; simd_delay_line[delay_write_index] = SIMD_MULTIPLY_ADD(simd_denominator[multiplication_index], simd_delay_line[delay_multiplication_index], simd_delay_line[delay_write_index]); } for (size_t coeff_offset = 0; coeff_offset < delay_length_in_chunks; coeff_offset += num_channel_chunks) { // Numerator part. const size_t multiplication_index = channel_chunk + coeff_offset; const size_t write_index = current_frame + channel_chunk; const size_t delay_multiplication_index = (multiplication_index + delay_line_front_) % delay_length_in_chunks; simd_buffer[write_index] = SIMD_MULTIPLY_ADD(simd_numerator[multiplication_index], simd_delay_line[delay_multiplication_index], simd_buffer[write_index]); } } // Update the index to the wrapped around 'front' of the delay line. delay_line_front_ = ((static_cast(delay_line_front_) - num_channel_chunks + delay_length_in_chunks) % delay_length_in_chunks); } } MultiChannelIir::MultiChannelIir(size_t num_channels, size_t frames_per_buffer, size_t num_coefficients) : num_channels_(num_channels), frames_per_buffer_(frames_per_buffer), num_coefficients_(num_coefficients), delay_line_front_(0), numerator_(kNumMonoChannels, num_coefficients_ * num_channels_), denominator_(kNumMonoChannels, num_coefficients_ * num_channels_), delay_line_(kNumMonoChannels, num_coefficients_ * num_channels_) {} } // namespace vraudio