summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/libvpx/source/libvpx/vp9/encoder
diff options
context:
space:
mode:
authorJocelyn Turcotte <jocelyn.turcotte@digia.com>2014-08-08 14:30:41 +0200
committerJocelyn Turcotte <jocelyn.turcotte@digia.com>2014-08-12 13:49:54 +0200
commitab0a50979b9eb4dfa3320eff7e187e41efedf7a9 (patch)
tree498dfb8a97ff3361a9f7486863a52bb4e26bb898 /chromium/third_party/libvpx/source/libvpx/vp9/encoder
parent4ce69f7403811819800e7c5ae1318b2647e778d1 (diff)
Update Chromium to beta version 37.0.2062.68
Change-Id: I188e3b5aff1bec75566014291b654eb19f5bc8ca Reviewed-by: Andras Becsi <andras.becsi@digia.com>
Diffstat (limited to 'chromium/third_party/libvpx/source/libvpx/vp9/encoder')
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_complexity.c103
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_complexity.h34
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.c324
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.h50
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_variance.c (renamed from chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_vaq.c)71
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_variance.h (renamed from chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_vaq.h)16
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_bitstream.c1143
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_bitstream.h14
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_block.h165
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_context_tree.c156
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_context_tree.h (renamed from chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_modecosts.h)12
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_cost.c (renamed from chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_boolhuff.c)52
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_cost.h55
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_dct.c479
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_dct.h24
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeframe.c3796
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeframe.h17
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeintra.c28
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeintra.h20
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemb.c618
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemb.h45
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemv.c252
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemv.h24
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encoder.c2896
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encoder.h629
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_extend.c143
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_extend.h33
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_firstpass.c2639
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_firstpass.h92
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_lookahead.c65
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_lookahead.h11
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mbgraph.c124
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mbgraph.h26
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mcomp.c1930
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mcomp.h149
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_modecosts.c43
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_onyx_if.c4319
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_onyx_int.h727
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_picklpf.c230
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_picklpf.h14
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_pickmode.c420
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_pickmode.h31
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_psnr.c29
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_psnr.h17
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_quantize.c377
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_quantize.h41
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ratectrl.c1551
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ratectrl.h180
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_rdopt.c3831
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_rdopt.h92
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_resize.c576
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_resize.h68
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_sad.c137
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_sad_c.c615
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_segmentation.c92
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_segmentation.h27
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_speed_features.c397
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_speed_features.h362
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ssim.c9
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ssim.h30
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_subexp.c110
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_subexp.h17
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_svc_layercontext.c229
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_svc_layercontext.h84
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_temporal_filter.c277
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_temporal_filter.h14
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_tokenize.c419
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_tokenize.h31
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_treewriter.c60
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_treewriter.h80
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance.c256
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance.h55
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance_c.c1094
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_write_bit_buffer.c34
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_write_bit_buffer.h46
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_writer.c35
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_writer.h (renamed from chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_boolhuff.h)42
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct32x32_avx2.c2710
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct32x32_sse2.c3
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_avx2.c2592
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_mmx.asm70
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_sse2.c403
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_ssse3.asm174
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_error_intrin_avx2.c72
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_mcomp_x86.h40
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_quantize_ssse3.asm5
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_sad4d_intrin_avx2.c167
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance.asm198
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_intrin_avx2.c539
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_sse2.asm337
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_avx2.c268
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_impl_intrin_avx2.c213
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_impl_sse2.asm333
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_mmx.c1
-rw-r--r--chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_sse2.c119
95 files changed, 24196 insertions, 17381 deletions
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_complexity.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_complexity.c
new file mode 100644
index 00000000000..47ad8d8cc42
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_complexity.c
@@ -0,0 +1,103 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+
+#include "vp9/common/vp9_seg_common.h"
+
+#include "vp9/encoder/vp9_segmentation.h"
+
+static const double in_frame_q_adj_ratio[MAX_SEGMENTS] =
+ {1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
+
+void vp9_setup_in_frame_q_adj(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ struct segmentation *const seg = &cm->seg;
+
+ // Make SURE use of floating point in this function is safe.
+ vp9_clear_system_state();
+
+ if (cm->frame_type == KEY_FRAME ||
+ cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
+ int segment;
+
+ // Clear down the segment map.
+ vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
+
+ // Clear down the complexity map used for rd.
+ vpx_memset(cpi->complexity_map, 0, cm->mi_rows * cm->mi_cols);
+
+ vp9_enable_segmentation(seg);
+ vp9_clearall_segfeatures(seg);
+
+ // Select delta coding method.
+ seg->abs_delta = SEGMENT_DELTADATA;
+
+ // Segment 0 "Q" feature is disabled so it defaults to the baseline Q.
+ vp9_disable_segfeature(seg, 0, SEG_LVL_ALT_Q);
+
+ // Use some of the segments for in frame Q adjustment.
+ for (segment = 1; segment < 2; segment++) {
+ const int qindex_delta =
+ vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, cm->base_qindex,
+ in_frame_q_adj_ratio[segment]);
+ vp9_enable_segfeature(seg, segment, SEG_LVL_ALT_Q);
+ vp9_set_segdata(seg, segment, SEG_LVL_ALT_Q, qindex_delta);
+ }
+ }
+}
+
+// Select a segment for the current SB64
+void vp9_select_in_frame_q_segment(VP9_COMP *cpi,
+ int mi_row, int mi_col,
+ int output_enabled, int projected_rate) {
+ VP9_COMMON *const cm = &cpi->common;
+
+ const int mi_offset = mi_row * cm->mi_cols + mi_col;
+ const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
+ const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
+ const int xmis = MIN(cm->mi_cols - mi_col, bw);
+ const int ymis = MIN(cm->mi_rows - mi_row, bh);
+ int complexity_metric = 64;
+ int x, y;
+
+ unsigned char segment;
+
+ if (!output_enabled) {
+ segment = 0;
+ } else {
+ // Rate depends on fraction of a SB64 in frame (xmis * ymis / bw * bh).
+ // It is converted to bits * 256 units.
+ const int target_rate = (cpi->rc.sb64_target_rate * xmis * ymis * 256) /
+ (bw * bh);
+
+ if (projected_rate < (target_rate / 4)) {
+ segment = 1;
+ } else {
+ segment = 0;
+ }
+
+ if (target_rate > 0) {
+ complexity_metric =
+ clamp((int)((projected_rate * 64) / target_rate), 16, 255);
+ }
+ }
+
+ // Fill in the entires in the segment map corresponding to this SB64.
+ for (y = 0; y < ymis; y++) {
+ for (x = 0; x < xmis; x++) {
+ cpi->segmentation_map[mi_offset + y * cm->mi_cols + x] = segment;
+ cpi->complexity_map[mi_offset + y * cm->mi_cols + x] =
+ (unsigned char)complexity_metric;
+ }
+ }
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_complexity.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_complexity.h
new file mode 100644
index 00000000000..af031a46c6c
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_complexity.h
@@ -0,0 +1,34 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_AQ_COMPLEXITY_H_
+#define VP9_ENCODER_VP9_AQ_COMPLEXITY_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct VP9_COMP;
+
+// Select a segment for the current SB64.
+void vp9_select_in_frame_q_segment(struct VP9_COMP *cpi, int mi_row, int mi_col,
+ int output_enabled, int projected_rate);
+
+
+// This function sets up a set of segments with delta Q values around
+// the baseline frame quantizer.
+void vp9_setup_in_frame_q_adj(struct VP9_COMP *cpi);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_AQ_COMPLEXITY_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.c
new file mode 100644
index 00000000000..d1437d3770f
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.c
@@ -0,0 +1,324 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+
+#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
+
+#include "vp9/common/vp9_seg_common.h"
+
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_rdopt.h"
+#include "vp9/encoder/vp9_segmentation.h"
+
+struct CYCLIC_REFRESH {
+ // Percentage of super-blocks per frame that are targeted as candidates
+ // for cyclic refresh.
+ int max_sbs_perframe;
+ // Maximum q-delta as percentage of base q.
+ int max_qdelta_perc;
+ // Block size below which we don't apply cyclic refresh.
+ BLOCK_SIZE min_block_size;
+ // Superblock starting index for cycling through the frame.
+ int sb_index;
+ // Controls how long a block will need to wait to be refreshed again.
+ int time_for_refresh;
+ // Actual number of (8x8) blocks that were applied delta-q (segment 1).
+ int num_seg_blocks;
+ // Actual encoding bits for segment 1.
+ int actual_seg_bits;
+ // RD mult. parameters for segment 1.
+ int rdmult;
+ // Cyclic refresh map.
+ signed char *map;
+ // Projected rate and distortion for the current superblock.
+ int64_t projected_rate_sb;
+ int64_t projected_dist_sb;
+ // Thresholds applied to projected rate/distortion of the superblock.
+ int64_t thresh_rate_sb;
+ int64_t thresh_dist_sb;
+};
+
+CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols) {
+ CYCLIC_REFRESH *const cr = vpx_calloc(1, sizeof(*cr));
+ if (cr == NULL)
+ return NULL;
+
+ cr->map = vpx_calloc(mi_rows * mi_cols, sizeof(*cr->map));
+ if (cr->map == NULL) {
+ vpx_free(cr);
+ return NULL;
+ }
+
+ return cr;
+}
+
+void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr) {
+ vpx_free(cr->map);
+ vpx_free(cr);
+}
+
+// Check if we should turn off cyclic refresh based on bitrate condition.
+static int apply_cyclic_refresh_bitrate(const VP9_COMMON *cm,
+ const RATE_CONTROL *rc) {
+ // Turn off cyclic refresh if bits available per frame is not sufficiently
+ // larger than bit cost of segmentation. Segment map bit cost should scale
+ // with number of seg blocks, so compare available bits to number of blocks.
+ // Average bits available per frame = avg_frame_bandwidth
+ // Number of (8x8) blocks in frame = mi_rows * mi_cols;
+ const float factor = 0.5;
+ const int number_blocks = cm->mi_rows * cm->mi_cols;
+ // The condition below corresponds to turning off at target bitrates:
+ // ~24kbps for CIF, 72kbps for VGA (at 30fps).
+ // Also turn off at very small frame sizes, to avoid too large fraction of
+ // superblocks to be refreshed per frame. Threshold below is less than QCIF.
+ if (rc->avg_frame_bandwidth < factor * number_blocks ||
+ number_blocks / 64 < 5)
+ return 0;
+ else
+ return 1;
+}
+
+// Check if this coding block, of size bsize, should be considered for refresh
+// (lower-qp coding). Decision can be based on various factors, such as
+// size of the coding block (i.e., below min_block size rejected), coding
+// mode, and rate/distortion.
+static int candidate_refresh_aq(const CYCLIC_REFRESH *cr,
+ const MB_MODE_INFO *mbmi,
+ BLOCK_SIZE bsize, int use_rd) {
+ if (use_rd) {
+ // If projected rate is below the thresh_rate (well below target,
+ // so undershoot expected), accept it for lower-qp coding.
+ if (cr->projected_rate_sb < cr->thresh_rate_sb)
+ return 1;
+ // Otherwise, reject the block for lower-qp coding if any of the following:
+ // 1) prediction block size is below min_block_size
+ // 2) mode is non-zero mv and projected distortion is above thresh_dist
+ // 3) mode is an intra-mode (we may want to allow some of this under
+ // another thresh_dist)
+ else if (bsize < cr->min_block_size ||
+ (mbmi->mv[0].as_int != 0 &&
+ cr->projected_dist_sb > cr->thresh_dist_sb) ||
+ !is_inter_block(mbmi))
+ return 0;
+ else
+ return 1;
+ } else {
+ // Rate/distortion not used for update.
+ if (bsize < cr->min_block_size ||
+ mbmi->mv[0].as_int != 0 ||
+ !is_inter_block(mbmi))
+ return 0;
+ else
+ return 1;
+ }
+}
+
+// Prior to coding a given prediction block, of size bsize at (mi_row, mi_col),
+// check if we should reset the segment_id, and update the cyclic_refresh map
+// and segmentation map.
+void vp9_cyclic_refresh_update_segment(VP9_COMP *const cpi,
+ MB_MODE_INFO *const mbmi,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize, int use_rd) {
+ const VP9_COMMON *const cm = &cpi->common;
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ const int bw = num_8x8_blocks_wide_lookup[bsize];
+ const int bh = num_8x8_blocks_high_lookup[bsize];
+ const int xmis = MIN(cm->mi_cols - mi_col, bw);
+ const int ymis = MIN(cm->mi_rows - mi_row, bh);
+ const int block_index = mi_row * cm->mi_cols + mi_col;
+ const int refresh_this_block = cpi->mb.in_static_area ||
+ candidate_refresh_aq(cr, mbmi, bsize, use_rd);
+ // Default is to not update the refresh map.
+ int new_map_value = cr->map[block_index];
+ int x = 0; int y = 0;
+
+ // Check if we should reset the segment_id for this block.
+ if (mbmi->segment_id > 0 && !refresh_this_block)
+ mbmi->segment_id = 0;
+
+ // Update the cyclic refresh map, to be used for setting segmentation map
+ // for the next frame. If the block will be refreshed this frame, mark it
+ // as clean. The magnitude of the -ve influences how long before we consider
+ // it for refresh again.
+ if (mbmi->segment_id == 1) {
+ new_map_value = -cr->time_for_refresh;
+ } else if (refresh_this_block) {
+ // Else if it is accepted as candidate for refresh, and has not already
+ // been refreshed (marked as 1) then mark it as a candidate for cleanup
+ // for future time (marked as 0), otherwise don't update it.
+ if (cr->map[block_index] == 1)
+ new_map_value = 0;
+ } else {
+ // Leave it marked as block that is not candidate for refresh.
+ new_map_value = 1;
+ }
+ // Update entries in the cyclic refresh map with new_map_value, and
+ // copy mbmi->segment_id into global segmentation map.
+ for (y = 0; y < ymis; y++)
+ for (x = 0; x < xmis; x++) {
+ cr->map[block_index + y * cm->mi_cols + x] = new_map_value;
+ cpi->segmentation_map[block_index + y * cm->mi_cols + x] =
+ mbmi->segment_id;
+ }
+ // Keep track of actual number (in units of 8x8) of blocks in segment 1 used
+ // for encoding this frame.
+ if (mbmi->segment_id)
+ cr->num_seg_blocks += xmis * ymis;
+}
+
+// Setup cyclic background refresh: set delta q and segmentation map.
+void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ struct segmentation *const seg = &cm->seg;
+ unsigned char *const seg_map = cpi->segmentation_map;
+ const int apply_cyclic_refresh = apply_cyclic_refresh_bitrate(cm, rc);
+ // Don't apply refresh on key frame or enhancement layer frames.
+ if (!apply_cyclic_refresh ||
+ (cm->frame_type == KEY_FRAME) ||
+ (cpi->svc.temporal_layer_id > 0)) {
+ // Set segmentation map to 0 and disable.
+ vpx_memset(seg_map, 0, cm->mi_rows * cm->mi_cols);
+ vp9_disable_segmentation(&cm->seg);
+ if (cm->frame_type == KEY_FRAME)
+ cr->sb_index = 0;
+ return;
+ } else {
+ int qindex_delta = 0;
+ int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame;
+ int xmis, ymis, x, y, qindex2;
+
+ // Rate target ratio to set q delta.
+ const float rate_ratio_qdelta = 2.0;
+ const double q = vp9_convert_qindex_to_q(cm->base_qindex);
+ vp9_clear_system_state();
+ // Some of these parameters may be set via codec-control function later.
+ cr->max_sbs_perframe = 10;
+ cr->max_qdelta_perc = 50;
+ cr->min_block_size = BLOCK_8X8;
+ cr->time_for_refresh = 1;
+ // Set rate threshold to some fraction of target (and scaled by 256).
+ cr->thresh_rate_sb = (rc->sb64_target_rate * 256) >> 2;
+ // Distortion threshold, quadratic in Q, scale factor to be adjusted.
+ cr->thresh_dist_sb = 8 * (int)(q * q);
+ if (cpi->sf.use_nonrd_pick_mode) {
+ // May want to be more conservative with thresholds in non-rd mode for now
+ // as rate/distortion are derived from model based on prediction residual.
+ cr->thresh_rate_sb = (rc->sb64_target_rate * 256) >> 3;
+ cr->thresh_dist_sb = 4 * (int)(q * q);
+ }
+
+ cr->num_seg_blocks = 0;
+ // Set up segmentation.
+ // Clear down the segment map.
+ vpx_memset(seg_map, 0, cm->mi_rows * cm->mi_cols);
+ vp9_enable_segmentation(&cm->seg);
+ vp9_clearall_segfeatures(seg);
+ // Select delta coding method.
+ seg->abs_delta = SEGMENT_DELTADATA;
+
+ // Note: setting temporal_update has no effect, as the seg-map coding method
+ // (temporal or spatial) is determined in vp9_choose_segmap_coding_method(),
+ // based on the coding cost of each method. For error_resilient mode on the
+ // last_frame_seg_map is set to 0, so if temporal coding is used, it is
+ // relative to 0 previous map.
+ // seg->temporal_update = 0;
+
+ // Segment 0 "Q" feature is disabled so it defaults to the baseline Q.
+ vp9_disable_segfeature(seg, 0, SEG_LVL_ALT_Q);
+ // Use segment 1 for in-frame Q adjustment.
+ vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
+
+ // Set the q delta for segment 1.
+ qindex_delta = vp9_compute_qdelta_by_rate(rc, cm->frame_type,
+ cm->base_qindex,
+ rate_ratio_qdelta);
+ // TODO(marpan): Incorporate the actual-vs-target rate over/undershoot from
+ // previous encoded frame.
+ if (-qindex_delta > cr->max_qdelta_perc * cm->base_qindex / 100)
+ qindex_delta = -cr->max_qdelta_perc * cm->base_qindex / 100;
+
+ // Compute rd-mult for segment 1.
+ qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ);
+ cr->rdmult = vp9_compute_rd_mult(cpi, qindex2);
+
+ vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qindex_delta);
+
+ sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
+ sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
+ sbs_in_frame = sb_cols * sb_rows;
+ // Number of target superblocks to get the q delta (segment 1).
+ block_count = cr->max_sbs_perframe * sbs_in_frame / 100;
+ // Set the segmentation map: cycle through the superblocks, starting at
+ // cr->mb_index, and stopping when either block_count blocks have been found
+ // to be refreshed, or we have passed through whole frame.
+ assert(cr->sb_index < sbs_in_frame);
+ i = cr->sb_index;
+ do {
+ int sum_map = 0;
+ // Get the mi_row/mi_col corresponding to superblock index i.
+ int sb_row_index = (i / sb_cols);
+ int sb_col_index = i - sb_row_index * sb_cols;
+ int mi_row = sb_row_index * MI_BLOCK_SIZE;
+ int mi_col = sb_col_index * MI_BLOCK_SIZE;
+ assert(mi_row >= 0 && mi_row < cm->mi_rows);
+ assert(mi_col >= 0 && mi_col < cm->mi_cols);
+ bl_index = mi_row * cm->mi_cols + mi_col;
+ // Loop through all 8x8 blocks in superblock and update map.
+ xmis = MIN(cm->mi_cols - mi_col,
+ num_8x8_blocks_wide_lookup[BLOCK_64X64]);
+ ymis = MIN(cm->mi_rows - mi_row,
+ num_8x8_blocks_high_lookup[BLOCK_64X64]);
+ for (y = 0; y < ymis; y++) {
+ for (x = 0; x < xmis; x++) {
+ const int bl_index2 = bl_index + y * cm->mi_cols + x;
+ // If the block is as a candidate for clean up then mark it
+ // for possible boost/refresh (segment 1). The segment id may get
+ // reset to 0 later if block gets coded anything other than ZEROMV.
+ if (cr->map[bl_index2] == 0) {
+ seg_map[bl_index2] = 1;
+ sum_map++;
+ } else if (cr->map[bl_index2] < 0) {
+ cr->map[bl_index2]++;
+ }
+ }
+ }
+ // Enforce constant segment over superblock.
+ // If segment is partial over superblock, reset to either all 1 or 0.
+ if (sum_map > 0 && sum_map < xmis * ymis) {
+ const int new_value = (sum_map >= xmis * ymis / 2);
+ for (y = 0; y < ymis; y++)
+ for (x = 0; x < xmis; x++)
+ seg_map[bl_index + y * cm->mi_cols + x] = new_value;
+ }
+ i++;
+ if (i == sbs_in_frame) {
+ i = 0;
+ }
+ if (sum_map >= xmis * ymis /2)
+ block_count--;
+ } while (block_count && i != cr->sb_index);
+ cr->sb_index = i;
+ }
+}
+
+void vp9_cyclic_refresh_set_rate_and_dist_sb(CYCLIC_REFRESH *cr,
+ int64_t rate_sb, int64_t dist_sb) {
+ cr->projected_rate_sb = rate_sb;
+ cr->projected_dist_sb = dist_sb;
+}
+
+int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) {
+ return cr->rdmult;
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.h
new file mode 100644
index 00000000000..f556d658bdc
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.h
@@ -0,0 +1,50 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_AQ_CYCLICREFRESH_H_
+#define VP9_ENCODER_VP9_AQ_CYCLICREFRESH_H_
+
+#include "vp9/common/vp9_blockd.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct VP9_COMP;
+
+struct CYCLIC_REFRESH;
+typedef struct CYCLIC_REFRESH CYCLIC_REFRESH;
+
+CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols);
+
+void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr);
+
+// Prior to coding a given prediction block, of size bsize at (mi_row, mi_col),
+// check if we should reset the segment_id, and update the cyclic_refresh map
+// and segmentation map.
+void vp9_cyclic_refresh_update_segment(struct VP9_COMP *const cpi,
+ MB_MODE_INFO *const mbmi,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize, int use_rd);
+
+// Setup cyclic background refresh: set delta q and segmentation map.
+void vp9_cyclic_refresh_setup(struct VP9_COMP *const cpi);
+
+void vp9_cyclic_refresh_set_rate_and_dist_sb(CYCLIC_REFRESH *cr,
+ int64_t rate_sb, int64_t dist_sb);
+
+int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_AQ_CYCLICREFRESH_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_vaq.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_variance.c
index 3179ae301be..ae2a163b126 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_vaq.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_variance.c
@@ -10,7 +10,7 @@
#include <math.h>
-#include "vp9/encoder/vp9_vaq.h"
+#include "vp9/encoder/vp9_aq_variance.h"
#include "vp9/common/vp9_seg_common.h"
@@ -19,8 +19,8 @@
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/common/vp9_systemdependent.h"
-#define ENERGY_MIN (-3)
-#define ENERGY_MAX (3)
+#define ENERGY_MIN (-1)
+#define ENERGY_MAX (1)
#define ENERGY_SPAN (ENERGY_MAX - ENERGY_MIN + 1)
#define ENERGY_IN_BOUNDS(energy)\
assert((energy) >= ENERGY_MIN && (energy) <= ENERGY_MAX)
@@ -44,7 +44,7 @@ unsigned int vp9_vaq_segment_id(int energy) {
double vp9_vaq_rdmult_ratio(int energy) {
ENERGY_IN_BOUNDS(energy);
- vp9_clear_system_state(); // __asm emms;
+ vp9_clear_system_state();
return RDMULT_RATIO(energy);
}
@@ -52,7 +52,7 @@ double vp9_vaq_rdmult_ratio(int energy) {
double vp9_vaq_inv_q_ratio(int energy) {
ENERGY_IN_BOUNDS(energy);
- vp9_clear_system_state(); // __asm emms;
+ vp9_clear_system_state();
return Q_RATIO(-energy);
}
@@ -63,9 +63,9 @@ void vp9_vaq_init() {
assert(ENERGY_SPAN <= MAX_SEGMENTS);
- vp9_clear_system_state(); // __asm emms;
+ vp9_clear_system_state();
- base_ratio = 1.8;
+ base_ratio = 1.5;
for (i = ENERGY_MIN; i <= ENERGY_MAX; i++) {
Q_RATIO(i) = pow(base_ratio, i/3.0);
@@ -75,35 +75,39 @@ void vp9_vaq_init() {
void vp9_vaq_frame_setup(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
struct segmentation *seg = &cm->seg;
- int base_q = vp9_convert_qindex_to_q(cm->base_qindex);
- int base_rdmult = vp9_compute_rd_mult(cpi, cm->base_qindex +
- cm->y_dc_delta_q);
+ const double base_q = vp9_convert_qindex_to_q(cm->base_qindex);
+ const int base_rdmult = vp9_compute_rd_mult(cpi, cm->base_qindex +
+ cm->y_dc_delta_q);
int i;
- vp9_enable_segmentation((VP9_PTR)cpi);
- vp9_clearall_segfeatures(seg);
+ if (cm->frame_type == KEY_FRAME ||
+ cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
+ vp9_enable_segmentation(seg);
+ vp9_clearall_segfeatures(seg);
- seg->abs_delta = SEGMENT_DELTADATA;
+ seg->abs_delta = SEGMENT_DELTADATA;
- vp9_clear_system_state(); // __asm emms;
+ vp9_clear_system_state();
- for (i = ENERGY_MIN; i <= ENERGY_MAX; i++) {
- int qindex_delta, segment_rdmult;
+ for (i = ENERGY_MIN; i <= ENERGY_MAX; i++) {
+ int qindex_delta, segment_rdmult;
- if (Q_RATIO(i) == 1) {
- // No need to enable SEG_LVL_ALT_Q for this segment
- RDMULT_RATIO(i) = 1;
- continue;
- }
+ if (Q_RATIO(i) == 1) {
+ // No need to enable SEG_LVL_ALT_Q for this segment
+ RDMULT_RATIO(i) = 1;
+ continue;
+ }
- qindex_delta = vp9_compute_qdelta(cpi, base_q, base_q * Q_RATIO(i));
- vp9_set_segdata(seg, SEGMENT_ID(i), SEG_LVL_ALT_Q, qindex_delta);
- vp9_enable_segfeature(seg, SEGMENT_ID(i), SEG_LVL_ALT_Q);
+ qindex_delta = vp9_compute_qdelta(&cpi->rc, base_q, base_q * Q_RATIO(i));
+ vp9_set_segdata(seg, SEGMENT_ID(i), SEG_LVL_ALT_Q, qindex_delta);
+ vp9_enable_segfeature(seg, SEGMENT_ID(i), SEG_LVL_ALT_Q);
- segment_rdmult = vp9_compute_rd_mult(cpi, cm->base_qindex + qindex_delta +
- cm->y_dc_delta_q);
+ segment_rdmult = vp9_compute_rd_mult(cpi, cm->base_qindex + qindex_delta +
+ cm->y_dc_delta_q);
- RDMULT_RATIO(i) = (double) segment_rdmult / base_rdmult;
+ RDMULT_RATIO(i) = (double) segment_rdmult / base_rdmult;
+ }
}
}
@@ -118,8 +122,8 @@ static unsigned int block_variance(VP9_COMP *cpi, MACROBLOCK *x,
((-xd->mb_to_bottom_edge) >> 3) : 0;
if (right_overflow || bottom_overflow) {
- int bw = (1 << (mi_width_log2(bs) + 3)) - right_overflow;
- int bh = (1 << (mi_height_log2(bs) + 3)) - bottom_overflow;
+ const int bw = 8 * num_8x8_blocks_wide_lookup[bs] - right_overflow;
+ const int bh = 8 * num_8x8_blocks_high_lookup[bs] - bottom_overflow;
int avg;
variance(x->plane[0].src.buf, x->plane[0].src.stride,
vp9_64_zeros, 0, bw, bh, &sse, &avg);
@@ -137,11 +141,8 @@ int vp9_block_energy(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) {
double energy;
unsigned int var = block_variance(cpi, x, bs);
- vp9_clear_system_state(); // __asm emms;
-
- // if (var <= 1000)
- // return 0;
+ vp9_clear_system_state();
- energy = 0.9*(logf(var + 1) - 10.0);
- return clamp(round(energy), ENERGY_MIN, ENERGY_MAX);
+ energy = 0.9 * (log(var + 1.0) - 10.0);
+ return clamp((int)round(energy), ENERGY_MIN, ENERGY_MAX);
}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_vaq.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_variance.h
index dc18b22f251..d1a459fe9ec 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_vaq.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_aq_variance.h
@@ -9,10 +9,14 @@
*/
-#ifndef VP9_ENCODER_VP9_CONFIG_VAQ_H_
-#define VP9_ENCODER_VP9_CONFIG_VAQ_H_
+#ifndef VP9_ENCODER_VP9_AQ_VARIANCE_H_
+#define VP9_ENCODER_VP9_AQ_VARIANCE_H_
-#include "vp9/encoder/vp9_onyx_int.h"
+#include "vp9/encoder/vp9_encoder.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
unsigned int vp9_vaq_segment_id(int energy);
double vp9_vaq_rdmult_ratio(int energy);
@@ -23,4 +27,8 @@ void vp9_vaq_frame_setup(VP9_COMP *cpi);
int vp9_block_energy(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs);
-#endif // VP9_ENCODER_VP9_CONFIG_VAQ_H_
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_AQ_VARIANCE_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_bitstream.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_bitstream.c
index a996e0e3bc4..8ef2b2eeda5 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_bitstream.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_bitstream.c
@@ -14,286 +14,124 @@
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem_ops.h"
+#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_entropymv.h"
-#include "vp9/common/vp9_findnearmv.h"
-#include "vp9/common/vp9_tile_common.h"
-#include "vp9/common/vp9_seg_common.h"
-#include "vp9/common/vp9_pred_common.h"
-#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_mvref_common.h"
-#include "vp9/common/vp9_treecoder.h"
-#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_pragmas.h"
+#include "vp9/common/vp9_pred_common.h"
+#include "vp9/common/vp9_seg_common.h"
+#include "vp9/common/vp9_systemdependent.h"
+#include "vp9/common/vp9_tile_common.h"
-#include "vp9/encoder/vp9_mcomp.h"
-#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_cost.h"
#include "vp9/encoder/vp9_bitstream.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_subexp.h"
+#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/encoder/vp9_write_bit_buffer.h"
+static struct vp9_token intra_mode_encodings[INTRA_MODES];
+static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS];
+static struct vp9_token partition_encodings[PARTITION_TYPES];
+static struct vp9_token inter_mode_encodings[INTER_MODES];
-#if defined(SECTIONBITS_OUTPUT)
-unsigned __int64 Sectionbits[500];
-#endif
-
-#ifdef ENTROPY_STATS
-int intra_mode_stats[INTRA_MODES]
- [INTRA_MODES]
- [INTRA_MODES];
-vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES];
-
-extern unsigned int active_section;
-#endif
-
-
-#ifdef MODE_STATS
-int64_t tx_count_32x32p_stats[TX_SIZE_CONTEXTS][TX_SIZES];
-int64_t tx_count_16x16p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 1];
-int64_t tx_count_8x8p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 2];
-int64_t switchable_interp_stats[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
-
-void init_tx_count_stats() {
- vp9_zero(tx_count_32x32p_stats);
- vp9_zero(tx_count_16x16p_stats);
- vp9_zero(tx_count_8x8p_stats);
-}
-
-void init_switchable_interp_stats() {
- vp9_zero(switchable_interp_stats);
-}
-
-static void update_tx_count_stats(VP9_COMMON *cm) {
- int i, j;
- for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
- for (j = 0; j < TX_SIZES; j++) {
- tx_count_32x32p_stats[i][j] += cm->fc.tx_count_32x32p[i][j];
- }
- }
- for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
- for (j = 0; j < TX_SIZES - 1; j++) {
- tx_count_16x16p_stats[i][j] += cm->fc.tx_count_16x16p[i][j];
- }
- }
- for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
- for (j = 0; j < TX_SIZES - 2; j++) {
- tx_count_8x8p_stats[i][j] += cm->fc.tx_count_8x8p[i][j];
- }
- }
-}
-
-static void update_switchable_interp_stats(VP9_COMMON *cm) {
- int i, j;
- for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
- for (j = 0; j < SWITCHABLE_FILTERS; ++j)
- switchable_interp_stats[i][j] += cm->fc.switchable_interp_count[i][j];
-}
-
-void write_tx_count_stats() {
- int i, j;
- FILE *fp = fopen("tx_count.bin", "wb");
- fwrite(tx_count_32x32p_stats, sizeof(tx_count_32x32p_stats), 1, fp);
- fwrite(tx_count_16x16p_stats, sizeof(tx_count_16x16p_stats), 1, fp);
- fwrite(tx_count_8x8p_stats, sizeof(tx_count_8x8p_stats), 1, fp);
- fclose(fp);
-
- printf(
- "vp9_default_tx_count_32x32p[TX_SIZE_CONTEXTS][TX_SIZES] = {\n");
- for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
- printf(" { ");
- for (j = 0; j < TX_SIZES; j++) {
- printf("%"PRId64", ", tx_count_32x32p_stats[i][j]);
- }
- printf("},\n");
- }
- printf("};\n");
- printf(
- "vp9_default_tx_count_16x16p[TX_SIZE_CONTEXTS][TX_SIZES-1] = {\n");
- for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
- printf(" { ");
- for (j = 0; j < TX_SIZES - 1; j++) {
- printf("%"PRId64", ", tx_count_16x16p_stats[i][j]);
- }
- printf("},\n");
- }
- printf("};\n");
- printf(
- "vp9_default_tx_count_8x8p[TX_SIZE_CONTEXTS][TX_SIZES-2] = {\n");
- for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
- printf(" { ");
- for (j = 0; j < TX_SIZES - 2; j++) {
- printf("%"PRId64", ", tx_count_8x8p_stats[i][j]);
- }
- printf("},\n");
- }
- printf("};\n");
+void vp9_entropy_mode_init() {
+ vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree);
+ vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree);
+ vp9_tokens_from_tree(partition_encodings, vp9_partition_tree);
+ vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree);
}
-void write_switchable_interp_stats() {
- int i, j;
- FILE *fp = fopen("switchable_interp.bin", "wb");
- fwrite(switchable_interp_stats, sizeof(switchable_interp_stats), 1, fp);
- fclose(fp);
-
- printf(
- "vp9_default_switchable_filter_count[SWITCHABLE_FILTER_CONTEXTS]"
- "[SWITCHABLE_FILTERS] = {\n");
- for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
- printf(" { ");
- for (j = 0; j < SWITCHABLE_FILTERS; j++) {
- printf("%"PRId64", ", switchable_interp_stats[i][j]);
- }
- printf("},\n");
- }
- printf("};\n");
+static void write_intra_mode(vp9_writer *w, PREDICTION_MODE mode,
+ const vp9_prob *probs) {
+ vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
}
-#endif
-static INLINE void write_be32(uint8_t *p, int value) {
- p[0] = value >> 24;
- p[1] = value >> 16;
- p[2] = value >> 8;
- p[3] = value;
+static void write_inter_mode(vp9_writer *w, PREDICTION_MODE mode,
+ const vp9_prob *probs) {
+ assert(is_inter_mode(mode));
+ vp9_write_token(w, vp9_inter_mode_tree, probs,
+ &inter_mode_encodings[INTER_OFFSET(mode)]);
}
-void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb,
- int data, int max) {
+static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
+ int data, int max) {
vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
}
-static void update_mode(
- vp9_writer *w,
- int n,
- vp9_tree tree,
- vp9_prob Pnew[/* n-1 */],
- vp9_prob Pcur[/* n-1 */],
- unsigned int bct[/* n-1 */] [2],
- const unsigned int num_events[/* n */]
-) {
- int i = 0;
-
- vp9_tree_probs_from_distribution(tree, Pnew, bct, num_events, 0);
- n--;
-
- for (i = 0; i < n; ++i)
- vp9_cond_prob_diff_update(w, &Pcur[i], bct[i]);
-}
+static void prob_diff_update(const vp9_tree_index *tree,
+ vp9_prob probs[/*n - 1*/],
+ const unsigned int counts[/*n - 1*/],
+ int n, vp9_writer *w) {
+ int i;
+ unsigned int branch_ct[32][2];
-static void update_mbintra_mode_probs(VP9_COMP* const cpi,
- vp9_writer* const bc) {
- VP9_COMMON *const cm = &cpi->common;
- int j;
- vp9_prob pnew[INTRA_MODES - 1];
- unsigned int bct[INTRA_MODES - 1][2];
+ // Assuming max number of probabilities <= 32
+ assert(n <= 32);
- for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
- update_mode(bc, INTRA_MODES, vp9_intra_mode_tree, pnew,
- cm->fc.y_mode_prob[j], bct,
- (unsigned int *)cpi->y_mode_count[j]);
+ vp9_tree_probs_from_distribution(tree, branch_ct, counts);
+ for (i = 0; i < n - 1; ++i)
+ vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
}
-static void write_selected_tx_size(const VP9_COMP *cpi, MODE_INFO *m,
+static void write_selected_tx_size(const VP9_COMP *cpi,
TX_SIZE tx_size, BLOCK_SIZE bsize,
vp9_writer *w) {
+ const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
- const vp9_prob *tx_probs = get_tx_probs2(xd, &cpi->common.fc.tx_probs, m);
+ const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
+ &cpi->common.fc.tx_probs);
vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
- if (bsize >= BLOCK_16X16 && tx_size != TX_4X4) {
+ if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
- if (bsize >= BLOCK_32X32 && tx_size != TX_8X8)
+ if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
}
}
-static int write_skip_coeff(const VP9_COMP *cpi, int segment_id, MODE_INFO *m,
- vp9_writer *w) {
+static int write_skip(const VP9_COMP *cpi, int segment_id, const MODE_INFO *mi,
+ vp9_writer *w) {
const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
- const int skip_coeff = m->mbmi.skip_coeff;
- vp9_write(w, skip_coeff, vp9_get_pred_prob_mbskip(&cpi->common, xd));
- return skip_coeff;
+ const int skip = mi->mbmi.skip;
+ vp9_write(w, skip, vp9_get_skip_prob(&cpi->common, xd));
+ return skip;
}
}
-void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *w) {
- VP9_COMMON *cm = &cpi->common;
+static void update_skip_probs(VP9_COMMON *cm, vp9_writer *w) {
int k;
- for (k = 0; k < MBSKIP_CONTEXTS; ++k)
- vp9_cond_prob_diff_update(w, &cm->fc.mbskip_probs[k], cm->counts.mbskip[k]);
-}
-
-static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) {
- write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m);
+ for (k = 0; k < SKIP_CONTEXTS; ++k)
+ vp9_cond_prob_diff_update(w, &cm->fc.skip_probs[k], cm->counts.skip[k]);
}
-static void update_switchable_interp_probs(VP9_COMP *const cpi,
- vp9_writer* const bc) {
- VP9_COMMON *const cm = &cpi->common;
- unsigned int branch_ct[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS - 1][2];
- vp9_prob new_prob[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS - 1];
- int i, j;
- for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
- vp9_tree_probs_from_distribution(
- vp9_switchable_interp_tree,
- new_prob[j], branch_ct[j],
- cm->counts.switchable_interp[j], 0);
- }
- for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
- for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) {
- vp9_cond_prob_diff_update(bc, &cm->fc.switchable_interp_prob[j][i],
- branch_ct[j][i]);
- }
- }
-#ifdef MODE_STATS
- if (!cpi->dummy_packing)
- update_switchable_interp_stats(cm);
-#endif
-}
-
-static void update_inter_mode_probs(VP9_COMMON *cm, vp9_writer* const bc) {
- int i, j;
-
- for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
- unsigned int branch_ct[INTER_MODES - 1][2];
- vp9_prob new_prob[INTER_MODES - 1];
-
- vp9_tree_probs_from_distribution(vp9_inter_mode_tree,
- new_prob, branch_ct,
- cm->counts.inter_mode[i], NEARESTMV);
-
- for (j = 0; j < INTER_MODES - 1; ++j)
- vp9_cond_prob_diff_update(bc, &cm->fc.inter_mode_probs[i][j],
- branch_ct[j]);
- }
+static void update_switchable_interp_probs(VP9_COMMON *cm, vp9_writer *w) {
+ int j;
+ for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
+ prob_diff_update(vp9_switchable_interp_tree,
+ cm->fc.switchable_interp_prob[j],
+ cm->counts.switchable_interp[j], SWITCHABLE_FILTERS, w);
}
-static void pack_mb_tokens(vp9_writer* const bc,
- TOKENEXTRA **tp,
- const TOKENEXTRA *const stop) {
+static void pack_mb_tokens(vp9_writer *w,
+ TOKENEXTRA **tp, const TOKENEXTRA *stop) {
TOKENEXTRA *p = *tp;
while (p < stop && p->token != EOSB_TOKEN) {
const int t = p->token;
- const struct vp9_token *const a = vp9_coef_encodings + t;
- const vp9_extra_bit *const b = vp9_extra_bits + t;
+ const struct vp9_token *const a = &vp9_coef_encodings[t];
+ const vp9_extra_bit *const b = &vp9_extra_bits[t];
int i = 0;
- const vp9_prob *pp;
int v = a->value;
int n = a->len;
- vp9_prob probs[ENTROPY_NODES];
-
- if (t >= TWO_TOKEN) {
- vp9_model_to_full_probs(p->context_tree, probs);
- pp = probs;
- } else {
- pp = p->context_tree;
- }
- assert(pp != 0);
/* skip one or two nodes */
if (p->skip_eob_node) {
@@ -301,11 +139,24 @@ static void pack_mb_tokens(vp9_writer* const bc,
i = 2 * p->skip_eob_node;
}
- do {
- const int bb = (v >> --n) & 1;
- vp9_write(bc, bb, pp[i >> 1]);
- i = vp9_coef_tree[i + bb];
- } while (n);
+ // TODO(jbb): expanding this can lead to big gains. It allows
+ // much better branch prediction and would enable us to avoid numerous
+ // lookups and compares.
+
+ // If we have a token that's in the constrained set, the coefficient tree
+ // is split into two treed writes. The first treed write takes care of the
+ // unconstrained nodes. The second treed write takes care of the
+ // constrained nodes.
+ if (t >= TWO_TOKEN && t < EOB_TOKEN) {
+ int len = UNCONSTRAINED_NODES - p->skip_eob_node;
+ int bits = v >> (n - len);
+ vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
+ vp9_write_tree(w, vp9_coef_con_tree,
+ vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
+ v, n - len, 0);
+ } else {
+ vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
+ }
if (b->base_val) {
const int e = p->extra, l = b->len;
@@ -318,12 +169,12 @@ static void pack_mb_tokens(vp9_writer* const bc,
do {
const int bb = (v >> --n) & 1;
- vp9_write(bc, bb, pb[i >> 1]);
+ vp9_write(w, bb, pb[i >> 1]);
i = b->tree[i + bb];
} while (n);
}
- vp9_write_bit(bc, e & 1);
+ vp9_write_bit(w, e & 1);
}
++p;
}
@@ -331,457 +182,361 @@ static void pack_mb_tokens(vp9_writer* const bc,
*tp = p + (p->token == EOSB_TOKEN);
}
-static void write_sb_mv_ref(vp9_writer *w, MB_PREDICTION_MODE mode,
- const vp9_prob *p) {
- assert(is_inter_mode(mode));
- write_token(w, vp9_inter_mode_tree, p,
- &vp9_inter_mode_encodings[inter_mode_offset(mode)]);
-}
-
-
static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
int segment_id) {
if (seg->enabled && seg->update_map)
- treed_write(w, vp9_segment_tree, seg->tree_probs, segment_id, 3);
+ vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
}
// This function encodes the reference frame
-static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) {
- VP9_COMMON *const cm = &cpi->common;
- MACROBLOCK *const x = &cpi->mb;
- MACROBLOCKD *const xd = &x->e_mbd;
- MB_MODE_INFO *mi = &xd->mi_8x8[0]->mbmi;
- const int segment_id = mi->segment_id;
- int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id,
- SEG_LVL_REF_FRAME);
+static void write_ref_frames(const VP9_COMP *cpi, vp9_writer *w) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
+ const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const int is_compound = has_second_ref(mbmi);
+ const int segment_id = mbmi->segment_id;
+
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
- if (!seg_ref_active) {
+ if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
+ assert(!is_compound);
+ assert(mbmi->ref_frame[0] ==
+ vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
+ } else {
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
- if (cm->comp_pred_mode == HYBRID_PREDICTION) {
- vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME,
- vp9_get_pred_prob_comp_inter_inter(cm, xd));
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+ vp9_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
} else {
- assert((mi->ref_frame[1] <= INTRA_FRAME) ==
- (cm->comp_pred_mode == SINGLE_PREDICTION_ONLY));
+ assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
}
- if (mi->ref_frame[1] > INTRA_FRAME) {
- vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME,
+ if (is_compound) {
+ vp9_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
vp9_get_pred_prob_comp_ref_p(cm, xd));
} else {
- vp9_write(bc, mi->ref_frame[0] != LAST_FRAME,
- vp9_get_pred_prob_single_ref_p1(cm, xd));
- if (mi->ref_frame[0] != LAST_FRAME)
- vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME,
- vp9_get_pred_prob_single_ref_p2(cm, xd));
+ const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
+ vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
+ if (bit0) {
+ const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
+ vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
+ }
}
- } else {
- assert(mi->ref_frame[1] <= INTRA_FRAME);
- assert(vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ==
- mi->ref_frame[0]);
}
-
- // If using the prediction model we have nothing further to do because
- // the reference frame is fully coded by the segment.
}
-static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc) {
+static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
+ vp9_writer *w) {
VP9_COMMON *const cm = &cpi->common;
const nmv_context *nmvc = &cm->fc.nmvc;
- MACROBLOCK *const x = &cpi->mb;
- MACROBLOCKD *const xd = &x->e_mbd;
- struct segmentation *seg = &cm->seg;
- MB_MODE_INFO *const mi = &m->mbmi;
- const MV_REFERENCE_FRAME rf = mi->ref_frame[0];
- const MB_PREDICTION_MODE mode = mi->mode;
- const int segment_id = mi->segment_id;
- int skip_coeff;
- const BLOCK_SIZE bsize = mi->sb_type;
+ const MACROBLOCK *const x = &cpi->mb;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct segmentation *const seg = &cm->seg;
+ const MB_MODE_INFO *const mbmi = &mi->mbmi;
+ const PREDICTION_MODE mode = mbmi->mode;
+ const int segment_id = mbmi->segment_id;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
-
-#ifdef ENTROPY_STATS
- active_section = 9;
-#endif
+ const int is_inter = is_inter_block(mbmi);
+ const int is_compound = has_second_ref(mbmi);
+ int skip, ref;
if (seg->update_map) {
if (seg->temporal_update) {
- const int pred_flag = mi->seg_id_predicted;
+ const int pred_flag = mbmi->seg_id_predicted;
vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
- vp9_write(bc, pred_flag, pred_prob);
+ vp9_write(w, pred_flag, pred_prob);
if (!pred_flag)
- write_segment_id(bc, seg, segment_id);
+ write_segment_id(w, seg, segment_id);
} else {
- write_segment_id(bc, seg, segment_id);
+ write_segment_id(w, seg, segment_id);
}
}
- skip_coeff = write_skip_coeff(cpi, segment_id, m, bc);
+ skip = write_skip(cpi, segment_id, mi, w);
if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
- vp9_write(bc, rf != INTRA_FRAME,
- vp9_get_pred_prob_intra_inter(cm, xd));
+ vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
- !(rf != INTRA_FRAME &&
- (skip_coeff || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
- write_selected_tx_size(cpi, m, mi->tx_size, bsize, bc);
+ !(is_inter &&
+ (skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
+ write_selected_tx_size(cpi, mbmi->tx_size, bsize, w);
}
- if (rf == INTRA_FRAME) {
-#ifdef ENTROPY_STATS
- active_section = 6;
-#endif
-
+ if (!is_inter) {
if (bsize >= BLOCK_8X8) {
- write_intra_mode(bc, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
+ write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
} else {
int idx, idy;
- const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
- const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
- for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
- for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
- const MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode;
- write_intra_mode(bc, bm, cm->fc.y_mode_prob[0]);
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+ for (idy = 0; idy < 2; idy += num_4x4_h) {
+ for (idx = 0; idx < 2; idx += num_4x4_w) {
+ const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
+ write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]);
}
}
}
- write_intra_mode(bc, mi->uv_mode, cm->fc.uv_mode_prob[mode]);
+ write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]);
} else {
- vp9_prob *mv_ref_p;
- encode_ref_frame(cpi, bc);
- mv_ref_p = cpi->common.fc.inter_mode_probs[mi->mode_context[rf]];
-
-#ifdef ENTROPY_STATS
- active_section = 3;
-#endif
+ const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
+ const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx];
+ write_ref_frames(cpi, w);
// If segment skip is not enabled code the mode.
if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
if (bsize >= BLOCK_8X8) {
- write_sb_mv_ref(bc, mode, mv_ref_p);
- ++cm->counts.inter_mode[mi->mode_context[rf]]
- [inter_mode_offset(mode)];
+ write_inter_mode(w, mode, inter_probs);
+ ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(mode)];
}
}
- if (cm->mcomp_filter_type == SWITCHABLE) {
+ if (cm->interp_filter == SWITCHABLE) {
const int ctx = vp9_get_pred_context_switchable_interp(xd);
- write_token(bc, vp9_switchable_interp_tree,
- cm->fc.switchable_interp_prob[ctx],
- &vp9_switchable_interp_encodings[mi->interp_filter]);
+ vp9_write_token(w, vp9_switchable_interp_tree,
+ cm->fc.switchable_interp_prob[ctx],
+ &switchable_interp_encodings[mbmi->interp_filter]);
} else {
- assert(mi->interp_filter == cm->mcomp_filter_type);
+ assert(mbmi->interp_filter == cm->interp_filter);
}
if (bsize < BLOCK_8X8) {
- const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
- const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
- for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
- for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
+ for (idy = 0; idy < 2; idy += num_4x4_h) {
+ for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
- const MB_PREDICTION_MODE blockmode = m->bmi[j].as_mode;
- write_sb_mv_ref(bc, blockmode, mv_ref_p);
- ++cm->counts.inter_mode[mi->mode_context[rf]]
- [inter_mode_offset(blockmode)];
-
- if (blockmode == NEWMV) {
-#ifdef ENTROPY_STATS
- active_section = 11;
-#endif
- vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[0].as_mv,
- &mi->best_mv[0].as_mv, nmvc, allow_hp);
-
- if (has_second_ref(mi))
- vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[1].as_mv,
- &mi->best_mv[1].as_mv, nmvc, allow_hp);
+ const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
+ write_inter_mode(w, b_mode, inter_probs);
+ ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
+ if (b_mode == NEWMV) {
+ for (ref = 0; ref < 1 + is_compound; ++ref)
+ vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
+ &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
+ nmvc, allow_hp);
}
}
}
- } else if (mode == NEWMV) {
-#ifdef ENTROPY_STATS
- active_section = 5;
-#endif
- vp9_encode_mv(cpi, bc, &mi->mv[0].as_mv,
- &mi->best_mv[0].as_mv, nmvc, allow_hp);
-
- if (has_second_ref(mi))
- vp9_encode_mv(cpi, bc, &mi->mv[1].as_mv,
- &mi->best_mv[1].as_mv, nmvc, allow_hp);
+ } else {
+ if (mode == NEWMV) {
+ for (ref = 0; ref < 1 + is_compound; ++ref)
+ vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
+ &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
+ allow_hp);
+ }
}
}
}
static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
- vp9_writer *bc) {
+ vp9_writer *w) {
const VP9_COMMON *const cm = &cpi->common;
const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
const struct segmentation *const seg = &cm->seg;
- MODE_INFO *m = mi_8x8[0];
- const int ym = m->mbmi.mode;
- const int segment_id = m->mbmi.segment_id;
- MODE_INFO *above_mi = mi_8x8[-xd->mode_info_stride];
- MODE_INFO *left_mi = xd->left_available ? mi_8x8[-1] : NULL;
+ const MODE_INFO *const mi = mi_8x8[0];
+ const MODE_INFO *const above_mi = mi_8x8[-xd->mi_stride];
+ const MODE_INFO *const left_mi = xd->left_available ? mi_8x8[-1] : NULL;
+ const MB_MODE_INFO *const mbmi = &mi->mbmi;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
if (seg->update_map)
- write_segment_id(bc, seg, m->mbmi.segment_id);
+ write_segment_id(w, seg, mbmi->segment_id);
- write_skip_coeff(cpi, segment_id, m, bc);
+ write_skip(cpi, mbmi->segment_id, mi, w);
- if (m->mbmi.sb_type >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
- write_selected_tx_size(cpi, m, m->mbmi.tx_size, m->mbmi.sb_type, bc);
+ if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
+ write_selected_tx_size(cpi, mbmi->tx_size, bsize, w);
- if (m->mbmi.sb_type >= BLOCK_8X8) {
- const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, 0);
- const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, 0);
- write_intra_mode(bc, ym, vp9_kf_y_mode_prob[A][L]);
+ if (bsize >= BLOCK_8X8) {
+ write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
} else {
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
- const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[m->mbmi.sb_type];
- const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[m->mbmi.sb_type];
- for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
- for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
- int i = idy * 2 + idx;
- const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, i);
- const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, i);
- const int bm = m->bmi[i].as_mode;
-#ifdef ENTROPY_STATS
- ++intra_mode_stats[A][L][bm];
-#endif
- write_intra_mode(bc, bm, vp9_kf_y_mode_prob[A][L]);
+
+ for (idy = 0; idy < 2; idy += num_4x4_h) {
+ for (idx = 0; idx < 2; idx += num_4x4_w) {
+ const int block = idy * 2 + idx;
+ write_intra_mode(w, mi->bmi[block].as_mode,
+ get_y_mode_probs(mi, above_mi, left_mi, block));
}
}
}
- write_intra_mode(bc, m->mbmi.uv_mode, vp9_kf_uv_mode_prob[ym]);
+ write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
}
static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
- MODE_INFO **mi_8x8, vp9_writer *bc,
- TOKENEXTRA **tok, TOKENEXTRA *tok_end,
- int mi_row, int mi_col, int index) {
+ vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
+ int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
- MODE_INFO *m = mi_8x8[0];
-
- if (m->mbmi.sb_type < BLOCK_8X8)
- if (index > 0)
- return;
+ MODE_INFO *m;
- xd->mi_8x8 = mi_8x8;
+ xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
+ m = xd->mi[0];
set_mi_row_col(xd, tile,
mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
cm->mi_rows, cm->mi_cols);
if (frame_is_intra_only(cm)) {
- write_mb_modes_kf(cpi, mi_8x8, bc);
-#ifdef ENTROPY_STATS
- active_section = 8;
-#endif
+ write_mb_modes_kf(cpi, xd->mi, w);
} else {
- pack_inter_mode_mvs(cpi, m, bc);
-#ifdef ENTROPY_STATS
- active_section = 1;
-#endif
+ pack_inter_mode_mvs(cpi, m, w);
}
assert(*tok < tok_end);
- pack_mb_tokens(bc, tok, tok_end);
+ pack_mb_tokens(w, tok, tok_end);
}
-static void write_partition(PARTITION_TYPE partition,
- int hbs, int mi_rows, int mi_cols,
- int mi_row, int mi_col,
- vp9_prob probs[PARTITION_TYPES - 1],
- vp9_writer *w) {
- const int has_rows = (mi_row + hbs) < mi_rows;
- const int has_cols = (mi_col + hbs) < mi_cols;
+static void write_partition(VP9_COMMON *cm, MACROBLOCKD *xd,
+ int hbs, int mi_row, int mi_col,
+ PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
+ const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+ const vp9_prob *const probs = get_partition_probs(cm, ctx);
+ const int has_rows = (mi_row + hbs) < cm->mi_rows;
+ const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (has_rows && has_cols) {
- write_token(w, vp9_partition_tree, probs,
- &vp9_partition_encodings[partition]);
+ vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
} else if (!has_rows && has_cols) {
- assert(partition == PARTITION_SPLIT || partition == PARTITION_HORZ);
- vp9_write(w, partition == PARTITION_SPLIT, probs[1]);
+ assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
+ vp9_write(w, p == PARTITION_SPLIT, probs[1]);
} else if (has_rows && !has_cols) {
- assert(partition == PARTITION_SPLIT || partition == PARTITION_VERT);
- vp9_write(w, partition == PARTITION_SPLIT, probs[2]);
+ assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
+ vp9_write(w, p == PARTITION_SPLIT, probs[2]);
} else {
- assert(partition == PARTITION_SPLIT);
+ assert(p == PARTITION_SPLIT);
}
}
-static void write_modes_sb(VP9_COMP *cpi, const TileInfo *const tile,
- MODE_INFO **mi_8x8, vp9_writer *bc,
- TOKENEXTRA **tok, TOKENEXTRA *tok_end,
- int mi_row, int mi_col, BLOCK_SIZE bsize,
- int index) {
+static void write_modes_sb(VP9_COMP *cpi,
+ const TileInfo *const tile,
+ vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
+ int mi_row, int mi_col, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
- const int mis = cm->mode_info_stride;
- int bsl = b_width_log2(bsize);
- int bs = (1 << bsl) / 4; // mode_info step for subsize
- int n;
- PARTITION_TYPE partition = PARTITION_NONE;
+ MACROBLOCKD *const xd = &cpi->mb.e_mbd;
+
+ const int bsl = b_width_log2(bsize);
+ const int bs = (1 << bsl) / 4;
+ PARTITION_TYPE partition;
BLOCK_SIZE subsize;
- MODE_INFO *m = mi_8x8[0];
+ MODE_INFO *m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
partition = partition_lookup[bsl][m->mbmi.sb_type];
-
- if (bsize < BLOCK_8X8) {
- if (index > 0)
- return;
- } else {
- const int ctx = partition_plane_context(cpi->above_seg_context,
- cpi->left_seg_context,
- mi_row, mi_col, bsize);
- write_partition(partition, bs, cm->mi_rows, cm->mi_cols, mi_row, mi_col,
- cm->fc.partition_prob[cm->frame_type][ctx], bc);
- }
-
+ write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
subsize = get_subsize(bsize, partition);
-
- switch (partition) {
- case PARTITION_NONE:
- write_modes_b(cpi, tile, mi_8x8, bc, tok, tok_end, mi_row, mi_col, 0);
- break;
- case PARTITION_HORZ:
- write_modes_b(cpi, tile, mi_8x8, bc, tok, tok_end, mi_row, mi_col, 0);
- if ((mi_row + bs) < cm->mi_rows)
- write_modes_b(cpi, tile, mi_8x8 + bs * mis, bc, tok, tok_end,
- mi_row + bs, mi_col, 1);
- break;
- case PARTITION_VERT:
- write_modes_b(cpi, tile, mi_8x8, bc, tok, tok_end, mi_row, mi_col, 0);
- if ((mi_col + bs) < cm->mi_cols)
- write_modes_b(cpi, tile, mi_8x8 + bs, bc, tok, tok_end,
- mi_row, mi_col + bs, 1);
- break;
- case PARTITION_SPLIT:
- for (n = 0; n < 4; n++) {
- const int j = n >> 1, i = n & 1;
- write_modes_sb(cpi, tile, mi_8x8 + j * bs * mis + i * bs, bc,
- tok, tok_end,
- mi_row + j * bs, mi_col + i * bs, subsize, n);
- }
- break;
- default:
- assert(0);
+ if (subsize < BLOCK_8X8) {
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+ } else {
+ switch (partition) {
+ case PARTITION_NONE:
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+ break;
+ case PARTITION_HORZ:
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+ if (mi_row + bs < cm->mi_rows)
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
+ break;
+ case PARTITION_VERT:
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+ if (mi_col + bs < cm->mi_cols)
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
+ break;
+ case PARTITION_SPLIT:
+ write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
+ write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
+ subsize);
+ write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
+ subsize);
+ write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
+ subsize);
+ break;
+ default:
+ assert(0);
+ }
}
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
- update_partition_context(cpi->above_seg_context, cpi->left_seg_context,
- mi_row, mi_col, subsize, bsize);
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
}
-static void write_modes(VP9_COMP *cpi, const TileInfo *const tile,
- vp9_writer* const bc,
- TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
- VP9_COMMON *const cm = &cpi->common;
- const int mis = cm->mode_info_stride;
+static void write_modes(VP9_COMP *cpi,
+ const TileInfo *const tile,
+ vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
int mi_row, mi_col;
- MODE_INFO **mi_8x8 = cm->mi_grid_visible;
- MODE_INFO **m_8x8;
-
- mi_8x8 += tile->mi_col_start + tile->mi_row_start * mis;
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
- mi_row += 8, mi_8x8 += 8 * mis) {
- m_8x8 = mi_8x8;
- vp9_zero(cpi->left_seg_context);
+ mi_row += MI_BLOCK_SIZE) {
+ vp9_zero(cpi->mb.e_mbd.left_seg_context);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
- mi_col += MI_BLOCK_SIZE, m_8x8 += MI_BLOCK_SIZE) {
- write_modes_sb(cpi, tile, m_8x8, bc, tok, tok_end, mi_row, mi_col,
- BLOCK_64X64, 0);
- }
+ mi_col += MI_BLOCK_SIZE)
+ write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
+ BLOCK_64X64);
}
}
-static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) {
- vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size];
+static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
+ vp9_coeff_stats *coef_branch_ct,
+ vp9_coeff_probs_model *coef_probs) {
vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
- unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
+ unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
cpi->common.counts.eob_branch[tx_size];
- vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size];
- vp9_prob full_probs[ENTROPY_NODES];
- int i, j, k, l;
+ int i, j, k, l, m;
- for (i = 0; i < BLOCK_TYPES; ++i) {
+ for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
- for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
- if (l >= 3 && k == 0)
- continue;
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
vp9_tree_probs_from_distribution(vp9_coef_tree,
- full_probs,
coef_branch_ct[i][j][k][l],
- coef_counts[i][j][k][l], 0);
- vpx_memcpy(coef_probs[i][j][k][l], full_probs,
- sizeof(vp9_prob) * UNCONSTRAINED_NODES);
+ coef_counts[i][j][k][l]);
coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
coef_branch_ct[i][j][k][l][0][0];
- coef_probs[i][j][k][l][0] =
- get_binary_prob(coef_branch_ct[i][j][k][l][0][0],
- coef_branch_ct[i][j][k][l][0][1]);
-#ifdef ENTROPY_STATS
- if (!cpi->dummy_packing) {
- int t;
- for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
- context_counters[tx_size][i][j][k][l][t] +=
- coef_counts[i][j][k][l][t];
- context_counters[tx_size][i][j][k][l][MAX_ENTROPY_TOKENS] +=
- eob_branch_ct[i][j][k][l];
- }
-#endif
+ for (m = 0; m < UNCONSTRAINED_NODES; ++m)
+ coef_probs[i][j][k][l][m] = get_binary_prob(
+ coef_branch_ct[i][j][k][l][m][0],
+ coef_branch_ct[i][j][k][l][m][1]);
}
}
}
}
}
-static void build_coeff_contexts(VP9_COMP *cpi) {
- TX_SIZE t;
- for (t = TX_4X4; t <= TX_32X32; t++)
- build_tree_distribution(cpi, t);
-}
-
static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
- TX_SIZE tx_size) {
- vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size];
- vp9_coeff_probs_model *old_frame_coef_probs =
- cpi->common.fc.coef_probs[tx_size];
- vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size];
+ TX_SIZE tx_size,
+ vp9_coeff_stats *frame_branch_ct,
+ vp9_coeff_probs_model *new_coef_probs) {
+ vp9_coeff_probs_model *old_coef_probs = cpi->common.fc.coef_probs[tx_size];
const vp9_prob upd = DIFF_UPDATE_PROB;
const int entropy_nodes_update = UNCONSTRAINED_NODES;
int i, j, k, l, t;
switch (cpi->sf.use_fast_coef_updates) {
- case 0: {
+ case TWO_LOOP: {
/* dry run to see if there is any udpate at all needed */
int savings = 0;
int update[2] = {0, 0};
- for (i = 0; i < BLOCK_TYPES; ++i) {
+ for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
- for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
for (t = 0; t < entropy_nodes_update; ++t) {
- vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
- const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
+ vp9_prob newp = new_coef_probs[i][j][k][l][t];
+ const vp9_prob oldp = old_coef_probs[i][j][k][l][t];
int s;
int u = 0;
-
- if (l >= 3 && k == 0)
- continue;
if (t == PIVOT_NODE)
s = vp9_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
- old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
+ old_coef_probs[i][j][k][l], &newp, upd);
else
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
@@ -805,23 +560,21 @@ static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
return;
}
vp9_write_bit(bc, 1);
- for (i = 0; i < BLOCK_TYPES; ++i) {
+ for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
- for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
- vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
- vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
+ vp9_prob newp = new_coef_probs[i][j][k][l][t];
+ vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
const vp9_prob upd = DIFF_UPDATE_PROB;
int s;
int u = 0;
- if (l >= 3 && k == 0)
- continue;
if (t == PIVOT_NODE)
s = vp9_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
- old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
+ old_coef_probs[i][j][k][l], &newp, upd);
else
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t],
@@ -829,10 +582,6 @@ static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
if (s > 0 && newp != *oldp)
u = 1;
vp9_write(bc, u, upd);
-#ifdef ENTROPY_STATS
- if (!cpi->dummy_packing)
- ++tree_update_hist[tx_size][i][j][k][l][t][u];
-#endif
if (u) {
/* send/use new probability */
vp9_write_prob_diff_update(bc, newp, *oldp);
@@ -846,28 +595,26 @@ static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
return;
}
- case 1:
- case 2: {
+ case ONE_LOOP:
+ case ONE_LOOP_REDUCED: {
const int prev_coef_contexts_to_update =
- (cpi->sf.use_fast_coef_updates == 2 ?
- PREV_COEF_CONTEXTS >> 1 : PREV_COEF_CONTEXTS);
+ cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
+ COEFF_CONTEXTS >> 1 : COEFF_CONTEXTS;
const int coef_band_to_update =
- (cpi->sf.use_fast_coef_updates == 2 ?
- COEF_BANDS >> 1 : COEF_BANDS);
+ cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
+ COEF_BANDS >> 1 : COEF_BANDS;
int updates = 0;
int noupdates_before_first = 0;
- for (i = 0; i < BLOCK_TYPES; ++i) {
+ for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
- for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
- vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
- vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
+ vp9_prob newp = new_coef_probs[i][j][k][l][t];
+ vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
int s;
int u = 0;
- if (l >= 3 && k == 0)
- continue;
if (l >= prev_coef_contexts_to_update ||
k >= coef_band_to_update) {
u = 0;
@@ -875,7 +622,7 @@ static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
if (t == PIVOT_NODE)
s = vp9_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
- old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
+ old_coef_probs[i][j][k][l], &newp, upd);
else
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t],
@@ -886,10 +633,6 @@ static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
updates += u;
if (u == 0 && updates == 0) {
noupdates_before_first++;
-#ifdef ENTROPY_STATS
- if (!cpi->dummy_packing)
- ++tree_update_hist[tx_size][i][j][k][l][t][u];
-#endif
continue;
}
if (u == 1 && updates == 1) {
@@ -900,10 +643,6 @@ static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
vp9_write(bc, 0, upd);
}
vp9_write(bc, u, upd);
-#ifdef ENTROPY_STATS
- if (!cpi->dummy_packing)
- ++tree_update_hist[tx_size][i][j][k][l][t][u];
-#endif
if (u) {
/* send/use new probability */
vp9_write_prob_diff_update(bc, newp, *oldp);
@@ -925,25 +664,22 @@ static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
}
}
-static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) {
+static void update_coef_probs(VP9_COMP *cpi, vp9_writer* w) {
const TX_MODE tx_mode = cpi->common.tx_mode;
+ const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
+ TX_SIZE tx_size;
+ vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES];
+ vp9_coeff_probs_model frame_coef_probs[TX_SIZES][PLANE_TYPES];
vp9_clear_system_state();
- // Build the cofficient contexts based on counts collected in encode loop
- build_coeff_contexts(cpi);
-
- update_coef_probs_common(bc, cpi, TX_4X4);
+ for (tx_size = TX_4X4; tx_size <= TX_32X32; ++tx_size)
+ build_tree_distribution(cpi, tx_size, frame_branch_ct[tx_size],
+ frame_coef_probs[tx_size]);
- // do not do this if not even allowed
- if (tx_mode > ONLY_4X4)
- update_coef_probs_common(bc, cpi, TX_8X8);
-
- if (tx_mode > ALLOW_8X8)
- update_coef_probs_common(bc, cpi, TX_16X16);
-
- if (tx_mode > ALLOW_16X16)
- update_coef_probs_common(bc, cpi, TX_32X32);
+ for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
+ update_coef_probs_common(w, cpi, tx_size, frame_branch_ct[tx_size],
+ frame_coef_probs[tx_size]);
}
static void encode_loopfilter(struct loopfilter *lf,
@@ -959,38 +695,27 @@ static void encode_loopfilter(struct loopfilter *lf,
vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
if (lf->mode_ref_delta_enabled) {
- // Do the deltas need to be updated
vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
if (lf->mode_ref_delta_update) {
- // Send update
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
const int delta = lf->ref_deltas[i];
-
- // Frame level data
- if (delta != lf->last_ref_deltas[i]) {
+ const int changed = delta != lf->last_ref_deltas[i];
+ vp9_wb_write_bit(wb, changed);
+ if (changed) {
lf->last_ref_deltas[i] = delta;
- vp9_wb_write_bit(wb, 1);
-
- assert(delta != 0);
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vp9_wb_write_bit(wb, delta < 0);
- } else {
- vp9_wb_write_bit(wb, 0);
}
}
- // Send update
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = lf->mode_deltas[i];
- if (delta != lf->last_mode_deltas[i]) {
+ const int changed = delta != lf->last_mode_deltas[i];
+ vp9_wb_write_bit(wb, changed);
+ if (changed) {
lf->last_mode_deltas[i] = delta;
- vp9_wb_write_bit(wb, 1);
-
- assert(delta != 0);
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vp9_wb_write_bit(wb, delta < 0);
- } else {
- vp9_wb_write_bit(wb, 0);
}
}
}
@@ -1067,10 +792,10 @@ static void encode_segmentation(VP9_COMP *cpi,
const int data_max = vp9_seg_feature_data_max(j);
if (vp9_is_segfeature_signed(j)) {
- vp9_encode_unsigned_max(wb, abs(data), data_max);
+ encode_unsigned_max(wb, abs(data), data_max);
vp9_wb_write_bit(wb, data < 0);
} else {
- vp9_encode_unsigned_max(wb, data, data_max);
+ encode_unsigned_max(wb, data, data_max);
}
}
}
@@ -1079,9 +804,7 @@ static void encode_segmentation(VP9_COMP *cpi,
}
-static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) {
- VP9_COMMON *const cm = &cpi->common;
-
+static void encode_txfm_probs(VP9_COMMON *cm, vp9_writer *w) {
// Mode
vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
if (cm->tx_mode >= ALLOW_32X32)
@@ -1114,26 +837,20 @@ static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) {
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
ct_32x32p[j]);
}
-#ifdef MODE_STATS
- if (!cpi->dummy_packing)
- update_tx_count_stats(cm);
-#endif
}
}
-static void write_interp_filter_type(INTERPOLATION_TYPE type,
- struct vp9_write_bit_buffer *wb) {
- const int type_to_literal[] = { 1, 0, 2, 3 };
+static void write_interp_filter(INTERP_FILTER filter,
+ struct vp9_write_bit_buffer *wb) {
+ const int filter_to_literal[] = { 1, 0, 2, 3 };
- vp9_wb_write_bit(wb, type == SWITCHABLE);
- if (type != SWITCHABLE)
- vp9_wb_write_literal(wb, type_to_literal[type], 2);
+ vp9_wb_write_bit(wb, filter == SWITCHABLE);
+ if (filter != SWITCHABLE)
+ vp9_wb_write_literal(wb, filter_to_literal[filter], 2);
}
-static void fix_mcomp_filter_type(VP9_COMP *cpi) {
- VP9_COMMON *const cm = &cpi->common;
-
- if (cm->mcomp_filter_type == SWITCHABLE) {
+static void fix_interp_filter(VP9_COMMON *cm) {
+ if (cm->interp_filter == SWITCHABLE) {
// Check to see if only one of the filters is actually used
int count[SWITCHABLE_FILTERS];
int i, j, c = 0;
@@ -1147,7 +864,7 @@ static void fix_mcomp_filter_type(VP9_COMP *cpi) {
// Only one filter is used. So set the filter at frame level
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
- cm->mcomp_filter_type = i;
+ cm->interp_filter = i;
break;
}
}
@@ -1188,7 +905,7 @@ static int get_refresh_mask(VP9_COMP *cpi) {
// other uses are implemented (like RTC/temporal scaling)
//
// gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
- // that happens in vp9_onyx_if.c:update_reference_frames() so that it can
+ // that happens in vp9_encoder.c:update_reference_frames() so that it can
// be done outside of the recode loop.
return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->alt_fb_idx);
@@ -1219,7 +936,7 @@ static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
- vpx_memset(cpi->above_seg_context, 0, sizeof(*cpi->above_seg_context) *
+ vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) *
mi_cols_aligned_to_sb(cm->mi_cols));
tok[0][0] = cpi->tok;
@@ -1237,7 +954,7 @@ static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
TileInfo tile;
- vp9_tile_init(&tile, cm, 0, tile_col);
+ vp9_tile_init(&tile, cm, tile_row, tile_col);
tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
@@ -1250,7 +967,7 @@ static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
vp9_stop_encode(&residual_bc);
if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
// size of this tile
- write_be32(data_ptr + total_size, residual_bc.pos);
+ mem_put_be32(data_ptr + total_size, residual_bc.pos);
total_size += 4;
}
@@ -1261,9 +978,8 @@ static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
return total_size;
}
-static void write_display_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) {
- VP9_COMMON *const cm = &cpi->common;
-
+static void write_display_size(const VP9_COMMON *cm,
+ struct vp9_write_bit_buffer *wb) {
const int scaling_active = cm->width != cm->display_width ||
cm->height != cm->display_height;
vp9_wb_write_bit(wb, scaling_active);
@@ -1273,30 +989,29 @@ static void write_display_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) {
}
}
-static void write_frame_size(VP9_COMP *cpi,
+static void write_frame_size(const VP9_COMMON *cm,
struct vp9_write_bit_buffer *wb) {
- VP9_COMMON *const cm = &cpi->common;
vp9_wb_write_literal(wb, cm->width - 1, 16);
vp9_wb_write_literal(wb, cm->height - 1, 16);
- write_display_size(cpi, wb);
+ write_display_size(cm, wb);
}
static void write_frame_size_with_refs(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
- int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
- cpi->alt_fb_idx};
- int i, found = 0;
+ int found = 0;
- for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
- YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->ref_frame_map[refs[i]]];
+ MV_REFERENCE_FRAME ref_frame;
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
found = cm->width == cfg->y_crop_width &&
cm->height == cfg->y_crop_height;
- // TODO(ivan): This prevents a bug while more than 3 buffers are used. Do it
- // in a better way.
- if (cpi->use_svc) {
+ // Set "found" to 0 for temporal svc and for spatial svc key frame
+ if (cpi->use_svc &&
+ (cpi->svc.number_spatial_layers == 1 ||
+ cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame)) {
found = 0;
}
vp9_wb_write_bit(wb, found);
@@ -1310,7 +1025,7 @@ static void write_frame_size_with_refs(VP9_COMP *cpi,
vp9_wb_write_literal(wb, cm->height - 1, 16);
}
- write_display_size(cpi, wb);
+ write_display_size(cm, wb);
}
static void write_sync_code(struct vp9_write_bit_buffer *wb) {
@@ -1319,19 +1034,22 @@ static void write_sync_code(struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
}
+static void write_profile(BITSTREAM_PROFILE profile,
+ struct vp9_write_bit_buffer *wb) {
+ assert(profile < MAX_PROFILES);
+ vp9_wb_write_bit(wb, profile & 1);
+ vp9_wb_write_bit(wb, profile >> 1);
+}
+
static void write_uncompressed_header(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
- // bitstream version.
- // 00 - profile 0. 4:2:0 only
- // 10 - profile 1. adds 4:4:4, 4:2:2, alpha
- vp9_wb_write_bit(wb, cm->version);
- vp9_wb_write_bit(wb, 0);
+ write_profile(cm->profile, wb);
- vp9_wb_write_bit(wb, 0);
+ vp9_wb_write_bit(wb, 0); // show_existing_frame
vp9_wb_write_bit(wb, cm->frame_type);
vp9_wb_write_bit(wb, cm->show_frame);
vp9_wb_write_bit(wb, cm->error_resilient_mode);
@@ -1339,23 +1057,25 @@ static void write_uncompressed_header(VP9_COMP *cpi,
if (cm->frame_type == KEY_FRAME) {
const COLOR_SPACE cs = UNKNOWN;
write_sync_code(wb);
+ if (cm->profile > PROFILE_1) {
+ assert(cm->bit_depth > BITS_8);
+ vp9_wb_write_bit(wb, cm->bit_depth - BITS_10);
+ }
vp9_wb_write_literal(wb, cs, 3);
if (cs != SRGB) {
vp9_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
- if (cm->version == 1) {
+ if (cm->profile >= PROFILE_1) {
vp9_wb_write_bit(wb, cm->subsampling_x);
vp9_wb_write_bit(wb, cm->subsampling_y);
vp9_wb_write_bit(wb, 0); // has extra plane
}
} else {
- assert(cm->version == 1);
+ assert(cm->profile == PROFILE_1);
vp9_wb_write_bit(wb, 0); // has extra plane
}
- write_frame_size(cpi, wb);
+ write_frame_size(cm, wb);
} else {
- const int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
- cpi->alt_fb_idx};
if (!cm->show_frame)
vp9_wb_write_bit(wb, cm->intra_only);
@@ -1365,22 +1085,23 @@ static void write_uncompressed_header(VP9_COMP *cpi,
if (cm->intra_only) {
write_sync_code(wb);
- vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
- write_frame_size(cpi, wb);
+ vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
+ write_frame_size(cm, wb);
} else {
- int i;
- vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
- for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
- vp9_wb_write_literal(wb, refs[i], NUM_REF_FRAMES_LOG2);
- vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[LAST_FRAME + i]);
+ MV_REFERENCE_FRAME ref_frame;
+ vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ vp9_wb_write_literal(wb, get_ref_frame_idx(cpi, ref_frame),
+ REF_FRAMES_LOG2);
+ vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
}
write_frame_size_with_refs(cpi, wb);
vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
- fix_mcomp_filter_type(cpi);
- write_interp_filter_type(cm->mcomp_filter_type, wb);
+ fix_interp_filter(cm);
+ write_interp_filter(cm->interp_filter, wb);
}
}
@@ -1389,7 +1110,7 @@ static void write_uncompressed_header(VP9_COMP *cpi,
vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
}
- vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LOG2);
+ vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
encode_loopfilter(&cm->lf, wb);
encode_quantization(cm, wb);
@@ -1409,36 +1130,30 @@ static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
if (xd->lossless)
cm->tx_mode = ONLY_4X4;
else
- encode_txfm_probs(cpi, &header_bc);
+ encode_txfm_probs(cm, &header_bc);
update_coef_probs(cpi, &header_bc);
-
-#ifdef ENTROPY_STATS
- active_section = 2;
-#endif
-
- vp9_update_skip_probs(cpi, &header_bc);
+ update_skip_probs(cm, &header_bc);
if (!frame_is_intra_only(cm)) {
int i;
-#ifdef ENTROPY_STATS
- active_section = 1;
-#endif
- update_inter_mode_probs(cm, &header_bc);
+ for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
+ prob_diff_update(vp9_inter_mode_tree, cm->fc.inter_mode_probs[i],
+ cm->counts.inter_mode[i], INTER_MODES, &header_bc);
+
vp9_zero(cm->counts.inter_mode);
- if (cm->mcomp_filter_type == SWITCHABLE)
- update_switchable_interp_probs(cpi, &header_bc);
+ if (cm->interp_filter == SWITCHABLE)
+ update_switchable_interp_probs(cm, &header_bc);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
- cpi->intra_inter_count[i]);
+ cm->counts.intra_inter[i]);
if (cm->allow_comp_inter_inter) {
- const int comp_pred_mode = cpi->common.comp_pred_mode;
- const int use_compound_pred = comp_pred_mode != SINGLE_PREDICTION_ONLY;
- const int use_hybrid_pred = comp_pred_mode == HYBRID_PREDICTION;
+ const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
+ const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
vp9_write_bit(&header_bc, use_compound_pred);
if (use_compound_pred) {
@@ -1446,36 +1161,33 @@ static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
if (use_hybrid_pred)
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
- cpi->comp_inter_count[i]);
+ cm->counts.comp_inter[i]);
}
}
- if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) {
+ if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; i++) {
vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
- cpi->single_ref_count[i][0]);
+ cm->counts.single_ref[i][0]);
vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
- cpi->single_ref_count[i][1]);
+ cm->counts.single_ref[i][1]);
}
}
- if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY)
+ if (cm->reference_mode != SINGLE_REFERENCE)
for (i = 0; i < REF_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
- cpi->comp_ref_count[i]);
+ cm->counts.comp_ref[i]);
- update_mbintra_mode_probs(cpi, &header_bc);
+ for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
+ prob_diff_update(vp9_intra_mode_tree, cm->fc.y_mode_prob[i],
+ cm->counts.y_mode[i], INTRA_MODES, &header_bc);
- for (i = 0; i < PARTITION_CONTEXTS; ++i) {
- vp9_prob pnew[PARTITION_TYPES - 1];
- unsigned int bct[PARTITION_TYPES - 1][2];
- update_mode(&header_bc, PARTITION_TYPES,
- vp9_partition_tree, pnew,
- fc->partition_prob[cm->frame_type][i], bct,
- (unsigned int *)cpi->partition_count[i]);
- }
+ for (i = 0; i < PARTITION_CONTEXTS; ++i)
+ prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
+ cm->counts.partition[i], PARTITION_TYPES, &header_bc);
- vp9_write_nmv_probs(cpi, cm->allow_high_precision_mv, &header_bc);
+ vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc);
}
vp9_stop_encode(&header_bc);
@@ -1484,9 +1196,9 @@ static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
return header_bc.pos;
}
-void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) {
+void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
uint8_t *data = dest;
- size_t first_part_size;
+ size_t first_part_size, uncompressed_hdr_size;
struct vp9_write_bit_buffer wb = {data, 0};
struct vp9_write_bit_buffer saved_wb;
@@ -1494,75 +1206,20 @@ void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) {
saved_wb = wb;
vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
- data += vp9_rb_bytes_written(&wb);
+ uncompressed_hdr_size = vp9_rb_bytes_written(&wb);
+ data += uncompressed_hdr_size;
vp9_compute_update_table();
-#ifdef ENTROPY_STATS
- if (cm->frame_type == INTER_FRAME)
- active_section = 0;
- else
- active_section = 7;
-#endif
-
- vp9_clear_system_state(); // __asm emms;
+ vp9_clear_system_state();
first_part_size = write_compressed_header(cpi, data);
data += first_part_size;
- vp9_wb_write_literal(&saved_wb, first_part_size, 16);
+ // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
+ vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16);
data += encode_tiles(cpi, data);
*size = data - dest;
}
-#ifdef ENTROPY_STATS
-static void print_tree_update_for_type(FILE *f,
- vp9_coeff_stats *tree_update_hist,
- int block_types, const char *header) {
- int i, j, k, l, m;
-
- fprintf(f, "const vp9_coeff_prob %s = {\n", header);
- for (i = 0; i < block_types; i++) {
- fprintf(f, " { \n");
- for (j = 0; j < REF_TYPES; j++) {
- fprintf(f, " { \n");
- for (k = 0; k < COEF_BANDS; k++) {
- fprintf(f, " {\n");
- for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
- fprintf(f, " {");
- for (m = 0; m < ENTROPY_NODES; m++) {
- fprintf(f, "%3d, ",
- get_binary_prob(tree_update_hist[i][j][k][l][m][0],
- tree_update_hist[i][j][k][l][m][1]));
- }
- fprintf(f, "},\n");
- }
- fprintf(f, "},\n");
- }
- fprintf(f, " },\n");
- }
- fprintf(f, " },\n");
- }
- fprintf(f, "};\n");
-}
-
-void print_tree_update_probs() {
- FILE *f = fopen("coefupdprob.h", "w");
- fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
-
- print_tree_update_for_type(f, tree_update_hist[TX_4X4], BLOCK_TYPES,
- "vp9_coef_update_probs_4x4[BLOCK_TYPES]");
- print_tree_update_for_type(f, tree_update_hist[TX_8X8], BLOCK_TYPES,
- "vp9_coef_update_probs_8x8[BLOCK_TYPES]");
- print_tree_update_for_type(f, tree_update_hist[TX_16X16], BLOCK_TYPES,
- "vp9_coef_update_probs_16x16[BLOCK_TYPES]");
- print_tree_update_for_type(f, tree_update_hist[TX_32X32], BLOCK_TYPES,
- "vp9_coef_update_probs_32x32[BLOCK_TYPES]");
-
- fclose(f);
- f = fopen("treeupdate.bin", "wb");
- fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f);
- fclose(f);
-}
-#endif
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_bitstream.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_bitstream.h
index b3dbee1a772..ddfd0ed4ff2 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_bitstream.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_bitstream.h
@@ -12,6 +12,18 @@
#ifndef VP9_ENCODER_VP9_BITSTREAM_H_
#define VP9_ENCODER_VP9_BITSTREAM_H_
-void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *bc);
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct VP9_COMP;
+
+void vp9_entropy_mode_init();
+
+void vp9_pack_bitstream(struct VP9_COMP *cpi, uint8_t *dest, size_t *size);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
#endif // VP9_ENCODER_VP9_BITSTREAM_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_block.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_block.h
index 583c6c8d02e..2ccf4f80e87 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_block.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_block.h
@@ -11,30 +11,37 @@
#ifndef VP9_ENCODER_VP9_BLOCK_H_
#define VP9_ENCODER_VP9_BLOCK_H_
-#include "vp9/common/vp9_onyx.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_entropy.h"
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_onyxc_int.h"
-// motion search site
-typedef struct {
- MV mv;
- int offset;
-} search_site;
+#ifdef __cplusplus
+extern "C" {
+#endif
// Structure to hold snapshot of coding context during the mode picking process
typedef struct {
MODE_INFO mic;
uint8_t *zcoeff_blk;
+ int16_t *coeff[MAX_MB_PLANE][3];
+ int16_t *qcoeff[MAX_MB_PLANE][3];
+ int16_t *dqcoeff[MAX_MB_PLANE][3];
+ uint16_t *eobs[MAX_MB_PLANE][3];
+
+ // dual buffer pointers, 0: in use, 1: best in store
+ int16_t *coeff_pbuf[MAX_MB_PLANE][3];
+ int16_t *qcoeff_pbuf[MAX_MB_PLANE][3];
+ int16_t *dqcoeff_pbuf[MAX_MB_PLANE][3];
+ uint16_t *eobs_pbuf[MAX_MB_PLANE][3];
+
+ int is_coded;
int num_4x4_blk;
int skip;
- int_mv best_ref_mv;
- int_mv second_best_ref_mv;
+ int_mv best_ref_mv[2];
int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
int rate;
int distortion;
- int64_t intra_error;
int best_mode_index;
int rddiv;
int rdmult;
@@ -47,17 +54,14 @@ typedef struct {
// motion vector cache for adaptive motion search control in partition
// search loop
int_mv pred_mv[MAX_REF_FRAMES];
-
- // Bit flag for each mode whether it has high error in comparison to others.
- unsigned int modes_with_high_error;
-
- // Bit flag for each ref frame whether it has high error compared to others.
- unsigned int frames_with_high_error;
+ INTERP_FILTER pred_interp_filter;
} PICK_MODE_CONTEXT;
struct macroblock_plane {
DECLARE_ALIGNED(16, int16_t, src_diff[64 * 64]);
- DECLARE_ALIGNED(16, int16_t, coeff[64 * 64]);
+ int16_t *qcoeff;
+ int16_t *coeff;
+ uint16_t *eobs;
struct buf_2d src;
// Quantizer setings
@@ -69,11 +73,23 @@ struct macroblock_plane {
// Zbin Over Quant value
int16_t zbin_extra;
};
+typedef struct PC_TREE {
+ int index;
+ PARTITION_TYPE partitioning;
+ BLOCK_SIZE block_size;
+ PICK_MODE_CONTEXT none;
+ PICK_MODE_CONTEXT horizontal[2];
+ PICK_MODE_CONTEXT vertical[2];
+ union {
+ struct PC_TREE *split[4];
+ PICK_MODE_CONTEXT *leaf_split[4];
+ };
+} PC_TREE;
/* The [2] dimension is for whether we skip the EOB node (i.e. if previous
* coefficient in this block was zero) or not. */
-typedef unsigned int vp9_coeff_cost[BLOCK_TYPES][REF_TYPES][COEF_BANDS][2]
- [PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS];
+typedef unsigned int vp9_coeff_cost[PLANE_TYPES][REF_TYPES][COEF_BANDS][2]
+ [COEFF_CONTEXTS][ENTROPY_TOKENS];
typedef struct macroblock MACROBLOCK;
struct macroblock {
@@ -81,10 +97,10 @@ struct macroblock {
MACROBLOCKD e_mbd;
int skip_block;
-
- search_site *ss;
- int ss_count;
- int searches_per_step;
+ int select_txfm_size;
+ int skip_recode;
+ int skip_optimize;
+ int q_index;
int errorperbit;
int sadperbit16;
@@ -92,13 +108,12 @@ struct macroblock {
int rddiv;
int rdmult;
unsigned int mb_energy;
- unsigned int *mb_activity_ptr;
- int *mb_norm_activity_ptr;
- signed int act_zbin_adj;
int mv_best_ref_index[MAX_REF_FRAMES];
unsigned int max_mv_context[MAX_REF_FRAMES];
unsigned int source_variance;
+ unsigned int pred_sse[MAX_REF_FRAMES];
+ int pred_mv_sad[MAX_REF_FRAMES];
int nmvjointcost[MV_JOINTS];
int nmvcosts[2][MV_VALS];
@@ -114,12 +129,6 @@ struct macroblock {
int *nmvsadcost_hp[2];
int **mvsadcost;
- int mbmode_cost[MB_MODE_COUNT];
- unsigned inter_mode_cost[INTER_MODE_CONTEXTS][INTER_MODES];
- int intra_uv_mode_cost[2][MB_MODE_COUNT];
- int y_mode_costs[INTRA_MODES][INTRA_MODES][INTRA_MODES];
- int switchable_interp_costs[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
-
// These define limits to motion vector components to prevent them
// from extending outside the UMV borders
int mv_col_min;
@@ -132,11 +141,12 @@ struct macroblock {
int encode_breakout;
- unsigned char *active_ptr;
+ int in_active_map;
// note that token_costs is the cost when eob node is skipped
vp9_coeff_cost token_costs[TX_SIZES];
- uint8_t token_cache[1024];
+
+ int in_static_area;
int optimize;
@@ -145,92 +155,19 @@ struct macroblock {
int skip_encode;
// Used to store sub partition's choices.
- int fast_ms;
int_mv pred_mv[MAX_REF_FRAMES];
- int subblock_ref;
-
- // TODO(jingning): Need to refactor the structure arrays that buffers the
- // coding mode decisions of each partition type.
- PICK_MODE_CONTEXT ab4x4_context[4][4][4];
- PICK_MODE_CONTEXT sb8x4_context[4][4][4];
- PICK_MODE_CONTEXT sb4x8_context[4][4][4];
- PICK_MODE_CONTEXT sb8x8_context[4][4][4];
- PICK_MODE_CONTEXT sb8x16_context[4][4][2];
- PICK_MODE_CONTEXT sb16x8_context[4][4][2];
- PICK_MODE_CONTEXT mb_context[4][4];
- PICK_MODE_CONTEXT sb32x16_context[4][2];
- PICK_MODE_CONTEXT sb16x32_context[4][2];
- // when 4 MBs share coding parameters:
- PICK_MODE_CONTEXT sb32_context[4];
- PICK_MODE_CONTEXT sb32x64_context[2];
- PICK_MODE_CONTEXT sb64x32_context[2];
- PICK_MODE_CONTEXT sb64_context;
- int partition_cost[PARTITION_CONTEXTS][PARTITION_TYPES];
- BLOCK_SIZE b_partitioning[4][4][4];
- BLOCK_SIZE mb_partitioning[4][4];
- BLOCK_SIZE sb_partitioning[4];
- BLOCK_SIZE sb64_partitioning;
+ PICK_MODE_CONTEXT *leaf_tree;
+ PC_TREE *pc_tree;
+ PC_TREE *pc_root;
+ int partition_cost[PARTITION_CONTEXTS][PARTITION_TYPES];
void (*fwd_txm4x4)(const int16_t *input, int16_t *output, int stride);
};
-// TODO(jingning): the variables used here are little complicated. need further
-// refactoring on organizing the temporary buffers, when recursive
-// partition down to 4x4 block size is enabled.
-static PICK_MODE_CONTEXT *get_block_context(MACROBLOCK *x, BLOCK_SIZE bsize) {
- MACROBLOCKD *const xd = &x->e_mbd;
-
- switch (bsize) {
- case BLOCK_64X64:
- return &x->sb64_context;
- case BLOCK_64X32:
- return &x->sb64x32_context[xd->sb_index];
- case BLOCK_32X64:
- return &x->sb32x64_context[xd->sb_index];
- case BLOCK_32X32:
- return &x->sb32_context[xd->sb_index];
- case BLOCK_32X16:
- return &x->sb32x16_context[xd->sb_index][xd->mb_index];
- case BLOCK_16X32:
- return &x->sb16x32_context[xd->sb_index][xd->mb_index];
- case BLOCK_16X16:
- return &x->mb_context[xd->sb_index][xd->mb_index];
- case BLOCK_16X8:
- return &x->sb16x8_context[xd->sb_index][xd->mb_index][xd->b_index];
- case BLOCK_8X16:
- return &x->sb8x16_context[xd->sb_index][xd->mb_index][xd->b_index];
- case BLOCK_8X8:
- return &x->sb8x8_context[xd->sb_index][xd->mb_index][xd->b_index];
- case BLOCK_8X4:
- return &x->sb8x4_context[xd->sb_index][xd->mb_index][xd->b_index];
- case BLOCK_4X8:
- return &x->sb4x8_context[xd->sb_index][xd->mb_index][xd->b_index];
- case BLOCK_4X4:
- return &x->ab4x4_context[xd->sb_index][xd->mb_index][xd->b_index];
- default:
- assert(0);
- return NULL;
- }
-}
-
-struct rdcost_block_args {
- MACROBLOCK *x;
- ENTROPY_CONTEXT t_above[16];
- ENTROPY_CONTEXT t_left[16];
- TX_SIZE tx_size;
- int bw;
- int bh;
- int rate;
- int64_t dist;
- int64_t sse;
- int this_rate;
- int64_t this_dist;
- int64_t this_sse;
- int64_t this_rd;
- int64_t best_rd;
- int skip;
- const int16_t *scan, *nb;
-};
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
#endif // VP9_ENCODER_VP9_BLOCK_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_context_tree.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_context_tree.c
new file mode 100644
index 00000000000..ac9b562248d
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_context_tree.c
@@ -0,0 +1,156 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vp9/encoder/vp9_context_tree.h"
+
+static const BLOCK_SIZE square[] = {
+ BLOCK_8X8,
+ BLOCK_16X16,
+ BLOCK_32X32,
+ BLOCK_64X64,
+};
+
+static void alloc_mode_context(VP9_COMMON *cm, int num_4x4_blk,
+ PICK_MODE_CONTEXT *ctx) {
+ const int num_blk = (num_4x4_blk < 4 ? 4 : num_4x4_blk);
+ const int num_pix = num_blk << 4;
+ int i, k;
+ ctx->num_4x4_blk = num_blk;
+
+ CHECK_MEM_ERROR(cm, ctx->zcoeff_blk,
+ vpx_calloc(num_4x4_blk, sizeof(uint8_t)));
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ for (k = 0; k < 3; ++k) {
+ CHECK_MEM_ERROR(cm, ctx->coeff[i][k],
+ vpx_memalign(16, num_pix * sizeof(int16_t)));
+ CHECK_MEM_ERROR(cm, ctx->qcoeff[i][k],
+ vpx_memalign(16, num_pix * sizeof(int16_t)));
+ CHECK_MEM_ERROR(cm, ctx->dqcoeff[i][k],
+ vpx_memalign(16, num_pix * sizeof(int16_t)));
+ CHECK_MEM_ERROR(cm, ctx->eobs[i][k],
+ vpx_memalign(16, num_pix * sizeof(uint16_t)));
+ ctx->coeff_pbuf[i][k] = ctx->coeff[i][k];
+ ctx->qcoeff_pbuf[i][k] = ctx->qcoeff[i][k];
+ ctx->dqcoeff_pbuf[i][k] = ctx->dqcoeff[i][k];
+ ctx->eobs_pbuf[i][k] = ctx->eobs[i][k];
+ }
+ }
+}
+
+static void free_mode_context(PICK_MODE_CONTEXT *ctx) {
+ int i, k;
+ vpx_free(ctx->zcoeff_blk);
+ ctx->zcoeff_blk = 0;
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ for (k = 0; k < 3; ++k) {
+ vpx_free(ctx->coeff[i][k]);
+ ctx->coeff[i][k] = 0;
+ vpx_free(ctx->qcoeff[i][k]);
+ ctx->qcoeff[i][k] = 0;
+ vpx_free(ctx->dqcoeff[i][k]);
+ ctx->dqcoeff[i][k] = 0;
+ vpx_free(ctx->eobs[i][k]);
+ ctx->eobs[i][k] = 0;
+ }
+ }
+}
+
+static void alloc_tree_contexts(VP9_COMMON *cm, PC_TREE *tree,
+ int num_4x4_blk) {
+ alloc_mode_context(cm, num_4x4_blk, &tree->none);
+ alloc_mode_context(cm, num_4x4_blk/2, &tree->horizontal[0]);
+ alloc_mode_context(cm, num_4x4_blk/2, &tree->vertical[0]);
+
+ /* TODO(Jbb): for 4x8 and 8x4 these allocated values are not used.
+ * Figure out a better way to do this. */
+ alloc_mode_context(cm, num_4x4_blk/2, &tree->horizontal[1]);
+ alloc_mode_context(cm, num_4x4_blk/2, &tree->vertical[1]);
+}
+
+static void free_tree_contexts(PC_TREE *tree) {
+ free_mode_context(&tree->none);
+ free_mode_context(&tree->horizontal[0]);
+ free_mode_context(&tree->horizontal[1]);
+ free_mode_context(&tree->vertical[0]);
+ free_mode_context(&tree->vertical[1]);
+}
+
+// This function sets up a tree of contexts such that at each square
+// partition level. There are contexts for none, horizontal, vertical, and
+// split. Along with a block_size value and a selected block_size which
+// represents the state of our search.
+void vp9_setup_pc_tree(VP9_COMMON *cm, MACROBLOCK *x) {
+ int i, j;
+ const int leaf_nodes = 64;
+ const int tree_nodes = 64 + 16 + 4 + 1;
+ int pc_tree_index = 0;
+ PC_TREE *this_pc;
+ PICK_MODE_CONTEXT *this_leaf;
+ int square_index = 1;
+ int nodes;
+
+ vpx_free(x->leaf_tree);
+ CHECK_MEM_ERROR(cm, x->leaf_tree, vpx_calloc(leaf_nodes,
+ sizeof(*x->leaf_tree)));
+ vpx_free(x->pc_tree);
+ CHECK_MEM_ERROR(cm, x->pc_tree, vpx_calloc(tree_nodes, sizeof(*x->pc_tree)));
+
+ this_pc = &x->pc_tree[0];
+ this_leaf = &x->leaf_tree[0];
+
+ // 4x4 blocks smaller than 8x8 but in the same 8x8 block share the same
+ // context so we only need to allocate 1 for each 8x8 block.
+ for (i = 0; i < leaf_nodes; ++i)
+ alloc_mode_context(cm, 1, &x->leaf_tree[i]);
+
+ // Sets up all the leaf nodes in the tree.
+ for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) {
+ PC_TREE *const tree = &x->pc_tree[pc_tree_index];
+ tree->block_size = square[0];
+ alloc_tree_contexts(cm, tree, 4);
+ tree->leaf_split[0] = this_leaf++;
+ for (j = 1; j < 4; j++)
+ tree->leaf_split[j] = tree->leaf_split[0];
+ }
+
+ // Each node has 4 leaf nodes, fill each block_size level of the tree
+ // from leafs to the root.
+ for (nodes = 16; nodes > 0; nodes >>= 2) {
+ for (i = 0; i < nodes; ++i) {
+ PC_TREE *const tree = &x->pc_tree[pc_tree_index];
+ alloc_tree_contexts(cm, tree, 4 << (2 * square_index));
+ tree->block_size = square[square_index];
+ for (j = 0; j < 4; j++)
+ tree->split[j] = this_pc++;
+ ++pc_tree_index;
+ }
+ ++square_index;
+ }
+ x->pc_root = &x->pc_tree[tree_nodes - 1];
+ x->pc_root[0].none.best_mode_index = 2;
+}
+
+void vp9_free_pc_tree(MACROBLOCK *x) {
+ const int tree_nodes = 64 + 16 + 4 + 1;
+ int i;
+
+ // Set up all 4x4 mode contexts
+ for (i = 0; i < 64; ++i)
+ free_mode_context(&x->leaf_tree[i]);
+
+ // Sets up all the leaf nodes in the tree.
+ for (i = 0; i < tree_nodes; ++i)
+ free_tree_contexts(&x->pc_tree[i]);
+
+ vpx_free(x->pc_tree);
+ x->pc_tree = NULL;
+ vpx_free(x->leaf_tree);
+ x->leaf_tree = NULL;
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_modecosts.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_context_tree.h
index f43033e5fc8..66a6f00e3ef 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_modecosts.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_context_tree.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
@@ -8,10 +8,12 @@
* be found in the AUTHORS file in the root of the source tree.
*/
+#ifndef VP9_ENCODER_VP9_CONTEXT_TREE_H_
+#define VP9_ENCODER_VP9_CONTEXT_TREE_H_
-#ifndef VP9_ENCODER_VP9_MODECOSTS_H_
-#define VP9_ENCODER_VP9_MODECOSTS_H_
+#include "vp9/encoder/vp9_encoder.h"
-void vp9_init_mode_costs(VP9_COMP *x);
+void vp9_setup_pc_tree(VP9_COMMON *cm, MACROBLOCK *x);
+void vp9_free_pc_tree(MACROBLOCK *x);
-#endif // VP9_ENCODER_VP9_MODECOSTS_H_
+#endif /* VP9_ENCODER_VP9_CONTEXT_TREE_H_ */
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_boolhuff.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_cost.c
index 32c136e0f70..1c3c3d24847 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_boolhuff.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_cost.c
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
@@ -8,18 +8,7 @@
* be found in the AUTHORS file in the root of the source tree.
*/
-#include <assert.h>
-#include "vp9/encoder/vp9_boolhuff.h"
-#include "vp9/common/vp9_entropy.h"
-
-#if defined(SECTIONBITS_OUTPUT)
-unsigned __int64 Sectionbits[500];
-
-#endif
-
-#ifdef ENTROPY_STATS
-unsigned int active_section = 0;
-#endif
+#include "vp9/encoder/vp9_cost.h"
const unsigned int vp9_prob_cost[256] = {
2047, 2047, 1791, 1641, 1535, 1452, 1385, 1328, 1279, 1235, 1196, 1161,
@@ -45,24 +34,29 @@ const unsigned int vp9_prob_cost[256] = {
22, 21, 19, 18, 16, 15, 13, 12, 10, 9, 7, 6,
4, 3, 1, 1};
-void vp9_start_encode(vp9_writer *br, uint8_t *source) {
- br->lowvalue = 0;
- br->range = 255;
- br->value = 0;
- br->count = -24;
- br->buffer = source;
- br->pos = 0;
- vp9_write_bit(br, 0);
-}
+static void cost(int *costs, vp9_tree tree, const vp9_prob *probs,
+ int i, int c) {
+ const vp9_prob prob = probs[i / 2];
+ int b;
-void vp9_stop_encode(vp9_writer *br) {
- int i;
+ for (b = 0; b <= 1; ++b) {
+ const int cc = c + vp9_cost_bit(prob, b);
+ const vp9_tree_index ii = tree[i + b];
- for (i = 0; i < 32; i++)
- vp9_write_bit(br, 0);
+ if (ii <= 0)
+ costs[-ii] = cc;
+ else
+ cost(costs, tree, probs, ii, cc);
+ }
+}
- // Ensure there's no ambigous collision with any index marker bytes
- if ((br->buffer[br->pos - 1] & 0xe0) == 0xc0)
- br->buffer[br->pos++] = 0;
+void vp9_cost_tokens(int *costs, const vp9_prob *probs, vp9_tree tree) {
+ cost(costs, tree, probs, 0, 0);
}
+void vp9_cost_tokens_skip(int *costs, const vp9_prob *probs, vp9_tree tree) {
+ assert(tree[0] <= 0 && tree[1] > 0);
+
+ costs[-tree[0]] = vp9_cost_bit(probs[0], 0);
+ cost(costs, tree, probs, 2, 0);
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_cost.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_cost.h
new file mode 100644
index 00000000000..6d2b9400d7e
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_cost.h
@@ -0,0 +1,55 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_COST_H_
+#define VP9_ENCODER_VP9_COST_H_
+
+#include "vp9/common/vp9_prob.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+extern const unsigned int vp9_prob_cost[256];
+
+#define vp9_cost_zero(prob) (vp9_prob_cost[prob])
+
+#define vp9_cost_one(prob) vp9_cost_zero(vp9_complement(prob))
+
+#define vp9_cost_bit(prob, bit) vp9_cost_zero((bit) ? vp9_complement(prob) \
+ : (prob))
+
+static INLINE unsigned int cost_branch256(const unsigned int ct[2],
+ vp9_prob p) {
+ return ct[0] * vp9_cost_zero(p) + ct[1] * vp9_cost_one(p);
+}
+
+static INLINE int treed_cost(vp9_tree tree, const vp9_prob *probs,
+ int bits, int len) {
+ int cost = 0;
+ vp9_tree_index i = 0;
+
+ do {
+ const int bit = (bits >> --len) & 1;
+ cost += vp9_cost_bit(probs[i >> 1], bit);
+ i = tree[i + bit];
+ } while (len);
+
+ return cost;
+}
+
+void vp9_cost_tokens(int *costs, const vp9_prob *probs, vp9_tree tree);
+void vp9_cost_tokens_skip(int *costs, const vp9_prob *probs, vp9_tree tree);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_COST_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_dct.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_dct.c
index 065992a257a..d5232393f3c 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_dct.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_dct.c
@@ -18,7 +18,11 @@
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_systemdependent.h"
-#include "vp9/encoder/vp9_dct.h"
+static INLINE int fdct_round_shift(int input) {
+ int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
+ assert(INT16_MIN <= rv && rv <= INT16_MAX);
+ return rv;
+}
static void fdct4(const int16_t *input, int16_t *output) {
int16_t step[4];
@@ -31,19 +35,19 @@ static void fdct4(const int16_t *input, int16_t *output) {
temp1 = (step[0] + step[1]) * cospi_16_64;
temp2 = (step[0] - step[1]) * cospi_16_64;
- output[0] = dct_const_round_shift(temp1);
- output[2] = dct_const_round_shift(temp2);
+ output[0] = fdct_round_shift(temp1);
+ output[2] = fdct_round_shift(temp2);
temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
- output[1] = dct_const_round_shift(temp1);
- output[3] = dct_const_round_shift(temp2);
+ output[1] = fdct_round_shift(temp1);
+ output[3] = fdct_round_shift(temp2);
}
void vp9_fdct4x4_c(const int16_t *input, int16_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
- // as the first pass results are transposed, we tranpose the columns (that
+ // as the first pass results are transposed, we transpose the columns (that
// is the transposed rows) and transpose the results (so that it goes back
// in normal/row positions).
int pass;
@@ -80,12 +84,12 @@ void vp9_fdct4x4_c(const int16_t *input, int16_t *output, int stride) {
step[3] = input[0] - input[3];
temp1 = (step[0] + step[1]) * cospi_16_64;
temp2 = (step[0] - step[1]) * cospi_16_64;
- out[0] = dct_const_round_shift(temp1);
- out[2] = dct_const_round_shift(temp2);
+ out[0] = fdct_round_shift(temp1);
+ out[2] = fdct_round_shift(temp2);
temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
- out[1] = dct_const_round_shift(temp1);
- out[3] = dct_const_round_shift(temp2);
+ out[1] = fdct_round_shift(temp1);
+ out[3] = fdct_round_shift(temp2);
// Do next column (which is a transposed row in second/horizontal pass)
in++;
out += 4;
@@ -138,10 +142,10 @@ static void fadst4(const int16_t *input, int16_t *output) {
s3 = x2 - x0 + x3;
// 1-D transform scaling factor is sqrt(2).
- output[0] = dct_const_round_shift(s0);
- output[1] = dct_const_round_shift(s1);
- output[2] = dct_const_round_shift(s2);
- output[3] = dct_const_round_shift(s3);
+ output[0] = fdct_round_shift(s0);
+ output[1] = fdct_round_shift(s1);
+ output[2] = fdct_round_shift(s2);
+ output[3] = fdct_round_shift(s3);
}
static const transform_2d FHT_4[] = {
@@ -151,32 +155,36 @@ static const transform_2d FHT_4[] = {
{ fadst4, fadst4 } // ADST_ADST = 3
};
-void vp9_short_fht4x4_c(const int16_t *input, int16_t *output,
- int stride, int tx_type) {
- int16_t out[4 * 4];
- int16_t *outptr = &out[0];
- int i, j;
- int16_t temp_in[4], temp_out[4];
- const transform_2d ht = FHT_4[tx_type];
+void vp9_fht4x4_c(const int16_t *input, int16_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_fdct4x4_c(input, output, stride);
+ } else {
+ int16_t out[4 * 4];
+ int16_t *outptr = &out[0];
+ int i, j;
+ int16_t temp_in[4], temp_out[4];
+ const transform_2d ht = FHT_4[tx_type];
- // Columns
- for (i = 0; i < 4; ++i) {
- for (j = 0; j < 4; ++j)
- temp_in[j] = input[j * stride + i] * 16;
- if (i == 0 && temp_in[0])
- temp_in[0] += 1;
- ht.cols(temp_in, temp_out);
- for (j = 0; j < 4; ++j)
- outptr[j * 4 + i] = temp_out[j];
- }
+ // Columns
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j)
+ temp_in[j] = input[j * stride + i] * 16;
+ if (i == 0 && temp_in[0])
+ temp_in[0] += 1;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 4; ++j)
+ outptr[j * 4 + i] = temp_out[j];
+ }
- // Rows
- for (i = 0; i < 4; ++i) {
- for (j = 0; j < 4; ++j)
- temp_in[j] = out[j + i * 4];
- ht.rows(temp_in, temp_out);
- for (j = 0; j < 4; ++j)
- output[j + i * 4] = (temp_out[j] + 1) >> 2;
+ // Rows
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j)
+ temp_in[j] = out[j + i * 4];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 4; ++j)
+ output[j + i * 4] = (temp_out[j] + 1) >> 2;
+ }
}
}
@@ -204,16 +212,16 @@ static void fdct8(const int16_t *input, int16_t *output) {
t1 = (x0 - x1) * cospi_16_64;
t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
- output[0] = dct_const_round_shift(t0);
- output[2] = dct_const_round_shift(t2);
- output[4] = dct_const_round_shift(t1);
- output[6] = dct_const_round_shift(t3);
+ output[0] = fdct_round_shift(t0);
+ output[2] = fdct_round_shift(t2);
+ output[4] = fdct_round_shift(t1);
+ output[6] = fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
- t2 = dct_const_round_shift(t0);
- t3 = dct_const_round_shift(t1);
+ t2 = fdct_round_shift(t0);
+ t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
@@ -226,10 +234,10 @@ static void fdct8(const int16_t *input, int16_t *output) {
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
- output[1] = dct_const_round_shift(t0);
- output[3] = dct_const_round_shift(t2);
- output[5] = dct_const_round_shift(t1);
- output[7] = dct_const_round_shift(t3);
+ output[1] = fdct_round_shift(t0);
+ output[3] = fdct_round_shift(t2);
+ output[5] = fdct_round_shift(t1);
+ output[7] = fdct_round_shift(t3);
}
void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) {
@@ -264,16 +272,16 @@ void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) {
t1 = (x0 - x1) * cospi_16_64;
t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
- output[0 * 8] = dct_const_round_shift(t0);
- output[2 * 8] = dct_const_round_shift(t2);
- output[4 * 8] = dct_const_round_shift(t1);
- output[6 * 8] = dct_const_round_shift(t3);
+ output[0 * 8] = fdct_round_shift(t0);
+ output[2 * 8] = fdct_round_shift(t2);
+ output[4 * 8] = fdct_round_shift(t1);
+ output[6 * 8] = fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
- t2 = dct_const_round_shift(t0);
- t3 = dct_const_round_shift(t1);
+ t2 = fdct_round_shift(t0);
+ t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
@@ -286,10 +294,10 @@ void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) {
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
- output[1 * 8] = dct_const_round_shift(t0);
- output[3 * 8] = dct_const_round_shift(t2);
- output[5 * 8] = dct_const_round_shift(t1);
- output[7 * 8] = dct_const_round_shift(t3);
+ output[1 * 8] = fdct_round_shift(t0);
+ output[3 * 8] = fdct_round_shift(t2);
+ output[5 * 8] = fdct_round_shift(t1);
+ output[7 * 8] = fdct_round_shift(t3);
input++;
output++;
}
@@ -307,7 +315,7 @@ void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
- // as the first pass results are transposed, we tranpose the columns (that
+ // as the first pass results are transposed, we transpose the columns (that
// is the transposed rows) and transpose the results (so that it goes back
// in normal/row positions).
int pass;
@@ -388,16 +396,16 @@ void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) {
t1 = (x0 - x1) * cospi_16_64;
t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
- out[0] = dct_const_round_shift(t0);
- out[4] = dct_const_round_shift(t2);
- out[8] = dct_const_round_shift(t1);
- out[12] = dct_const_round_shift(t3);
+ out[0] = fdct_round_shift(t0);
+ out[4] = fdct_round_shift(t2);
+ out[8] = fdct_round_shift(t1);
+ out[12] = fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
- t2 = dct_const_round_shift(t0);
- t3 = dct_const_round_shift(t1);
+ t2 = fdct_round_shift(t0);
+ t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
@@ -410,22 +418,22 @@ void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) {
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
- out[2] = dct_const_round_shift(t0);
- out[6] = dct_const_round_shift(t2);
- out[10] = dct_const_round_shift(t1);
- out[14] = dct_const_round_shift(t3);
+ out[2] = fdct_round_shift(t0);
+ out[6] = fdct_round_shift(t2);
+ out[10] = fdct_round_shift(t1);
+ out[14] = fdct_round_shift(t3);
}
// Work on the next eight values; step1 -> odd_results
{
// step 2
temp1 = (step1[5] - step1[2]) * cospi_16_64;
temp2 = (step1[4] - step1[3]) * cospi_16_64;
- step2[2] = dct_const_round_shift(temp1);
- step2[3] = dct_const_round_shift(temp2);
+ step2[2] = fdct_round_shift(temp1);
+ step2[3] = fdct_round_shift(temp2);
temp1 = (step1[4] + step1[3]) * cospi_16_64;
temp2 = (step1[5] + step1[2]) * cospi_16_64;
- step2[4] = dct_const_round_shift(temp1);
- step2[5] = dct_const_round_shift(temp2);
+ step2[4] = fdct_round_shift(temp1);
+ step2[5] = fdct_round_shift(temp2);
// step 3
step3[0] = step1[0] + step2[3];
step3[1] = step1[1] + step2[2];
@@ -438,12 +446,12 @@ void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) {
// step 4
temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
temp2 = step3[2] * -cospi_24_64 - step3[5] * cospi_8_64;
- step2[1] = dct_const_round_shift(temp1);
- step2[2] = dct_const_round_shift(temp2);
+ step2[1] = fdct_round_shift(temp1);
+ step2[2] = fdct_round_shift(temp2);
temp1 = step3[2] * -cospi_8_64 + step3[5] * cospi_24_64;
temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
- step2[5] = dct_const_round_shift(temp1);
- step2[6] = dct_const_round_shift(temp2);
+ step2[5] = fdct_round_shift(temp1);
+ step2[6] = fdct_round_shift(temp2);
// step 5
step1[0] = step3[0] + step2[1];
step1[1] = step3[0] - step2[1];
@@ -456,20 +464,20 @@ void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) {
// step 6
temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
- out[1] = dct_const_round_shift(temp1);
- out[9] = dct_const_round_shift(temp2);
+ out[1] = fdct_round_shift(temp1);
+ out[9] = fdct_round_shift(temp2);
temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
- out[5] = dct_const_round_shift(temp1);
- out[13] = dct_const_round_shift(temp2);
+ out[5] = fdct_round_shift(temp1);
+ out[13] = fdct_round_shift(temp2);
temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
- out[3] = dct_const_round_shift(temp1);
- out[11] = dct_const_round_shift(temp2);
+ out[3] = fdct_round_shift(temp1);
+ out[11] = fdct_round_shift(temp2);
temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
- out[7] = dct_const_round_shift(temp1);
- out[15] = dct_const_round_shift(temp2);
+ out[7] = fdct_round_shift(temp1);
+ out[15] = fdct_round_shift(temp2);
}
// Do next column (which is a transposed row in second/horizontal pass)
in++;
@@ -503,14 +511,14 @@ static void fadst8(const int16_t *input, int16_t *output) {
s6 = cospi_26_64 * x6 + cospi_6_64 * x7;
s7 = cospi_6_64 * x6 - cospi_26_64 * x7;
- x0 = dct_const_round_shift(s0 + s4);
- x1 = dct_const_round_shift(s1 + s5);
- x2 = dct_const_round_shift(s2 + s6);
- x3 = dct_const_round_shift(s3 + s7);
- x4 = dct_const_round_shift(s0 - s4);
- x5 = dct_const_round_shift(s1 - s5);
- x6 = dct_const_round_shift(s2 - s6);
- x7 = dct_const_round_shift(s3 - s7);
+ x0 = fdct_round_shift(s0 + s4);
+ x1 = fdct_round_shift(s1 + s5);
+ x2 = fdct_round_shift(s2 + s6);
+ x3 = fdct_round_shift(s3 + s7);
+ x4 = fdct_round_shift(s0 - s4);
+ x5 = fdct_round_shift(s1 - s5);
+ x6 = fdct_round_shift(s2 - s6);
+ x7 = fdct_round_shift(s3 - s7);
// stage 2
s0 = x0;
@@ -526,10 +534,10 @@ static void fadst8(const int16_t *input, int16_t *output) {
x1 = s1 + s3;
x2 = s0 - s2;
x3 = s1 - s3;
- x4 = dct_const_round_shift(s4 + s6);
- x5 = dct_const_round_shift(s5 + s7);
- x6 = dct_const_round_shift(s4 - s6);
- x7 = dct_const_round_shift(s5 - s7);
+ x4 = fdct_round_shift(s4 + s6);
+ x5 = fdct_round_shift(s5 + s7);
+ x6 = fdct_round_shift(s4 - s6);
+ x7 = fdct_round_shift(s5 - s7);
// stage 3
s2 = cospi_16_64 * (x2 + x3);
@@ -537,10 +545,10 @@ static void fadst8(const int16_t *input, int16_t *output) {
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (x6 - x7);
- x2 = dct_const_round_shift(s2);
- x3 = dct_const_round_shift(s3);
- x6 = dct_const_round_shift(s6);
- x7 = dct_const_round_shift(s7);
+ x2 = fdct_round_shift(s2);
+ x3 = fdct_round_shift(s3);
+ x6 = fdct_round_shift(s6);
+ x7 = fdct_round_shift(s7);
output[0] = x0;
output[1] = - x4;
@@ -559,30 +567,34 @@ static const transform_2d FHT_8[] = {
{ fadst8, fadst8 } // ADST_ADST = 3
};
-void vp9_short_fht8x8_c(const int16_t *input, int16_t *output,
- int stride, int tx_type) {
- int16_t out[64];
- int16_t *outptr = &out[0];
- int i, j;
- int16_t temp_in[8], temp_out[8];
- const transform_2d ht = FHT_8[tx_type];
-
- // Columns
- for (i = 0; i < 8; ++i) {
- for (j = 0; j < 8; ++j)
- temp_in[j] = input[j * stride + i] * 4;
- ht.cols(temp_in, temp_out);
- for (j = 0; j < 8; ++j)
- outptr[j * 8 + i] = temp_out[j];
- }
+void vp9_fht8x8_c(const int16_t *input, int16_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_fdct8x8_c(input, output, stride);
+ } else {
+ int16_t out[64];
+ int16_t *outptr = &out[0];
+ int i, j;
+ int16_t temp_in[8], temp_out[8];
+ const transform_2d ht = FHT_8[tx_type];
+
+ // Columns
+ for (i = 0; i < 8; ++i) {
+ for (j = 0; j < 8; ++j)
+ temp_in[j] = input[j * stride + i] * 4;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 8; ++j)
+ outptr[j * 8 + i] = temp_out[j];
+ }
- // Rows
- for (i = 0; i < 8; ++i) {
- for (j = 0; j < 8; ++j)
- temp_in[j] = out[j + i * 8];
- ht.rows(temp_in, temp_out);
- for (j = 0; j < 8; ++j)
- output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
+ // Rows
+ for (i = 0; i < 8; ++i) {
+ for (j = 0; j < 8; ++j)
+ temp_in[j] = out[j + i * 8];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 8; ++j)
+ output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
+ }
}
}
@@ -693,16 +705,16 @@ static void fdct16(const int16_t in[16], int16_t out[16]) {
t1 = (x0 - x1) * cospi_16_64;
t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
- out[0] = dct_const_round_shift(t0);
- out[4] = dct_const_round_shift(t2);
- out[8] = dct_const_round_shift(t1);
- out[12] = dct_const_round_shift(t3);
+ out[0] = fdct_round_shift(t0);
+ out[4] = fdct_round_shift(t2);
+ out[8] = fdct_round_shift(t1);
+ out[12] = fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
- t2 = dct_const_round_shift(t0);
- t3 = dct_const_round_shift(t1);
+ t2 = fdct_round_shift(t0);
+ t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
@@ -715,21 +727,21 @@ static void fdct16(const int16_t in[16], int16_t out[16]) {
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
- out[2] = dct_const_round_shift(t0);
- out[6] = dct_const_round_shift(t2);
- out[10] = dct_const_round_shift(t1);
- out[14] = dct_const_round_shift(t3);
+ out[2] = fdct_round_shift(t0);
+ out[6] = fdct_round_shift(t2);
+ out[10] = fdct_round_shift(t1);
+ out[14] = fdct_round_shift(t3);
}
// step 2
temp1 = (step1[5] - step1[2]) * cospi_16_64;
temp2 = (step1[4] - step1[3]) * cospi_16_64;
- step2[2] = dct_const_round_shift(temp1);
- step2[3] = dct_const_round_shift(temp2);
+ step2[2] = fdct_round_shift(temp1);
+ step2[3] = fdct_round_shift(temp2);
temp1 = (step1[4] + step1[3]) * cospi_16_64;
temp2 = (step1[5] + step1[2]) * cospi_16_64;
- step2[4] = dct_const_round_shift(temp1);
- step2[5] = dct_const_round_shift(temp2);
+ step2[4] = fdct_round_shift(temp1);
+ step2[5] = fdct_round_shift(temp2);
// step 3
step3[0] = step1[0] + step2[3];
@@ -744,12 +756,12 @@ static void fdct16(const int16_t in[16], int16_t out[16]) {
// step 4
temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
temp2 = step3[2] * -cospi_24_64 - step3[5] * cospi_8_64;
- step2[1] = dct_const_round_shift(temp1);
- step2[2] = dct_const_round_shift(temp2);
+ step2[1] = fdct_round_shift(temp1);
+ step2[2] = fdct_round_shift(temp2);
temp1 = step3[2] * -cospi_8_64 + step3[5] * cospi_24_64;
temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
- step2[5] = dct_const_round_shift(temp1);
- step2[6] = dct_const_round_shift(temp2);
+ step2[5] = fdct_round_shift(temp1);
+ step2[6] = fdct_round_shift(temp2);
// step 5
step1[0] = step3[0] + step2[1];
@@ -764,23 +776,23 @@ static void fdct16(const int16_t in[16], int16_t out[16]) {
// step 6
temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
- out[1] = dct_const_round_shift(temp1);
- out[9] = dct_const_round_shift(temp2);
+ out[1] = fdct_round_shift(temp1);
+ out[9] = fdct_round_shift(temp2);
temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
- out[5] = dct_const_round_shift(temp1);
- out[13] = dct_const_round_shift(temp2);
+ out[5] = fdct_round_shift(temp1);
+ out[13] = fdct_round_shift(temp2);
temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
- out[3] = dct_const_round_shift(temp1);
- out[11] = dct_const_round_shift(temp2);
+ out[3] = fdct_round_shift(temp1);
+ out[11] = fdct_round_shift(temp2);
temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
- out[7] = dct_const_round_shift(temp1);
- out[15] = dct_const_round_shift(temp2);
+ out[7] = fdct_round_shift(temp1);
+ out[15] = fdct_round_shift(temp2);
}
static void fadst16(const int16_t *input, int16_t *output) {
@@ -821,22 +833,22 @@ static void fadst16(const int16_t *input, int16_t *output) {
s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
- x0 = dct_const_round_shift(s0 + s8);
- x1 = dct_const_round_shift(s1 + s9);
- x2 = dct_const_round_shift(s2 + s10);
- x3 = dct_const_round_shift(s3 + s11);
- x4 = dct_const_round_shift(s4 + s12);
- x5 = dct_const_round_shift(s5 + s13);
- x6 = dct_const_round_shift(s6 + s14);
- x7 = dct_const_round_shift(s7 + s15);
- x8 = dct_const_round_shift(s0 - s8);
- x9 = dct_const_round_shift(s1 - s9);
- x10 = dct_const_round_shift(s2 - s10);
- x11 = dct_const_round_shift(s3 - s11);
- x12 = dct_const_round_shift(s4 - s12);
- x13 = dct_const_round_shift(s5 - s13);
- x14 = dct_const_round_shift(s6 - s14);
- x15 = dct_const_round_shift(s7 - s15);
+ x0 = fdct_round_shift(s0 + s8);
+ x1 = fdct_round_shift(s1 + s9);
+ x2 = fdct_round_shift(s2 + s10);
+ x3 = fdct_round_shift(s3 + s11);
+ x4 = fdct_round_shift(s4 + s12);
+ x5 = fdct_round_shift(s5 + s13);
+ x6 = fdct_round_shift(s6 + s14);
+ x7 = fdct_round_shift(s7 + s15);
+ x8 = fdct_round_shift(s0 - s8);
+ x9 = fdct_round_shift(s1 - s9);
+ x10 = fdct_round_shift(s2 - s10);
+ x11 = fdct_round_shift(s3 - s11);
+ x12 = fdct_round_shift(s4 - s12);
+ x13 = fdct_round_shift(s5 - s13);
+ x14 = fdct_round_shift(s6 - s14);
+ x15 = fdct_round_shift(s7 - s15);
// stage 2
s0 = x0;
@@ -864,14 +876,14 @@ static void fadst16(const int16_t *input, int16_t *output) {
x5 = s1 - s5;
x6 = s2 - s6;
x7 = s3 - s7;
- x8 = dct_const_round_shift(s8 + s12);
- x9 = dct_const_round_shift(s9 + s13);
- x10 = dct_const_round_shift(s10 + s14);
- x11 = dct_const_round_shift(s11 + s15);
- x12 = dct_const_round_shift(s8 - s12);
- x13 = dct_const_round_shift(s9 - s13);
- x14 = dct_const_round_shift(s10 - s14);
- x15 = dct_const_round_shift(s11 - s15);
+ x8 = fdct_round_shift(s8 + s12);
+ x9 = fdct_round_shift(s9 + s13);
+ x10 = fdct_round_shift(s10 + s14);
+ x11 = fdct_round_shift(s11 + s15);
+ x12 = fdct_round_shift(s8 - s12);
+ x13 = fdct_round_shift(s9 - s13);
+ x14 = fdct_round_shift(s10 - s14);
+ x15 = fdct_round_shift(s11 - s15);
// stage 3
s0 = x0;
@@ -895,18 +907,18 @@ static void fadst16(const int16_t *input, int16_t *output) {
x1 = s1 + s3;
x2 = s0 - s2;
x3 = s1 - s3;
- x4 = dct_const_round_shift(s4 + s6);
- x5 = dct_const_round_shift(s5 + s7);
- x6 = dct_const_round_shift(s4 - s6);
- x7 = dct_const_round_shift(s5 - s7);
+ x4 = fdct_round_shift(s4 + s6);
+ x5 = fdct_round_shift(s5 + s7);
+ x6 = fdct_round_shift(s4 - s6);
+ x7 = fdct_round_shift(s5 - s7);
x8 = s8 + s10;
x9 = s9 + s11;
x10 = s8 - s10;
x11 = s9 - s11;
- x12 = dct_const_round_shift(s12 + s14);
- x13 = dct_const_round_shift(s13 + s15);
- x14 = dct_const_round_shift(s12 - s14);
- x15 = dct_const_round_shift(s13 - s15);
+ x12 = fdct_round_shift(s12 + s14);
+ x13 = fdct_round_shift(s13 + s15);
+ x14 = fdct_round_shift(s12 - s14);
+ x15 = fdct_round_shift(s13 - s15);
// stage 4
s2 = (- cospi_16_64) * (x2 + x3);
@@ -918,14 +930,14 @@ static void fadst16(const int16_t *input, int16_t *output) {
s14 = (- cospi_16_64) * (x14 + x15);
s15 = cospi_16_64 * (x14 - x15);
- x2 = dct_const_round_shift(s2);
- x3 = dct_const_round_shift(s3);
- x6 = dct_const_round_shift(s6);
- x7 = dct_const_round_shift(s7);
- x10 = dct_const_round_shift(s10);
- x11 = dct_const_round_shift(s11);
- x14 = dct_const_round_shift(s14);
- x15 = dct_const_round_shift(s15);
+ x2 = fdct_round_shift(s2);
+ x3 = fdct_round_shift(s3);
+ x6 = fdct_round_shift(s6);
+ x7 = fdct_round_shift(s7);
+ x10 = fdct_round_shift(s10);
+ x11 = fdct_round_shift(s11);
+ x14 = fdct_round_shift(s14);
+ x15 = fdct_round_shift(s15);
output[0] = x0;
output[1] = - x8;
@@ -952,31 +964,34 @@ static const transform_2d FHT_16[] = {
{ fadst16, fadst16 } // ADST_ADST = 3
};
-void vp9_short_fht16x16_c(const int16_t *input, int16_t *output,
- int stride, int tx_type) {
- int16_t out[256];
- int16_t *outptr = &out[0];
- int i, j;
- int16_t temp_in[16], temp_out[16];
- const transform_2d ht = FHT_16[tx_type];
-
- // Columns
- for (i = 0; i < 16; ++i) {
- for (j = 0; j < 16; ++j)
- temp_in[j] = input[j * stride + i] * 4;
- ht.cols(temp_in, temp_out);
- for (j = 0; j < 16; ++j)
- outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
-// outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
- }
+void vp9_fht16x16_c(const int16_t *input, int16_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_fdct16x16_c(input, output, stride);
+ } else {
+ int16_t out[256];
+ int16_t *outptr = &out[0];
+ int i, j;
+ int16_t temp_in[16], temp_out[16];
+ const transform_2d ht = FHT_16[tx_type];
+
+ // Columns
+ for (i = 0; i < 16; ++i) {
+ for (j = 0; j < 16; ++j)
+ temp_in[j] = input[j * stride + i] * 4;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 16; ++j)
+ outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
+ }
- // Rows
- for (i = 0; i < 16; ++i) {
- for (j = 0; j < 16; ++j)
- temp_in[j] = out[j + i * 16];
- ht.rows(temp_in, temp_out);
- for (j = 0; j < 16; ++j)
- output[j + i * 16] = temp_out[j];
+ // Rows
+ for (i = 0; i < 16; ++i) {
+ for (j = 0; j < 16; ++j)
+ temp_in[j] = out[j + i * 16];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 16; ++j)
+ output[j + i * 16] = temp_out[j];
+ }
}
}
@@ -991,7 +1006,7 @@ static INLINE int half_round_shift(int input) {
return rv;
}
-static void dct32_1d(const int *input, int *output, int round) {
+static void fdct32(const int *input, int *output, int round) {
int step[32];
// Stage 1
step[0] = input[0] + input[(32 - 1)];
@@ -1323,7 +1338,7 @@ void vp9_fdct32x32_c(const int16_t *input, int16_t *out, int stride) {
int temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = input[j * stride + i] * 4;
- dct32_1d(temp_in, temp_out, 0);
+ fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
}
@@ -1333,13 +1348,13 @@ void vp9_fdct32x32_c(const int16_t *input, int16_t *out, int stride) {
int temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = output[j + i * 32];
- dct32_1d(temp_in, temp_out, 0);
+ fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
out[j + i * 32] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
}
}
-// Note that although we use dct_32_round in dct32_1d computation flow,
+// Note that although we use dct_32_round in dct32 computation flow,
// this 2d fdct32x32 for rate-distortion optimization loop is operating
// within 16 bits precision.
void vp9_fdct32x32_rd_c(const int16_t *input, int16_t *out, int stride) {
@@ -1351,7 +1366,7 @@ void vp9_fdct32x32_rd_c(const int16_t *input, int16_t *out, int stride) {
int temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = input[j * stride + i] * 4;
- dct32_1d(temp_in, temp_out, 0);
+ fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
// TODO(cd): see quality impact of only doing
// output[j * 32 + i] = (temp_out[j] + 1) >> 2;
@@ -1364,32 +1379,8 @@ void vp9_fdct32x32_rd_c(const int16_t *input, int16_t *out, int stride) {
int temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = output[j + i * 32];
- dct32_1d(temp_in, temp_out, 1);
+ fdct32(temp_in, temp_out, 1);
for (j = 0; j < 32; ++j)
out[j + i * 32] = temp_out[j];
}
}
-
-void vp9_fht4x4(TX_TYPE tx_type, const int16_t *input, int16_t *output,
- int stride) {
- if (tx_type == DCT_DCT)
- vp9_fdct4x4(input, output, stride);
- else
- vp9_short_fht4x4(input, output, stride, tx_type);
-}
-
-void vp9_fht8x8(TX_TYPE tx_type, const int16_t *input, int16_t *output,
- int stride) {
- if (tx_type == DCT_DCT)
- vp9_fdct8x8(input, output, stride);
- else
- vp9_short_fht8x8(input, output, stride, tx_type);
-}
-
-void vp9_fht16x16(TX_TYPE tx_type, const int16_t *input, int16_t *output,
- int stride) {
- if (tx_type == DCT_DCT)
- vp9_fdct16x16(input, output, stride);
- else
- vp9_short_fht16x16(input, output, stride, tx_type);
-}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_dct.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_dct.h
deleted file mode 100644
index aaf976d93c5..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_dct.h
+++ /dev/null
@@ -1,24 +0,0 @@
-/*
- * Copyright (c) 2013 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-
-#ifndef VP9_ENCODER_VP9_DCT_H_
-#define VP9_ENCODER_VP9_DCT_H_
-
-void vp9_fht4x4(TX_TYPE tx_type, const int16_t *input, int16_t *output,
- int stride);
-
-void vp9_fht8x8(TX_TYPE tx_type, const int16_t *input, int16_t *output,
- int stride);
-
-void vp9_fht16x16(TX_TYPE tx_type, const int16_t *input, int16_t *output,
- int stride);
-
-#endif // VP9_ENCODER_VP9_DCT_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeframe.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeframe.c
index 44ade18de39..86e59863bb2 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeframe.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeframe.c
@@ -20,8 +20,6 @@
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
-#include "vp9/common/vp9_extend.h"
-#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
@@ -29,72 +27,38 @@
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
+#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_tile_common.h"
+
+#include "vp9/encoder/vp9_aq_complexity.h"
+#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
+#include "vp9/encoder/vp9_aq_variance.h"
#include "vp9/encoder/vp9_encodeframe.h"
-#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
-#include "vp9/encoder/vp9_onyx_int.h"
+#include "vp9/encoder/vp9_extend.h"
+#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_segmentation.h"
-#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_tokenize.h"
-#include "vp9/encoder/vp9_vaq.h"
-
-
-#define DBG_PRNT_SEGMAP 0
-
-
-// #define ENC_DEBUG
-#ifdef ENC_DEBUG
-int enc_debug = 0;
-#endif
-static INLINE uint8_t *get_sb_index(MACROBLOCKD *xd, BLOCK_SIZE subsize) {
- switch (subsize) {
- case BLOCK_64X64:
- case BLOCK_64X32:
- case BLOCK_32X64:
- case BLOCK_32X32:
- return &xd->sb_index;
- case BLOCK_32X16:
- case BLOCK_16X32:
- case BLOCK_16X16:
- return &xd->mb_index;
- case BLOCK_16X8:
- case BLOCK_8X16:
- case BLOCK_8X8:
- return &xd->b_index;
- case BLOCK_8X4:
- case BLOCK_4X8:
- case BLOCK_4X4:
- return &xd->ab_index;
- default:
- assert(0);
- return NULL;
- }
-}
+#define GF_ZEROMV_ZBIN_BOOST 0
+#define LF_ZEROMV_ZBIN_BOOST 0
+#define MV_ZBIN_BOOST 0
+#define SPLIT_MV_ZBIN_BOOST 0
+#define INTRA_ZBIN_BOOST 0
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
- int mi_row, int mi_col, BLOCK_SIZE bsize);
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx);
-static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x);
+// Motion vector component magnitude threshold for defining fast motion.
+#define FAST_MOTION_MV_THRESH 24
-/* activity_avg must be positive, or flat regions could get a zero weight
- * (infinite lambda), which confounds analysis.
- * This also avoids the need for divide by zero checks in
- * vp9_activity_masking().
- */
-#define ACTIVITY_AVG_MIN (64)
-
-/* Motion vector component magnitude threshold for defining fast motion. */
-#define FAST_MOTION_MV_THRESH (24)
-
-/* This is used as a reference when computing the source variance for the
- * purposes of activity masking.
- * Eventually this should be replaced by custom no-reference routines,
- * which will be faster.
- */
+// This is used as a reference when computing the source variance for the
+// purposes of activity masking.
+// Eventually this should be replaced by custom no-reference routines,
+// which will be faster.
static const uint8_t VP9_VAR_OFFS[64] = {
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
@@ -106,294 +70,573 @@ static const uint8_t VP9_VAR_OFFS[64] = {
128, 128, 128, 128, 128, 128, 128, 128
};
-static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi, MACROBLOCK *x,
- BLOCK_SIZE bs) {
- unsigned int var, sse;
- var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf,
- x->plane[0].src.stride,
- VP9_VAR_OFFS, 0, &sse);
- return (var + (1 << (num_pels_log2_lookup[bs] - 1))) >>
- num_pels_log2_lookup[bs];
+static void get_sse_sum_8x8(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ unsigned int *sse, int *sum) {
+ variance(src, src_stride, ref, ref_stride, 8, 8, sse, sum);
}
-// Original activity measure from Tim T's code.
-static unsigned int tt_activity_measure(MACROBLOCK *x) {
- unsigned int act;
+static void get_sse_sum_16x16(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ unsigned int *sse, int *sum) {
+ variance(src, src_stride, ref, ref_stride, 16, 16, sse, sum);
+}
+
+static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi,
+ const struct buf_2d *ref,
+ BLOCK_SIZE bs) {
unsigned int sse;
- /* TODO: This could also be done over smaller areas (8x8), but that would
- * require extensive changes elsewhere, as lambda is assumed to be fixed
- * over an entire MB in most of the code.
- * Another option is to compute four 8x8 variances, and pick a single
- * lambda using a non-linear combination (e.g., the smallest, or second
- * smallest, etc.).
- */
- act = vp9_variance16x16(x->plane[0].src.buf, x->plane[0].src.stride,
- VP9_VAR_OFFS, 0, &sse);
- act <<= 4;
+ const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
+ VP9_VAR_OFFS, 0, &sse);
+ return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
+}
- /* If the region is flat, lower the activity some more. */
- if (act < 8 << 12)
- act = act < 5 << 12 ? act : 5 << 12;
+static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
+ const struct buf_2d *ref,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bs) {
+ const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
+ const uint8_t* last_y = &last->y_buffer[mi_row * MI_SIZE * last->y_stride +
+ mi_col * MI_SIZE];
+ unsigned int sse;
+ const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
+ last_y, last->y_stride, &sse);
+ return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
+}
- return act;
+static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi,
+ int mi_row,
+ int mi_col) {
+ unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
+ mi_row, mi_col,
+ BLOCK_64X64);
+ if (var < 8)
+ return BLOCK_64X64;
+ else if (var < 128)
+ return BLOCK_32X32;
+ else if (var < 2048)
+ return BLOCK_16X16;
+ else
+ return BLOCK_8X8;
}
-// Stub for alternative experimental activity measures.
-static unsigned int alt_activity_measure(MACROBLOCK *x, int use_dc_pred) {
- return vp9_encode_intra(x, use_dc_pred);
+static BLOCK_SIZE get_nonrd_var_based_fixed_partition(VP9_COMP *cpi,
+ int mi_row,
+ int mi_col) {
+ unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
+ mi_row, mi_col,
+ BLOCK_64X64);
+ if (var < 4)
+ return BLOCK_64X64;
+ else if (var < 10)
+ return BLOCK_32X32;
+ else
+ return BLOCK_16X16;
}
-// Measure the activity of the current macroblock
-// What we measure here is TBD so abstracted to this function
-#define ALT_ACT_MEASURE 1
-static unsigned int mb_activity_measure(MACROBLOCK *x, int mb_row, int mb_col) {
- unsigned int mb_activity;
+// Lighter version of set_offsets that only sets the mode info
+// pointers.
+static INLINE void set_modeinfo_offsets(VP9_COMMON *const cm,
+ MACROBLOCKD *const xd,
+ int mi_row,
+ int mi_col) {
+ const int idx_str = xd->mi_stride * mi_row + mi_col;
+ xd->mi = cm->mi_grid_visible + idx_str;
+ xd->mi[0] = cm->mi + idx_str;
+}
- if (ALT_ACT_MEASURE) {
- int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
+static int is_block_in_mb_map(const VP9_COMP *cpi, int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const int mb_rows = cm->mb_rows;
+ const int mb_cols = cm->mb_cols;
+ const int mb_row = mi_row >> 1;
+ const int mb_col = mi_col >> 1;
+ const int mb_width = num_8x8_blocks_wide_lookup[bsize] >> 1;
+ const int mb_height = num_8x8_blocks_high_lookup[bsize] >> 1;
+ int r, c;
+ if (bsize <= BLOCK_16X16) {
+ return cpi->active_map[mb_row * mb_cols + mb_col];
+ }
+ for (r = 0; r < mb_height; ++r) {
+ for (c = 0; c < mb_width; ++c) {
+ int row = mb_row + r;
+ int col = mb_col + c;
+ if (row >= mb_rows || col >= mb_cols)
+ continue;
+ if (cpi->active_map[row * mb_cols + col])
+ return 1;
+ }
+ }
+ return 0;
+}
- // Or use and alternative.
- mb_activity = alt_activity_measure(x, use_dc_pred);
+static int check_active_map(const VP9_COMP *cpi, const MACROBLOCK *x,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ if (cpi->active_map_enabled && !x->e_mbd.lossless) {
+ return is_block_in_mb_map(cpi, mi_row, mi_col, bsize);
} else {
- // Original activity measure from Tim T's code.
- mb_activity = tt_activity_measure(x);
+ return 1;
}
-
- if (mb_activity < ACTIVITY_AVG_MIN)
- mb_activity = ACTIVITY_AVG_MIN;
-
- return mb_activity;
}
-// Calculate an "average" mb activity value for the frame
-#define ACT_MEDIAN 0
-static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) {
-#if ACT_MEDIAN
- // Find median: Simple n^2 algorithm for experimentation
- {
- unsigned int median;
- unsigned int i, j;
- unsigned int *sortlist;
- unsigned int tmp;
-
- // Create a list to sort to
- CHECK_MEM_ERROR(&cpi->common, sortlist, vpx_calloc(sizeof(unsigned int),
- cpi->common.MBs));
-
- // Copy map to sort list
- vpx_memcpy(sortlist, cpi->mb_activity_map,
- sizeof(unsigned int) * cpi->common.MBs);
-
- // Ripple each value down to its correct position
- for (i = 1; i < cpi->common.MBs; i ++) {
- for (j = i; j > 0; j --) {
- if (sortlist[j] < sortlist[j - 1]) {
- // Swap values
- tmp = sortlist[j - 1];
- sortlist[j - 1] = sortlist[j];
- sortlist[j] = tmp;
- } else {
- break;
- }
- }
- }
-
- // Even number MBs so estimate median as mean of two either side.
- median = (1 + sortlist[cpi->common.MBs >> 1] +
- sortlist[(cpi->common.MBs >> 1) + 1]) >> 1;
-
- cpi->activity_avg = median;
-
- vpx_free(sortlist);
- }
-#else
- // Simple mean for now
- cpi->activity_avg = (unsigned int) (activity_sum / cpi->common.MBs);
-#endif // ACT_MEDIAN
+static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
+ int mi_row, int mi_col, BLOCK_SIZE bsize) {
+ MACROBLOCK *const x = &cpi->mb;
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi;
+ const int mi_width = num_8x8_blocks_wide_lookup[bsize];
+ const int mi_height = num_8x8_blocks_high_lookup[bsize];
+ const struct segmentation *const seg = &cm->seg;
- if (cpi->activity_avg < ACTIVITY_AVG_MIN)
- cpi->activity_avg = ACTIVITY_AVG_MIN;
+ set_skip_context(xd, mi_row, mi_col);
- // Experimental code: return fixed value normalized for several clips
- if (ALT_ACT_MEASURE)
- cpi->activity_avg = 100000;
-}
+ // Activity map pointer
+ x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize);
-#define USE_ACT_INDEX 0
-#define OUTPUT_NORM_ACT_STATS 0
+ set_modeinfo_offsets(cm, xd, mi_row, mi_col);
-#if USE_ACT_INDEX
-// Calculate an activity index for each mb
-static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) {
- VP9_COMMON *const cm = &cpi->common;
- int mb_row, mb_col;
+ mbmi = &xd->mi[0]->mbmi;
- int64_t act;
- int64_t a;
- int64_t b;
+ // Set up destination pointers.
+ vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
-#if OUTPUT_NORM_ACT_STATS
- FILE *f = fopen("norm_act.stt", "a");
- fprintf(f, "\n%12d\n", cpi->activity_avg);
-#endif
-
- // Reset pointers to start of activity map
- x->mb_activity_ptr = cpi->mb_activity_map;
+ // Set up limit values for MV components.
+ // Mv beyond the range do not produce new/different prediction block.
+ x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
+ x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
+ x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
+ x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
- // Calculate normalized mb activity number.
- for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
- // for each macroblock col in image
- for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
- // Read activity from the map
- act = *(x->mb_activity_ptr);
+ // Set up distance of MB to edge of frame in 1/8th pel units.
+ assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
+ set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
+ cm->mi_rows, cm->mi_cols);
- // Calculate a normalized activity number
- a = act + 4 * cpi->activity_avg;
- b = 4 * act + cpi->activity_avg;
+ // Set up source buffers.
+ vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
- if (b >= a)
- *(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
- else
- *(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);
+ // R/D setup.
+ x->rddiv = cpi->rd.RDDIV;
+ x->rdmult = cpi->rd.RDMULT;
-#if OUTPUT_NORM_ACT_STATS
- fprintf(f, " %6d", *(x->mb_activity_ptr));
-#endif
- // Increment activity map pointers
- x->mb_activity_ptr++;
+ // Setup segment ID.
+ if (seg->enabled) {
+ if (cpi->oxcf.aq_mode != VARIANCE_AQ) {
+ const uint8_t *const map = seg->update_map ? cpi->segmentation_map
+ : cm->last_frame_seg_map;
+ mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
}
+ vp9_init_plane_quantizers(cpi, x);
-#if OUTPUT_NORM_ACT_STATS
- fprintf(f, "\n");
-#endif
+ x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
+ } else {
+ mbmi->segment_id = 0;
+ x->encode_breakout = cpi->encode_breakout;
}
-
-#if OUTPUT_NORM_ACT_STATS
- fclose(f);
-#endif
}
-#endif // USE_ACT_INDEX
-// Loop through all MBs. Note activity of each, average activity and
-// calculate a normalized activity for each
-static void build_activity_map(VP9_COMP *cpi) {
- MACROBLOCK * const x = &cpi->mb;
- MACROBLOCKD *xd = &x->e_mbd;
- VP9_COMMON * const cm = &cpi->common;
-
-#if ALT_ACT_MEASURE
- YV12_BUFFER_CONFIG *new_yv12 = get_frame_new_buffer(cm);
- int recon_yoffset;
- int recon_y_stride = new_yv12->y_stride;
-#endif
+static void duplicate_mode_info_in_sb(VP9_COMMON * const cm,
+ MACROBLOCKD *const xd,
+ int mi_row,
+ int mi_col,
+ BLOCK_SIZE bsize) {
+ const int block_width = num_8x8_blocks_wide_lookup[bsize];
+ const int block_height = num_8x8_blocks_high_lookup[bsize];
+ int i, j;
+ for (j = 0; j < block_height; ++j)
+ for (i = 0; i < block_width; ++i) {
+ if (mi_row + j < cm->mi_rows && mi_col + i < cm->mi_cols)
+ xd->mi[j * xd->mi_stride + i] = xd->mi[0];
+ }
+}
- int mb_row, mb_col;
- unsigned int mb_activity;
- int64_t activity_sum = 0;
+static void set_block_size(VP9_COMP * const cpi,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
+ MACROBLOCKD *const xd = &cpi->mb.e_mbd;
+ set_modeinfo_offsets(&cpi->common, xd, mi_row, mi_col);
+ xd->mi[0]->mbmi.sb_type = bsize;
+ duplicate_mode_info_in_sb(&cpi->common, xd, mi_row, mi_col, bsize);
+ }
+}
- x->mb_activity_ptr = cpi->mb_activity_map;
+typedef struct {
+ int64_t sum_square_error;
+ int64_t sum_error;
+ int count;
+ int variance;
+} var;
+
+typedef struct {
+ var none;
+ var horz[2];
+ var vert[2];
+} partition_variance;
+
+typedef struct {
+ partition_variance part_variances;
+ var split[4];
+} v8x8;
+
+typedef struct {
+ partition_variance part_variances;
+ v8x8 split[4];
+} v16x16;
+
+typedef struct {
+ partition_variance part_variances;
+ v16x16 split[4];
+} v32x32;
+
+typedef struct {
+ partition_variance part_variances;
+ v32x32 split[4];
+} v64x64;
+
+typedef struct {
+ partition_variance *part_variances;
+ var *split[4];
+} variance_node;
+
+typedef enum {
+ V16X16,
+ V32X32,
+ V64X64,
+} TREE_LEVEL;
+
+static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
+ int i;
+ switch (bsize) {
+ case BLOCK_64X64: {
+ v64x64 *vt = (v64x64 *) data;
+ node->part_variances = &vt->part_variances;
+ for (i = 0; i < 4; i++)
+ node->split[i] = &vt->split[i].part_variances.none;
+ break;
+ }
+ case BLOCK_32X32: {
+ v32x32 *vt = (v32x32 *) data;
+ node->part_variances = &vt->part_variances;
+ for (i = 0; i < 4; i++)
+ node->split[i] = &vt->split[i].part_variances.none;
+ break;
+ }
+ case BLOCK_16X16: {
+ v16x16 *vt = (v16x16 *) data;
+ node->part_variances = &vt->part_variances;
+ for (i = 0; i < 4; i++)
+ node->split[i] = &vt->split[i].part_variances.none;
+ break;
+ }
+ case BLOCK_8X8: {
+ v8x8 *vt = (v8x8 *) data;
+ node->part_variances = &vt->part_variances;
+ for (i = 0; i < 4; i++)
+ node->split[i] = &vt->split[i];
+ break;
+ }
+ default: {
+ assert(0);
+ }
+ }
+}
- // for each macroblock row in image
- for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
-#if ALT_ACT_MEASURE
- // reset above block coeffs
- xd->up_available = (mb_row != 0);
- recon_yoffset = (mb_row * recon_y_stride * 16);
-#endif
- // for each macroblock col in image
- for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
-#if ALT_ACT_MEASURE
- xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
- xd->left_available = (mb_col != 0);
- recon_yoffset += 16;
-#endif
+// Set variance values given sum square error, sum error, count.
+static void fill_variance(int64_t s2, int64_t s, int c, var *v) {
+ v->sum_square_error = s2;
+ v->sum_error = s;
+ v->count = c;
+ if (c > 0)
+ v->variance = (int)(256 *
+ (v->sum_square_error - v->sum_error * v->sum_error /
+ v->count) / v->count);
+ else
+ v->variance = 0;
+}
- // measure activity
- mb_activity = mb_activity_measure(x, mb_row, mb_col);
+void sum_2_variances(const var *a, const var *b, var *r) {
+ fill_variance(a->sum_square_error + b->sum_square_error,
+ a->sum_error + b->sum_error, a->count + b->count, r);
+}
- // Keep frame sum
- activity_sum += mb_activity;
+static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
+ variance_node node;
+ tree_to_node(data, bsize, &node);
+ sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
+ sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
+ sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
+ sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
+ sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
+ &node.part_variances->none);
+}
- // Store MB level activity details.
- *x->mb_activity_ptr = mb_activity;
+static int set_vt_partitioning(VP9_COMP *cpi,
+ void *data,
+ BLOCK_SIZE bsize,
+ int mi_row,
+ int mi_col) {
+ VP9_COMMON * const cm = &cpi->common;
+ variance_node vt;
+ const int block_width = num_8x8_blocks_wide_lookup[bsize];
+ const int block_height = num_8x8_blocks_high_lookup[bsize];
+ // TODO(debargha): Choose this more intelligently.
+ const int64_t threshold_multiplier = 25;
+ int64_t threshold = threshold_multiplier * cpi->common.base_qindex;
+ assert(block_height == block_width);
+
+ tree_to_node(data, bsize, &vt);
+
+ // Split none is available only if we have more than half a block size
+ // in width and height inside the visible image.
+ if (mi_col + block_width / 2 < cm->mi_cols &&
+ mi_row + block_height / 2 < cm->mi_rows &&
+ vt.part_variances->none.variance < threshold) {
+ set_block_size(cpi, mi_row, mi_col, bsize);
+ return 1;
+ }
+
+ // Vertical split is available on all but the bottom border.
+ if (mi_row + block_height / 2 < cm->mi_rows &&
+ vt.part_variances->vert[0].variance < threshold &&
+ vt.part_variances->vert[1].variance < threshold) {
+ BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
+ set_block_size(cpi, mi_row, mi_col, subsize);
+ set_block_size(cpi, mi_row, mi_col + block_width / 2, subsize);
+ return 1;
+ }
+
+ // Horizontal split is available on all but the right border.
+ if (mi_col + block_width / 2 < cm->mi_cols &&
+ vt.part_variances->horz[0].variance < threshold &&
+ vt.part_variances->horz[1].variance < threshold) {
+ BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
+ set_block_size(cpi, mi_row, mi_col, subsize);
+ set_block_size(cpi, mi_row + block_height / 2, mi_col, subsize);
+ return 1;
+ }
+ return 0;
+}
- // Increment activity map pointer
- x->mb_activity_ptr++;
+// TODO(debargha): Fix this function and make it work as expected.
+static void choose_partitioning(VP9_COMP *cpi,
+ const TileInfo *const tile,
+ int mi_row, int mi_col) {
+ VP9_COMMON * const cm = &cpi->common;
+ MACROBLOCK *x = &cpi->mb;
+ MACROBLOCKD *xd = &cpi->mb.e_mbd;
- // adjust to the next column of source macroblocks
- x->plane[0].src.buf += 16;
+ int i, j, k;
+ v64x64 vt;
+ uint8_t *s;
+ const uint8_t *d;
+ int sp;
+ int dp;
+ int pixels_wide = 64, pixels_high = 64;
+ int_mv nearest_mv, near_mv;
+ const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
+ const struct scale_factors *const sf = &cm->frame_refs[LAST_FRAME - 1].sf;
+
+ vp9_zero(vt);
+ set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
+
+ if (xd->mb_to_right_edge < 0)
+ pixels_wide += (xd->mb_to_right_edge >> 3);
+ if (xd->mb_to_bottom_edge < 0)
+ pixels_high += (xd->mb_to_bottom_edge >> 3);
+
+ s = x->plane[0].src.buf;
+ sp = x->plane[0].src.stride;
+
+ if (cm->frame_type != KEY_FRAME) {
+ vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf);
+
+ xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME;
+ xd->mi[0]->mbmi.sb_type = BLOCK_64X64;
+ vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv,
+ xd->mi[0]->mbmi.ref_mvs[LAST_FRAME],
+ &nearest_mv, &near_mv);
+
+ xd->mi[0]->mbmi.mv[0] = nearest_mv;
+ vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_64X64);
+
+ d = xd->plane[0].dst.buf;
+ dp = xd->plane[0].dst.stride;
+ } else {
+ d = VP9_VAR_OFFS;
+ dp = 0;
+ }
+
+ // Fill in the entire tree of 8x8 variances for splits.
+ for (i = 0; i < 4; i++) {
+ const int x32_idx = ((i & 1) << 5);
+ const int y32_idx = ((i >> 1) << 5);
+ for (j = 0; j < 4; j++) {
+ const int x16_idx = x32_idx + ((j & 1) << 4);
+ const int y16_idx = y32_idx + ((j >> 1) << 4);
+ v16x16 *vst = &vt.split[i].split[j];
+ for (k = 0; k < 4; k++) {
+ int x_idx = x16_idx + ((k & 1) << 3);
+ int y_idx = y16_idx + ((k >> 1) << 3);
+ unsigned int sse = 0;
+ int sum = 0;
+ if (x_idx < pixels_wide && y_idx < pixels_high)
+ get_sse_sum_8x8(s + y_idx * sp + x_idx, sp,
+ d + y_idx * dp + x_idx, dp, &sse, &sum);
+ fill_variance(sse, sum, 64, &vst->split[k].part_variances.none);
+ }
}
-
- // adjust to the next row of mbs
- x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
}
-
- // Calculate an "average" MB activity
- calc_av_activity(cpi, activity_sum);
-
-#if USE_ACT_INDEX
- // Calculate an activity index number of each mb
- calc_activity_index(cpi, x);
-#endif
-}
-
-// Macroblock activity masking
-void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) {
-#if USE_ACT_INDEX
- x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
- x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
- x->errorperbit += (x->errorperbit == 0);
+ // Fill the rest of the variance tree by summing split partition values.
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
+ }
+ fill_variance_tree(&vt.split[i], BLOCK_32X32);
+ }
+ fill_variance_tree(&vt, BLOCK_64X64);
+
+ // Now go through the entire structure, splitting every block size until
+ // we get to one that's got a variance lower than our threshold, or we
+ // hit 8x8.
+ if (!set_vt_partitioning(cpi, &vt, BLOCK_64X64,
+ mi_row, mi_col)) {
+ for (i = 0; i < 4; ++i) {
+ const int x32_idx = ((i & 1) << 2);
+ const int y32_idx = ((i >> 1) << 2);
+ if (!set_vt_partitioning(cpi, &vt.split[i], BLOCK_32X32,
+ (mi_row + y32_idx), (mi_col + x32_idx))) {
+ for (j = 0; j < 4; ++j) {
+ const int x16_idx = ((j & 1) << 1);
+ const int y16_idx = ((j >> 1) << 1);
+ // NOTE: This is a temporary hack to disable 8x8 partitions,
+ // since it works really bad - possibly due to a bug
+#define DISABLE_8X8_VAR_BASED_PARTITION
+#ifdef DISABLE_8X8_VAR_BASED_PARTITION
+ if (mi_row + y32_idx + y16_idx + 1 < cm->mi_rows &&
+ mi_row + x32_idx + x16_idx + 1 < cm->mi_cols) {
+ set_block_size(cpi,
+ (mi_row + y32_idx + y16_idx),
+ (mi_col + x32_idx + x16_idx),
+ BLOCK_16X16);
+ } else {
+ for (k = 0; k < 4; ++k) {
+ const int x8_idx = (k & 1);
+ const int y8_idx = (k >> 1);
+ set_block_size(cpi,
+ (mi_row + y32_idx + y16_idx + y8_idx),
+ (mi_col + x32_idx + x16_idx + x8_idx),
+ BLOCK_8X8);
+ }
+ }
#else
- int64_t a;
- int64_t b;
- int64_t act = *(x->mb_activity_ptr);
-
- // Apply the masking to the RD multiplier.
- a = act + (2 * cpi->activity_avg);
- b = (2 * act) + cpi->activity_avg;
-
- x->rdmult = (unsigned int) (((int64_t) x->rdmult * b + (a >> 1)) / a);
- x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
- x->errorperbit += (x->errorperbit == 0);
+ if (!set_vt_partitioning(cpi, &vt.split[i].split[j], tile,
+ BLOCK_16X16,
+ (mi_row + y32_idx + y16_idx),
+ (mi_col + x32_idx + x16_idx), 2)) {
+ for (k = 0; k < 4; ++k) {
+ const int x8_idx = (k & 1);
+ const int y8_idx = (k >> 1);
+ set_block_size(cpi,
+ (mi_row + y32_idx + y16_idx + y8_idx),
+ (mi_col + x32_idx + x16_idx + x8_idx),
+ BLOCK_8X8);
+ }
+ }
#endif
+ }
+ }
+ }
+ }
+}
- // Activity based Zbin adjustment
- adjust_act_zbin(cpi, x);
+// Original activity measure from Tim T's code.
+static unsigned int tt_activity_measure(MACROBLOCK *x) {
+ unsigned int sse;
+ // TODO: This could also be done over smaller areas (8x8), but that would
+ // require extensive changes elsewhere, as lambda is assumed to be fixed
+ // over an entire MB in most of the code.
+ // Another option is to compute four 8x8 variances, and pick a single
+ // lambda using a non-linear combination (e.g., the smallest, or second
+ // smallest, etc.).
+ const unsigned int act = vp9_variance16x16(x->plane[0].src.buf,
+ x->plane[0].src.stride,
+ VP9_VAR_OFFS, 0, &sse) << 4;
+ // If the region is flat, lower the activity some more.
+ return act < (8 << 12) ? MIN(act, 5 << 12) : act;
}
static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
- BLOCK_SIZE bsize, int output_enabled) {
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ int output_enabled) {
int i, x_idx, y;
VP9_COMMON *const cm = &cpi->common;
+ RD_OPT *const rd_opt = &cpi->rd;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
MODE_INFO *mi = &ctx->mic;
- MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
- MODE_INFO *mi_addr = xd->mi_8x8[0];
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ MODE_INFO *mi_addr = xd->mi[0];
+ const struct segmentation *const seg = &cm->seg;
- int mb_mode_index = ctx->best_mode_index;
- const int mis = cm->mode_info_stride;
+ const int mis = cm->mi_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
+ int max_plane;
- assert(mi->mbmi.mode < MB_MODE_COUNT);
- assert(mi->mbmi.ref_frame[0] < MAX_REF_FRAMES);
- assert(mi->mbmi.ref_frame[1] < MAX_REF_FRAMES);
assert(mi->mbmi.sb_type == bsize);
*mi_addr = *mi;
+ // If segmentation in use
+ if (seg->enabled && output_enabled) {
+ // For in frame complexity AQ copy the segment id from the segment map.
+ if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
+ const uint8_t *const map = seg->update_map ? cpi->segmentation_map
+ : cm->last_frame_seg_map;
+ mi_addr->mbmi.segment_id =
+ vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
+ }
+ // Else for cyclic refresh mode update the segment map, set the segment id
+ // and then update the quantizer.
+ else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
+ vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi,
+ mi_row, mi_col, bsize, 1);
+ vp9_init_plane_quantizers(cpi, x);
+ }
+ }
+
+ max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1;
+ for (i = 0; i < max_plane; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][1];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
+ p[i].eobs = ctx->eobs_pbuf[i][1];
+ }
+
+ for (i = max_plane; i < MAX_MB_PLANE; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][2];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
+ p[i].eobs = ctx->eobs_pbuf[i][2];
+ }
+
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
- && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y)
- xd->mi_8x8[x_idx + y * mis] = mi_addr;
+ && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
+ xd->mi[x_idx + y * mis] = mi_addr;
+ }
- if (cpi->sf.variance_adaptive_quantization) {
- vp9_mb_init_quantizer(cpi, x);
- }
+ if (cpi->oxcf.aq_mode)
+ vp9_init_plane_quantizers(cpi, x);
// FIXME(rbultje) I'm pretty sure this should go to the end of this block
// (i.e. after the output_enabled)
@@ -417,56 +660,45 @@ static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
for (i = 0; i < TX_MODES; i++)
- cpi->rd_tx_select_diff[i] += ctx->tx_rd_diff[i];
+ rd_opt->tx_select_diff[i] += ctx->tx_rd_diff[i];
}
- if (frame_is_intra_only(cm)) {
#if CONFIG_INTERNAL_STATS
+ if (frame_is_intra_only(cm)) {
static const int kf_mode_index[] = {
- THR_DC /*DC_PRED*/,
- THR_V_PRED /*V_PRED*/,
- THR_H_PRED /*H_PRED*/,
- THR_D45_PRED /*D45_PRED*/,
+ THR_DC /*DC_PRED*/,
+ THR_V_PRED /*V_PRED*/,
+ THR_H_PRED /*H_PRED*/,
+ THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D207_PRED /*D207_PRED*/,
- THR_D63_PRED /*D63_PRED*/,
- THR_TM /*TM_PRED*/,
+ THR_D63_PRED /*D63_PRED*/,
+ THR_TM /*TM_PRED*/,
};
- cpi->mode_chosen_counts[kf_mode_index[mi->mbmi.mode]]++;
-#endif
+ ++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]];
} else {
// Note how often each mode chosen as best
- cpi->mode_chosen_counts[mb_mode_index]++;
- if (is_inter_block(mbmi)
- && (mbmi->sb_type < BLOCK_8X8 || mbmi->mode == NEWMV)) {
- int_mv best_mv[2];
- const MV_REFERENCE_FRAME rf1 = mbmi->ref_frame[0];
- const MV_REFERENCE_FRAME rf2 = mbmi->ref_frame[1];
- best_mv[0].as_int = ctx->best_ref_mv.as_int;
- best_mv[1].as_int = ctx->second_best_ref_mv.as_int;
- if (mbmi->mode == NEWMV) {
- best_mv[0].as_int = mbmi->ref_mvs[rf1][0].as_int;
- if (rf2 > 0)
- best_mv[1].as_int = mbmi->ref_mvs[rf2][0].as_int;
- }
- mbmi->best_mv[0].as_int = best_mv[0].as_int;
- mbmi->best_mv[1].as_int = best_mv[1].as_int;
- vp9_update_mv_count(cpi, x, best_mv);
- }
+ ++cpi->mode_chosen_counts[ctx->best_mode_index];
+ }
+#endif
+ if (!frame_is_intra_only(cm)) {
+ if (is_inter_block(mbmi)) {
+ vp9_update_mv_count(cm, xd);
- if (cm->mcomp_filter_type == SWITCHABLE && is_inter_mode(mbmi->mode)) {
- const int ctx = vp9_get_pred_context_switchable_interp(xd);
- ++cm->counts.switchable_interp[ctx][mbmi->interp_filter];
+ if (cm->interp_filter == SWITCHABLE) {
+ const int ctx = vp9_get_pred_context_switchable_interp(xd);
+ ++cm->counts.switchable_interp[ctx][mbmi->interp_filter];
+ }
}
- cpi->rd_comp_pred_diff[SINGLE_PREDICTION_ONLY] += ctx->single_pred_diff;
- cpi->rd_comp_pred_diff[COMP_PREDICTION_ONLY] += ctx->comp_pred_diff;
- cpi->rd_comp_pred_diff[HYBRID_PREDICTION] += ctx->hybrid_pred_diff;
+ rd_opt->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
+ rd_opt->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
+ rd_opt->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
- for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
- cpi->rd_filter_diff[i] += ctx->best_filter_diff[i];
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ rd_opt->filter_diff[i] += ctx->best_filter_diff[i];
}
}
@@ -478,119 +710,43 @@ void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
src->alpha_stride};
int i;
+ // Set current frame pointer.
+ x->e_mbd.cur_buf = src;
+
for (i = 0; i < MAX_MB_PLANE; i++)
setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
NULL, x->e_mbd.plane[i].subsampling_x,
x->e_mbd.plane[i].subsampling_y);
}
-static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
- int mi_row, int mi_col, BLOCK_SIZE bsize) {
- MACROBLOCK *const x = &cpi->mb;
- VP9_COMMON *const cm = &cpi->common;
- MACROBLOCKD *const xd = &x->e_mbd;
- MB_MODE_INFO *mbmi;
- const int dst_fb_idx = cm->new_fb_idx;
- const int idx_str = xd->mode_info_stride * mi_row + mi_col;
- const int mi_width = num_8x8_blocks_wide_lookup[bsize];
- const int mi_height = num_8x8_blocks_high_lookup[bsize];
- const int mb_row = mi_row >> 1;
- const int mb_col = mi_col >> 1;
- const int idx_map = mb_row * cm->mb_cols + mb_col;
- const struct segmentation *const seg = &cm->seg;
-
- set_skip_context(xd, cpi->above_context, cpi->left_context, mi_row, mi_col);
-
- // Activity map pointer
- x->mb_activity_ptr = &cpi->mb_activity_map[idx_map];
- x->active_ptr = cpi->active_map + idx_map;
-
- xd->mi_8x8 = cm->mi_grid_visible + idx_str;
- xd->prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str;
-
- // Special case: if prev_mi is NULL, the previous mode info context
- // cannot be used.
- xd->last_mi = cm->prev_mi ? xd->prev_mi_8x8[0] : NULL;
-
- xd->mi_8x8[0] = cm->mi + idx_str;
-
- mbmi = &xd->mi_8x8[0]->mbmi;
-
- // Set up destination pointers
- setup_dst_planes(xd, &cm->yv12_fb[dst_fb_idx], mi_row, mi_col);
-
- // Set up limit values for MV components
- // mv beyond the range do not produce new/different prediction block
- x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
- x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
- x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
- x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
-
- // Set up distance of MB to edge of frame in 1/8th pel units
- assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
- set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
- cm->mi_rows, cm->mi_cols);
-
- /* set up source buffers */
- vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
-
- /* R/D setup */
- x->rddiv = cpi->RDDIV;
- x->rdmult = cpi->RDMULT;
-
- /* segment ID */
- if (seg->enabled) {
- if (!cpi->sf.variance_adaptive_quantization) {
- uint8_t *map = seg->update_map ? cpi->segmentation_map
- : cm->last_frame_seg_map;
- mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
- }
- vp9_mb_init_quantizer(cpi, x);
-
- if (seg->enabled && cpi->seg0_cnt > 0
- && !vp9_segfeature_active(seg, 0, SEG_LVL_REF_FRAME)
- && vp9_segfeature_active(seg, 1, SEG_LVL_REF_FRAME)) {
- cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt;
- } else {
- const int y = mb_row & ~3;
- const int x = mb_col & ~3;
- const int p16 = ((mb_row & 1) << 1) + (mb_col & 1);
- const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1);
- const int tile_progress = tile->mi_col_start * cm->mb_rows >> 1;
- const int mb_cols = (tile->mi_col_end - tile->mi_col_start) >> 1;
-
- cpi->seg0_progress = ((y * mb_cols + x * 4 + p32 + p16 + tile_progress)
- << 16) / cm->MBs;
- }
-
- x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
- } else {
- mbmi->segment_id = 0;
- x->encode_breakout = cpi->oxcf.encode_breakout;
- }
-}
-
-static void pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
- int mi_row, int mi_col,
- int *totalrate, int64_t *totaldist,
- BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
- int64_t best_rd) {
+static void rd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
+ int mi_row, int mi_col,
+ int *totalrate, int64_t *totaldist,
+ BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
+ int64_t best_rd, int block) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
- int orig_rdmult = x->rdmult;
+ MB_MODE_INFO *mbmi;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
+ int i, orig_rdmult;
double rdmult_ratio;
- vp9_clear_system_state(); // __asm emms;
+ vp9_clear_system_state();
rdmult_ratio = 1.0; // avoid uninitialized warnings
// Use the lower precision, but faster, 32x32 fdct for mode selection.
x->use_lp32x32fdct = 1;
+ // TODO(JBB): Most other places in the code instead of calling the function
+ // and then checking if its not the first 8x8 we put the check in the
+ // calling function. Do that here.
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
- if (xd->ab_index != 0) {
+ if (block != 0) {
*totalrate = 0;
*totaldist = 0;
return;
@@ -598,32 +754,56 @@ static void pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
}
set_offsets(cpi, tile, mi_row, mi_col, bsize);
- xd->mi_8x8[0]->mbmi.sb_type = bsize;
+ mbmi = &xd->mi[0]->mbmi;
+ mbmi->sb_type = bsize;
+
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][0];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
+ p[i].eobs = ctx->eobs_pbuf[i][0];
+ }
+ ctx->is_coded = 0;
+ x->skip_recode = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
- xd->mi_8x8[0]->mbmi.skip_coeff = 0;
+ mbmi->skip = 0;
- x->source_variance = get_sby_perpixel_variance(cpi, x, bsize);
+ x->source_variance = get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
- if (cpi->sf.variance_adaptive_quantization) {
- int energy;
- if (bsize <= BLOCK_16X16) {
- energy = x->mb_energy;
+ // Save rdmult before it might be changed, so it can be restored later.
+ orig_rdmult = x->rdmult;
+
+ if (aq_mode == VARIANCE_AQ) {
+ const int energy = bsize <= BLOCK_16X16 ? x->mb_energy
+ : vp9_block_energy(cpi, x, bsize);
+ if (cm->frame_type == KEY_FRAME ||
+ cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
+ mbmi->segment_id = vp9_vaq_segment_id(energy);
} else {
- energy = vp9_block_energy(cpi, x, bsize);
+ const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
+ : cm->last_frame_seg_map;
+ mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
}
- xd->mi_8x8[0]->mbmi.segment_id = vp9_vaq_segment_id(energy);
rdmult_ratio = vp9_vaq_rdmult_ratio(energy);
- vp9_mb_init_quantizer(cpi, x);
- }
-
- if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
- vp9_activity_masking(cpi, x);
-
- if (cpi->sf.variance_adaptive_quantization) {
- vp9_clear_system_state(); // __asm emms;
- x->rdmult = round(x->rdmult * rdmult_ratio);
+ vp9_init_plane_quantizers(cpi, x);
+ vp9_clear_system_state();
+ x->rdmult = (int)round(x->rdmult * rdmult_ratio);
+ } else if (aq_mode == COMPLEXITY_AQ) {
+ const int mi_offset = mi_row * cm->mi_cols + mi_col;
+ unsigned char complexity = cpi->complexity_map[mi_offset];
+ const int is_edge = (mi_row <= 1) || (mi_row >= (cm->mi_rows - 2)) ||
+ (mi_col <= 1) || (mi_col >= (cm->mi_cols - 2));
+ if (!is_edge && (complexity > 128))
+ x->rdmult += ((x->rdmult * (complexity - 128)) / 256);
+ } else if (aq_mode == CYCLIC_REFRESH_AQ) {
+ const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
+ : cm->last_frame_seg_map;
+ // If segment 1, use rdmult for that segment.
+ if (vp9_get_segment_id(cm, map, bsize, mi_row, mi_col))
+ x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
}
// Find best coding mode & reconstruct the MB so it is available
@@ -640,70 +820,52 @@ static void pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
totaldist, bsize, ctx, best_rd);
}
- if (cpi->sf.variance_adaptive_quantization) {
- x->rdmult = orig_rdmult;
- if (*totalrate != INT_MAX) {
- vp9_clear_system_state(); // __asm emms;
- *totalrate = round(*totalrate * rdmult_ratio);
- }
+ x->rdmult = orig_rdmult;
+
+ if (aq_mode == VARIANCE_AQ && *totalrate != INT_MAX) {
+ vp9_clear_system_state();
+ *totalrate = (int)round(*totalrate * rdmult_ratio);
}
}
static void update_stats(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
- MACROBLOCK *const x = &cpi->mb;
- MACROBLOCKD *const xd = &x->e_mbd;
- MODE_INFO *mi = xd->mi_8x8[0];
- MB_MODE_INFO *const mbmi = &mi->mbmi;
+ const MACROBLOCK *const x = &cpi->mb;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MODE_INFO *const mi = xd->mi[0];
+ const MB_MODE_INFO *const mbmi = &mi->mbmi;
if (!frame_is_intra_only(cm)) {
const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
SEG_LVL_REF_FRAME);
+ if (!seg_ref_active) {
+ FRAME_COUNTS *const counts = &cm->counts;
+ const int inter_block = is_inter_block(mbmi);
- if (!seg_ref_active)
- cpi->intra_inter_count[vp9_get_pred_context_intra_inter(xd)]
- [is_inter_block(mbmi)]++;
-
- // If the segment reference feature is enabled we have only a single
- // reference frame allowed for the segment so exclude it from
- // the reference frame counts used to work out probabilities.
- if (is_inter_block(mbmi) && !seg_ref_active) {
- if (cm->comp_pred_mode == HYBRID_PREDICTION)
- cpi->comp_inter_count[vp9_get_pred_context_comp_inter_inter(cm, xd)]
- [has_second_ref(mbmi)]++;
-
- if (has_second_ref(mbmi)) {
- cpi->comp_ref_count[vp9_get_pred_context_comp_ref_p(cm, xd)]
- [mbmi->ref_frame[0] == GOLDEN_FRAME]++;
- } else {
- cpi->single_ref_count[vp9_get_pred_context_single_ref_p1(xd)][0]
- [mbmi->ref_frame[0] != LAST_FRAME]++;
- if (mbmi->ref_frame[0] != LAST_FRAME)
- cpi->single_ref_count[vp9_get_pred_context_single_ref_p2(xd)][1]
- [mbmi->ref_frame[0] != GOLDEN_FRAME]++;
- }
- }
+ counts->intra_inter[vp9_get_intra_inter_context(xd)][inter_block]++;
- // Count of last ref frame 0,0 usage
- if (mbmi->mode == ZEROMV && mbmi->ref_frame[0] == LAST_FRAME)
- cpi->inter_zz_count++;
- }
-}
+ // If the segment reference feature is enabled we have only a single
+ // reference frame allowed for the segment so exclude it from
+ // the reference frame counts used to work out probabilities.
+ if (inter_block) {
+ const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
-static BLOCK_SIZE *get_sb_partitioning(MACROBLOCK *x, BLOCK_SIZE bsize) {
- MACROBLOCKD *const xd = &x->e_mbd;
- switch (bsize) {
- case BLOCK_64X64:
- return &x->sb64_partitioning;
- case BLOCK_32X32:
- return &x->sb_partitioning[xd->sb_index];
- case BLOCK_16X16:
- return &x->mb_partitioning[xd->sb_index][xd->mb_index];
- case BLOCK_8X8:
- return &x->b_partitioning[xd->sb_index][xd->mb_index][xd->b_index];
- default:
- assert(0);
- return NULL;
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
+ counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
+ [has_second_ref(mbmi)]++;
+
+ if (has_second_ref(mbmi)) {
+ counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)]
+ [ref0 == GOLDEN_FRAME]++;
+ } else {
+ counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
+ [ref0 != LAST_FRAME]++;
+ if (ref0 != LAST_FRAME)
+ counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
+ [ref0 != GOLDEN_FRAME]++;
+ }
+ }
+ }
}
}
@@ -721,21 +883,21 @@ static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col,
int mi_height = num_8x8_blocks_high_lookup[bsize];
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(
- cpi->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
+ xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
vpx_memcpy(
- cpi->left_context[p]
+ xd->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
- vpx_memcpy(cpi->above_seg_context + mi_col, sa,
- sizeof(*cpi->above_seg_context) * mi_width);
- vpx_memcpy(cpi->left_seg_context + (mi_row & MI_MASK), sl,
- sizeof(cpi->left_seg_context[0]) * mi_height);
+ vpx_memcpy(xd->above_seg_context + mi_col, sa,
+ sizeof(*xd->above_seg_context) * mi_width);
+ vpx_memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
+ sizeof(xd->left_seg_context[0]) * mi_height);
}
static void save_context(VP9_COMP *cpi, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
@@ -754,44 +916,30 @@ static void save_context(VP9_COMP *cpi, int mi_row, int mi_col,
for (p = 0; p < MAX_MB_PLANE; ++p) {
vpx_memcpy(
a + num_4x4_blocks_wide * p,
- cpi->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
+ xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
vpx_memcpy(
l + num_4x4_blocks_high * p,
- cpi->left_context[p]
+ xd->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
- vpx_memcpy(sa, cpi->above_seg_context + mi_col,
- sizeof(*cpi->above_seg_context) * mi_width);
- vpx_memcpy(sl, cpi->left_seg_context + (mi_row & MI_MASK),
- sizeof(cpi->left_seg_context[0]) * mi_height);
+ vpx_memcpy(sa, xd->above_seg_context + mi_col,
+ sizeof(*xd->above_seg_context) * mi_width);
+ vpx_memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
+ sizeof(xd->left_seg_context[0]) * mi_height);
}
static void encode_b(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
- int output_enabled, BLOCK_SIZE bsize, int sub_index) {
- VP9_COMMON * const cm = &cpi->common;
- MACROBLOCK * const x = &cpi->mb;
- MACROBLOCKD * const xd = &x->e_mbd;
+ int output_enabled, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx) {
- if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
- return;
-
- if (sub_index != -1)
- *get_sb_index(xd, bsize) = sub_index;
-
- if (bsize < BLOCK_8X8) {
- // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
- // there is nothing to be done.
- if (xd->ab_index > 0)
- return;
- }
set_offsets(cpi, tile, mi_row, mi_col, bsize);
- update_state(cpi, get_block_context(x, bsize), bsize, output_enabled);
- encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize);
+ update_state(cpi, ctx, mi_row, mi_col, bsize, output_enabled);
+ encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize, ctx);
if (output_enabled) {
update_stats(cpi);
@@ -803,68 +951,74 @@ static void encode_b(VP9_COMP *cpi, const TileInfo *const tile,
static void encode_sb(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
- int output_enabled, BLOCK_SIZE bsize) {
- VP9_COMMON * const cm = &cpi->common;
- MACROBLOCK * const x = &cpi->mb;
- MACROBLOCKD * const xd = &x->e_mbd;
- BLOCK_SIZE c1 = BLOCK_8X8;
- const int bsl = b_width_log2(bsize), bs = (1 << bsl) / 4;
- int pl = 0;
+ int output_enabled, BLOCK_SIZE bsize,
+ PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
+ int ctx;
PARTITION_TYPE partition;
- BLOCK_SIZE subsize;
- int i;
+ BLOCK_SIZE subsize = bsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
- c1 = BLOCK_4X4;
if (bsize >= BLOCK_8X8) {
- pl = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context,
- mi_row, mi_col, bsize);
- c1 = *(get_sb_partitioning(x, bsize));
+ ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+ subsize = get_subsize(bsize, pc_tree->partitioning);
+ } else {
+ ctx = 0;
+ subsize = BLOCK_4X4;
}
- partition = partition_lookup[bsl][c1];
+
+ partition = partition_lookup[bsl][subsize];
+ if (output_enabled && bsize != BLOCK_4X4)
+ cm->counts.partition[ctx][partition]++;
switch (partition) {
case PARTITION_NONE:
- if (output_enabled && bsize >= BLOCK_8X8)
- cpi->partition_count[pl][PARTITION_NONE]++;
- encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, c1, -1);
+ encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->none);
break;
case PARTITION_VERT:
- if (output_enabled)
- cpi->partition_count[pl][PARTITION_VERT]++;
- encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, c1, 0);
- encode_b(cpi, tile, tp, mi_row, mi_col + bs, output_enabled, c1, 1);
+ encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->vertical[0]);
+ if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
+ encode_b(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize,
+ &pc_tree->vertical[1]);
+ }
break;
case PARTITION_HORZ:
- if (output_enabled)
- cpi->partition_count[pl][PARTITION_HORZ]++;
- encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, c1, 0);
- encode_b(cpi, tile, tp, mi_row + bs, mi_col, output_enabled, c1, 1);
+ encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->horizontal[0]);
+ if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
+ encode_b(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize,
+ &pc_tree->horizontal[1]);
+ }
break;
case PARTITION_SPLIT:
- subsize = get_subsize(bsize, PARTITION_SPLIT);
-
- if (output_enabled)
- cpi->partition_count[pl][PARTITION_SPLIT]++;
-
- for (i = 0; i < 4; i++) {
- const int x_idx = i & 1, y_idx = i >> 1;
-
- *get_sb_index(xd, subsize) = i;
- encode_sb(cpi, tile, tp, mi_row + y_idx * bs, mi_col + x_idx * bs,
- output_enabled, subsize);
+ if (bsize == BLOCK_8X8) {
+ encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ pc_tree->leaf_split[0]);
+ } else {
+ encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ pc_tree->split[0]);
+ encode_sb(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize,
+ pc_tree->split[1]);
+ encode_sb(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize,
+ pc_tree->split[2]);
+ encode_sb(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
+ subsize, pc_tree->split[3]);
}
break;
default:
- assert(0);
- break;
+ assert("Invalid partition type.");
}
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
- update_partition_context(cpi->above_seg_context, cpi->left_seg_context,
- mi_row, mi_col, c1, bsize);
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
}
// Check to see if the given partition size is allowed for a specified number
@@ -873,10 +1027,10 @@ static void encode_sb(VP9_COMP *cpi, const TileInfo *const tile,
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
int rows_left, int cols_left,
int *bh, int *bw) {
- if ((rows_left <= 0) || (cols_left <= 0)) {
+ if (rows_left <= 0 || cols_left <= 0) {
return MIN(bsize, BLOCK_8X8);
} else {
- for (; bsize > 0; --bsize) {
+ for (; bsize > 0; bsize -= 3) {
*bh = num_8x8_blocks_high_lookup[bsize];
*bw = num_8x8_blocks_wide_lookup[bsize];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
@@ -887,20 +1041,36 @@ static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
return bsize;
}
+static void set_partial_b64x64_partition(MODE_INFO *mi, int mis,
+ int bh_in, int bw_in, int row8x8_remaining, int col8x8_remaining,
+ BLOCK_SIZE bsize, MODE_INFO **mi_8x8) {
+ int bh = bh_in;
+ int r, c;
+ for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
+ int bw = bw_in;
+ for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
+ const int index = r * mis + c;
+ mi_8x8[index] = mi + index;
+ mi_8x8[index]->mbmi.sb_type = find_partition_size(bsize,
+ row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
+ }
+ }
+}
+
// This function attempts to set all mode info entries in a given SB64
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
-static void set_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
- MODE_INFO **mi_8x8, int mi_row, int mi_col) {
+static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
+ MODE_INFO **mi_8x8, int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
- BLOCK_SIZE bsize = cpi->sf.always_this_block_size;
- const int mis = cm->mode_info_stride;
- int row8x8_remaining = tile->mi_row_end - mi_row;
- int col8x8_remaining = tile->mi_col_end - mi_col;
+ const int mis = cm->mi_stride;
+ const int row8x8_remaining = tile->mi_row_end - mi_row;
+ const int col8x8_remaining = tile->mi_col_end - mi_col;
int block_row, block_col;
- MODE_INFO * mi_upper_left = cm->mi + mi_row * mis + mi_col;
+ MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
int bh = num_8x8_blocks_high_lookup[bsize];
int bw = num_8x8_blocks_wide_lookup[bsize];
@@ -918,34 +1088,23 @@ static void set_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
}
} else {
// Else this is a partial SB64.
- for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
- for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
- int index = block_row * mis + block_col;
- // Find a partition size that fits
- bsize = find_partition_size(cpi->sf.always_this_block_size,
- (row8x8_remaining - block_row),
- (col8x8_remaining - block_col), &bh, &bw);
- mi_8x8[index] = mi_upper_left + index;
- mi_8x8[index]->mbmi.sb_type = bsize;
- }
- }
+ set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
+ col8x8_remaining, bsize, mi_8x8);
}
}
-static void copy_partitioning(VP9_COMP *cpi, MODE_INFO **mi_8x8,
- MODE_INFO **prev_mi_8x8) {
- VP9_COMMON *const cm = &cpi->common;
- const int mis = cm->mode_info_stride;
+static void copy_partitioning(VP9_COMMON *cm, MODE_INFO **mi_8x8,
+ MODE_INFO **prev_mi_8x8) {
+ const int mis = cm->mi_stride;
int block_row, block_col;
for (block_row = 0; block_row < 8; ++block_row) {
for (block_col = 0; block_col < 8; ++block_col) {
- MODE_INFO * prev_mi = prev_mi_8x8[block_row * mis + block_col];
- BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
- ptrdiff_t offset;
+ MODE_INFO *const prev_mi = prev_mi_8x8[block_row * mis + block_col];
+ const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
if (prev_mi) {
- offset = prev_mi - cm->prev_mi;
+ const ptrdiff_t offset = prev_mi - cm->prev_mi;
mi_8x8[block_row * mis + block_col] = cm->mi + offset;
mi_8x8[block_row * mis + block_col]->mbmi.sb_type = sb_type;
}
@@ -953,15 +1112,214 @@ static void copy_partitioning(VP9_COMP *cpi, MODE_INFO **mi_8x8,
}
}
-static int sb_has_motion(VP9_COMP *cpi, MODE_INFO **prev_mi_8x8) {
+static void constrain_copy_partitioning(VP9_COMP *const cpi,
+ const TileInfo *const tile,
+ MODE_INFO **mi_8x8,
+ MODE_INFO **prev_mi_8x8,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
- const int mis = cm->mode_info_stride;
+ const int mis = cm->mi_stride;
+ const int row8x8_remaining = tile->mi_row_end - mi_row;
+ const int col8x8_remaining = tile->mi_col_end - mi_col;
+ MODE_INFO *const mi_upper_left = cm->mi + mi_row * mis + mi_col;
+ const int bh = num_8x8_blocks_high_lookup[bsize];
+ const int bw = num_8x8_blocks_wide_lookup[bsize];
+ int block_row, block_col;
+
+ assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
+
+ // If the SB64 if it is all "in image".
+ if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
+ (row8x8_remaining >= MI_BLOCK_SIZE)) {
+ for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
+ for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
+ const int index = block_row * mis + block_col;
+ MODE_INFO *prev_mi = prev_mi_8x8[index];
+ const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
+ // Use previous partition if block size is not larger than bsize.
+ if (prev_mi && sb_type <= bsize) {
+ int block_row2, block_col2;
+ for (block_row2 = 0; block_row2 < bh; ++block_row2) {
+ for (block_col2 = 0; block_col2 < bw; ++block_col2) {
+ const int index2 = (block_row + block_row2) * mis +
+ block_col + block_col2;
+ prev_mi = prev_mi_8x8[index2];
+ if (prev_mi) {
+ const ptrdiff_t offset = prev_mi - cm->prev_mi;
+ mi_8x8[index2] = cm->mi + offset;
+ mi_8x8[index2]->mbmi.sb_type = prev_mi->mbmi.sb_type;
+ }
+ }
+ }
+ } else {
+ // Otherwise, use fixed partition of size bsize.
+ mi_8x8[index] = mi_upper_left + index;
+ mi_8x8[index]->mbmi.sb_type = bsize;
+ }
+ }
+ }
+ } else {
+ // Else this is a partial SB64, copy previous partition.
+ copy_partitioning(cm, mi_8x8, prev_mi_8x8);
+ }
+}
+
+
+const struct {
+ int row;
+ int col;
+} coord_lookup[16] = {
+ // 32x32 index = 0
+ {0, 0}, {0, 2}, {2, 0}, {2, 2},
+ // 32x32 index = 1
+ {0, 4}, {0, 6}, {2, 4}, {2, 6},
+ // 32x32 index = 2
+ {4, 0}, {4, 2}, {6, 0}, {6, 2},
+ // 32x32 index = 3
+ {4, 4}, {4, 6}, {6, 4}, {6, 6},
+};
+
+static void set_source_var_based_partition(VP9_COMP *cpi,
+ const TileInfo *const tile,
+ MODE_INFO **mi_8x8,
+ int mi_row, int mi_col) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->mb;
+ const int mis = cm->mi_stride;
+ const int row8x8_remaining = tile->mi_row_end - mi_row;
+ const int col8x8_remaining = tile->mi_col_end - mi_col;
+ MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
+
+ vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
+
+ assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
+
+ // In-image SB64
+ if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
+ (row8x8_remaining >= MI_BLOCK_SIZE)) {
+ const int src_stride = x->plane[0].src.stride;
+ const int pre_stride = cpi->Last_Source->y_stride;
+ const uint8_t *src = x->plane[0].src.buf;
+ const int pre_offset = (mi_row * MI_SIZE) * pre_stride +
+ (mi_col * MI_SIZE);
+ const uint8_t *pre_src = cpi->Last_Source->y_buffer + pre_offset;
+ const unsigned int thr_32x32 = cpi->sf.source_var_thresh;
+ const unsigned int thr_64x64 = thr_32x32 << 1;
+ int i, j;
+ int index;
+ diff d32[4];
+ int use16x16 = 0;
+
+ for (i = 0; i < 4; i++) {
+ diff d16[4];
+
+ for (j = 0; j < 4; j++) {
+ int b_mi_row = coord_lookup[i * 4 + j].row;
+ int b_mi_col = coord_lookup[i * 4 + j].col;
+ int b_offset = b_mi_row * MI_SIZE * src_stride +
+ b_mi_col * MI_SIZE;
+
+ get_sse_sum_16x16(src + b_offset, src_stride,
+ pre_src + b_offset, pre_stride,
+ &d16[j].sse, &d16[j].sum);
+
+ d16[j].var = d16[j].sse -
+ (((uint32_t)d16[j].sum * d16[j].sum) >> 8);
+
+ index = b_mi_row * mis + b_mi_col;
+ mi_8x8[index] = mi_upper_left + index;
+ mi_8x8[index]->mbmi.sb_type = BLOCK_16X16;
+
+ // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
+ // size to further improve quality.
+ }
+
+ if (d16[0].var < thr_32x32 && d16[1].var < thr_32x32 &&
+ d16[2].var < thr_32x32 && d16[3].var < thr_32x32) {
+ d32[i].sse = d16[0].sse;
+ d32[i].sum = d16[0].sum;
+
+ for (j = 1; j < 4; j++) {
+ d32[i].sse += d16[j].sse;
+ d32[i].sum += d16[j].sum;
+ }
+
+ d32[i].var = d32[i].sse - (((int64_t)d32[i].sum * d32[i].sum) >> 10);
+
+ index = coord_lookup[i*4].row * mis + coord_lookup[i*4].col;
+ mi_8x8[index] = mi_upper_left + index;
+ mi_8x8[index]->mbmi.sb_type = BLOCK_32X32;
+
+ if (!((cm->current_video_frame - 1) %
+ cpi->sf.search_type_check_frequency))
+ cpi->use_large_partition_rate += 1;
+ } else {
+ use16x16 = 1;
+ }
+ }
+
+ if (!use16x16) {
+ if (d32[0].var < thr_64x64 && d32[1].var < thr_64x64 &&
+ d32[2].var < thr_64x64 && d32[3].var < thr_64x64) {
+ mi_8x8[0] = mi_upper_left;
+ mi_8x8[0]->mbmi.sb_type = BLOCK_64X64;
+ }
+ }
+ } else { // partial in-image SB64
+ int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
+ int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
+ set_partial_b64x64_partition(mi_upper_left, mis, bh, bw,
+ row8x8_remaining, col8x8_remaining, BLOCK_16X16, mi_8x8);
+ }
+}
+
+static int is_background(VP9_COMP *cpi, const TileInfo *const tile,
+ int mi_row, int mi_col) {
+ MACROBLOCK *x = &cpi->mb;
+ uint8_t *src, *pre;
+ int src_stride, pre_stride;
+
+ const int row8x8_remaining = tile->mi_row_end - mi_row;
+ const int col8x8_remaining = tile->mi_col_end - mi_col;
+
+ int this_sad = 0;
+ int threshold = 0;
+
+ // This assumes the input source frames are of the same dimension.
+ src_stride = cpi->Source->y_stride;
+ src = cpi->Source->y_buffer + (mi_row * MI_SIZE) * src_stride +
+ (mi_col * MI_SIZE);
+ pre_stride = cpi->Last_Source->y_stride;
+ pre = cpi->Last_Source->y_buffer + (mi_row * MI_SIZE) * pre_stride +
+ (mi_col * MI_SIZE);
+
+ if (row8x8_remaining >= MI_BLOCK_SIZE &&
+ col8x8_remaining >= MI_BLOCK_SIZE) {
+ this_sad = cpi->fn_ptr[BLOCK_64X64].sdf(src, src_stride,
+ pre, pre_stride, 0x7fffffff);
+ threshold = (1 << 12);
+ } else {
+ int r, c;
+ for (r = 0; r < row8x8_remaining; r += 2)
+ for (c = 0; c < col8x8_remaining; c += 2)
+ this_sad += cpi->fn_ptr[BLOCK_16X16].sdf(src, src_stride, pre,
+ pre_stride, 0x7fffffff);
+ threshold = (row8x8_remaining * col8x8_remaining) << 6;
+ }
+
+ x->in_static_area = (this_sad < 2 * threshold);
+ return x->in_static_area;
+}
+
+static int sb_has_motion(const VP9_COMMON *cm, MODE_INFO **prev_mi_8x8) {
+ const int mis = cm->mi_stride;
int block_row, block_col;
if (cm->prev_mi) {
for (block_row = 0; block_row < 8; ++block_row) {
for (block_col = 0; block_col < 8; ++block_col) {
- MODE_INFO * prev_mi = prev_mi_8x8[block_row * mis + block_col];
+ const MODE_INFO *prev_mi = prev_mi_8x8[block_row * mis + block_col];
if (prev_mi) {
if (abs(prev_mi->mbmi.mv[0].as_mv.row) >= 8 ||
abs(prev_mi->mbmi.mv[0].as_mv.col) >= 8)
@@ -973,68 +1331,188 @@ static int sb_has_motion(VP9_COMP *cpi, MODE_INFO **prev_mi_8x8) {
return 0;
}
+static void update_state_rt(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
+ int mi_row, int mi_col, int bsize) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const struct segmentation *const seg = &cm->seg;
+
+ *(xd->mi[0]) = ctx->mic;
+
+ // For in frame adaptive Q, check for reseting the segment_id and updating
+ // the cyclic refresh map.
+ if ((cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) && seg->enabled) {
+ vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi,
+ mi_row, mi_col, bsize, 1);
+ vp9_init_plane_quantizers(cpi, x);
+ }
+
+ if (is_inter_block(mbmi)) {
+ vp9_update_mv_count(cm, xd);
+
+ if (cm->interp_filter == SWITCHABLE) {
+ const int pred_ctx = vp9_get_pred_context_switchable_interp(xd);
+ ++cm->counts.switchable_interp[pred_ctx][mbmi->interp_filter];
+ }
+ }
+
+ x->skip = ctx->skip;
+}
+
+static void encode_b_rt(VP9_COMP *cpi, const TileInfo *const tile,
+ TOKENEXTRA **tp, int mi_row, int mi_col,
+ int output_enabled, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx) {
+
+
+ set_offsets(cpi, tile, mi_row, mi_col, bsize);
+ update_state_rt(cpi, ctx, mi_row, mi_col, bsize);
+
+ encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize, ctx);
+ update_stats(cpi);
+
+ (*tp)->token = EOSB_TOKEN;
+ (*tp)++;
+}
+
+static void encode_sb_rt(VP9_COMP *cpi, const TileInfo *const tile,
+ TOKENEXTRA **tp, int mi_row, int mi_col,
+ int output_enabled, BLOCK_SIZE bsize,
+ PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
+ int ctx;
+ PARTITION_TYPE partition;
+ BLOCK_SIZE subsize;
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
+ return;
+
+ if (bsize >= BLOCK_8X8) {
+ MACROBLOCKD *const xd = &cpi->mb.e_mbd;
+ const int idx_str = xd->mi_stride * mi_row + mi_col;
+ MODE_INFO ** mi_8x8 = cm->mi_grid_visible + idx_str;
+ ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+ subsize = mi_8x8[0]->mbmi.sb_type;
+ } else {
+ ctx = 0;
+ subsize = BLOCK_4X4;
+ }
+
+ partition = partition_lookup[bsl][subsize];
+ if (output_enabled && bsize != BLOCK_4X4)
+ cm->counts.partition[ctx][partition]++;
+
+ switch (partition) {
+ case PARTITION_NONE:
+ encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->none);
+ break;
+ case PARTITION_VERT:
+ encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->vertical[0]);
+ if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
+ encode_b_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
+ subsize, &pc_tree->vertical[1]);
+ }
+ break;
+ case PARTITION_HORZ:
+ encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->horizontal[0]);
+ if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
+ encode_b_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
+ subsize, &pc_tree->horizontal[1]);
+ }
+ break;
+ case PARTITION_SPLIT:
+ subsize = get_subsize(bsize, PARTITION_SPLIT);
+ encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ pc_tree->split[0]);
+ encode_sb_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
+ subsize, pc_tree->split[1]);
+ encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
+ subsize, pc_tree->split[2]);
+ encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
+ subsize, pc_tree->split[3]);
+ break;
+ default:
+ assert("Invalid partition type.");
+ }
+
+ if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+}
+
static void rd_use_partition(VP9_COMP *cpi,
const TileInfo *const tile,
MODE_INFO **mi_8x8,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *rate, int64_t *dist,
- int do_recon) {
- VP9_COMMON * const cm = &cpi->common;
- MACROBLOCK * const x = &cpi->mb;
- MACROBLOCKD *xd = &cpi->mb.e_mbd;
- const int mis = cm->mode_info_stride;
- int bsl = b_width_log2(bsize);
- const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
- const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
- int ms = num_4x4_blocks_wide / 2;
- int mh = num_4x4_blocks_high / 2;
- int bss = (1 << bsl) / 4;
+ int do_recon, PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int mis = cm->mi_stride;
+ const int bsl = b_width_log2(bsize);
+ const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
+ const int bss = (1 << bsl) / 4;
int i, pl;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE subsize;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
int last_part_rate = INT_MAX;
- int64_t last_part_dist = INT_MAX;
- int split_rate = INT_MAX;
- int64_t split_dist = INT_MAX;
+ int64_t last_part_dist = INT64_MAX;
+ int64_t last_part_rd = INT64_MAX;
int none_rate = INT_MAX;
- int64_t none_dist = INT_MAX;
+ int64_t none_dist = INT64_MAX;
+ int64_t none_rd = INT64_MAX;
int chosen_rate = INT_MAX;
- int64_t chosen_dist = INT_MAX;
+ int64_t chosen_dist = INT64_MAX;
+ int64_t chosen_rd = INT64_MAX;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
int splits_below = 0;
BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type;
+ int do_partition_search = 1;
+ PICK_MODE_CONTEXT *ctx = &pc_tree->none;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
- partition = partition_lookup[bsl][bs_type];
+ assert(num_4x4_blocks_wide_lookup[bsize] ==
+ num_4x4_blocks_high_lookup[bsize]);
+ partition = partition_lookup[bsl][bs_type];
subsize = get_subsize(bsize, partition);
- if (bsize < BLOCK_8X8) {
- // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
- // there is nothing to be done.
- if (xd->ab_index != 0) {
- *rate = 0;
- *dist = 0;
- return;
- }
- } else {
- *(get_sb_partitioning(x, bsize)) = subsize;
- }
+ pc_tree->partitioning = partition;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (bsize == BLOCK_16X16) {
set_offsets(cpi, tile, mi_row, mi_col, bsize);
x->mb_energy = vp9_block_energy(cpi, x, bsize);
+ } else {
+ x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize);
}
- x->fast_ms = 0;
- x->subblock_ref = 0;
-
- if (cpi->sf.adjust_partitioning_from_last_frame) {
+ if (!x->in_active_map) {
+ do_partition_search = 0;
+ if (mi_row + (mi_step >> 1) < cm->mi_rows &&
+ mi_col + (mi_step >> 1) < cm->mi_cols) {
+ pc_tree->partitioning = PARTITION_NONE;
+ bs_type = mi_8x8[0]->mbmi.sb_type = bsize;
+ subsize = bsize;
+ partition = PARTITION_NONE;
+ }
+ }
+ if (do_partition_search &&
+ cpi->sf.partition_search_type == SEARCH_PARTITION &&
+ cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
@@ -1051,44 +1529,46 @@ static void rd_use_partition(VP9_COMP *cpi,
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
- mi_row + (ms >> 1) < cm->mi_rows &&
- mi_col + (ms >> 1) < cm->mi_cols) {
- *(get_sb_partitioning(x, bsize)) = bsize;
- pick_sb_modes(cpi, tile, mi_row, mi_col, &none_rate, &none_dist, bsize,
- get_block_context(x, bsize), INT64_MAX);
+ mi_row + (mi_step >> 1) < cm->mi_rows &&
+ mi_col + (mi_step >> 1) < cm->mi_cols) {
+ pc_tree->partitioning = PARTITION_NONE;
+ rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &none_rate, &none_dist, bsize,
+ ctx, INT64_MAX, 0);
- pl = partition_plane_context(cpi->above_seg_context,
- cpi->left_seg_context,
- mi_row, mi_col, bsize);
- none_rate += x->partition_cost[pl][PARTITION_NONE];
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+
+ if (none_rate < INT_MAX) {
+ none_rate += x->partition_cost[pl][PARTITION_NONE];
+ none_rd = RDCOST(x->rdmult, x->rddiv, none_rate, none_dist);
+ }
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
mi_8x8[0]->mbmi.sb_type = bs_type;
- *(get_sb_partitioning(x, bsize)) = subsize;
+ pc_tree->partitioning = partition;
}
}
switch (partition) {
case PARTITION_NONE:
- pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist,
- bsize, get_block_context(x, bsize), INT64_MAX);
+ rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
+ &last_part_dist, bsize, ctx, INT64_MAX, 0);
break;
case PARTITION_HORZ:
- *get_sb_index(xd, subsize) = 0;
- pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist,
- subsize, get_block_context(x, subsize), INT64_MAX);
+ rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
+ &last_part_dist, subsize, &pc_tree->horizontal[0],
+ INT64_MAX, 0);
if (last_part_rate != INT_MAX &&
- bsize >= BLOCK_8X8 && mi_row + (mh >> 1) < cm->mi_rows) {
+ bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) {
int rt = 0;
int64_t dt = 0;
- update_state(cpi, get_block_context(x, subsize), subsize, 0);
- encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
- *get_sb_index(xd, subsize) = 1;
- pick_sb_modes(cpi, tile, mi_row + (ms >> 1), mi_col, &rt, &dt, subsize,
- get_block_context(x, subsize), INT64_MAX);
- if (rt == INT_MAX || dt == INT_MAX) {
+ PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
+ update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
+ encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
+ rd_pick_sb_modes(cpi, tile, mi_row + (mi_step >> 1), mi_col, &rt, &dt,
+ subsize, &pc_tree->horizontal[1], INT64_MAX, 1);
+ if (rt == INT_MAX || dt == INT64_MAX) {
last_part_rate = INT_MAX;
- last_part_dist = INT_MAX;
+ last_part_dist = INT64_MAX;
break;
}
@@ -1097,21 +1577,22 @@ static void rd_use_partition(VP9_COMP *cpi,
}
break;
case PARTITION_VERT:
- *get_sb_index(xd, subsize) = 0;
- pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist,
- subsize, get_block_context(x, subsize), INT64_MAX);
+ rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
+ &last_part_dist, subsize, &pc_tree->vertical[0],
+ INT64_MAX, 0);
if (last_part_rate != INT_MAX &&
- bsize >= BLOCK_8X8 && mi_col + (ms >> 1) < cm->mi_cols) {
+ bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) {
int rt = 0;
int64_t dt = 0;
- update_state(cpi, get_block_context(x, subsize), subsize, 0);
- encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
- *get_sb_index(xd, subsize) = 1;
- pick_sb_modes(cpi, tile, mi_row, mi_col + (ms >> 1), &rt, &dt, subsize,
- get_block_context(x, subsize), INT64_MAX);
- if (rt == INT_MAX || dt == INT_MAX) {
+ PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
+ update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
+ encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
+ rd_pick_sb_modes(cpi, tile, mi_row, mi_col + (mi_step >> 1), &rt, &dt,
+ subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
+ INT64_MAX, 1);
+ if (rt == INT_MAX || dt == INT64_MAX) {
last_part_rate = INT_MAX;
- last_part_dist = INT_MAX;
+ last_part_dist = INT64_MAX;
break;
}
last_part_rate += rt;
@@ -1119,12 +1600,17 @@ static void rd_use_partition(VP9_COMP *cpi,
}
break;
case PARTITION_SPLIT:
- // Split partition.
+ if (bsize == BLOCK_8X8) {
+ rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
+ &last_part_dist, subsize, pc_tree->leaf_split[0],
+ INT64_MAX, 0);
+ break;
+ }
last_part_rate = 0;
last_part_dist = 0;
for (i = 0; i < 4; i++) {
- int x_idx = (i & 1) * (ms >> 1);
- int y_idx = (i >> 1) * (ms >> 1);
+ int x_idx = (i & 1) * (mi_step >> 1);
+ int y_idx = (i >> 1) * (mi_step >> 1);
int jj = i >> 1, ii = i & 0x01;
int rt;
int64_t dt;
@@ -1132,14 +1618,12 @@ static void rd_use_partition(VP9_COMP *cpi,
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
- *get_sb_index(xd, subsize) = i;
-
rd_use_partition(cpi, tile, mi_8x8 + jj * bss * mis + ii * bss, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt,
- i != 3);
- if (rt == INT_MAX || dt == INT_MAX) {
+ i != 3, pc_tree->split[i]);
+ if (rt == INT_MAX || dt == INT64_MAX) {
last_part_rate = INT_MAX;
- last_part_dist = INT_MAX;
+ last_part_dist = INT64_MAX;
break;
}
last_part_rate += rt;
@@ -1150,86 +1634,83 @@ static void rd_use_partition(VP9_COMP *cpi,
assert(0);
}
- pl = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context,
- mi_row, mi_col, bsize);
- if (last_part_rate < INT_MAX)
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ if (last_part_rate < INT_MAX) {
last_part_rate += x->partition_cost[pl][partition];
+ last_part_rd = RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist);
+ }
- if (cpi->sf.adjust_partitioning_from_last_frame
+ if (do_partition_search
+ && cpi->sf.adjust_partitioning_from_last_frame
+ && cpi->sf.partition_search_type == SEARCH_PARTITION
&& partition != PARTITION_SPLIT && bsize > BLOCK_8X8
- && (mi_row + ms < cm->mi_rows || mi_row + (ms >> 1) == cm->mi_rows)
- && (mi_col + ms < cm->mi_cols || mi_col + (ms >> 1) == cm->mi_cols)) {
+ && (mi_row + mi_step < cm->mi_rows ||
+ mi_row + (mi_step >> 1) == cm->mi_rows)
+ && (mi_col + mi_step < cm->mi_cols ||
+ mi_col + (mi_step >> 1) == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
- split_rate = 0;
- split_dist = 0;
+ chosen_rate = 0;
+ chosen_dist = 0;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
+ pc_tree->partitioning = PARTITION_SPLIT;
// Split partition.
for (i = 0; i < 4; i++) {
- int x_idx = (i & 1) * (num_4x4_blocks_wide >> 2);
- int y_idx = (i >> 1) * (num_4x4_blocks_wide >> 2);
+ int x_idx = (i & 1) * (mi_step >> 1);
+ int y_idx = (i >> 1) * (mi_step >> 1);
int rt = 0;
int64_t dt = 0;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
- if ((mi_row + y_idx >= cm->mi_rows)
- || (mi_col + x_idx >= cm->mi_cols))
+ if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
- *get_sb_index(xd, split_subsize) = i;
- *get_sb_partitioning(x, bsize) = split_subsize;
- *get_sb_partitioning(x, split_subsize) = split_subsize;
-
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
-
- pick_sb_modes(cpi, tile, mi_row + y_idx, mi_col + x_idx, &rt, &dt,
- split_subsize, get_block_context(x, split_subsize),
- INT64_MAX);
+ pc_tree->split[i]->partitioning = PARTITION_NONE;
+ rd_pick_sb_modes(cpi, tile, mi_row + y_idx, mi_col + x_idx, &rt, &dt,
+ split_subsize, &pc_tree->split[i]->none,
+ INT64_MAX, i);
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
- if (rt == INT_MAX || dt == INT_MAX) {
- split_rate = INT_MAX;
- split_dist = INT_MAX;
+ if (rt == INT_MAX || dt == INT64_MAX) {
+ chosen_rate = INT_MAX;
+ chosen_dist = INT64_MAX;
break;
}
+ chosen_rate += rt;
+ chosen_dist += dt;
+
if (i != 3)
encode_sb(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, 0,
- split_subsize);
+ split_subsize, pc_tree->split[i]);
- split_rate += rt;
- split_dist += dt;
- pl = partition_plane_context(cpi->above_seg_context,
- cpi->left_seg_context,
- mi_row + y_idx, mi_col + x_idx, bsize);
- split_rate += x->partition_cost[pl][PARTITION_NONE];
+ pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
+ split_subsize);
+ chosen_rate += x->partition_cost[pl][PARTITION_NONE];
}
- pl = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context,
- mi_row, mi_col, bsize);
- if (split_rate < INT_MAX) {
- split_rate += x->partition_cost[pl][PARTITION_SPLIT];
-
- chosen_rate = split_rate;
- chosen_dist = split_dist;
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ if (chosen_rate < INT_MAX) {
+ chosen_rate += x->partition_cost[pl][PARTITION_SPLIT];
+ chosen_rd = RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist);
}
}
- // If last_part is better set the partitioning to that...
- if (RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist)
- < RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)) {
+ // If last_part is better set the partitioning to that.
+ if (last_part_rd < chosen_rd) {
mi_8x8[0]->mbmi.sb_type = bsize;
if (bsize >= BLOCK_8X8)
- *(get_sb_partitioning(x, bsize)) = subsize;
+ pc_tree->partitioning = partition;
chosen_rate = last_part_rate;
chosen_dist = last_part_dist;
+ chosen_rd = last_part_rd;
}
- // If none was better set the partitioning to that...
- if (RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)
- > RDCOST(x->rdmult, x->rddiv, none_rate, none_dist)) {
+ // If none was better set the partitioning to that.
+ if (none_rd < chosen_rd) {
if (bsize >= BLOCK_8X8)
- *(get_sb_partitioning(x, bsize)) = bsize;
+ pc_tree->partitioning = PARTITION_NONE;
chosen_rate = none_rate;
chosen_dist = none_dist;
}
@@ -1239,25 +1720,44 @@ static void rd_use_partition(VP9_COMP *cpi,
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if ( bsize == BLOCK_64X64)
- assert(chosen_rate < INT_MAX && chosen_dist < INT_MAX);
+ assert(chosen_rate < INT_MAX && chosen_dist < INT64_MAX);
+
+ if (do_recon) {
+ int output_enabled = (bsize == BLOCK_64X64);
- if (do_recon)
- encode_sb(cpi, tile, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize);
+ // Check the projected output rate for this SB against it's target
+ // and and if necessary apply a Q delta using segmentation to get
+ // closer to the target.
+ if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
+ vp9_select_in_frame_q_segment(cpi, mi_row, mi_col,
+ output_enabled, chosen_rate);
+ }
+
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
+ chosen_rate, chosen_dist);
+ encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize,
+ pc_tree);
+ }
*rate = chosen_rate;
*dist = chosen_dist;
}
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
- BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
- BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8,
- BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
+ BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
+ BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
+ BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
+ BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
+ BLOCK_16X16
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
- BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
- BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64,
- BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
+ BLOCK_8X8, BLOCK_16X16, BLOCK_16X16,
+ BLOCK_16X16, BLOCK_32X32, BLOCK_32X32,
+ BLOCK_32X32, BLOCK_64X64, BLOCK_64X64,
+ BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
+ BLOCK_64X64
};
// Look at all the mode_info entries for blocks that are part of this
@@ -1284,165 +1784,142 @@ static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO ** mi_8x8,
*min_block_size = MIN(*min_block_size, sb_type);
*max_block_size = MAX(*max_block_size, sb_type);
}
- index += xd->mode_info_stride;
+ index += xd->mi_stride;
}
}
+// Next square block size less or equal than current block size.
+static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
+ BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
+ BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
+ BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
+ BLOCK_32X32, BLOCK_32X32, BLOCK_32X32,
+ BLOCK_64X64
+};
+
// Look at neighboring blocks and set a min and max partition size based on
// what they chose.
static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
- int row, int col,
+ int mi_row, int mi_col,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
- VP9_COMMON * const cm = &cpi->common;
+ VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
- MODE_INFO ** mi_8x8 = xd->mi_8x8;
- MODE_INFO ** prev_mi_8x8 = xd->prev_mi_8x8;
-
- const int left_in_image = xd->left_available && mi_8x8[-1];
- const int above_in_image = xd->up_available &&
- mi_8x8[-xd->mode_info_stride];
- MODE_INFO ** above_sb64_mi_8x8;
- MODE_INFO ** left_sb64_mi_8x8;
-
- int row8x8_remaining = tile->mi_row_end - row;
- int col8x8_remaining = tile->mi_col_end - col;
+ MODE_INFO **mi = xd->mi;
+ const int left_in_image = xd->left_available && mi[-1];
+ const int above_in_image = xd->up_available && mi[-xd->mi_stride];
+ const int row8x8_remaining = tile->mi_row_end - mi_row;
+ const int col8x8_remaining = tile->mi_col_end - mi_col;
int bh, bw;
-
+ BLOCK_SIZE min_size = BLOCK_4X4;
+ BLOCK_SIZE max_size = BLOCK_64X64;
// Trap case where we do not have a prediction.
- if (!left_in_image && !above_in_image &&
- ((cm->frame_type == KEY_FRAME) || !cm->prev_mi)) {
- *min_block_size = BLOCK_4X4;
- *max_block_size = BLOCK_64X64;
- } else {
+ if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
// Default "min to max" and "max to min"
- *min_block_size = BLOCK_64X64;
- *max_block_size = BLOCK_4X4;
+ min_size = BLOCK_64X64;
+ max_size = BLOCK_4X4;
// NOTE: each call to get_sb_partition_size_range() uses the previous
// passed in values for min and max as a starting point.
- //
// Find the min and max partition used in previous frame at this location
- if (cm->prev_mi && (cm->frame_type != KEY_FRAME)) {
- get_sb_partition_size_range(cpi, prev_mi_8x8,
- min_block_size, max_block_size);
+ if (cm->frame_type != KEY_FRAME) {
+ MODE_INFO **const prev_mi =
+ &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
+ get_sb_partition_size_range(cpi, prev_mi, &min_size, &max_size);
}
-
// Find the min and max partition sizes used in the left SB64
if (left_in_image) {
- left_sb64_mi_8x8 = &mi_8x8[-MI_BLOCK_SIZE];
- get_sb_partition_size_range(cpi, left_sb64_mi_8x8,
- min_block_size, max_block_size);
+ MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
+ get_sb_partition_size_range(cpi, left_sb64_mi, &min_size, &max_size);
}
-
// Find the min and max partition sizes used in the above SB64.
if (above_in_image) {
- above_sb64_mi_8x8 = &mi_8x8[-xd->mode_info_stride * MI_BLOCK_SIZE];
- get_sb_partition_size_range(cpi, above_sb64_mi_8x8,
- min_block_size, max_block_size);
+ MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
+ get_sb_partition_size_range(cpi, above_sb64_mi, &min_size, &max_size);
+ }
+ // adjust observed min and max
+ if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
+ min_size = min_partition_size[min_size];
+ max_size = max_partition_size[max_size];
}
}
- // Give a bit of leaway either side of the observed min and max
- *min_block_size = min_partition_size[*min_block_size];
- *max_block_size = max_partition_size[*max_block_size];
+ // Check border cases where max and min from neighbors may not be legal.
+ max_size = find_partition_size(max_size,
+ row8x8_remaining, col8x8_remaining,
+ &bh, &bw);
+ min_size = MIN(min_size, max_size);
- // Check border cases where max and min from neighbours may not be legal.
- *max_block_size = find_partition_size(*max_block_size,
- row8x8_remaining, col8x8_remaining,
- &bh, &bw);
- *min_block_size = MIN(*min_block_size, *max_block_size);
+ // When use_square_partition_only is true, make sure at least one square
+ // partition is allowed by selecting the next smaller square size as
+ // *min_block_size.
+ if (cpi->sf.use_square_partition_only &&
+ next_square_size[max_size] < min_size) {
+ min_size = next_square_size[max_size];
+ }
+ *min_block_size = min_size;
+ *max_block_size = max_size;
}
-static void compute_fast_motion_search_level(VP9_COMP *cpi, BLOCK_SIZE bsize) {
+static void auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
+ int mi_row, int mi_col,
+ BLOCK_SIZE *min_block_size,
+ BLOCK_SIZE *max_block_size) {
VP9_COMMON *const cm = &cpi->common;
- MACROBLOCK *const x = &cpi->mb;
- MACROBLOCKD *const xd = &x->e_mbd;
-
- // Only use 8x8 result for non HD videos.
- // int use_8x8 = (MIN(cpi->common.width, cpi->common.height) < 720) ? 1 : 0;
- int use_8x8 = 1;
-
- if (cm->frame_type && !cpi->is_src_frame_alt_ref &&
- ((use_8x8 && bsize == BLOCK_16X16) ||
- bsize == BLOCK_32X32 || bsize == BLOCK_64X64)) {
- int ref0 = 0, ref1 = 0, ref2 = 0, ref3 = 0;
- PICK_MODE_CONTEXT *block_context = NULL;
-
- if (bsize == BLOCK_16X16) {
- block_context = x->sb8x8_context[xd->sb_index][xd->mb_index];
- } else if (bsize == BLOCK_32X32) {
- block_context = x->mb_context[xd->sb_index];
- } else if (bsize == BLOCK_64X64) {
- block_context = x->sb32_context;
- }
-
- if (block_context) {
- ref0 = block_context[0].mic.mbmi.ref_frame[0];
- ref1 = block_context[1].mic.mbmi.ref_frame[0];
- ref2 = block_context[2].mic.mbmi.ref_frame[0];
- ref3 = block_context[3].mic.mbmi.ref_frame[0];
- }
-
- // Currently, only consider 4 inter reference frames.
- if (ref0 && ref1 && ref2 && ref3) {
- int d01, d23, d02, d13;
-
- // Motion vectors for the four subblocks.
- int16_t mvr0 = block_context[0].mic.mbmi.mv[0].as_mv.row;
- int16_t mvc0 = block_context[0].mic.mbmi.mv[0].as_mv.col;
- int16_t mvr1 = block_context[1].mic.mbmi.mv[0].as_mv.row;
- int16_t mvc1 = block_context[1].mic.mbmi.mv[0].as_mv.col;
- int16_t mvr2 = block_context[2].mic.mbmi.mv[0].as_mv.row;
- int16_t mvc2 = block_context[2].mic.mbmi.mv[0].as_mv.col;
- int16_t mvr3 = block_context[3].mic.mbmi.mv[0].as_mv.row;
- int16_t mvc3 = block_context[3].mic.mbmi.mv[0].as_mv.col;
-
- // Adjust sign if ref is alt_ref.
- if (cm->ref_frame_sign_bias[ref0]) {
- mvr0 *= -1;
- mvc0 *= -1;
- }
-
- if (cm->ref_frame_sign_bias[ref1]) {
- mvr1 *= -1;
- mvc1 *= -1;
- }
-
- if (cm->ref_frame_sign_bias[ref2]) {
- mvr2 *= -1;
- mvc2 *= -1;
- }
+ MACROBLOCKD *const xd = &cpi->mb.e_mbd;
+ MODE_INFO **mi_8x8 = xd->mi;
+ const int left_in_image = xd->left_available && mi_8x8[-1];
+ const int above_in_image = xd->up_available &&
+ mi_8x8[-xd->mi_stride];
+ int row8x8_remaining = tile->mi_row_end - mi_row;
+ int col8x8_remaining = tile->mi_col_end - mi_col;
+ int bh, bw;
+ BLOCK_SIZE min_size = BLOCK_32X32;
+ BLOCK_SIZE max_size = BLOCK_8X8;
+ int bsl = mi_width_log2_lookup[BLOCK_64X64];
+ int search_range_ctrl = (((mi_row + mi_col) >> bsl) +
+ cpi->sf.chessboard_index) & 0x01;
+ // Trap case where we do not have a prediction.
+ if (search_range_ctrl &&
+ (left_in_image || above_in_image || cm->frame_type != KEY_FRAME)) {
+ int block;
+ MODE_INFO **mi;
+ BLOCK_SIZE sb_type;
- if (cm->ref_frame_sign_bias[ref3]) {
- mvr3 *= -1;
- mvc3 *= -1;
+ // Find the min and max partition sizes used in the left SB64.
+ if (left_in_image) {
+ MODE_INFO *cur_mi;
+ mi = &mi_8x8[-1];
+ for (block = 0; block < MI_BLOCK_SIZE; ++block) {
+ cur_mi = mi[block * xd->mi_stride];
+ sb_type = cur_mi ? cur_mi->mbmi.sb_type : 0;
+ min_size = MIN(min_size, sb_type);
+ max_size = MAX(max_size, sb_type);
}
-
- // Calculate mv distances.
- d01 = MAX(abs(mvr0 - mvr1), abs(mvc0 - mvc1));
- d23 = MAX(abs(mvr2 - mvr3), abs(mvc2 - mvc3));
- d02 = MAX(abs(mvr0 - mvr2), abs(mvc0 - mvc2));
- d13 = MAX(abs(mvr1 - mvr3), abs(mvc1 - mvc3));
-
- if (d01 < FAST_MOTION_MV_THRESH && d23 < FAST_MOTION_MV_THRESH &&
- d02 < FAST_MOTION_MV_THRESH && d13 < FAST_MOTION_MV_THRESH) {
- // Set fast motion search level.
- x->fast_ms = 1;
-
- if (ref0 == ref1 && ref1 == ref2 && ref2 == ref3 &&
- d01 < 2 && d23 < 2 && d02 < 2 && d13 < 2) {
- // Set fast motion search level.
- x->fast_ms = 2;
-
- if (!d01 && !d23 && !d02 && !d13) {
- x->fast_ms = 3;
- x->subblock_ref = ref0;
- }
- }
+ }
+ // Find the min and max partition sizes used in the above SB64.
+ if (above_in_image) {
+ mi = &mi_8x8[-xd->mi_stride * MI_BLOCK_SIZE];
+ for (block = 0; block < MI_BLOCK_SIZE; ++block) {
+ sb_type = mi[block] ? mi[block]->mbmi.sb_type : 0;
+ min_size = MIN(min_size, sb_type);
+ max_size = MAX(max_size, sb_type);
}
}
+
+ min_size = min_partition_size[min_size];
+ max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
+ &bh, &bw);
+ min_size = MIN(min_size, max_size);
+ min_size = MAX(min_size, BLOCK_8X8);
+ max_size = MIN(max_size, BLOCK_32X32);
+ } else {
+ min_size = BLOCK_8X8;
+ max_size = BLOCK_32X32;
}
+
+ *min_block_size = min_size;
+ *max_block_size = max_size;
}
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
@@ -1459,14 +1936,16 @@ static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, int *rate,
- int64_t *dist, int do_recon, int64_t best_rd) {
- VP9_COMMON * const cm = &cpi->common;
- MACROBLOCK * const x = &cpi->mb;
- MACROBLOCKD * const xd = &x->e_mbd;
- const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
+ int64_t *dist, int do_recon, int64_t best_rd,
+ PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
TOKENEXTRA *tp_orig = *tp;
+ PICK_MODE_CONTEXT *ctx = &pc_tree->none;
int i, pl;
BLOCK_SIZE subsize;
int this_rate, sum_rate = 0, best_rate = INT_MAX;
@@ -1475,32 +1954,27 @@ static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
// Override skipping rectangular partition operations for edge blocks
- const int force_horz_split = (mi_row + ms >= cm->mi_rows);
- const int force_vert_split = (mi_col + ms >= cm->mi_cols);
+ const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
+ const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
+ const int xss = x->e_mbd.plane[1].subsampling_x;
+ const int yss = x->e_mbd.plane[1].subsampling_y;
int partition_none_allowed = !force_horz_split && !force_vert_split;
- int partition_horz_allowed = !force_vert_split && bsize >= BLOCK_8X8;
- int partition_vert_allowed = !force_horz_split && bsize >= BLOCK_8X8;
-
- int partition_split_done = 0;
+ int partition_horz_allowed = !force_vert_split && yss <= xss &&
+ bsize >= BLOCK_8X8;
+ int partition_vert_allowed = !force_horz_split && xss <= yss &&
+ bsize >= BLOCK_8X8;
(void) *tp_orig;
- if (bsize < BLOCK_8X8) {
- // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
- // there is nothing to be done.
- if (xd->ab_index != 0) {
- *rate = 0;
- *dist = 0;
- return;
- }
- }
- assert(mi_height_log2(bsize) == mi_width_log2(bsize));
+ assert(num_8x8_blocks_wide_lookup[bsize] ==
+ num_8x8_blocks_high_lookup[bsize]);
if (bsize == BLOCK_16X16) {
set_offsets(cpi, tile, mi_row, mi_col, bsize);
x->mb_energy = vp9_block_energy(cpi, x, bsize);
+ } else {
+ x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize);
}
-
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
@@ -1524,7 +1998,7 @@ static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
if (cpi->sf.disable_split_var_thresh && partition_none_allowed) {
unsigned int source_variancey;
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
- source_variancey = get_sby_perpixel_variance(cpi, x, bsize);
+ source_variancey = get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
if (source_variancey < cpi->sf.disable_split_var_thresh) {
do_split = 0;
if (source_variancey < cpi->sf.disable_split_var_thresh / 2)
@@ -1532,45 +2006,51 @@ static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
}
}
+ if (!x->in_active_map && (partition_horz_allowed || partition_vert_allowed))
+ do_split = 0;
// PARTITION_NONE
if (partition_none_allowed) {
- pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, bsize,
- get_block_context(x, bsize), best_rd);
+ rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, bsize,
+ ctx, best_rd, 0);
if (this_rate != INT_MAX) {
if (bsize >= BLOCK_8X8) {
- pl = partition_plane_context(cpi->above_seg_context,
- cpi->left_seg_context,
- mi_row, mi_col, bsize);
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rate += x->partition_cost[pl][PARTITION_NONE];
}
sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
if (sum_rd < best_rd) {
- int64_t stop_thresh = 2048;
+ int64_t stop_thresh = 4096;
+ int64_t stop_thresh_rd;
best_rate = this_rate;
best_dist = this_dist;
best_rd = sum_rd;
if (bsize >= BLOCK_8X8)
- *(get_sb_partitioning(x, bsize)) = bsize;
+ pc_tree->partitioning = PARTITION_NONE;
// Adjust threshold according to partition size.
stop_thresh >>= 8 - (b_width_log2_lookup[bsize] +
b_height_log2_lookup[bsize]);
+ stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh);
// If obtained distortion is very small, choose current partition
// and stop splitting.
- if (this_dist < stop_thresh) {
+ if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) {
do_split = 0;
do_rect = 0;
}
}
}
+ if (!x->in_active_map) {
+ do_split = 0;
+ do_rect = 0;
+ }
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// store estimated motion vector
if (cpi->sf.adaptive_motion_search)
- store_pred_mv(x, get_block_context(x, bsize));
+ store_pred_mv(x, ctx);
// PARTITION_SPLIT
sum_rd = 0;
@@ -1578,38 +2058,58 @@ static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
// the starting point of motion search in the following partition type check.
if (do_split) {
subsize = get_subsize(bsize, PARTITION_SPLIT);
- for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
- const int x_idx = (i & 1) * ms;
- const int y_idx = (i >> 1) * ms;
-
- if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
- continue;
-
- *get_sb_index(xd, subsize) = i;
- if (cpi->sf.adaptive_motion_search)
- load_pred_mv(x, get_block_context(x, bsize));
- rd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, subsize,
- &this_rate, &this_dist, i != 3, best_rd - sum_rd);
-
- if (this_rate == INT_MAX) {
+ if (bsize == BLOCK_8X8) {
+ i = 4;
+ if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
+ pc_tree->leaf_split[0]->pred_interp_filter =
+ ctx->mic.mbmi.interp_filter;
+ rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
+ pc_tree->leaf_split[0], best_rd, 0);
+ if (sum_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
- sum_rate += this_rate;
- sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
+ if (sum_rd < best_rd) {
+ update_state(cpi, pc_tree->leaf_split[0], mi_row, mi_col, subsize, 0);
+ encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize,
+ pc_tree->leaf_split[0]);
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+ }
+ }
+ } else {
+ for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
+ const int x_idx = (i & 1) * mi_step;
+ const int y_idx = (i >> 1) * mi_step;
+
+ if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
+ continue;
+
+ if (cpi->sf.adaptive_motion_search)
+ load_pred_mv(x, ctx);
+
+ rd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx,
+ subsize, &this_rate, &this_dist, i != 3,
+ best_rd - sum_rd, pc_tree->split[i]);
+
+ if (this_rate == INT_MAX) {
+ sum_rd = INT64_MAX;
+ } else {
+ sum_rate += this_rate;
+ sum_dist += this_dist;
+ sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
+ }
}
}
+
if (sum_rd < best_rd && i == 4) {
- pl = partition_plane_context(cpi->above_seg_context,
- cpi->left_seg_context,
- mi_row, mi_col, bsize);
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rate += x->partition_cost[pl][PARTITION_SPLIT];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
- *(get_sb_partitioning(x, bsize)) = subsize;
+ pc_tree->partitioning = PARTITION_SPLIT;
}
} else {
// skip rectangular partition test when larger block size
@@ -1617,38 +2117,36 @@ static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
if (cpi->sf.less_rectangular_check)
do_rect &= !partition_none_allowed;
}
- partition_split_done = 1;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
- x->fast_ms = 0;
- x->subblock_ref = 0;
-
- if (partition_split_done &&
- cpi->sf.using_small_partition_info) {
- compute_fast_motion_search_level(cpi, bsize);
- }
-
// PARTITION_HORZ
if (partition_horz_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_HORZ);
- *get_sb_index(xd, subsize) = 0;
if (cpi->sf.adaptive_motion_search)
- load_pred_mv(x, get_block_context(x, bsize));
- pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
- get_block_context(x, subsize), best_rd);
+ load_pred_mv(x, ctx);
+ if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+ partition_none_allowed)
+ pc_tree->horizontal[0].pred_interp_filter =
+ ctx->mic.mbmi.interp_filter;
+ rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
+ &pc_tree->horizontal[0], best_rd, 0);
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
- if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) {
- update_state(cpi, get_block_context(x, subsize), subsize, 0);
- encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
+ if (sum_rd < best_rd && mi_row + mi_step < cm->mi_rows) {
+ PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
+ update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
+ encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
- *get_sb_index(xd, subsize) = 1;
if (cpi->sf.adaptive_motion_search)
- load_pred_mv(x, get_block_context(x, bsize));
- pick_sb_modes(cpi, tile, mi_row + ms, mi_col, &this_rate,
- &this_dist, subsize, get_block_context(x, subsize),
- best_rd - sum_rd);
+ load_pred_mv(x, ctx);
+ if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+ partition_none_allowed)
+ pc_tree->horizontal[1].pred_interp_filter =
+ ctx->mic.mbmi.interp_filter;
+ rd_pick_sb_modes(cpi, tile, mi_row + mi_step, mi_col, &this_rate,
+ &this_dist, subsize, &pc_tree->horizontal[1],
+ best_rd - sum_rd, 1);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
@@ -1658,41 +2156,46 @@ static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
}
}
if (sum_rd < best_rd) {
- pl = partition_plane_context(cpi->above_seg_context,
- cpi->left_seg_context,
- mi_row, mi_col, bsize);
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rate += x->partition_cost[pl][PARTITION_HORZ];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rd = sum_rd;
best_rate = sum_rate;
best_dist = sum_dist;
- *(get_sb_partitioning(x, bsize)) = subsize;
+ pc_tree->partitioning = PARTITION_HORZ;
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
-
// PARTITION_VERT
if (partition_vert_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_VERT);
- *get_sb_index(xd, subsize) = 0;
if (cpi->sf.adaptive_motion_search)
- load_pred_mv(x, get_block_context(x, bsize));
- pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
- get_block_context(x, subsize), best_rd);
+ load_pred_mv(x, ctx);
+ if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+ partition_none_allowed)
+ pc_tree->vertical[0].pred_interp_filter =
+ ctx->mic.mbmi.interp_filter;
+ rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
+ &pc_tree->vertical[0], best_rd, 0);
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
- if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) {
- update_state(cpi, get_block_context(x, subsize), subsize, 0);
- encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
+ if (sum_rd < best_rd && mi_col + mi_step < cm->mi_cols) {
+ update_state(cpi, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
+ encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize,
+ &pc_tree->vertical[0]);
- *get_sb_index(xd, subsize) = 1;
if (cpi->sf.adaptive_motion_search)
- load_pred_mv(x, get_block_context(x, bsize));
- pick_sb_modes(cpi, tile, mi_row, mi_col + ms, &this_rate,
- &this_dist, subsize, get_block_context(x, subsize),
- best_rd - sum_rd);
+ load_pred_mv(x, ctx);
+ if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+ partition_none_allowed)
+ pc_tree->vertical[1].pred_interp_filter =
+ ctx->mic.mbmi.interp_filter;
+ rd_pick_sb_modes(cpi, tile, mi_row, mi_col + mi_step, &this_rate,
+ &this_dist, subsize,
+ &pc_tree->vertical[1], best_rd - sum_rd,
+ 1);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
@@ -1702,79 +2205,61 @@ static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
}
}
if (sum_rd < best_rd) {
- pl = partition_plane_context(cpi->above_seg_context,
- cpi->left_seg_context,
- mi_row, mi_col, bsize);
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rate += x->partition_cost[pl][PARTITION_VERT];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
- *(get_sb_partitioning(x, bsize)) = subsize;
+ pc_tree->partitioning = PARTITION_VERT;
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
-
-
+ // TODO(jbb): This code added so that we avoid static analysis
+ // warning related to the fact that best_rd isn't used after this
+ // point. This code should be refactored so that the duplicate
+ // checks occur in some sub function and thus are used...
+ (void) best_rd;
*rate = best_rate;
*dist = best_dist;
- if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon)
- encode_sb(cpi, tile, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize);
+ if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) {
+ int output_enabled = (bsize == BLOCK_64X64);
+
+ // Check the projected output rate for this SB against it's target
+ // and and if necessary apply a Q delta using segmentation to get
+ // closer to the target.
+ if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map)
+ vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled,
+ best_rate);
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
+ best_rate, best_dist);
+
+ encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize, pc_tree);
+ }
+
if (bsize == BLOCK_64X64) {
assert(tp_orig < *tp);
assert(best_rate < INT_MAX);
- assert(best_dist < INT_MAX);
+ assert(best_dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
-// Examines 64x64 block and chooses a best reference frame
-static void rd_pick_reference_frame(VP9_COMP *cpi, const TileInfo *const tile,
- int mi_row, int mi_col) {
- VP9_COMMON * const cm = &cpi->common;
- MACROBLOCK * const x = &cpi->mb;
- int bsl = b_width_log2(BLOCK_64X64), bs = 1 << bsl;
- int ms = bs / 2;
- ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
- PARTITION_CONTEXT sl[8], sa[8];
- int pl;
- int r;
- int64_t d;
-
- save_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64);
-
- // Default is non mask (all reference frames allowed.
- cpi->ref_frame_mask = 0;
-
- // Do RD search for 64x64.
- if ((mi_row + (ms >> 1) < cm->mi_rows) &&
- (mi_col + (ms >> 1) < cm->mi_cols)) {
- cpi->set_ref_frame_mask = 1;
- pick_sb_modes(cpi, tile, mi_row, mi_col, &r, &d, BLOCK_64X64,
- get_block_context(x, BLOCK_64X64), INT64_MAX);
- pl = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context,
- mi_row, mi_col, BLOCK_64X64);
- r += x->partition_cost[pl][PARTITION_NONE];
-
- *(get_sb_partitioning(x, BLOCK_64X64)) = BLOCK_64X64;
- cpi->set_ref_frame_mask = 0;
- }
-
- restore_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64);
-}
-
-static void encode_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
- int mi_row, TOKENEXTRA **tp, int *totalrate) {
- VP9_COMMON * const cm = &cpi->common;
+static void encode_rd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
+ int mi_row, TOKENEXTRA **tp) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->mb.e_mbd;
+ SPEED_FEATURES *const sf = &cpi->sf;
int mi_col;
// Initialize the left context for the new SB row
- vpx_memset(&cpi->left_context, 0, sizeof(cpi->left_context));
- vpx_memset(cpi->left_seg_context, 0, sizeof(cpi->left_seg_context));
+ vpx_memset(&xd->left_context, 0, sizeof(xd->left_context));
+ vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
// Code each SB in the row
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
@@ -1782,58 +2267,89 @@ static void encode_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
int dummy_rate;
int64_t dummy_dist;
- vp9_zero(cpi->mb.pred_mv);
+ int i;
+ MACROBLOCK *x = &cpi->mb;
- if (cpi->sf.reference_masking)
- rd_pick_reference_frame(cpi, tile, mi_row, mi_col);
+ if (sf->adaptive_pred_interp_filter) {
+ for (i = 0; i < 64; ++i)
+ x->leaf_tree[i].pred_interp_filter = SWITCHABLE;
- if (cpi->sf.use_lastframe_partitioning ||
- cpi->sf.use_one_partition_size_always ) {
- const int idx_str = cm->mode_info_stride * mi_row + mi_col;
- MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
- MODE_INFO **prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str;
+ for (i = 0; i < 64; ++i) {
+ x->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
+ x->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
+ x->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
+ x->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
+ }
+ }
+
+ vp9_zero(cpi->mb.pred_mv);
+ if ((sf->partition_search_type == SEARCH_PARTITION &&
+ sf->use_lastframe_partitioning) ||
+ sf->partition_search_type == FIXED_PARTITION ||
+ sf->partition_search_type == VAR_BASED_PARTITION ||
+ sf->partition_search_type == VAR_BASED_FIXED_PARTITION) {
+ const int idx_str = cm->mi_stride * mi_row + mi_col;
+ MODE_INFO **mi = cm->mi_grid_visible + idx_str;
+ MODE_INFO **prev_mi = cm->prev_mi_grid_visible + idx_str;
cpi->mb.source_variance = UINT_MAX;
- if (cpi->sf.use_one_partition_size_always) {
+ if (sf->partition_search_type == FIXED_PARTITION) {
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
- set_partitioning(cpi, tile, mi_8x8, mi_row, mi_col);
- rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
- &dummy_rate, &dummy_dist, 1);
+ set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col,
+ sf->always_this_block_size);
+ rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
+ &dummy_rate, &dummy_dist, 1, x->pc_root);
+ } else if (sf->partition_search_type == VAR_BASED_FIXED_PARTITION) {
+ BLOCK_SIZE bsize;
+ set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
+ bsize = get_rd_var_based_fixed_partition(cpi, mi_row, mi_col);
+ set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col, bsize);
+ rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
+ &dummy_rate, &dummy_dist, 1, x->pc_root);
+ } else if (sf->partition_search_type == VAR_BASED_PARTITION) {
+ choose_partitioning(cpi, tile, mi_row, mi_col);
+ rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
+ &dummy_rate, &dummy_dist, 1, x->pc_root);
} else {
- if ((cpi->common.current_video_frame
- % cpi->sf.last_partitioning_redo_frequency) == 0
+ if ((cm->current_video_frame
+ % sf->last_partitioning_redo_frequency) == 0
|| cm->prev_mi == 0
- || cpi->common.show_frame == 0
- || cpi->common.frame_type == KEY_FRAME
- || cpi->is_src_frame_alt_ref
- || ((cpi->sf.use_lastframe_partitioning ==
+ || cm->show_frame == 0
+ || cm->frame_type == KEY_FRAME
+ || cpi->rc.is_src_frame_alt_ref
+ || ((sf->use_lastframe_partitioning ==
LAST_FRAME_PARTITION_LOW_MOTION) &&
- sb_has_motion(cpi, prev_mi_8x8))) {
+ sb_has_motion(cm, prev_mi))) {
// If required set upper and lower partition size limits
- if (cpi->sf.auto_min_max_partition_size) {
+ if (sf->auto_min_max_partition_size) {
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
rd_auto_partition_range(cpi, tile, mi_row, mi_col,
- &cpi->sf.min_partition_size,
- &cpi->sf.max_partition_size);
+ &sf->min_partition_size,
+ &sf->max_partition_size);
}
rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
- &dummy_rate, &dummy_dist, 1, INT64_MAX);
+ &dummy_rate, &dummy_dist, 1, INT64_MAX, x->pc_root);
} else {
- copy_partitioning(cpi, mi_8x8, prev_mi_8x8);
- rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
- &dummy_rate, &dummy_dist, 1);
+ if (sf->constrain_copy_partition &&
+ sb_has_motion(cm, prev_mi))
+ constrain_copy_partitioning(cpi, tile, mi, prev_mi,
+ mi_row, mi_col, BLOCK_16X16);
+ else
+ copy_partitioning(cm, mi, prev_mi);
+ rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
+ &dummy_rate, &dummy_dist, 1, x->pc_root);
}
}
} else {
// If required set upper and lower partition size limits
- if (cpi->sf.auto_min_max_partition_size) {
+ if (sf->auto_min_max_partition_size) {
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
rd_auto_partition_range(cpi, tile, mi_row, mi_col,
- &cpi->sf.min_partition_size,
- &cpi->sf.max_partition_size);
+ &sf->min_partition_size,
+ &sf->max_partition_size);
}
rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
- &dummy_rate, &dummy_dist, 1, INT64_MAX);
+ &dummy_rate, &dummy_dist, 1, INT64_MAX, x->pc_root);
}
}
}
@@ -1844,46 +2360,18 @@ static void init_encode_frame_mb_context(VP9_COMP *cpi) {
MACROBLOCKD *const xd = &x->e_mbd;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
- x->act_zbin_adj = 0;
- cpi->seg0_idx = 0;
-
- xd->mode_info_stride = cm->mode_info_stride;
-
- // reset intra mode contexts
- if (frame_is_intra_only(cm))
- vp9_init_mbmode_probs(cm);
-
// Copy data over into macro block data structures.
vp9_setup_src_planes(x, cpi->Source, 0, 0);
- // TODO(jkoleszar): are these initializations required?
- setup_pre_planes(xd, 0, &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]],
- 0, 0, NULL);
- setup_dst_planes(xd, get_frame_new_buffer(cm), 0, 0);
-
- setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
-
- xd->mi_8x8[0]->mbmi.mode = DC_PRED;
- xd->mi_8x8[0]->mbmi.uv_mode = DC_PRED;
-
- vp9_zero(cpi->y_mode_count);
- vp9_zero(cpi->y_uv_mode_count);
- vp9_zero(cm->counts.inter_mode);
- vp9_zero(cpi->partition_count);
- vp9_zero(cpi->intra_inter_count);
- vp9_zero(cpi->comp_inter_count);
- vp9_zero(cpi->single_ref_count);
- vp9_zero(cpi->comp_ref_count);
- vp9_zero(cm->counts.tx);
- vp9_zero(cm->counts.mbskip);
+ vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
- vpx_memset(cpi->above_context[0], 0,
- sizeof(*cpi->above_context[0]) *
+ vpx_memset(xd->above_context[0], 0,
+ sizeof(*xd->above_context[0]) *
2 * aligned_mi_cols * MAX_MB_PLANE);
- vpx_memset(cpi->above_seg_context, 0,
- sizeof(*cpi->above_seg_context) * aligned_mi_cols);
+ vpx_memset(xd->above_seg_context, 0,
+ sizeof(*xd->above_seg_context) * aligned_mi_cols);
}
static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
@@ -1902,292 +2390,751 @@ static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
}
}
-static void switch_tx_mode(VP9_COMP *cpi) {
- if (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
- cpi->common.tx_mode >= ALLOW_32X32)
- cpi->common.tx_mode = ALLOW_32X32;
-}
+static int check_dual_ref_flags(VP9_COMP *cpi) {
+ const int ref_flags = cpi->ref_frame_flags;
-static void encode_frame_internal(VP9_COMP *cpi) {
- int mi_row;
- MACROBLOCK * const x = &cpi->mb;
- VP9_COMMON * const cm = &cpi->common;
- MACROBLOCKD * const xd = &x->e_mbd;
- int totalrate;
+ if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
+ return 0;
+ } else {
+ return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
+ + !!(ref_flags & VP9_ALT_FLAG)) >= 2;
+ }
+}
-// fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
-// cpi->common.current_video_frame, cpi->common.show_frame,
-// cm->frame_type);
+static void reset_skip_txfm_size(VP9_COMMON *cm, TX_SIZE txfm_max) {
+ int mi_row, mi_col;
+ const int mis = cm->mi_stride;
+ MODE_INFO **mi_ptr = cm->mi_grid_visible;
-// debug output
-#if DBG_PRNT_SEGMAP
- {
- FILE *statsfile;
- statsfile = fopen("segmap2.stt", "a");
- fprintf(statsfile, "\n");
- fclose(statsfile);
+ for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
+ for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
+ if (mi_ptr[mi_col]->mbmi.tx_size > txfm_max)
+ mi_ptr[mi_col]->mbmi.tx_size = txfm_max;
+ }
}
-#endif
+}
- totalrate = 0;
+static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
+ if (frame_is_intra_only(&cpi->common))
+ return INTRA_FRAME;
+ else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
+ return ALTREF_FRAME;
+ else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
+ return LAST_FRAME;
+ else
+ return GOLDEN_FRAME;
+}
- // Reset frame count of inter 0,0 motion vector usage.
- cpi->inter_zz_count = 0;
+static TX_MODE select_tx_mode(const VP9_COMP *cpi) {
+ if (cpi->oxcf.lossless) {
+ return ONLY_4X4;
+ } else if (cpi->common.current_video_frame == 0) {
+ return TX_MODE_SELECT;
+ } else {
+ if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
+ return ALLOW_32X32;
+ } else if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
+ const RD_OPT *const rd_opt = &cpi->rd;
+ const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
+ return rd_opt->tx_select_threshes[frame_type][ALLOW_32X32] >
+ rd_opt->tx_select_threshes[frame_type][TX_MODE_SELECT] ?
+ ALLOW_32X32 : TX_MODE_SELECT;
+ } else {
+ unsigned int total = 0;
+ int i;
+ for (i = 0; i < TX_SIZES; ++i)
+ total += cpi->tx_stepdown_count[i];
- vp9_zero(cm->counts.switchable_interp);
- vp9_zero(cpi->tx_stepdown_count);
+ if (total) {
+ const double fraction = (double)cpi->tx_stepdown_count[0] / total;
+ return fraction > 0.90 ? ALLOW_32X32 : TX_MODE_SELECT;
+ } else {
+ return cpi->common.tx_mode;
+ }
+ }
+ }
+}
- xd->mi_8x8 = cm->mi_grid_visible;
- // required for vp9_frame_init_quantizer
- xd->mi_8x8[0] = cm->mi;
+// Start RTC Exploration
+typedef enum {
+ BOTH_ZERO = 0,
+ ZERO_PLUS_PREDICTED = 1,
+ BOTH_PREDICTED = 2,
+ NEW_PLUS_NON_INTRA = 3,
+ BOTH_NEW = 4,
+ INTRA_PLUS_NON_INTRA = 5,
+ BOTH_INTRA = 6,
+ INVALID_CASE = 9
+} motion_vector_context;
+
+static void set_mode_info(MB_MODE_INFO *mbmi, BLOCK_SIZE bsize,
+ PREDICTION_MODE mode) {
+ mbmi->mode = mode;
+ mbmi->uv_mode = mode;
+ mbmi->mv[0].as_int = 0;
+ mbmi->mv[1].as_int = 0;
+ mbmi->ref_frame[0] = INTRA_FRAME;
+ mbmi->ref_frame[1] = NONE;
+ mbmi->tx_size = max_txsize_lookup[bsize];
+ mbmi->skip = 0;
+ mbmi->sb_type = bsize;
+ mbmi->segment_id = 0;
+}
- xd->last_mi = cm->prev_mi;
+static void nonrd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
+ int mi_row, int mi_col,
+ int *rate, int64_t *dist,
+ BLOCK_SIZE bsize) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ set_offsets(cpi, tile, mi_row, mi_col, bsize);
+ xd->mi[0]->mbmi.sb_type = bsize;
- vp9_zero(cpi->NMVcount);
- vp9_zero(cpi->coef_counts);
- vp9_zero(cm->counts.eob_branch);
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
+ if (xd->mi[0]->mbmi.segment_id && x->in_static_area)
+ x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
+ }
- cpi->mb.e_mbd.lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0
- && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
- switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
+ if (!frame_is_intra_only(cm)) {
+ vp9_pick_inter_mode(cpi, x, tile, mi_row, mi_col,
+ rate, dist, bsize);
+ } else {
+ set_mode_info(&xd->mi[0]->mbmi, bsize, DC_PRED);
+ }
+ duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
+}
- vp9_frame_init_quantizer(cpi);
+static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize, BLOCK_SIZE subsize,
+ PC_TREE *pc_tree) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
+ PARTITION_TYPE partition = pc_tree->partitioning;
- vp9_initialize_rd_consts(cpi);
- vp9_initialize_me_consts(cpi, cm->base_qindex);
- switch_tx_mode(cpi);
+ assert(bsize >= BLOCK_8X8);
- if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
- // Initialize encode frame context.
- init_encode_frame_mb_context(cpi);
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
+ return;
- // Build a frame level activity map
- build_activity_map(cpi);
+ switch (partition) {
+ case PARTITION_NONE:
+ set_modeinfo_offsets(cm, xd, mi_row, mi_col);
+ *(xd->mi[0]) = pc_tree->none.mic;
+ duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
+ break;
+ case PARTITION_VERT:
+ set_modeinfo_offsets(cm, xd, mi_row, mi_col);
+ *(xd->mi[0]) = pc_tree->vertical[0].mic;
+ duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
+
+ if (mi_col + hbs < cm->mi_cols) {
+ set_modeinfo_offsets(cm, xd, mi_row, mi_col + hbs);
+ *(xd->mi[0]) = pc_tree->vertical[1].mic;
+ duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, bsize);
+ }
+ break;
+ case PARTITION_HORZ:
+ set_modeinfo_offsets(cm, xd, mi_row, mi_col);
+ *(xd->mi[0]) = pc_tree->horizontal[0].mic;
+ duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
+ if (mi_row + hbs < cm->mi_rows) {
+ set_modeinfo_offsets(cm, xd, mi_row + hbs, mi_col);
+ *(xd->mi[0]) = pc_tree->horizontal[1].mic;
+ duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, bsize);
+ }
+ break;
+ case PARTITION_SPLIT: {
+ BLOCK_SIZE subsubsize = get_subsize(subsize, PARTITION_SPLIT);
+ fill_mode_info_sb(cm, x, mi_row, mi_col, subsize,
+ subsubsize, pc_tree->split[0]);
+ fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
+ subsubsize, pc_tree->split[1]);
+ fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
+ subsubsize, pc_tree->split[2]);
+ fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
+ subsubsize, pc_tree->split[3]);
+ break;
+ }
+ default:
+ break;
}
+}
- // Re-initialize encode frame context.
- init_encode_frame_mb_context(cpi);
+static void nonrd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
+ TOKENEXTRA **tp, int mi_row,
+ int mi_col, BLOCK_SIZE bsize, int *rate,
+ int64_t *dist, int do_recon, int64_t best_rd,
+ PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
+ TOKENEXTRA *tp_orig = *tp;
+ PICK_MODE_CONTEXT *ctx = &pc_tree->none;
+ int i;
+ BLOCK_SIZE subsize = bsize;
+ int this_rate, sum_rate = 0, best_rate = INT_MAX;
+ int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
+ int64_t sum_rd = 0;
+ int do_split = bsize >= BLOCK_8X8;
+ int do_rect = 1;
+ // Override skipping rectangular partition operations for edge blocks
+ const int force_horz_split = (mi_row + ms >= cm->mi_rows);
+ const int force_vert_split = (mi_col + ms >= cm->mi_cols);
+ const int xss = x->e_mbd.plane[1].subsampling_x;
+ const int yss = x->e_mbd.plane[1].subsampling_y;
- vp9_zero(cpi->rd_comp_pred_diff);
- vp9_zero(cpi->rd_filter_diff);
- vp9_zero(cpi->rd_tx_select_diff);
- vp9_zero(cpi->rd_tx_select_threshes);
+ int partition_none_allowed = !force_horz_split && !force_vert_split;
+ int partition_horz_allowed = !force_vert_split && yss <= xss &&
+ bsize >= BLOCK_8X8;
+ int partition_vert_allowed = !force_horz_split && xss <= yss &&
+ bsize >= BLOCK_8X8;
+ (void) *tp_orig;
- set_prev_mi(cm);
+ assert(num_8x8_blocks_wide_lookup[bsize] ==
+ num_8x8_blocks_high_lookup[bsize]);
- {
- struct vpx_usec_timer emr_timer;
- vpx_usec_timer_start(&emr_timer);
+ x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize);
- {
- // Take tiles into account and give start/end MB
- int tile_col, tile_row;
- TOKENEXTRA *tp = cpi->tok;
- const int tile_cols = 1 << cm->log2_tile_cols;
- const int tile_rows = 1 << cm->log2_tile_rows;
+ // Determine partition types in search according to the speed features.
+ // The threshold set here has to be of square block size.
+ if (cpi->sf.auto_min_max_partition_size) {
+ partition_none_allowed &= (bsize <= cpi->sf.max_partition_size &&
+ bsize >= cpi->sf.min_partition_size);
+ partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size &&
+ bsize > cpi->sf.min_partition_size) ||
+ force_horz_split);
+ partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size &&
+ bsize > cpi->sf.min_partition_size) ||
+ force_vert_split);
+ do_split &= bsize > cpi->sf.min_partition_size;
+ }
+ if (cpi->sf.use_square_partition_only) {
+ partition_horz_allowed &= force_horz_split;
+ partition_vert_allowed &= force_vert_split;
+ }
- for (tile_row = 0; tile_row < tile_rows; tile_row++) {
- for (tile_col = 0; tile_col < tile_cols; tile_col++) {
- TileInfo tile;
- TOKENEXTRA *tp_old = tp;
+ if (!x->in_active_map && (partition_horz_allowed || partition_vert_allowed))
+ do_split = 0;
- // For each row of SBs in the frame
- vp9_tile_init(&tile, cm, tile_row, tile_col);
- for (mi_row = tile.mi_row_start;
- mi_row < tile.mi_row_end; mi_row += 8)
- encode_sb_row(cpi, &tile, mi_row, &tp, &totalrate);
+ // PARTITION_NONE
+ if (partition_none_allowed) {
+ nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
+ &this_rate, &this_dist, bsize);
+ ctx->mic.mbmi = xd->mi[0]->mbmi;
- cpi->tok_count[tile_row][tile_col] = (unsigned int)(tp - tp_old);
- assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols));
+ if (this_rate != INT_MAX) {
+ int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ this_rate += x->partition_cost[pl][PARTITION_NONE];
+ sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
+ if (sum_rd < best_rd) {
+ int64_t stop_thresh = 4096;
+ int64_t stop_thresh_rd;
+
+ best_rate = this_rate;
+ best_dist = this_dist;
+ best_rd = sum_rd;
+ if (bsize >= BLOCK_8X8)
+ pc_tree->partitioning = PARTITION_NONE;
+
+ // Adjust threshold according to partition size.
+ stop_thresh >>= 8 - (b_width_log2_lookup[bsize] +
+ b_height_log2_lookup[bsize]);
+
+ stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh);
+ // If obtained distortion is very small, choose current partition
+ // and stop splitting.
+ if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) {
+ do_split = 0;
+ do_rect = 0;
}
}
}
-
- vpx_usec_timer_mark(&emr_timer);
- cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
+ if (!x->in_active_map) {
+ do_split = 0;
+ do_rect = 0;
+ }
}
- if (cpi->sf.skip_encode_sb) {
- int j;
- unsigned int intra_count = 0, inter_count = 0;
- for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
- intra_count += cpi->intra_inter_count[j][0];
- inter_count += cpi->intra_inter_count[j][1];
+ // store estimated motion vector
+ store_pred_mv(x, ctx);
+
+ // PARTITION_SPLIT
+ sum_rd = 0;
+ if (do_split) {
+ int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ sum_rate += x->partition_cost[pl][PARTITION_SPLIT];
+ subsize = get_subsize(bsize, PARTITION_SPLIT);
+ for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
+ const int x_idx = (i & 1) * ms;
+ const int y_idx = (i >> 1) * ms;
+
+ if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
+ continue;
+ load_pred_mv(x, ctx);
+ nonrd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx,
+ subsize, &this_rate, &this_dist, 0,
+ best_rd - sum_rd, pc_tree->split[i]);
+
+ if (this_rate == INT_MAX) {
+ sum_rd = INT64_MAX;
+ } else {
+ sum_rate += this_rate;
+ sum_dist += this_dist;
+ sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
+ }
+ }
+
+ if (sum_rd < best_rd) {
+ best_rate = sum_rate;
+ best_dist = sum_dist;
+ best_rd = sum_rd;
+ pc_tree->partitioning = PARTITION_SPLIT;
+ } else {
+ // skip rectangular partition test when larger block size
+ // gives better rd cost
+ if (cpi->sf.less_rectangular_check)
+ do_rect &= !partition_none_allowed;
}
- cpi->sf.skip_encode_frame = ((intra_count << 2) < inter_count);
- cpi->sf.skip_encode_frame &= (cm->frame_type != KEY_FRAME);
- cpi->sf.skip_encode_frame &= cm->show_frame;
- } else {
- cpi->sf.skip_encode_frame = 0;
}
- // 256 rate units to the bit,
- // projected_frame_size in units of BYTES
- cpi->projected_frame_size = totalrate >> 8;
+ // PARTITION_HORZ
+ if (partition_horz_allowed && do_rect) {
+ subsize = get_subsize(bsize, PARTITION_HORZ);
+ if (cpi->sf.adaptive_motion_search)
+ load_pred_mv(x, ctx);
+
+ nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
+ &this_rate, &this_dist, subsize);
-#if 0
- // Keep record of the total distortion this time around for future use
- cpi->last_frame_distortion = cpi->frame_distortion;
-#endif
-}
+ pc_tree->horizontal[0].mic.mbmi = xd->mi[0]->mbmi;
-static int check_dual_ref_flags(VP9_COMP *cpi) {
- const int ref_flags = cpi->ref_frame_flags;
+ sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
- if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
- return 0;
- } else {
- return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
- + !!(ref_flags & VP9_ALT_FLAG)) >= 2;
- }
-}
+ if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) {
+ load_pred_mv(x, ctx);
+ nonrd_pick_sb_modes(cpi, tile, mi_row + ms, mi_col,
+ &this_rate, &this_dist, subsize);
-static int get_skip_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs) {
- int x, y;
+ pc_tree->horizontal[1].mic.mbmi = xd->mi[0]->mbmi;
- for (y = 0; y < ymbs; y++) {
- for (x = 0; x < xmbs; x++) {
- if (!mi_8x8[y * mis + x]->mbmi.skip_coeff)
- return 0;
+ if (this_rate == INT_MAX) {
+ sum_rd = INT64_MAX;
+ } else {
+ int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ this_rate += x->partition_cost[pl][PARTITION_HORZ];
+ sum_rate += this_rate;
+ sum_dist += this_dist;
+ sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
+ }
+ }
+ if (sum_rd < best_rd) {
+ best_rd = sum_rd;
+ best_rate = sum_rate;
+ best_dist = sum_dist;
+ pc_tree->partitioning = PARTITION_HORZ;
}
}
- return 1;
-}
+ // PARTITION_VERT
+ if (partition_vert_allowed && do_rect) {
+ subsize = get_subsize(bsize, PARTITION_VERT);
-static void set_txfm_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs,
- TX_SIZE tx_size) {
- int x, y;
+ if (cpi->sf.adaptive_motion_search)
+ load_pred_mv(x, ctx);
- for (y = 0; y < ymbs; y++) {
- for (x = 0; x < xmbs; x++)
- mi_8x8[y * mis + x]->mbmi.tx_size = tx_size;
+ nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
+ &this_rate, &this_dist, subsize);
+ pc_tree->vertical[0].mic.mbmi = xd->mi[0]->mbmi;
+ sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
+ if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) {
+ load_pred_mv(x, ctx);
+ nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + ms,
+ &this_rate, &this_dist, subsize);
+ pc_tree->vertical[1].mic.mbmi = xd->mi[0]->mbmi;
+ if (this_rate == INT_MAX) {
+ sum_rd = INT64_MAX;
+ } else {
+ int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ this_rate += x->partition_cost[pl][PARTITION_VERT];
+ sum_rate += this_rate;
+ sum_dist += this_dist;
+ sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
+ }
+ }
+ if (sum_rd < best_rd) {
+ best_rate = sum_rate;
+ best_dist = sum_dist;
+ best_rd = sum_rd;
+ pc_tree->partitioning = PARTITION_VERT;
+ }
}
-}
+ // TODO(JBB): The following line is here just to avoid a static warning
+ // that occurs because at this point we never again reuse best_rd
+ // despite setting it here. The code should be refactored to avoid this.
+ (void) best_rd;
-static void reset_skip_txfm_size_b(VP9_COMP *cpi, MODE_INFO **mi_8x8,
- int mis, TX_SIZE max_tx_size, int bw, int bh,
- int mi_row, int mi_col, BLOCK_SIZE bsize) {
- VP9_COMMON * const cm = &cpi->common;
+ *rate = best_rate;
+ *dist = best_dist;
- if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) {
+ if (best_rate == INT_MAX)
return;
- } else {
- MB_MODE_INFO * const mbmi = &mi_8x8[0]->mbmi;
- if (mbmi->tx_size > max_tx_size) {
- const int ymbs = MIN(bh, cm->mi_rows - mi_row);
- const int xmbs = MIN(bw, cm->mi_cols - mi_col);
- assert(vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) ||
- get_skip_flag(mi_8x8, mis, ymbs, xmbs));
- set_txfm_flag(mi_8x8, mis, ymbs, xmbs, max_tx_size);
+ // update mode info array
+ subsize = get_subsize(bsize, pc_tree->partitioning);
+ fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, subsize,
+ pc_tree);
+
+ if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) {
+ int output_enabled = (bsize == BLOCK_64X64);
+
+ // Check the projected output rate for this SB against it's target
+ // and and if necessary apply a Q delta using segmentation to get
+ // closer to the target.
+ if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
+ vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled,
+ best_rate);
}
+
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
+ best_rate, best_dist);
+
+ encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize, pc_tree);
+ }
+
+ if (bsize == BLOCK_64X64) {
+ assert(tp_orig < *tp);
+ assert(best_rate < INT_MAX);
+ assert(best_dist < INT64_MAX);
+ } else {
+ assert(tp_orig == *tp);
}
}
-static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO **mi_8x8,
- TX_SIZE max_tx_size, int mi_row, int mi_col,
- BLOCK_SIZE bsize) {
- VP9_COMMON * const cm = &cpi->common;
- const int mis = cm->mode_info_stride;
- int bw, bh;
- const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
+static void nonrd_use_partition(VP9_COMP *cpi,
+ const TileInfo *const tile,
+ MODE_INFO **mi,
+ TOKENEXTRA **tp,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize, int output_enabled,
+ int *totrate, int64_t *totdist,
+ PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
+ const int mis = cm->mi_stride;
+ PARTITION_TYPE partition;
+ BLOCK_SIZE subsize;
+ int rate = INT_MAX;
+ int64_t dist = INT64_MAX;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
- bw = num_8x8_blocks_wide_lookup[mi_8x8[0]->mbmi.sb_type];
- bh = num_8x8_blocks_high_lookup[mi_8x8[0]->mbmi.sb_type];
-
- if (bw == bs && bh == bs) {
- reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, bs, bs, mi_row,
- mi_col, bsize);
- } else if (bw == bs && bh < bs) {
- reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, bs, hbs, mi_row,
- mi_col, bsize);
- reset_skip_txfm_size_b(cpi, mi_8x8 + hbs * mis, mis, max_tx_size, bs, hbs,
- mi_row + hbs, mi_col, bsize);
- } else if (bw < bs && bh == bs) {
- reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, hbs, bs, mi_row,
- mi_col, bsize);
- reset_skip_txfm_size_b(cpi, mi_8x8 + hbs, mis, max_tx_size, hbs, bs, mi_row,
- mi_col + hbs, bsize);
+ subsize = (bsize >= BLOCK_8X8) ? mi[0]->mbmi.sb_type : BLOCK_4X4;
+ partition = partition_lookup[bsl][subsize];
- } else {
- const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
- int n;
+ switch (partition) {
+ case PARTITION_NONE:
+ nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize);
+ pc_tree->none.mic.mbmi = xd->mi[0]->mbmi;
+ break;
+ case PARTITION_VERT:
+ nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize);
+ pc_tree->vertical[0].mic.mbmi = xd->mi[0]->mbmi;
+ if (mi_col + hbs < cm->mi_cols) {
+ nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + hbs,
+ &rate, &dist, subsize);
+ pc_tree->vertical[1].mic.mbmi = xd->mi[0]->mbmi;
+ if (rate != INT_MAX && dist != INT64_MAX &&
+ *totrate != INT_MAX && *totdist != INT64_MAX) {
+ *totrate += rate;
+ *totdist += dist;
+ }
+ }
+ break;
+ case PARTITION_HORZ:
+ nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize);
+ pc_tree->horizontal[0].mic.mbmi = xd->mi[0]->mbmi;
+ if (mi_row + hbs < cm->mi_rows) {
+ nonrd_pick_sb_modes(cpi, tile, mi_row + hbs, mi_col,
+ &rate, &dist, subsize);
+ pc_tree->horizontal[1].mic.mbmi = mi[0]->mbmi;
+ if (rate != INT_MAX && dist != INT64_MAX &&
+ *totrate != INT_MAX && *totdist != INT64_MAX) {
+ *totrate += rate;
+ *totdist += dist;
+ }
+ }
+ break;
+ case PARTITION_SPLIT:
+ subsize = get_subsize(bsize, PARTITION_SPLIT);
+ nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col,
+ subsize, output_enabled, totrate, totdist,
+ pc_tree->split[0]);
+ nonrd_use_partition(cpi, tile, mi + hbs, tp,
+ mi_row, mi_col + hbs, subsize, output_enabled,
+ &rate, &dist, pc_tree->split[1]);
+ if (rate != INT_MAX && dist != INT64_MAX &&
+ *totrate != INT_MAX && *totdist != INT64_MAX) {
+ *totrate += rate;
+ *totdist += dist;
+ }
+ nonrd_use_partition(cpi, tile, mi + hbs * mis, tp,
+ mi_row + hbs, mi_col, subsize, output_enabled,
+ &rate, &dist, pc_tree->split[2]);
+ if (rate != INT_MAX && dist != INT64_MAX &&
+ *totrate != INT_MAX && *totdist != INT64_MAX) {
+ *totrate += rate;
+ *totdist += dist;
+ }
+ nonrd_use_partition(cpi, tile, mi + hbs * mis + hbs, tp,
+ mi_row + hbs, mi_col + hbs, subsize, output_enabled,
+ &rate, &dist, pc_tree->split[3]);
+ if (rate != INT_MAX && dist != INT64_MAX &&
+ *totrate != INT_MAX && *totdist != INT64_MAX) {
+ *totrate += rate;
+ *totdist += dist;
+ }
+ break;
+ default:
+ assert("Invalid partition type.");
+ }
- assert(bw < bs && bh < bs);
+ if (bsize == BLOCK_64X64 && output_enabled) {
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
+ *totrate, *totdist);
+ encode_sb_rt(cpi, tile, tp, mi_row, mi_col, 1, bsize, pc_tree);
+ }
+}
+
+static void encode_nonrd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
+ int mi_row, TOKENEXTRA **tp) {
+ VP9_COMMON *cm = &cpi->common;
+ MACROBLOCK *x = &cpi->mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+ int mi_col;
- for (n = 0; n < 4; n++) {
- const int mi_dc = hbs * (n & 1);
- const int mi_dr = hbs * (n >> 1);
+ // Initialize the left context for the new SB row
+ vpx_memset(&xd->left_context, 0, sizeof(xd->left_context));
+ vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
- reset_skip_txfm_size_sb(cpi, &mi_8x8[mi_dr * mis + mi_dc], max_tx_size,
- mi_row + mi_dr, mi_col + mi_dc, subsize);
+ // Code each SB in the row
+ for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
+ mi_col += MI_BLOCK_SIZE) {
+ MACROBLOCK *x = &cpi->mb;
+ int dummy_rate = 0;
+ int64_t dummy_dist = 0;
+ const int idx_str = cm->mi_stride * mi_row + mi_col;
+ MODE_INFO **mi = cm->mi_grid_visible + idx_str;
+ MODE_INFO **prev_mi = cm->prev_mi_grid_visible + idx_str;
+ BLOCK_SIZE bsize;
+
+ x->in_static_area = 0;
+ x->source_variance = UINT_MAX;
+ vp9_zero(x->pred_mv);
+
+ // Set the partition type of the 64X64 block
+ switch (cpi->sf.partition_search_type) {
+ case VAR_BASED_PARTITION:
+ choose_partitioning(cpi, tile, mi_row, mi_col);
+ nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
+ 1, &dummy_rate, &dummy_dist, x->pc_root);
+ break;
+ case SOURCE_VAR_BASED_PARTITION:
+ set_source_var_based_partition(cpi, tile, mi, mi_row, mi_col);
+ nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
+ 1, &dummy_rate, &dummy_dist, x->pc_root);
+ break;
+ case VAR_BASED_FIXED_PARTITION:
+ case FIXED_PARTITION:
+ bsize = cpi->sf.partition_search_type == FIXED_PARTITION ?
+ cpi->sf.always_this_block_size :
+ get_nonrd_var_based_fixed_partition(cpi, mi_row, mi_col);
+ set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col, bsize);
+ nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
+ 1, &dummy_rate, &dummy_dist, x->pc_root);
+ break;
+ case REFERENCE_PARTITION:
+ if (cpi->sf.partition_check ||
+ !is_background(cpi, tile, mi_row, mi_col)) {
+ set_modeinfo_offsets(cm, xd, mi_row, mi_col);
+ auto_partition_range(cpi, tile, mi_row, mi_col,
+ &cpi->sf.min_partition_size,
+ &cpi->sf.max_partition_size);
+ nonrd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
+ &dummy_rate, &dummy_dist, 1, INT64_MAX,
+ x->pc_root);
+ } else {
+ copy_partitioning(cm, mi, prev_mi);
+ nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col,
+ BLOCK_64X64, 1, &dummy_rate, &dummy_dist,
+ x->pc_root);
+ }
+ break;
+ default:
+ assert(0);
}
}
}
+// end RTC play code
-static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) {
- VP9_COMMON * const cm = &cpi->common;
- int mi_row, mi_col;
- const int mis = cm->mode_info_stride;
-// MODE_INFO *mi, *mi_ptr = cm->mi;
- MODE_INFO **mi_8x8, **mi_ptr = cm->mi_grid_visible;
+static int get_skip_encode_frame(const VP9_COMMON *cm) {
+ unsigned int intra_count = 0, inter_count = 0;
+ int j;
- for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8, mi_ptr += 8 * mis) {
- mi_8x8 = mi_ptr;
- for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8, mi_8x8 += 8) {
- reset_skip_txfm_size_sb(cpi, mi_8x8, txfm_max, mi_row, mi_col,
- BLOCK_64X64);
- }
+ for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
+ intra_count += cm->counts.intra_inter[j][0];
+ inter_count += cm->counts.intra_inter[j][1];
}
+
+ return (intra_count << 2) < inter_count &&
+ cm->frame_type != KEY_FRAME &&
+ cm->show_frame;
}
-static int get_frame_type(VP9_COMP *cpi) {
- int frame_type;
- if (frame_is_intra_only(&cpi->common))
- frame_type = 0;
- else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame)
- frame_type = 3;
- else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
- frame_type = 1;
- else
- frame_type = 2;
- return frame_type;
+static void encode_frame_internal(VP9_COMP *cpi) {
+ SPEED_FEATURES *const sf = &cpi->sf;
+ RD_OPT *const rd_opt = &cpi->rd;
+ MACROBLOCK *const x = &cpi->mb;
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ xd->mi = cm->mi_grid_visible;
+ xd->mi[0] = cm->mi;
+
+ vp9_zero(cm->counts);
+ vp9_zero(cpi->coef_counts);
+ vp9_zero(cpi->tx_stepdown_count);
+ vp9_zero(rd_opt->comp_pred_diff);
+ vp9_zero(rd_opt->filter_diff);
+ vp9_zero(rd_opt->tx_select_diff);
+ vp9_zero(rd_opt->tx_select_threshes);
+
+ cm->tx_mode = select_tx_mode(cpi);
+
+ cpi->mb.e_mbd.lossless = cm->base_qindex == 0 &&
+ cm->y_dc_delta_q == 0 &&
+ cm->uv_dc_delta_q == 0 &&
+ cm->uv_ac_delta_q == 0;
+ switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
+
+ vp9_frame_init_quantizer(cpi);
+
+ vp9_initialize_rd_consts(cpi);
+ vp9_initialize_me_consts(cpi, cm->base_qindex);
+ init_encode_frame_mb_context(cpi);
+ set_prev_mi(cm);
+
+ if (sf->use_nonrd_pick_mode) {
+ // Initialize internal buffer pointers for rtc coding, where non-RD
+ // mode decision is used and hence no buffer pointer swap needed.
+ int i;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ PICK_MODE_CONTEXT *ctx = &x->pc_root->none;
+
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][0];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
+ p[i].eobs = ctx->eobs_pbuf[i][0];
+ }
+ vp9_zero(x->zcoeff_blk);
+
+ if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION &&
+ cm->current_video_frame > 0) {
+ int check_freq = sf->search_type_check_frequency;
+
+ if ((cm->current_video_frame - 1) % check_freq == 0) {
+ cpi->use_large_partition_rate = 0;
+ }
+
+ if ((cm->current_video_frame - 1) % check_freq == 1) {
+ const int mbs_in_b32x32 = 1 << ((b_width_log2_lookup[BLOCK_32X32] -
+ b_width_log2_lookup[BLOCK_16X16]) +
+ (b_height_log2_lookup[BLOCK_32X32] -
+ b_height_log2_lookup[BLOCK_16X16]));
+ cpi->use_large_partition_rate = cpi->use_large_partition_rate * 100 *
+ mbs_in_b32x32 / cm->MBs;
+ }
+
+ if ((cm->current_video_frame - 1) % check_freq >= 1) {
+ if (cpi->use_large_partition_rate < 15)
+ sf->partition_search_type = FIXED_PARTITION;
+ }
+ }
+ }
+
+ {
+ struct vpx_usec_timer emr_timer;
+ vpx_usec_timer_start(&emr_timer);
+
+ {
+ // Take tiles into account and give start/end MB
+ int tile_col, tile_row;
+ TOKENEXTRA *tp = cpi->tok;
+ const int tile_cols = 1 << cm->log2_tile_cols;
+ const int tile_rows = 1 << cm->log2_tile_rows;
+
+ for (tile_row = 0; tile_row < tile_rows; tile_row++) {
+ for (tile_col = 0; tile_col < tile_cols; tile_col++) {
+ TileInfo tile;
+ TOKENEXTRA *tp_old = tp;
+ int mi_row;
+
+ // For each row of SBs in the frame
+ vp9_tile_init(&tile, cm, tile_row, tile_col);
+ for (mi_row = tile.mi_row_start;
+ mi_row < tile.mi_row_end; mi_row += MI_BLOCK_SIZE) {
+ if (sf->use_nonrd_pick_mode && cm->frame_type != KEY_FRAME)
+ encode_nonrd_sb_row(cpi, &tile, mi_row, &tp);
+ else
+ encode_rd_sb_row(cpi, &tile, mi_row, &tp);
+ }
+ cpi->tok_count[tile_row][tile_col] = (unsigned int)(tp - tp_old);
+ assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols));
+ }
+ }
+ }
+
+ vpx_usec_timer_mark(&emr_timer);
+ cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
+ }
+
+ sf->skip_encode_frame = sf->skip_encode_sb ? get_skip_encode_frame(cm) : 0;
+
+#if 0
+ // Keep record of the total distortion this time around for future use
+ cpi->last_frame_distortion = cpi->frame_distortion;
+#endif
}
-static void select_tx_mode(VP9_COMP *cpi) {
- if (cpi->oxcf.lossless) {
- cpi->common.tx_mode = ONLY_4X4;
- } else if (cpi->common.current_video_frame == 0) {
- cpi->common.tx_mode = TX_MODE_SELECT;
+static INTERP_FILTER get_interp_filter(
+ const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
+ if (!is_alt_ref &&
+ threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
+ threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
+ threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
+ return EIGHTTAP_SMOOTH;
+ } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
+ threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
+ return EIGHTTAP_SHARP;
+ } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
+ return EIGHTTAP;
} else {
- if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
- cpi->common.tx_mode = ALLOW_32X32;
- } else if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
- int frame_type = get_frame_type(cpi);
- cpi->common.tx_mode =
- cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32]
- > cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
- ALLOW_32X32 : TX_MODE_SELECT;
- } else {
- unsigned int total = 0;
- int i;
- for (i = 0; i < TX_SIZES; ++i)
- total += cpi->tx_stepdown_count[i];
- if (total) {
- double fraction = (double)cpi->tx_stepdown_count[0] / total;
- cpi->common.tx_mode = fraction > 0.90 ? ALLOW_32X32 : TX_MODE_SELECT;
- // printf("fraction = %f\n", fraction);
- } // else keep unchanged
- }
+ return SWITCHABLE;
}
}
void vp9_encode_frame(VP9_COMP *cpi) {
- VP9_COMMON * const cm = &cpi->common;
+ VP9_COMMON *const cm = &cpi->common;
+ RD_OPT *const rd_opt = &cpi->rd;
// In the longer term the encoder should be generalized to match the
// decoder such that we allow compound where one of the 3 buffers has a
@@ -2196,10 +3143,10 @@ void vp9_encode_frame(VP9_COMP *cpi) {
// side behavior is where the ALT ref buffer has opposite sign bias to
// the other two.
if (!frame_is_intra_only(cm)) {
- if ((cm->ref_frame_sign_bias[ALTREF_FRAME]
- == cm->ref_frame_sign_bias[GOLDEN_FRAME])
- || (cm->ref_frame_sign_bias[ALTREF_FRAME]
- == cm->ref_frame_sign_bias[LAST_FRAME])) {
+ if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
+ cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
+ (cm->ref_frame_sign_bias[ALTREF_FRAME] ==
+ cm->ref_frame_sign_bias[LAST_FRAME])) {
cm->allow_comp_inter_inter = 0;
} else {
cm->allow_comp_inter_inter = 1;
@@ -2209,112 +3156,73 @@ void vp9_encode_frame(VP9_COMP *cpi) {
}
}
- if (cpi->sf.RD) {
- int i, pred_type;
- INTERPOLATION_TYPE filter_type;
- /*
- * This code does a single RD pass over the whole frame assuming
- * either compound, single or hybrid prediction as per whatever has
- * worked best for that type of frame in the past.
- * It also predicts whether another coding mode would have worked
- * better that this coding mode. If that is the case, it remembers
- * that for subsequent frames.
- * It does the same analysis for transform size selection also.
- */
- int frame_type = get_frame_type(cpi);
+ if (cpi->sf.frame_parameter_update) {
+ int i;
+
+ // This code does a single RD pass over the whole frame assuming
+ // either compound, single or hybrid prediction as per whatever has
+ // worked best for that type of frame in the past.
+ // It also predicts whether another coding mode would have worked
+ // better that this coding mode. If that is the case, it remembers
+ // that for subsequent frames.
+ // It does the same analysis for transform size selection also.
+ const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
+ int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
+ int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
+ int *const tx_thrs = rd_opt->tx_select_threshes[frame_type];
+ const int is_alt_ref = frame_type == ALTREF_FRAME;
/* prediction (compound, single or hybrid) mode selection */
- if (frame_type == 3 || !cm->allow_comp_inter_inter)
- pred_type = SINGLE_PREDICTION_ONLY;
- else if (cpi->rd_prediction_type_threshes[frame_type][1]
- > cpi->rd_prediction_type_threshes[frame_type][0]
- && cpi->rd_prediction_type_threshes[frame_type][1]
- > cpi->rd_prediction_type_threshes[frame_type][2]
- && check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
- pred_type = COMP_PREDICTION_ONLY;
- else if (cpi->rd_prediction_type_threshes[frame_type][0]
- > cpi->rd_prediction_type_threshes[frame_type][2])
- pred_type = SINGLE_PREDICTION_ONLY;
+ if (is_alt_ref || !cm->allow_comp_inter_inter)
+ cm->reference_mode = SINGLE_REFERENCE;
+ else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
+ mode_thrs[COMPOUND_REFERENCE] >
+ mode_thrs[REFERENCE_MODE_SELECT] &&
+ check_dual_ref_flags(cpi) &&
+ cpi->static_mb_pct == 100)
+ cm->reference_mode = COMPOUND_REFERENCE;
+ else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
+ cm->reference_mode = SINGLE_REFERENCE;
else
- pred_type = HYBRID_PREDICTION;
-
- /* filter type selection */
- // FIXME(rbultje) for some odd reason, we often select smooth_filter
- // as default filter for ARF overlay frames. This is a REALLY BAD
- // IDEA so we explicitly disable it here.
- if (frame_type != 3 &&
- cpi->rd_filter_threshes[frame_type][1] >
- cpi->rd_filter_threshes[frame_type][0] &&
- cpi->rd_filter_threshes[frame_type][1] >
- cpi->rd_filter_threshes[frame_type][2] &&
- cpi->rd_filter_threshes[frame_type][1] >
- cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
- filter_type = EIGHTTAP_SMOOTH;
- } else if (cpi->rd_filter_threshes[frame_type][2] >
- cpi->rd_filter_threshes[frame_type][0] &&
- cpi->rd_filter_threshes[frame_type][2] >
- cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
- filter_type = EIGHTTAP_SHARP;
- } else if (cpi->rd_filter_threshes[frame_type][0] >
- cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
- filter_type = EIGHTTAP;
- } else {
- filter_type = SWITCHABLE;
- }
+ cm->reference_mode = REFERENCE_MODE_SELECT;
- cpi->mb.e_mbd.lossless = 0;
- if (cpi->oxcf.lossless) {
- cpi->mb.e_mbd.lossless = 1;
- }
+ if (cm->interp_filter == SWITCHABLE)
+ cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
- /* transform size selection (4x4, 8x8, 16x16 or select-per-mb) */
- select_tx_mode(cpi);
- cpi->common.comp_pred_mode = pred_type;
- cpi->common.mcomp_filter_type = filter_type;
encode_frame_internal(cpi);
- for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
- const int diff = (int) (cpi->rd_comp_pred_diff[i] / cpi->common.MBs);
- cpi->rd_prediction_type_threshes[frame_type][i] += diff;
- cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
- }
+ for (i = 0; i < REFERENCE_MODES; ++i)
+ mode_thrs[i] = (mode_thrs[i] + rd_opt->comp_pred_diff[i] / cm->MBs) / 2;
- for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
- const int64_t diff = cpi->rd_filter_diff[i] / cpi->common.MBs;
- cpi->rd_filter_threshes[frame_type][i] =
- (cpi->rd_filter_threshes[frame_type][i] + diff) / 2;
- }
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ filter_thrs[i] = (filter_thrs[i] + rd_opt->filter_diff[i] / cm->MBs) / 2;
for (i = 0; i < TX_MODES; ++i) {
- int64_t pd = cpi->rd_tx_select_diff[i];
- int diff;
+ int64_t pd = rd_opt->tx_select_diff[i];
if (i == TX_MODE_SELECT)
- pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv,
- 2048 * (TX_SIZES - 1), 0);
- diff = (int) (pd / cpi->common.MBs);
- cpi->rd_tx_select_threshes[frame_type][i] += diff;
- cpi->rd_tx_select_threshes[frame_type][i] /= 2;
+ pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, 2048 * (TX_SIZES - 1), 0);
+ tx_thrs[i] = (tx_thrs[i] + (int)(pd / cm->MBs)) / 2;
}
- if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
- single_count_zero += cpi->comp_inter_count[i][0];
- comp_count_zero += cpi->comp_inter_count[i][1];
+ single_count_zero += cm->counts.comp_inter[i][0];
+ comp_count_zero += cm->counts.comp_inter[i][1];
}
if (comp_count_zero == 0) {
- cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY;
- vp9_zero(cpi->comp_inter_count);
+ cm->reference_mode = SINGLE_REFERENCE;
+ vp9_zero(cm->counts.comp_inter);
} else if (single_count_zero == 0) {
- cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY;
- vp9_zero(cpi->comp_inter_count);
+ cm->reference_mode = COMPOUND_REFERENCE;
+ vp9_zero(cm->counts.comp_inter);
}
}
- if (cpi->common.tx_mode == TX_MODE_SELECT) {
+ if (cm->tx_mode == TX_MODE_SELECT) {
int count4x4 = 0;
int count8x8_lp = 0, count8x8_8x8p = 0;
int count16x16_16x16p = 0, count16x16_lp = 0;
@@ -2334,189 +3242,155 @@ void vp9_encode_frame(VP9_COMP *cpi) {
count32x32 += cm->counts.tx.p32x32[i][TX_32X32];
}
- if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0
- && count32x32 == 0) {
- cpi->common.tx_mode = ALLOW_8X8;
- reset_skip_txfm_size(cpi, TX_8X8);
- } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0
- && count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
- cpi->common.tx_mode = ONLY_4X4;
- reset_skip_txfm_size(cpi, TX_4X4);
+ if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
+ count32x32 == 0) {
+ cm->tx_mode = ALLOW_8X8;
+ reset_skip_txfm_size(cm, TX_8X8);
+ } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
+ count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
+ cm->tx_mode = ONLY_4X4;
+ reset_skip_txfm_size(cm, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
- cpi->common.tx_mode = ALLOW_32X32;
+ cm->tx_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
- cpi->common.tx_mode = ALLOW_16X16;
- reset_skip_txfm_size(cpi, TX_16X16);
+ cm->tx_mode = ALLOW_16X16;
+ reset_skip_txfm_size(cm, TX_16X16);
}
}
} else {
+ cm->reference_mode = SINGLE_REFERENCE;
+ cm->interp_filter = SWITCHABLE;
encode_frame_internal(cpi);
}
}
-static void sum_intra_stats(VP9_COMP *cpi, const MODE_INFO *mi) {
- const MB_PREDICTION_MODE y_mode = mi->mbmi.mode;
- const MB_PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
+static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
+ const PREDICTION_MODE y_mode = mi->mbmi.mode;
+ const PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
- ++cpi->y_uv_mode_count[y_mode][uv_mode];
-
if (bsize < BLOCK_8X8) {
int idx, idy;
- const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
- const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
- for (idy = 0; idy < 2; idy += num_4x4_blocks_high)
- for (idx = 0; idx < 2; idx += num_4x4_blocks_wide)
- ++cpi->y_mode_count[0][mi->bmi[idy * 2 + idx].as_mode];
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+ for (idy = 0; idy < 2; idy += num_4x4_h)
+ for (idx = 0; idx < 2; idx += num_4x4_w)
+ ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
} else {
- ++cpi->y_mode_count[size_group_lookup[bsize]][y_mode];
+ ++counts->y_mode[size_group_lookup[bsize]][y_mode];
}
-}
-
-// Experimental stub function to create a per MB zbin adjustment based on
-// some previously calculated measure of MB activity.
-static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
-#if USE_ACT_INDEX
- x->act_zbin_adj = *(x->mb_activity_ptr);
-#else
- int64_t a;
- int64_t b;
- int64_t act = *(x->mb_activity_ptr);
- // Apply the masking to the RD multiplier.
- a = act + 4 * cpi->activity_avg;
- b = 4 * act + cpi->activity_avg;
+ ++counts->uv_mode[y_mode][uv_mode];
+}
- if (act > cpi->activity_avg)
- x->act_zbin_adj = (int) (((int64_t) b + (a >> 1)) / a) - 1;
- else
- x->act_zbin_adj = 1 - (int) (((int64_t) a + (b >> 1)) / b);
-#endif
+static int get_zbin_mode_boost(const MB_MODE_INFO *mbmi, int enabled) {
+ if (enabled) {
+ if (is_inter_block(mbmi)) {
+ if (mbmi->mode == ZEROMV) {
+ return mbmi->ref_frame[0] != LAST_FRAME ? GF_ZEROMV_ZBIN_BOOST
+ : LF_ZEROMV_ZBIN_BOOST;
+ } else {
+ return mbmi->sb_type < BLOCK_8X8 ? SPLIT_MV_ZBIN_BOOST
+ : MV_ZBIN_BOOST;
+ }
+ } else {
+ return INTRA_ZBIN_BOOST;
+ }
+ } else {
+ return 0;
+ }
}
+
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
- int mi_row, int mi_col, BLOCK_SIZE bsize) {
- VP9_COMMON * const cm = &cpi->common;
- MACROBLOCK * const x = &cpi->mb;
- MACROBLOCKD * const xd = &x->e_mbd;
- MODE_INFO **mi_8x8 = xd->mi_8x8;
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MODE_INFO **mi_8x8 = xd->mi;
MODE_INFO *mi = mi_8x8[0];
MB_MODE_INFO *mbmi = &mi->mbmi;
unsigned int segment_id = mbmi->segment_id;
- const int mis = cm->mode_info_stride;
+ const int mis = cm->mi_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
+
+ x->skip_recode = !x->select_txfm_size && mbmi->sb_type >= BLOCK_8X8 &&
+ cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
+ cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
+ cpi->sf.allow_skip_recode;
+
+ x->skip_optimize = ctx->is_coded;
+ ctx->is_coded = 1;
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
- xd->q_index < QIDX_SKIP_THRESH);
+ x->q_index < QIDX_SKIP_THRESH);
+
if (x->skip_encode)
return;
- if (cm->frame_type == KEY_FRAME) {
- if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
- adjust_act_zbin(cpi, x);
- vp9_update_zbin_extra(cpi, x);
- }
- } else {
- vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
-
- if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
- // Adjust the zbin based on this MB rate.
- adjust_act_zbin(cpi, x);
- }
-
- // Experimental code. Special case for gf and arf zeromv modes.
- // Increase zbin size to suppress noise
- cpi->zbin_mode_boost = 0;
- if (cpi->zbin_mode_boost_enabled) {
- if (is_inter_block(mbmi)) {
- if (mbmi->mode == ZEROMV) {
- if (mbmi->ref_frame[0] != LAST_FRAME)
- cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
- else
- cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
- } else if (mbmi->sb_type < BLOCK_8X8) {
- cpi->zbin_mode_boost = SPLIT_MV_ZBIN_BOOST;
- } else {
- cpi->zbin_mode_boost = MV_ZBIN_BOOST;
- }
- } else {
- cpi->zbin_mode_boost = INTRA_ZBIN_BOOST;
- }
- }
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
- vp9_update_zbin_extra(cpi, x);
- }
+ // Experimental code. Special case for gf and arf zeromv modes.
+ // Increase zbin size to suppress noise
+ cpi->zbin_mode_boost = get_zbin_mode_boost(mbmi,
+ cpi->zbin_mode_boost_enabled);
+ vp9_update_zbin_extra(cpi, x);
if (!is_inter_block(mbmi)) {
- vp9_encode_intra_block_y(x, MAX(bsize, BLOCK_8X8));
- vp9_encode_intra_block_uv(x, MAX(bsize, BLOCK_8X8));
+ int plane;
+ mbmi->skip = 1;
+ for (plane = 0; plane < MAX_MB_PLANE; ++plane)
+ vp9_encode_intra_block_plane(x, MAX(bsize, BLOCK_8X8), plane);
if (output_enabled)
- sum_intra_stats(cpi, mi);
+ sum_intra_stats(&cm->counts, mi);
+ vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
} else {
- int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[0])];
- YV12_BUFFER_CONFIG *ref_fb = &cm->yv12_fb[idx];
- YV12_BUFFER_CONFIG *second_ref_fb = NULL;
- if (has_second_ref(mbmi)) {
- idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[1])];
- second_ref_fb = &cm->yv12_fb[idx];
+ int ref;
+ const int is_compound = has_second_ref(mbmi);
+ for (ref = 0; ref < 1 + is_compound; ++ref) {
+ YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi,
+ mbmi->ref_frame[ref]);
+ vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
+ &xd->block_refs[ref]->sf);
}
-
- assert(cm->frame_type != KEY_FRAME);
-
- setup_pre_planes(xd, 0, ref_fb, mi_row, mi_col,
- &xd->scale_factor[0]);
- setup_pre_planes(xd, 1, second_ref_fb, mi_row, mi_col,
- &xd->scale_factor[1]);
-
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
- }
- if (!is_inter_block(mbmi)) {
- vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
- } else if (!x->skip) {
- vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
- vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
- } else {
- int mb_skip_context = xd->left_available ? mi_8x8[-1]->mbmi.skip_coeff : 0;
- mb_skip_context += mi_8x8[-mis] ? mi_8x8[-mis]->mbmi.skip_coeff : 0;
-
- mbmi->skip_coeff = 1;
- if (output_enabled)
- cm->counts.mbskip[mb_skip_context][1]++;
- reset_skip_context(xd, MAX(bsize, BLOCK_8X8));
+ if (!x->skip) {
+ mbmi->skip = 1;
+ vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
+ vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
+ } else {
+ mbmi->skip = 1;
+ if (output_enabled)
+ cm->counts.skip[vp9_get_skip_context(xd)][1]++;
+ reset_skip_context(xd, MAX(bsize, BLOCK_8X8));
+ }
}
if (output_enabled) {
if (cm->tx_mode == TX_MODE_SELECT &&
mbmi->sb_type >= BLOCK_8X8 &&
!(is_inter_block(mbmi) &&
- (mbmi->skip_coeff ||
+ (mbmi->skip ||
vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)))) {
- const uint8_t context = vp9_get_pred_context_tx_size(xd);
- ++get_tx_counts(bsize, context, &cm->counts.tx)[mbmi->tx_size];
+ ++get_tx_counts(max_txsize_lookup[bsize], vp9_get_tx_size_context(xd),
+ &cm->counts.tx)[mbmi->tx_size];
} else {
int x, y;
- TX_SIZE sz = tx_mode_to_biggest_tx_size[cm->tx_mode];
- assert(sizeof(tx_mode_to_biggest_tx_size) /
- sizeof(tx_mode_to_biggest_tx_size[0]) == TX_MODES);
+ TX_SIZE tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter_block(&mi->mbmi)) {
- if (sz == TX_32X32 && bsize < BLOCK_32X32)
- sz = TX_16X16;
- if (sz == TX_16X16 && bsize < BLOCK_16X16)
- sz = TX_8X8;
- if (sz == TX_8X8 && bsize < BLOCK_8X8)
- sz = TX_4X4;
- } else if (bsize >= BLOCK_8X8) {
- sz = mbmi->tx_size;
+ tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
+ max_txsize_lookup[bsize]);
} else {
- sz = TX_4X4;
+ tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
}
for (y = 0; y < mi_height; y++)
for (x = 0; x < mi_width; x++)
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
- mi_8x8[mis * y + x]->mbmi.tx_size = sz;
+ mi_8x8[mis * y + x]->mbmi.tx_size = tx_size;
}
}
}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeframe.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeframe.h
index 3e9f5381c06..131e9320199 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeframe.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeframe.h
@@ -12,11 +12,28 @@
#ifndef VP9_ENCODER_VP9_ENCODEFRAME_H_
#define VP9_ENCODER_VP9_ENCODEFRAME_H_
+#ifdef __cplusplus
+extern "C" {
+#endif
+
struct macroblock;
struct yv12_buffer_config;
+struct VP9_COMP;
+
+typedef struct {
+ unsigned int sse;
+ int sum;
+ unsigned int var;
+} diff;
void vp9_setup_src_planes(struct macroblock *x,
const struct yv12_buffer_config *src,
int mi_row, int mi_col);
+void vp9_encode_frame(struct VP9_COMP *cpi);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
#endif // VP9_ENCODER_VP9_ENCODEFRAME_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeintra.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeintra.c
deleted file mode 100644
index 32b4593fcb8..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeintra.c
+++ /dev/null
@@ -1,28 +0,0 @@
-/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-#include "./vpx_config.h"
-#include "./vp9_rtcd.h"
-#include "vp9/encoder/vp9_quantize.h"
-#include "vp9/common/vp9_reconintra.h"
-#include "vp9/encoder/vp9_encodemb.h"
-#include "vp9/encoder/vp9_encodeintra.h"
-
-int vp9_encode_intra(MACROBLOCK *x, int use_16x16_pred) {
- MB_MODE_INFO * mbmi = &x->e_mbd.mi_8x8[0]->mbmi;
- x->skip_encode = 0;
- mbmi->mode = DC_PRED;
- mbmi->ref_frame[0] = INTRA_FRAME;
- mbmi->tx_size = use_16x16_pred ? (mbmi->sb_type >= BLOCK_16X16 ? TX_16X16
- : TX_8X8)
- : TX_4X4;
- vp9_encode_intra_block_y(x, mbmi->sb_type);
- return vp9_get_mb_ss(x->plane[0].src_diff);
-}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeintra.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeintra.h
deleted file mode 100644
index e217924653f..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodeintra.h
+++ /dev/null
@@ -1,20 +0,0 @@
-/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-#ifndef VP9_ENCODER_VP9_ENCODEINTRA_H_
-#define VP9_ENCODER_VP9_ENCODEINTRA_H_
-
-#include "vp9/encoder/vp9_onyx_int.h"
-
-int vp9_encode_intra(MACROBLOCK *x, int use_16x16_pred);
-void vp9_encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
- TX_SIZE tx_size, void *arg);
-
-#endif // VP9_ENCODER_VP9_ENCODEINTRA_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemb.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemb.c
index e52e8ec1e2d..3b231b7f250 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemb.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemb.c
@@ -19,75 +19,61 @@
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_systemdependent.h"
-#include "vp9/encoder/vp9_dct.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_tokenize.h"
+struct optimize_ctx {
+ ENTROPY_CONTEXT ta[MAX_MB_PLANE][16];
+ ENTROPY_CONTEXT tl[MAX_MB_PLANE][16];
+};
+
+struct encode_b_args {
+ MACROBLOCK *x;
+ struct optimize_ctx *ctx;
+ unsigned char *skip;
+};
+
void vp9_subtract_block_c(int rows, int cols,
- int16_t *diff_ptr, ptrdiff_t diff_stride,
- const uint8_t *src_ptr, ptrdiff_t src_stride,
- const uint8_t *pred_ptr, ptrdiff_t pred_stride) {
+ int16_t *diff, ptrdiff_t diff_stride,
+ const uint8_t *src, ptrdiff_t src_stride,
+ const uint8_t *pred, ptrdiff_t pred_stride) {
int r, c;
for (r = 0; r < rows; r++) {
for (c = 0; c < cols; c++)
- diff_ptr[c] = src_ptr[c] - pred_ptr[c];
+ diff[c] = src[c] - pred[c];
- diff_ptr += diff_stride;
- pred_ptr += pred_stride;
- src_ptr += src_stride;
+ diff += diff_stride;
+ pred += pred_stride;
+ src += src_stride;
}
}
-static void subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
+void vp9_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
- const MACROBLOCKD *const xd = &x->e_mbd;
- const struct macroblockd_plane *const pd = &xd->plane[plane];
- const int bw = plane_block_width(bsize, pd);
- const int bh = plane_block_height(bsize, pd);
+ const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+ const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+ const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
- vp9_subtract_block(bh, bw, p->src_diff, bw,
- p->src.buf, p->src.stride,
+ vp9_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
-void vp9_subtract_sby(MACROBLOCK *x, BLOCK_SIZE bsize) {
- subtract_plane(x, bsize, 0);
-}
-
-void vp9_subtract_sbuv(MACROBLOCK *x, BLOCK_SIZE bsize) {
- int i;
-
- for (i = 1; i < MAX_MB_PLANE; i++)
- subtract_plane(x, bsize, i);
-}
-
-void vp9_subtract_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
- vp9_subtract_sby(x, bsize);
- vp9_subtract_sbuv(x, bsize);
-}
-
#define RDTRUNC(RM, DM, R, D) ((128 + (R) * (RM)) & 0xFF)
-typedef struct vp9_token_state vp9_token_state;
-struct vp9_token_state {
+typedef struct vp9_token_state {
int rate;
int error;
int next;
signed char token;
short qc;
-};
+} vp9_token_state;
// TODO(jimbankoski): experiment to find optimal RD numbers.
-#define Y1_RD_MULT 4
-#define UV_RD_MULT 2
-
-static const int plane_rd_mult[4] = {
- Y1_RD_MULT,
- UV_RD_MULT,
-};
+static const int plane_rd_mult[PLANE_TYPES] = { 4, 2 };
#define UPDATE_RD_COST()\
{\
@@ -112,62 +98,56 @@ static int trellis_get_coeff_context(const int16_t *scan,
return pt;
}
-static void optimize_b(MACROBLOCK *mb,
- int plane, int block, BLOCK_SIZE plane_bsize,
- ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
- TX_SIZE tx_size) {
+static int optimize_b(MACROBLOCK *mb, int plane, int block,
+ TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
- struct macroblockd_plane *pd = &xd->plane[plane];
- const int ref = is_inter_block(&xd->mi_8x8[0]->mbmi);
+ struct macroblock_plane *const p = &mb->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int ref = is_inter_block(&xd->mi[0]->mbmi);
vp9_token_state tokens[1025][2];
unsigned best_index[1025][2];
- const int16_t *coeff_ptr = BLOCK_OFFSET(mb->plane[plane].coeff, block);
- int16_t *qcoeff_ptr;
- int16_t *dqcoeff_ptr;
- int eob = pd->eobs[block], final_eob, sz = 0;
- const int i0 = 0;
- int rc, x, next, i;
- int64_t rdmult, rddiv, rd_cost0, rd_cost1;
- int rate0, rate1, error0, error1, t0, t1;
- int best, band, pt;
- PLANE_TYPE type = pd->plane_type;
- int err_mult = plane_rd_mult[type];
+ uint8_t token_cache[1024];
+ const int16_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block);
+ int16_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ const int eob = p->eobs[block];
+ const PLANE_TYPE type = pd->plane_type;
const int default_eob = 16 << (tx_size << 1);
- const int16_t *scan, *nb;
const int mul = 1 + (tx_size == TX_32X32);
- uint8_t token_cache[1024];
- const int ib = txfrm_block_to_raster_block(plane_bsize, tx_size, block);
const int16_t *dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
+ const scan_order *const so = get_scan(xd, tx_size, type, block);
+ const int16_t *const scan = so->scan;
+ const int16_t *const nb = so->neighbors;
+ int next = eob, sz = 0;
+ int64_t rdmult = mb->rdmult * plane_rd_mult[type], rddiv = mb->rddiv;
+ int64_t rd_cost0, rd_cost1;
+ int rate0, rate1, error0, error1, t0, t1;
+ int best, band, pt, i, final_eob;
assert((!type && !plane) || (type && plane));
- dqcoeff_ptr = BLOCK_OFFSET(pd->dqcoeff, block);
- qcoeff_ptr = BLOCK_OFFSET(pd->qcoeff, block);
- get_scan(xd, tx_size, type, ib, &scan, &nb);
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
- rdmult = mb->rdmult * err_mult;
- if (mb->e_mbd.mi_8x8[0]->mbmi.ref_frame[0] == INTRA_FRAME)
+ if (!ref)
rdmult = (rdmult * 9) >> 4;
- rddiv = mb->rddiv;
+
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
- tokens[eob][0].token = DCT_EOB_TOKEN;
+ tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
- *(tokens[eob] + 1) = *(tokens[eob] + 0);
- next = eob;
+ tokens[eob][1] = tokens[eob][0];
+
for (i = 0; i < eob; i++)
- token_cache[scan[i]] = vp9_pt_energy_class[vp9_dct_value_tokens_ptr[
- qcoeff_ptr[scan[i]]].token];
+ token_cache[scan[i]] =
+ vp9_pt_energy_class[vp9_dct_value_tokens_ptr[qcoeff[scan[i]]].token];
- for (i = eob; i-- > i0;) {
+ for (i = eob; i-- > 0;) {
int base_bits, d2, dx;
-
- rc = scan[i];
- x = qcoeff_ptr[rc];
+ const int rc = scan[i];
+ int x = qcoeff[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
@@ -179,20 +159,18 @@ static void optimize_b(MACROBLOCK *mb,
t0 = (vp9_dct_value_tokens_ptr + x)->token;
/* Consider both possible successor states. */
if (next < default_eob) {
- band = get_coef_band(band_translate, i + 1);
+ band = band_translate[i + 1];
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
- rate0 +=
- mb->token_costs[tx_size][type][ref][band][0][pt]
- [tokens[next][0].token];
- rate1 +=
- mb->token_costs[tx_size][type][ref][band][0][pt]
- [tokens[next][1].token];
+ rate0 += mb->token_costs[tx_size][type][ref][band][0][pt]
+ [tokens[next][0].token];
+ rate1 += mb->token_costs[tx_size][type][ref][band][0][pt]
+ [tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
- base_bits = *(vp9_dct_value_cost_ptr + x);
- dx = mul * (dqcoeff_ptr[rc] - coeff_ptr[rc]);
+ base_bits = vp9_dct_value_cost_ptr[x];
+ dx = mul * (dqcoeff[rc] - coeff[rc]);
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
@@ -205,9 +183,9 @@ static void optimize_b(MACROBLOCK *mb,
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
- if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc]) * mul) &&
- (abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) * mul +
- dequant_ptr[rc != 0]))
+ if ((abs(x) * dequant_ptr[rc != 0] > abs(coeff[rc]) * mul) &&
+ (abs(x) * dequant_ptr[rc != 0] < abs(coeff[rc]) * mul +
+ dequant_ptr[rc != 0]))
shortcut = 1;
else
shortcut = 0;
@@ -222,21 +200,19 @@ static void optimize_b(MACROBLOCK *mb,
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
- t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
- DCT_EOB_TOKEN : ZERO_TOKEN;
- t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
- DCT_EOB_TOKEN : ZERO_TOKEN;
+ t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
+ t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
} else {
t0 = t1 = (vp9_dct_value_tokens_ptr + x)->token;
}
if (next < default_eob) {
- band = get_coef_band(band_translate, i + 1);
- if (t0 != DCT_EOB_TOKEN) {
+ band = band_translate[i + 1];
+ if (t0 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][0].token];
}
- if (t1 != DCT_EOB_TOKEN) {
+ if (t1 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache);
rate1 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][1].token];
@@ -246,7 +222,7 @@ static void optimize_b(MACROBLOCK *mb,
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
- base_bits = *(vp9_dct_value_cost_ptr + x);
+ base_bits = vp9_dct_value_cost_ptr[x];
if (shortcut) {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
@@ -264,16 +240,16 @@ static void optimize_b(MACROBLOCK *mb,
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
- band = get_coef_band(band_translate, i + 1);
+ band = band_translate[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
- if (t0 != DCT_EOB_TOKEN) {
+ if (t0 != EOB_TOKEN) {
tokens[next][0].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
- if (t1 != DCT_EOB_TOKEN) {
+ if (t1 != EOB_TOKEN) {
tokens[next][1].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t1];
tokens[next][1].token = ZERO_TOKEN;
@@ -284,129 +260,91 @@ static void optimize_b(MACROBLOCK *mb,
}
/* Now pick the best path through the whole trellis. */
- band = get_coef_band(band_translate, i + 1);
- pt = combine_entropy_contexts(*a, *l);
+ band = band_translate[i + 1];
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
- rate0 += mb->token_costs[tx_size][type][ref][band][0][pt][t0];
- rate1 += mb->token_costs[tx_size][type][ref][band][0][pt][t1];
+ rate0 += mb->token_costs[tx_size][type][ref][band][0][ctx][t0];
+ rate1 += mb->token_costs[tx_size][type][ref][band][0][ctx][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
- final_eob = i0 - 1;
- vpx_memset(qcoeff_ptr, 0, sizeof(*qcoeff_ptr) * (16 << (tx_size * 2)));
- vpx_memset(dqcoeff_ptr, 0, sizeof(*dqcoeff_ptr) * (16 << (tx_size * 2)));
+ final_eob = -1;
+ vpx_memset(qcoeff, 0, sizeof(*qcoeff) * (16 << (tx_size * 2)));
+ vpx_memset(dqcoeff, 0, sizeof(*dqcoeff) * (16 << (tx_size * 2)));
for (i = next; i < eob; i = next) {
- x = tokens[i][best].qc;
+ const int x = tokens[i][best].qc;
+ const int rc = scan[i];
if (x) {
final_eob = i;
}
- rc = scan[i];
- qcoeff_ptr[rc] = x;
- dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]) / mul;
+
+ qcoeff[rc] = x;
+ dqcoeff[rc] = (x * dequant_ptr[rc != 0]) / mul;
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
- xd->plane[plane].eobs[block] = final_eob;
- *a = *l = (final_eob > 0);
+ mb->plane[plane].eobs[block] = final_eob;
+ return final_eob;
}
-void vp9_optimize_b(int plane, int block, BLOCK_SIZE plane_bsize,
- TX_SIZE tx_size, MACROBLOCK *mb, struct optimize_ctx *ctx) {
- int x, y;
- txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
- optimize_b(mb, plane, block, plane_bsize,
- &ctx->ta[plane][x], &ctx->tl[plane][y], tx_size);
+static INLINE void fdct32x32(int rd_transform,
+ const int16_t *src, int16_t *dst, int src_stride) {
+ if (rd_transform)
+ vp9_fdct32x32_rd(src, dst, src_stride);
+ else
+ vp9_fdct32x32(src, dst, src_stride);
}
-static void optimize_init_b(int plane, BLOCK_SIZE bsize,
- struct encode_b_args *args) {
- const MACROBLOCKD *xd = &args->x->e_mbd;
- const struct macroblockd_plane* const pd = &xd->plane[plane];
- const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
- const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
- const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
- const MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
- const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi) : mbmi->tx_size;
-
- vp9_get_entropy_contexts(tx_size, args->ctx->ta[plane], args->ctx->tl[plane],
- pd->above_context, pd->left_context,
- num_4x4_w, num_4x4_h);
-}
-
-void vp9_xform_quant(int plane, int block, BLOCK_SIZE plane_bsize,
- TX_SIZE tx_size, void *arg) {
- struct encode_b_args* const args = arg;
- MACROBLOCK* const x = args->x;
- MACROBLOCKD* const xd = &x->e_mbd;
- struct macroblock_plane *const p = &x->plane[plane];
- struct macroblockd_plane *const pd = &xd->plane[plane];
- int16_t *coeff = BLOCK_OFFSET(p->coeff, block);
- int16_t *qcoeff = BLOCK_OFFSET(pd->qcoeff, block);
- int16_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
- const int16_t *scan, *iscan;
- uint16_t *eob = &pd->eobs[block];
- const int bwl = b_width_log2(plane_bsize), bw = 1 << bwl;
- const int twl = bwl - tx_size, twmask = (1 << twl) - 1;
- int xoff, yoff;
- int16_t *src_diff;
+void vp9_xform_quant(MACROBLOCK *x, int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
+ int16_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+ int16_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ uint16_t *const eob = &p->eobs[block];
+ const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+ int i, j;
+ const int16_t *src_diff;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
+ src_diff = &p->src_diff[4 * (j * diff_stride + i)];
switch (tx_size) {
case TX_32X32:
- scan = vp9_default_scan_32x32;
- iscan = vp9_default_iscan_32x32;
- block >>= 6;
- xoff = 32 * (block & twmask);
- yoff = 32 * (block >> twl);
- src_diff = p->src_diff + 4 * bw * yoff + xoff;
- if (x->use_lp32x32fdct)
- vp9_fdct32x32_rd(src_diff, coeff, bw * 4);
- else
- vp9_fdct32x32(src_diff, coeff, bw * 4);
+ fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
- pd->dequant, p->zbin_extra, eob, scan, iscan);
+ pd->dequant, p->zbin_extra, eob, scan_order->scan,
+ scan_order->iscan);
break;
case TX_16X16:
- scan = vp9_default_scan_16x16;
- iscan = vp9_default_iscan_16x16;
- block >>= 4;
- xoff = 16 * (block & twmask);
- yoff = 16 * (block >> twl);
- src_diff = p->src_diff + 4 * bw * yoff + xoff;
- vp9_fdct16x16(src_diff, coeff, bw * 4);
+ vp9_fdct16x16(src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
- pd->dequant, p->zbin_extra, eob, scan, iscan);
+ pd->dequant, p->zbin_extra, eob,
+ scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
- scan = vp9_default_scan_8x8;
- iscan = vp9_default_iscan_8x8;
- block >>= 2;
- xoff = 8 * (block & twmask);
- yoff = 8 * (block >> twl);
- src_diff = p->src_diff + 4 * bw * yoff + xoff;
- vp9_fdct8x8(src_diff, coeff, bw * 4);
+ vp9_fdct8x8(src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
- pd->dequant, p->zbin_extra, eob, scan, iscan);
+ pd->dequant, p->zbin_extra, eob,
+ scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
- scan = vp9_default_scan_4x4;
- iscan = vp9_default_iscan_4x4;
- xoff = 4 * (block & twmask);
- yoff = 4 * (block >> twl);
- src_diff = p->src_diff + 4 * bw * yoff + xoff;
- x->fwd_txm4x4(src_diff, coeff, bw * 4);
+ x->fwd_txm4x4(src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
- pd->dequant, p->zbin_extra, eob, scan, iscan);
+ pd->dequant, p->zbin_extra, eob,
+ scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
@@ -419,251 +357,247 @@ static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize,
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx *const ctx = args->ctx;
+ struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
- const int raster_block = txfrm_block_to_raster_block(plane_bsize, tx_size,
- block);
-
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
- uint8_t *const dst = raster_block_offset_uint8(plane_bsize, raster_block,
- pd->dst.buf, pd->dst.stride);
+ int i, j;
+ uint8_t *dst;
+ ENTROPY_CONTEXT *a, *l;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
+ dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
+ a = &ctx->ta[plane][i];
+ l = &ctx->tl[plane][j];
// TODO(jingning): per transformed block zero forcing only enabled for
// luma component. will integrate chroma components as well.
if (x->zcoeff_blk[tx_size][block] && plane == 0) {
- int x, y;
- pd->eobs[block] = 0;
- txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
- ctx->ta[plane][x] = 0;
- ctx->tl[plane][y] = 0;
+ p->eobs[block] = 0;
+ *a = *l = 0;
return;
}
- vp9_xform_quant(plane, block, plane_bsize, tx_size, arg);
+ if (!x->skip_recode)
+ vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
+
+ if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
+ const int ctx = combine_entropy_contexts(*a, *l);
+ *a = *l = optimize_b(x, plane, block, tx_size, ctx) > 0;
+ } else {
+ *a = *l = p->eobs[block] > 0;
+ }
- if (x->optimize)
- vp9_optimize_b(plane, block, plane_bsize, tx_size, x, ctx);
+ if (p->eobs[block])
+ *(args->skip) = 0;
- if (x->skip_encode || pd->eobs[block] == 0)
+ if (x->skip_encode || p->eobs[block] == 0)
return;
switch (tx_size) {
case TX_32X32:
- vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, pd->eobs[block]);
+ vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_16X16:
- vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, pd->eobs[block]);
+ vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_8X8:
- vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, pd->eobs[block]);
+ vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_4X4:
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
- xd->itxm_add(dqcoeff, dst, pd->dst.stride, pd->eobs[block]);
+ xd->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
default:
- assert(!"Invalid transform size");
+ assert(0 && "Invalid transform size");
}
}
static void encode_block_pass1(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
- struct encode_b_args *const args = arg;
- MACROBLOCK *const x = args->x;
+ MACROBLOCK *const x = (MACROBLOCK *)arg;
MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
- const int raster_block = txfrm_block_to_raster_block(plane_bsize, tx_size,
- block);
-
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
- uint8_t *const dst = raster_block_offset_uint8(plane_bsize, raster_block,
- pd->dst.buf, pd->dst.stride);
-
- vp9_xform_quant(plane, block, plane_bsize, tx_size, arg);
+ int i, j;
+ uint8_t *dst;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
+ dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
- if (pd->eobs[block] == 0)
- return;
+ vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
- xd->itxm_add(dqcoeff, dst, pd->dst.stride, pd->eobs[block]);
+ if (p->eobs[block] > 0)
+ xd->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
}
-void vp9_encode_sby(MACROBLOCK *x, BLOCK_SIZE bsize) {
- MACROBLOCKD *const xd = &x->e_mbd;
- struct optimize_ctx ctx;
- struct encode_b_args arg = {x, &ctx};
-
- vp9_subtract_sby(x, bsize);
- if (x->optimize)
- optimize_init_b(0, bsize, &arg);
-
- foreach_transformed_block_in_plane(xd, bsize, 0, encode_block_pass1, &arg);
+void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize) {
+ vp9_subtract_plane(x, bsize, 0);
+ vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
+ encode_block_pass1, x);
}
void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
- struct encode_b_args arg = {x, &ctx};
-
- vp9_subtract_sb(x, bsize);
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct encode_b_args arg = {x, &ctx, &mbmi->skip};
+ int plane;
+
+ for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
+ if (!x->skip_recode)
+ vp9_subtract_plane(x, bsize, plane);
+
+ if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
+ const struct macroblockd_plane* const pd = &xd->plane[plane];
+ const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi) : mbmi->tx_size;
+ vp9_get_entropy_contexts(bsize, tx_size, pd,
+ ctx.ta[plane], ctx.tl[plane]);
+ }
- if (x->optimize) {
- int i;
- for (i = 0; i < MAX_MB_PLANE; ++i)
- optimize_init_b(i, bsize, &arg);
+ vp9_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
+ &arg);
}
-
- foreach_transformed_block(xd, bsize, encode_block, &arg);
}
-void vp9_encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
- TX_SIZE tx_size, void *arg) {
+static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg) {
struct encode_b_args* const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
- MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
int16_t *coeff = BLOCK_OFFSET(p->coeff, block);
- int16_t *qcoeff = BLOCK_OFFSET(pd->qcoeff, block);
+ int16_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
int16_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
- const int16_t *scan, *iscan;
+ const scan_order *scan_order;
TX_TYPE tx_type;
- MB_PREDICTION_MODE mode;
- const int bwl = b_width_log2(plane_bsize), bw = 1 << bwl;
- const int twl = bwl - tx_size, twmask = (1 << twl) - 1;
- int xoff, yoff;
+ PREDICTION_MODE mode;
+ const int bwl = b_width_log2(plane_bsize);
+ const int diff_stride = 4 * (1 << bwl);
uint8_t *src, *dst;
int16_t *src_diff;
- uint16_t *eob = &pd->eobs[block];
-
- if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0)
- extend_for_intra(xd, plane_bsize, plane, block, tx_size);
-
- // if (x->optimize)
- // vp9_optimize_b(plane, block, plane_bsize, tx_size, x, args->ctx);
+ uint16_t *eob = &p->eobs[block];
+ const int src_stride = p->src.stride;
+ const int dst_stride = pd->dst.stride;
+ int i, j;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
+ dst = &pd->dst.buf[4 * (j * dst_stride + i)];
+ src = &p->src.buf[4 * (j * src_stride + i)];
+ src_diff = &p->src_diff[4 * (j * diff_stride + i)];
switch (tx_size) {
case TX_32X32:
- scan = vp9_default_scan_32x32;
- iscan = vp9_default_iscan_32x32;
+ scan_order = &vp9_default_scan_orders[TX_32X32];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
- block >>= 6;
- xoff = 32 * (block & twmask);
- yoff = 32 * (block >> twl);
- dst = pd->dst.buf + yoff * pd->dst.stride + xoff;
- src = p->src.buf + yoff * p->src.stride + xoff;
- src_diff = p->src_diff + 4 * bw * yoff + xoff;
- vp9_predict_intra_block(xd, block, bwl, TX_32X32, mode,
- dst, pd->dst.stride, dst, pd->dst.stride);
- vp9_subtract_block(32, 32, src_diff, bw * 4,
- src, p->src.stride, dst, pd->dst.stride);
- if (x->use_lp32x32fdct)
- vp9_fdct32x32_rd(src_diff, coeff, bw * 4);
- else
- vp9_fdct32x32(src_diff, coeff, bw * 4);
- vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
- p->quant, p->quant_shift, qcoeff, dqcoeff,
- pd->dequant, p->zbin_extra, eob, scan, iscan);
+ vp9_predict_intra_block(xd, block >> 6, bwl, TX_32X32, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+ if (!x->skip_recode) {
+ vp9_subtract_block(32, 32, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride);
+ fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
+ vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, p->zbin_extra, eob, scan_order->scan,
+ scan_order->iscan);
+ }
if (!x->skip_encode && *eob)
- vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, *eob);
+ vp9_idct32x32_add(dqcoeff, dst, dst_stride, *eob);
break;
case TX_16X16:
- tx_type = get_tx_type_16x16(pd->plane_type, xd);
- scan = get_scan_16x16(tx_type);
- iscan = get_iscan_16x16(tx_type);
+ tx_type = get_tx_type(pd->plane_type, xd);
+ scan_order = &vp9_scan_orders[TX_16X16][tx_type];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
- block >>= 4;
- xoff = 16 * (block & twmask);
- yoff = 16 * (block >> twl);
- dst = pd->dst.buf + yoff * pd->dst.stride + xoff;
- src = p->src.buf + yoff * p->src.stride + xoff;
- src_diff = p->src_diff + 4 * bw * yoff + xoff;
- vp9_predict_intra_block(xd, block, bwl, TX_16X16, mode,
- dst, pd->dst.stride, dst, pd->dst.stride);
- vp9_subtract_block(16, 16, src_diff, bw * 4,
- src, p->src.stride, dst, pd->dst.stride);
- vp9_fht16x16(tx_type, src_diff, coeff, bw * 4);
- vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
- p->quant, p->quant_shift, qcoeff, dqcoeff,
- pd->dequant, p->zbin_extra, eob, scan, iscan);
+ vp9_predict_intra_block(xd, block >> 4, bwl, TX_16X16, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+ if (!x->skip_recode) {
+ vp9_subtract_block(16, 16, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride);
+ vp9_fht16x16(src_diff, coeff, diff_stride, tx_type);
+ vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, p->zbin_extra, eob, scan_order->scan,
+ scan_order->iscan);
+ }
if (!x->skip_encode && *eob)
- vp9_iht16x16_add(tx_type, dqcoeff, dst, pd->dst.stride, *eob);
+ vp9_iht16x16_add(tx_type, dqcoeff, dst, dst_stride, *eob);
break;
case TX_8X8:
- tx_type = get_tx_type_8x8(pd->plane_type, xd);
- scan = get_scan_8x8(tx_type);
- iscan = get_iscan_8x8(tx_type);
+ tx_type = get_tx_type(pd->plane_type, xd);
+ scan_order = &vp9_scan_orders[TX_8X8][tx_type];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
- block >>= 2;
- xoff = 8 * (block & twmask);
- yoff = 8 * (block >> twl);
- dst = pd->dst.buf + yoff * pd->dst.stride + xoff;
- src = p->src.buf + yoff * p->src.stride + xoff;
- src_diff = p->src_diff + 4 * bw * yoff + xoff;
- vp9_predict_intra_block(xd, block, bwl, TX_8X8, mode,
- dst, pd->dst.stride, dst, pd->dst.stride);
- vp9_subtract_block(8, 8, src_diff, bw * 4,
- src, p->src.stride, dst, pd->dst.stride);
- vp9_fht8x8(tx_type, src_diff, coeff, bw * 4);
- vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
- p->quant_shift, qcoeff, dqcoeff,
- pd->dequant, p->zbin_extra, eob, scan, iscan);
+ vp9_predict_intra_block(xd, block >> 2, bwl, TX_8X8, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+ if (!x->skip_recode) {
+ vp9_subtract_block(8, 8, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride);
+ vp9_fht8x8(src_diff, coeff, diff_stride, tx_type);
+ vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
+ p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, p->zbin_extra, eob, scan_order->scan,
+ scan_order->iscan);
+ }
if (!x->skip_encode && *eob)
- vp9_iht8x8_add(tx_type, dqcoeff, dst, pd->dst.stride, *eob);
+ vp9_iht8x8_add(tx_type, dqcoeff, dst, dst_stride, *eob);
break;
case TX_4X4:
tx_type = get_tx_type_4x4(pd->plane_type, xd, block);
- scan = get_scan_4x4(tx_type);
- iscan = get_iscan_4x4(tx_type);
- if (mbmi->sb_type < BLOCK_8X8 && plane == 0)
- mode = xd->mi_8x8[0]->bmi[block].as_mode;
- else
- mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
-
- xoff = 4 * (block & twmask);
- yoff = 4 * (block >> twl);
- dst = pd->dst.buf + yoff * pd->dst.stride + xoff;
- src = p->src.buf + yoff * p->src.stride + xoff;
- src_diff = p->src_diff + 4 * bw * yoff + xoff;
+ scan_order = &vp9_scan_orders[TX_4X4][tx_type];
+ mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode;
vp9_predict_intra_block(xd, block, bwl, TX_4X4, mode,
- dst, pd->dst.stride, dst, pd->dst.stride);
- vp9_subtract_block(4, 4, src_diff, bw * 4,
- src, p->src.stride, dst, pd->dst.stride);
- if (tx_type != DCT_DCT)
- vp9_short_fht4x4(src_diff, coeff, bw * 4, tx_type);
- else
- x->fwd_txm4x4(src_diff, coeff, bw * 4);
- vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
- p->quant_shift, qcoeff, dqcoeff,
- pd->dequant, p->zbin_extra, eob, scan, iscan);
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+
+ if (!x->skip_recode) {
+ vp9_subtract_block(4, 4, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride);
+ if (tx_type != DCT_DCT)
+ vp9_fht4x4(src_diff, coeff, diff_stride, tx_type);
+ else
+ x->fwd_txm4x4(src_diff, coeff, diff_stride);
+ vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
+ p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, p->zbin_extra, eob, scan_order->scan,
+ scan_order->iscan);
+ }
+
if (!x->skip_encode && *eob) {
if (tx_type == DCT_DCT)
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
- xd->itxm_add(dqcoeff, dst, pd->dst.stride, *eob);
+ xd->itxm_add(dqcoeff, dst, dst_stride, *eob);
else
- vp9_iht4x4_16_add(dqcoeff, dst, pd->dst.stride, tx_type);
+ vp9_iht4x4_16_add(dqcoeff, dst, dst_stride, tx_type);
}
break;
default:
assert(0);
}
+ if (*eob)
+ *(args->skip) = 0;
}
-void vp9_encode_intra_block_y(MACROBLOCK *x, BLOCK_SIZE bsize) {
- MACROBLOCKD* const xd = &x->e_mbd;
- struct optimize_ctx ctx;
- struct encode_b_args arg = {x, &ctx};
-
- foreach_transformed_block_in_plane(xd, bsize, 0, vp9_encode_block_intra,
- &arg);
-}
-void vp9_encode_intra_block_uv(MACROBLOCK *x, BLOCK_SIZE bsize) {
- MACROBLOCKD* const xd = &x->e_mbd;
- struct optimize_ctx ctx;
- struct encode_b_args arg = {x, &ctx};
- foreach_transformed_block_uv(xd, bsize, vp9_encode_block_intra, &arg);
+void vp9_encode_block_intra(MACROBLOCK *x, int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+ unsigned char *skip) {
+ struct encode_b_args arg = {x, NULL, skip};
+ encode_block_intra(plane, block, plane_bsize, tx_size, &arg);
}
+
+void vp9_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ struct encode_b_args arg = {x, NULL, &xd->mi[0]->mbmi.skip};
+
+ vp9_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block_intra,
+ &arg);
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemb.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemb.h
index 61dd7358e0e..80214598484 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemb.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemb.h
@@ -13,42 +13,29 @@
#include "./vpx_config.h"
#include "vp9/encoder/vp9_block.h"
-#include "vp9/encoder/vp9_onyx_int.h"
+#include "vp9/encoder/vp9_encoder.h"
#include "vp9/common/vp9_onyxc_int.h"
-typedef struct {
- MB_PREDICTION_MODE mode;
- MV_REFERENCE_FRAME ref_frame;
- MV_REFERENCE_FRAME second_ref_frame;
-} MODE_DEFINITION;
-
-typedef struct {
- MV_REFERENCE_FRAME ref_frame;
- MV_REFERENCE_FRAME second_ref_frame;
-} REF_DEFINITION;
-
-struct optimize_ctx {
- ENTROPY_CONTEXT ta[MAX_MB_PLANE][16];
- ENTROPY_CONTEXT tl[MAX_MB_PLANE][16];
-};
-
-struct encode_b_args {
- MACROBLOCK *x;
- struct optimize_ctx *ctx;
-};
+#ifdef __cplusplus
+extern "C" {
+#endif
void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize);
-void vp9_encode_sby(MACROBLOCK *x, BLOCK_SIZE bsize);
+void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize);
+
+void vp9_xform_quant(MACROBLOCK *x, int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size);
-void vp9_xform_quant(int plane, int block, BLOCK_SIZE plane_bsize,
- TX_SIZE tx_size, void *arg);
+void vp9_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane);
-void vp9_subtract_sby(MACROBLOCK *x, BLOCK_SIZE bsize);
-void vp9_subtract_sbuv(MACROBLOCK *x, BLOCK_SIZE bsize);
-void vp9_subtract_sb(MACROBLOCK *x, BLOCK_SIZE bsize);
+void vp9_encode_block_intra(MACROBLOCK *x, int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+ unsigned char *skip);
-void vp9_encode_intra_block_y(MACROBLOCK *x, BLOCK_SIZE bsize);
-void vp9_encode_intra_block_uv(MACROBLOCK *x, BLOCK_SIZE bsize);
+void vp9_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane);
+#ifdef __cplusplus
+} // extern "C"
+#endif
#endif // VP9_ENCODER_VP9_ENCODEMB_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemv.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemv.c
index 9ebcc498392..9d448651161 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemv.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemv.c
@@ -13,12 +13,21 @@
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_systemdependent.h"
+
+#include "vp9/encoder/vp9_cost.h"
#include "vp9/encoder/vp9_encodemv.h"
+static struct vp9_token mv_joint_encodings[MV_JOINTS];
+static struct vp9_token mv_class_encodings[MV_CLASSES];
+static struct vp9_token mv_fp_encodings[MV_FP_SIZE];
+static struct vp9_token mv_class0_encodings[CLASS0_SIZE];
-#ifdef ENTROPY_STATS
-extern unsigned int active_section;
-#endif
+void vp9_entropy_mv_init() {
+ vp9_tokens_from_tree(mv_joint_encodings, vp9_mv_joint_tree);
+ vp9_tokens_from_tree(mv_class_encodings, vp9_mv_class_tree);
+ vp9_tokens_from_tree(mv_class0_encodings, vp9_mv_class0_tree);
+ vp9_tokens_from_tree(mv_fp_encodings, vp9_mv_fp_tree);
+}
static void encode_mv_component(vp9_writer* w, int comp,
const nmv_component* mvcomp, int usehp) {
@@ -36,13 +45,13 @@ static void encode_mv_component(vp9_writer* w, int comp,
vp9_write(w, sign, mvcomp->sign);
// Class
- write_token(w, vp9_mv_class_tree, mvcomp->classes,
- &vp9_mv_class_encodings[mv_class]);
+ vp9_write_token(w, vp9_mv_class_tree, mvcomp->classes,
+ &mv_class_encodings[mv_class]);
// Integer bits
if (mv_class == MV_CLASS_0) {
- write_token(w, vp9_mv_class0_tree, mvcomp->class0,
- &vp9_mv_class0_encodings[d]);
+ vp9_write_token(w, vp9_mv_class0_tree, mvcomp->class0,
+ &mv_class0_encodings[d]);
} else {
int i;
const int n = mv_class + CLASS0_BITS - 1; // number of bits
@@ -51,9 +60,9 @@ static void encode_mv_component(vp9_writer* w, int comp,
}
// Fractional bits
- write_token(w, vp9_mv_fp_tree,
- mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp,
- &vp9_mv_fp_encodings[fr]);
+ vp9_write_token(w, vp9_mv_fp_tree,
+ mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp,
+ &mv_fp_encodings[fr]);
// High precision bit
if (usehp)
@@ -68,7 +77,7 @@ static void build_nmv_component_cost_table(int *mvcost,
int i, v;
int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE];
int bits_cost[MV_OFFSET_BITS][2];
- int class0_fp_cost[CLASS0_SIZE][4], fp_cost[4];
+ int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE], fp_cost[MV_FP_SIZE];
int class0_hp_cost[2], hp_cost[2];
sign_cost[0] = vp9_cost_zero(mvcomp->sign);
@@ -124,155 +133,68 @@ static void build_nmv_component_cost_table(int *mvcost,
}
}
-static int update_mv(vp9_writer *w, const unsigned int ct[2],
- vp9_prob *cur_p, vp9_prob new_p, vp9_prob upd_p) {
- vp9_prob mod_p = new_p | 1;
- const int cur_b = cost_branch256(ct, *cur_p);
- const int mod_b = cost_branch256(ct, mod_p);
- const int cost = 7 * 256 + (vp9_cost_one(upd_p) - vp9_cost_zero(upd_p));
- if (cur_b - mod_b > cost) {
- *cur_p = mod_p;
- vp9_write(w, 1, upd_p);
- vp9_write_literal(w, mod_p >> 1, 7);
- return 1;
- } else {
- vp9_write(w, 0, upd_p);
- return 0;
+static int update_mv(vp9_writer *w, const unsigned int ct[2], vp9_prob *cur_p,
+ vp9_prob upd_p) {
+ const vp9_prob new_p = get_binary_prob(ct[0], ct[1]) | 1;
+ const int update = cost_branch256(ct, *cur_p) + vp9_cost_zero(upd_p) >
+ cost_branch256(ct, new_p) + vp9_cost_one(upd_p) + 7 * 256;
+ vp9_write(w, update, upd_p);
+ if (update) {
+ *cur_p = new_p;
+ vp9_write_literal(w, new_p >> 1, 7);
}
+ return update;
}
-static void counts_to_nmv_context(
- nmv_context_counts *nmv_count,
- nmv_context *prob,
- int usehp,
- unsigned int (*branch_ct_joint)[2],
- unsigned int (*branch_ct_sign)[2],
- unsigned int (*branch_ct_classes)[MV_CLASSES - 1][2],
- unsigned int (*branch_ct_class0)[CLASS0_SIZE - 1][2],
- unsigned int (*branch_ct_bits)[MV_OFFSET_BITS][2],
- unsigned int (*branch_ct_class0_fp)[CLASS0_SIZE][4 - 1][2],
- unsigned int (*branch_ct_fp)[4 - 1][2],
- unsigned int (*branch_ct_class0_hp)[2],
- unsigned int (*branch_ct_hp)[2]) {
- int i, j, k;
- vp9_tree_probs_from_distribution(vp9_mv_joint_tree,
- prob->joints,
- branch_ct_joint,
- nmv_count->joints, 0);
- for (i = 0; i < 2; ++i) {
- const uint32_t s0 = nmv_count->comps[i].sign[0];
- const uint32_t s1 = nmv_count->comps[i].sign[1];
-
- prob->comps[i].sign = get_binary_prob(s0, s1);
- branch_ct_sign[i][0] = s0;
- branch_ct_sign[i][1] = s1;
- vp9_tree_probs_from_distribution(vp9_mv_class_tree,
- prob->comps[i].classes,
- branch_ct_classes[i],
- nmv_count->comps[i].classes, 0);
- vp9_tree_probs_from_distribution(vp9_mv_class0_tree,
- prob->comps[i].class0,
- branch_ct_class0[i],
- nmv_count->comps[i].class0, 0);
- for (j = 0; j < MV_OFFSET_BITS; ++j) {
- const uint32_t b0 = nmv_count->comps[i].bits[j][0];
- const uint32_t b1 = nmv_count->comps[i].bits[j][1];
-
- prob->comps[i].bits[j] = get_binary_prob(b0, b1);
- branch_ct_bits[i][j][0] = b0;
- branch_ct_bits[i][j][1] = b1;
- }
- }
- for (i = 0; i < 2; ++i) {
- for (k = 0; k < CLASS0_SIZE; ++k) {
- vp9_tree_probs_from_distribution(vp9_mv_fp_tree,
- prob->comps[i].class0_fp[k],
- branch_ct_class0_fp[i][k],
- nmv_count->comps[i].class0_fp[k], 0);
- }
- vp9_tree_probs_from_distribution(vp9_mv_fp_tree,
- prob->comps[i].fp,
- branch_ct_fp[i],
- nmv_count->comps[i].fp, 0);
- }
- if (usehp) {
- for (i = 0; i < 2; ++i) {
- const uint32_t c0_hp0 = nmv_count->comps[i].class0_hp[0];
- const uint32_t c0_hp1 = nmv_count->comps[i].class0_hp[1];
- const uint32_t hp0 = nmv_count->comps[i].hp[0];
- const uint32_t hp1 = nmv_count->comps[i].hp[1];
-
- prob->comps[i].class0_hp = get_binary_prob(c0_hp0, c0_hp1);
- branch_ct_class0_hp[i][0] = c0_hp0;
- branch_ct_class0_hp[i][1] = c0_hp1;
-
- prob->comps[i].hp = get_binary_prob(hp0, hp1);
- branch_ct_hp[i][0] = hp0;
- branch_ct_hp[i][1] = hp1;
- }
- }
+static void write_mv_update(const vp9_tree_index *tree,
+ vp9_prob probs[/*n - 1*/],
+ const unsigned int counts[/*n - 1*/],
+ int n, vp9_writer *w) {
+ int i;
+ unsigned int branch_ct[32][2];
+
+ // Assuming max number of probabilities <= 32
+ assert(n <= 32);
+
+ vp9_tree_probs_from_distribution(tree, branch_ct, counts);
+ for (i = 0; i < n - 1; ++i)
+ update_mv(w, branch_ct[i], &probs[i], MV_UPDATE_PROB);
}
-void vp9_write_nmv_probs(VP9_COMP* const cpi, int usehp, vp9_writer* const bc) {
+void vp9_write_nmv_probs(VP9_COMMON *cm, int usehp, vp9_writer *w) {
int i, j;
- nmv_context prob;
- unsigned int branch_ct_joint[MV_JOINTS - 1][2];
- unsigned int branch_ct_sign[2][2];
- unsigned int branch_ct_classes[2][MV_CLASSES - 1][2];
- unsigned int branch_ct_class0[2][CLASS0_SIZE - 1][2];
- unsigned int branch_ct_bits[2][MV_OFFSET_BITS][2];
- unsigned int branch_ct_class0_fp[2][CLASS0_SIZE][4 - 1][2];
- unsigned int branch_ct_fp[2][4 - 1][2];
- unsigned int branch_ct_class0_hp[2][2];
- unsigned int branch_ct_hp[2][2];
- nmv_context *mvc = &cpi->common.fc.nmvc;
-
- counts_to_nmv_context(&cpi->NMVcount, &prob, usehp,
- branch_ct_joint, branch_ct_sign, branch_ct_classes,
- branch_ct_class0, branch_ct_bits,
- branch_ct_class0_fp, branch_ct_fp,
- branch_ct_class0_hp, branch_ct_hp);
-
- for (j = 0; j < MV_JOINTS - 1; ++j)
- update_mv(bc, branch_ct_joint[j], &mvc->joints[j], prob.joints[j],
- NMV_UPDATE_PROB);
-
- for (i = 0; i < 2; ++i) {
- update_mv(bc, branch_ct_sign[i], &mvc->comps[i].sign,
- prob.comps[i].sign, NMV_UPDATE_PROB);
- for (j = 0; j < MV_CLASSES - 1; ++j)
- update_mv(bc, branch_ct_classes[i][j], &mvc->comps[i].classes[j],
- prob.comps[i].classes[j], NMV_UPDATE_PROB);
+ nmv_context *const mvc = &cm->fc.nmvc;
+ nmv_context_counts *const counts = &cm->counts.mv;
- for (j = 0; j < CLASS0_SIZE - 1; ++j)
- update_mv(bc, branch_ct_class0[i][j], &mvc->comps[i].class0[j],
- prob.comps[i].class0[j], NMV_UPDATE_PROB);
+ write_mv_update(vp9_mv_joint_tree, mvc->joints, counts->joints, MV_JOINTS, w);
+ for (i = 0; i < 2; ++i) {
+ nmv_component *comp = &mvc->comps[i];
+ nmv_component_counts *comp_counts = &counts->comps[i];
+
+ update_mv(w, comp_counts->sign, &comp->sign, MV_UPDATE_PROB);
+ write_mv_update(vp9_mv_class_tree, comp->classes, comp_counts->classes,
+ MV_CLASSES, w);
+ write_mv_update(vp9_mv_class0_tree, comp->class0, comp_counts->class0,
+ CLASS0_SIZE, w);
for (j = 0; j < MV_OFFSET_BITS; ++j)
- update_mv(bc, branch_ct_bits[i][j], &mvc->comps[i].bits[j],
- prob.comps[i].bits[j], NMV_UPDATE_PROB);
+ update_mv(w, comp_counts->bits[j], &comp->bits[j], MV_UPDATE_PROB);
}
for (i = 0; i < 2; ++i) {
- for (j = 0; j < CLASS0_SIZE; ++j) {
- int k;
- for (k = 0; k < 3; ++k)
- update_mv(bc, branch_ct_class0_fp[i][j][k],
- &mvc->comps[i].class0_fp[j][k],
- prob.comps[i].class0_fp[j][k], NMV_UPDATE_PROB);
- }
+ for (j = 0; j < CLASS0_SIZE; ++j)
+ write_mv_update(vp9_mv_fp_tree, mvc->comps[i].class0_fp[j],
+ counts->comps[i].class0_fp[j], MV_FP_SIZE, w);
- for (j = 0; j < 3; ++j)
- update_mv(bc, branch_ct_fp[i][j], &mvc->comps[i].fp[j],
- prob.comps[i].fp[j], NMV_UPDATE_PROB);
+ write_mv_update(vp9_mv_fp_tree, mvc->comps[i].fp, counts->comps[i].fp,
+ MV_FP_SIZE, w);
}
if (usehp) {
for (i = 0; i < 2; ++i) {
- update_mv(bc, branch_ct_class0_hp[i], &mvc->comps[i].class0_hp,
- prob.comps[i].class0_hp, NMV_UPDATE_PROB);
- update_mv(bc, branch_ct_hp[i], &mvc->comps[i].hp,
- prob.comps[i].hp, NMV_UPDATE_PROB);
+ update_mv(w, counts->comps[i].class0_hp, &mvc->comps[i].class0_hp,
+ MV_UPDATE_PROB);
+ update_mv(w, counts->comps[i].hp, &mvc->comps[i].hp, MV_UPDATE_PROB);
}
}
}
@@ -285,7 +207,7 @@ void vp9_encode_mv(VP9_COMP* cpi, vp9_writer* w,
const MV_JOINT_TYPE j = vp9_get_mv_joint(&diff);
usehp = usehp && vp9_use_mv_hp(ref);
- write_token(w, vp9_mv_joint_tree, mvctx->joints, &vp9_mv_joint_encodings[j]);
+ vp9_write_token(w, vp9_mv_joint_tree, mvctx->joints, &mv_joint_encodings[j]);
if (mv_joint_vertical(j))
encode_mv_component(w, diff.row, &mvctx->comps[0], usehp);
@@ -300,34 +222,28 @@ void vp9_encode_mv(VP9_COMP* cpi, vp9_writer* w,
}
}
-void vp9_build_nmv_cost_table(int *mvjoint,
- int *mvcost[2],
- const nmv_context* const mvctx,
- int usehp,
- int mvc_flag_v,
- int mvc_flag_h) {
- vp9_clear_system_state();
- vp9_cost_tokens(mvjoint, mvctx->joints, vp9_mv_joint_tree);
- if (mvc_flag_v)
- build_nmv_component_cost_table(mvcost[0], &mvctx->comps[0], usehp);
- if (mvc_flag_h)
- build_nmv_component_cost_table(mvcost[1], &mvctx->comps[1], usehp);
+void vp9_build_nmv_cost_table(int *mvjoint, int *mvcost[2],
+ const nmv_context* ctx, int usehp) {
+ vp9_cost_tokens(mvjoint, ctx->joints, vp9_mv_joint_tree);
+ build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], usehp);
+ build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], usehp);
}
-static void inc_mvs(int_mv mv[2], int_mv ref[2], int is_compound,
+static void inc_mvs(const MB_MODE_INFO *mbmi, const int_mv mvs[2],
nmv_context_counts *counts) {
int i;
- for (i = 0; i < 1 + is_compound; ++i) {
- const MV diff = { mv[i].as_mv.row - ref[i].as_mv.row,
- mv[i].as_mv.col - ref[i].as_mv.col };
+
+ for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
+ const MV *ref = &mbmi->ref_mvs[mbmi->ref_frame[i]][0].as_mv;
+ const MV diff = {mvs[i].as_mv.row - ref->row,
+ mvs[i].as_mv.col - ref->col};
vp9_inc_mv(&diff, counts);
}
}
-void vp9_update_mv_count(VP9_COMP *cpi, MACROBLOCK *x, int_mv best_ref_mv[2]) {
- MODE_INFO *mi = x->e_mbd.mi_8x8[0];
- MB_MODE_INFO *const mbmi = &mi->mbmi;
- const int is_compound = has_second_ref(mbmi);
+void vp9_update_mv_count(VP9_COMMON *cm, const MACROBLOCKD *xd) {
+ const MODE_INFO *mi = xd->mi[0];
+ const MB_MODE_INFO *const mbmi = &mi->mbmi;
if (mbmi->sb_type < BLOCK_8X8) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[mbmi->sb_type];
@@ -338,10 +254,12 @@ void vp9_update_mv_count(VP9_COMP *cpi, MACROBLOCK *x, int_mv best_ref_mv[2]) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int i = idy * 2 + idx;
if (mi->bmi[i].as_mode == NEWMV)
- inc_mvs(mi->bmi[i].as_mv, best_ref_mv, is_compound, &cpi->NMVcount);
+ inc_mvs(mbmi, mi->bmi[i].as_mv, &cm->counts.mv);
}
}
- } else if (mbmi->mode == NEWMV) {
- inc_mvs(mbmi->mv, best_ref_mv, is_compound, &cpi->NMVcount);
+ } else {
+ if (mbmi->mode == NEWMV)
+ inc_mvs(mbmi, mbmi->mv, &cm->counts.mv);
}
}
+
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemv.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemv.h
index 63317788536..e67f9e3b075 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemv.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encodemv.h
@@ -12,20 +12,26 @@
#ifndef VP9_ENCODER_VP9_ENCODEMV_H_
#define VP9_ENCODER_VP9_ENCODEMV_H_
-#include "vp9/encoder/vp9_onyx_int.h"
+#include "vp9/encoder/vp9_encoder.h"
-void vp9_write_nmv_probs(VP9_COMP* const, int usehp, vp9_writer* const);
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp9_entropy_mv_init();
+
+void vp9_write_nmv_probs(VP9_COMMON *cm, int usehp, vp9_writer *w);
void vp9_encode_mv(VP9_COMP *cpi, vp9_writer* w, const MV* mv, const MV* ref,
const nmv_context* mvctx, int usehp);
-void vp9_build_nmv_cost_table(int *mvjoint,
- int *mvcost[2],
- const nmv_context* const mvctx,
- int usehp,
- int mvc_flag_v,
- int mvc_flag_h);
+void vp9_build_nmv_cost_table(int *mvjoint, int *mvcost[2],
+ const nmv_context* mvctx, int usehp);
+
+void vp9_update_mv_count(VP9_COMMON *cm, const MACROBLOCKD *xd);
-void vp9_update_mv_count(VP9_COMP *cpi, MACROBLOCK *x, int_mv best_ref_mv[2]);
+#ifdef __cplusplus
+} // extern "C"
+#endif
#endif // VP9_ENCODER_VP9_ENCODEMV_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encoder.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encoder.c
new file mode 100644
index 00000000000..911ce7c614b
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encoder.c
@@ -0,0 +1,2896 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+#include <stdio.h>
+#include <limits.h>
+
+#include "./vpx_config.h"
+#include "./vpx_scale_rtcd.h"
+#include "vpx/internal/vpx_psnr.h"
+#include "vpx_ports/vpx_timer.h"
+
+#include "vp9/common/vp9_alloccommon.h"
+#include "vp9/common/vp9_filter.h"
+#include "vp9/common/vp9_idct.h"
+#if CONFIG_VP9_POSTPROC
+#include "vp9/common/vp9_postproc.h"
+#endif
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/common/vp9_systemdependent.h"
+#include "vp9/common/vp9_tile_common.h"
+
+#include "vp9/encoder/vp9_aq_complexity.h"
+#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
+#include "vp9/encoder/vp9_aq_variance.h"
+#include "vp9/encoder/vp9_bitstream.h"
+#include "vp9/encoder/vp9_context_tree.h"
+#include "vp9/encoder/vp9_encodeframe.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_firstpass.h"
+#include "vp9/encoder/vp9_mbgraph.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_picklpf.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_rdopt.h"
+#include "vp9/encoder/vp9_segmentation.h"
+#include "vp9/encoder/vp9_speed_features.h"
+#if CONFIG_INTERNAL_STATS
+#include "vp9/encoder/vp9_ssim.h"
+#endif
+#include "vp9/encoder/vp9_temporal_filter.h"
+#include "vp9/encoder/vp9_resize.h"
+#include "vp9/encoder/vp9_svc_layercontext.h"
+
+void vp9_coef_tree_initialize();
+
+#define DEFAULT_INTERP_FILTER SWITCHABLE
+
+#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
+
+#define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv
+ // for altref computation.
+#define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision
+ // mv. Choose a very high value for
+ // now so that HIGH_PRECISION is always
+ // chosen.
+
+// #define OUTPUT_YUV_REC
+
+#ifdef OUTPUT_YUV_SRC
+FILE *yuv_file;
+#endif
+#ifdef OUTPUT_YUV_REC
+FILE *yuv_rec_file;
+#endif
+
+#if 0
+FILE *framepsnr;
+FILE *kf_list;
+FILE *keyfile;
+#endif
+
+static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) {
+ switch (mode) {
+ case NORMAL:
+ *hr = 1;
+ *hs = 1;
+ break;
+ case FOURFIVE:
+ *hr = 4;
+ *hs = 5;
+ break;
+ case THREEFIVE:
+ *hr = 3;
+ *hs = 5;
+ break;
+ case ONETWO:
+ *hr = 1;
+ *hs = 2;
+ break;
+ default:
+ *hr = 1;
+ *hs = 1;
+ assert(0);
+ break;
+ }
+}
+
+static void set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) {
+ MACROBLOCK *const mb = &cpi->mb;
+ cpi->common.allow_high_precision_mv = allow_high_precision_mv;
+ if (cpi->common.allow_high_precision_mv) {
+ mb->mvcost = mb->nmvcost_hp;
+ mb->mvsadcost = mb->nmvsadcost_hp;
+ } else {
+ mb->mvcost = mb->nmvcost;
+ mb->mvsadcost = mb->nmvsadcost;
+ }
+}
+
+static void setup_frame(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ // Set up entropy context depending on frame type. The decoder mandates
+ // the use of the default context, index 0, for keyframes and inter
+ // frames where the error_resilient_mode or intra_only flag is set. For
+ // other inter-frames the encoder currently uses only two contexts;
+ // context 1 for ALTREF frames and context 0 for the others.
+ if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
+ vp9_setup_past_independence(cm);
+ } else {
+ if (!cpi->use_svc)
+ cm->frame_context_idx = cpi->refresh_alt_ref_frame;
+ }
+
+ if (cm->frame_type == KEY_FRAME) {
+ cpi->refresh_golden_frame = 1;
+ cpi->refresh_alt_ref_frame = 1;
+ } else {
+ cm->fc = cm->frame_contexts[cm->frame_context_idx];
+ }
+}
+
+void vp9_initialize_enc() {
+ static int init_done = 0;
+
+ if (!init_done) {
+ vp9_init_neighbors();
+ vp9_init_quant_tables();
+
+ vp9_coef_tree_initialize();
+ vp9_tokenize_initialize();
+ vp9_init_me_luts();
+ vp9_rc_init_minq_luts();
+ vp9_entropy_mv_init();
+ vp9_entropy_mode_init();
+ vp9_temporal_filter_init();
+ init_done = 1;
+ }
+}
+
+static void dealloc_compressor_data(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ int i;
+
+ // Delete sementation map
+ vpx_free(cpi->segmentation_map);
+ cpi->segmentation_map = NULL;
+ vpx_free(cm->last_frame_seg_map);
+ cm->last_frame_seg_map = NULL;
+ vpx_free(cpi->coding_context.last_frame_seg_map_copy);
+ cpi->coding_context.last_frame_seg_map_copy = NULL;
+
+ vpx_free(cpi->complexity_map);
+ cpi->complexity_map = NULL;
+
+ vp9_cyclic_refresh_free(cpi->cyclic_refresh);
+ cpi->cyclic_refresh = NULL;
+
+ vpx_free(cpi->active_map);
+ cpi->active_map = NULL;
+
+ vp9_free_frame_buffers(cm);
+
+ vp9_free_frame_buffer(&cpi->last_frame_uf);
+ vp9_free_frame_buffer(&cpi->scaled_source);
+ vp9_free_frame_buffer(&cpi->scaled_last_source);
+ vp9_free_frame_buffer(&cpi->alt_ref_buffer);
+ vp9_lookahead_destroy(cpi->lookahead);
+
+ vpx_free(cpi->tok);
+ cpi->tok = 0;
+
+ vp9_free_pc_tree(&cpi->mb);
+
+ for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
+ LAYER_CONTEXT *const lc = &cpi->svc.layer_context[i];
+ vpx_free(lc->rc_twopass_stats_in.buf);
+ lc->rc_twopass_stats_in.buf = NULL;
+ lc->rc_twopass_stats_in.sz = 0;
+ }
+}
+
+static void save_coding_context(VP9_COMP *cpi) {
+ CODING_CONTEXT *const cc = &cpi->coding_context;
+ VP9_COMMON *cm = &cpi->common;
+
+ // Stores a snapshot of key state variables which can subsequently be
+ // restored with a call to vp9_restore_coding_context. These functions are
+ // intended for use in a re-code loop in vp9_compress_frame where the
+ // quantizer value is adjusted between loop iterations.
+ vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost);
+ vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts);
+ vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp);
+
+ vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs);
+
+ vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
+ cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols));
+
+ vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
+ vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
+
+ cc->fc = cm->fc;
+}
+
+static void restore_coding_context(VP9_COMP *cpi) {
+ CODING_CONTEXT *const cc = &cpi->coding_context;
+ VP9_COMMON *cm = &cpi->common;
+
+ // Restore key state variables to the snapshot state stored in the
+ // previous call to vp9_save_coding_context.
+ vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
+ vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts);
+ vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp);
+
+ vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs);
+
+ vpx_memcpy(cm->last_frame_seg_map,
+ cpi->coding_context.last_frame_seg_map_copy,
+ (cm->mi_rows * cm->mi_cols));
+
+ vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
+ vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
+
+ cm->fc = cc->fc;
+}
+
+static void configure_static_seg_features(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ struct segmentation *const seg = &cm->seg;
+
+ int high_q = (int)(rc->avg_q > 48.0);
+ int qi_delta;
+
+ // Disable and clear down for KF
+ if (cm->frame_type == KEY_FRAME) {
+ // Clear down the global segmentation map
+ vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
+ seg->update_map = 0;
+ seg->update_data = 0;
+ cpi->static_mb_pct = 0;
+
+ // Disable segmentation
+ vp9_disable_segmentation(seg);
+
+ // Clear down the segment features.
+ vp9_clearall_segfeatures(seg);
+ } else if (cpi->refresh_alt_ref_frame) {
+ // If this is an alt ref frame
+ // Clear down the global segmentation map
+ vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
+ seg->update_map = 0;
+ seg->update_data = 0;
+ cpi->static_mb_pct = 0;
+
+ // Disable segmentation and individual segment features by default
+ vp9_disable_segmentation(seg);
+ vp9_clearall_segfeatures(seg);
+
+ // Scan frames from current to arf frame.
+ // This function re-enables segmentation if appropriate.
+ vp9_update_mbgraph_stats(cpi);
+
+ // If segmentation was enabled set those features needed for the
+ // arf itself.
+ if (seg->enabled) {
+ seg->update_map = 1;
+ seg->update_data = 1;
+
+ qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875);
+ vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
+ vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
+
+ vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
+
+ // Where relevant assume segment data is delta data
+ seg->abs_delta = SEGMENT_DELTADATA;
+ }
+ } else if (seg->enabled) {
+ // All other frames if segmentation has been enabled
+
+ // First normal frame in a valid gf or alt ref group
+ if (rc->frames_since_golden == 0) {
+ // Set up segment features for normal frames in an arf group
+ if (rc->source_alt_ref_active) {
+ seg->update_map = 0;
+ seg->update_data = 1;
+ seg->abs_delta = SEGMENT_DELTADATA;
+
+ qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125);
+ vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
+
+ vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
+
+ // Segment coding disabled for compred testing
+ if (high_q || (cpi->static_mb_pct == 100)) {
+ vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
+ }
+ } else {
+ // Disable segmentation and clear down features if alt ref
+ // is not active for this group
+
+ vp9_disable_segmentation(seg);
+
+ vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
+
+ seg->update_map = 0;
+ seg->update_data = 0;
+
+ vp9_clearall_segfeatures(seg);
+ }
+ } else if (rc->is_src_frame_alt_ref) {
+ // Special case where we are coding over the top of a previous
+ // alt ref frame.
+ // Segment coding disabled for compred testing
+
+ // Enable ref frame features for segment 0 as well
+ vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
+
+ // All mbs should use ALTREF_FRAME
+ vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
+ vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
+ vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
+ vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
+
+ // Skip all MBs if high Q (0,0 mv and skip coeffs)
+ if (high_q) {
+ vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
+ }
+ // Enable data update
+ seg->update_data = 1;
+ } else {
+ // All other frames.
+
+ // No updates.. leave things as they are.
+ seg->update_map = 0;
+ seg->update_data = 0;
+ }
+ }
+}
+
+static void update_reference_segmentation_map(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
+ uint8_t *cache_ptr = cm->last_frame_seg_map;
+ int row, col;
+
+ for (row = 0; row < cm->mi_rows; row++) {
+ MODE_INFO **mi_8x8 = mi_8x8_ptr;
+ uint8_t *cache = cache_ptr;
+ for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
+ cache[0] = mi_8x8[0]->mbmi.segment_id;
+ mi_8x8_ptr += cm->mi_stride;
+ cache_ptr += cm->mi_cols;
+ }
+}
+
+
+static void set_speed_features(VP9_COMP *cpi) {
+#if CONFIG_INTERNAL_STATS
+ int i;
+ for (i = 0; i < MAX_MODES; ++i)
+ cpi->mode_chosen_counts[i] = 0;
+#endif
+
+ vp9_set_speed_features(cpi);
+
+ // Set rd thresholds based on mode and speed setting
+ vp9_set_rd_speed_thresholds(cpi);
+ vp9_set_rd_speed_thresholds_sub8x8(cpi);
+
+ cpi->mb.fwd_txm4x4 = vp9_fdct4x4;
+ if (cpi->oxcf.lossless || cpi->mb.e_mbd.lossless) {
+ cpi->mb.fwd_txm4x4 = vp9_fwht4x4;
+ }
+}
+
+static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
+ VP9_COMMON *cm = &cpi->common;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+
+ cpi->lookahead = vp9_lookahead_init(oxcf->width, oxcf->height,
+ cm->subsampling_x, cm->subsampling_y,
+ oxcf->lag_in_frames);
+ if (!cpi->lookahead)
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate lag buffers");
+
+ if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer,
+ oxcf->width, oxcf->height,
+ cm->subsampling_x, cm->subsampling_y,
+ VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate altref buffer");
+}
+
+void vp9_alloc_compressor_data(VP9_COMP *cpi) {
+ VP9_COMMON *cm = &cpi->common;
+
+ if (vp9_alloc_frame_buffers(cm, cm->width, cm->height))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate frame buffers");
+
+ if (vp9_alloc_frame_buffer(&cpi->last_frame_uf,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+ VP9_ENC_BORDER_IN_PIXELS))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate last frame buffer");
+
+ if (vp9_alloc_frame_buffer(&cpi->scaled_source,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+ VP9_ENC_BORDER_IN_PIXELS))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate scaled source buffer");
+
+ if (vp9_alloc_frame_buffer(&cpi->scaled_last_source,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+ VP9_ENC_BORDER_IN_PIXELS))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate scaled last source buffer");
+
+ vpx_free(cpi->tok);
+
+ {
+ unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
+
+ CHECK_MEM_ERROR(cm, cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
+ }
+
+ vp9_setup_pc_tree(&cpi->common, &cpi->mb);
+}
+
+static void update_frame_size(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->mb.e_mbd;
+
+ vp9_update_frame_size(cm);
+
+ // Update size of buffers local to this frame
+ if (vp9_realloc_frame_buffer(&cpi->last_frame_uf,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+ VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to reallocate last frame buffer");
+
+ if (vp9_realloc_frame_buffer(&cpi->scaled_source,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+ VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to reallocate scaled source buffer");
+
+ if (vp9_realloc_frame_buffer(&cpi->scaled_last_source,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+ VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to reallocate scaled last source buffer");
+
+ {
+ int y_stride = cpi->scaled_source.y_stride;
+
+ if (cpi->sf.search_method == NSTEP) {
+ vp9_init3smotion_compensation(&cpi->ss_cfg, y_stride);
+ } else if (cpi->sf.search_method == DIAMOND) {
+ vp9_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
+ }
+ }
+
+ init_macroblockd(cm, xd);
+}
+
+void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
+ cpi->oxcf.framerate = framerate < 0.1 ? 30 : framerate;
+ vp9_rc_update_framerate(cpi);
+}
+
+int64_t vp9_rescale(int64_t val, int64_t num, int denom) {
+ int64_t llnum = num;
+ int64_t llden = denom;
+ int64_t llval = val;
+
+ return (llval * llnum / llden);
+}
+
+static void set_tile_limits(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+
+ int min_log2_tile_cols, max_log2_tile_cols;
+ vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
+
+ cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
+ min_log2_tile_cols, max_log2_tile_cols);
+ cm->log2_tile_rows = cpi->oxcf.tile_rows;
+}
+
+static void init_config(struct VP9_COMP *cpi, VP9EncoderConfig *oxcf) {
+ VP9_COMMON *const cm = &cpi->common;
+
+ cpi->oxcf = *oxcf;
+
+ cm->profile = oxcf->profile;
+ cm->bit_depth = oxcf->bit_depth;
+
+ cm->width = oxcf->width;
+ cm->height = oxcf->height;
+ cm->subsampling_x = 0;
+ cm->subsampling_y = 0;
+ vp9_alloc_compressor_data(cpi);
+
+ // Spatial scalability.
+ cpi->svc.number_spatial_layers = oxcf->ss_number_layers;
+ // Temporal scalability.
+ cpi->svc.number_temporal_layers = oxcf->ts_number_layers;
+
+ if ((cpi->svc.number_temporal_layers > 1 &&
+ cpi->oxcf.rc_mode == RC_MODE_CBR) ||
+ (cpi->svc.number_spatial_layers > 1 &&
+ cpi->oxcf.mode == TWO_PASS_SECOND_BEST)) {
+ vp9_init_layer_context(cpi);
+ }
+
+ // change includes all joint functionality
+ vp9_change_config(cpi, oxcf);
+
+ cpi->static_mb_pct = 0;
+
+ cpi->lst_fb_idx = 0;
+ cpi->gld_fb_idx = 1;
+ cpi->alt_fb_idx = 2;
+
+ set_tile_limits(cpi);
+}
+
+static int get_pass(MODE mode) {
+ switch (mode) {
+ case REALTIME:
+ case ONE_PASS_GOOD:
+ case ONE_PASS_BEST:
+ return 0;
+
+ case TWO_PASS_FIRST:
+ return 1;
+
+ case TWO_PASS_SECOND_GOOD:
+ case TWO_PASS_SECOND_BEST:
+ return 2;
+ }
+ return -1;
+}
+
+void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ if (cm->profile != oxcf->profile)
+ cm->profile = oxcf->profile;
+ cm->bit_depth = oxcf->bit_depth;
+
+ if (cm->profile <= PROFILE_1)
+ assert(cm->bit_depth == BITS_8);
+ else
+ assert(cm->bit_depth > BITS_8);
+
+ cpi->oxcf = *oxcf;
+ cpi->pass = get_pass(cpi->oxcf.mode);
+ if (cpi->oxcf.mode == REALTIME)
+ cpi->oxcf.play_alternate = 0;
+
+ cpi->oxcf.lossless = oxcf->lossless;
+ if (cpi->oxcf.lossless) {
+ // In lossless mode, make sure right quantizer range and correct transform
+ // is set.
+ cpi->oxcf.worst_allowed_q = 0;
+ cpi->oxcf.best_allowed_q = 0;
+ cpi->mb.e_mbd.itxm_add = vp9_iwht4x4_add;
+ } else {
+ cpi->mb.e_mbd.itxm_add = vp9_idct4x4_add;
+ }
+ rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
+ cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
+
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_last_frame = 1;
+ cm->refresh_frame_context = 1;
+ cm->reset_frame_context = 0;
+
+ vp9_reset_segment_features(&cm->seg);
+ set_high_precision_mv(cpi, 0);
+
+ {
+ int i;
+
+ for (i = 0; i < MAX_SEGMENTS; i++)
+ cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
+ }
+ cpi->encode_breakout = cpi->oxcf.encode_breakout;
+
+ // local file playback mode == really big buffer
+ if (cpi->oxcf.rc_mode == RC_MODE_VBR) {
+ cpi->oxcf.starting_buffer_level = 60000;
+ cpi->oxcf.optimal_buffer_level = 60000;
+ cpi->oxcf.maximum_buffer_size = 240000;
+ }
+
+ // Convert target bandwidth from Kbit/s to Bit/s
+ cpi->oxcf.target_bandwidth *= 1000;
+
+ cpi->oxcf.starting_buffer_level =
+ vp9_rescale(cpi->oxcf.starting_buffer_level,
+ cpi->oxcf.target_bandwidth, 1000);
+
+ // Set or reset optimal and maximum buffer levels.
+ if (cpi->oxcf.optimal_buffer_level == 0)
+ cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
+ else
+ cpi->oxcf.optimal_buffer_level =
+ vp9_rescale(cpi->oxcf.optimal_buffer_level,
+ cpi->oxcf.target_bandwidth, 1000);
+
+ if (cpi->oxcf.maximum_buffer_size == 0)
+ cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
+ else
+ cpi->oxcf.maximum_buffer_size =
+ vp9_rescale(cpi->oxcf.maximum_buffer_size,
+ cpi->oxcf.target_bandwidth, 1000);
+ // Under a configuration change, where maximum_buffer_size may change,
+ // keep buffer level clipped to the maximum allowed buffer size.
+ rc->bits_off_target = MIN(rc->bits_off_target, cpi->oxcf.maximum_buffer_size);
+ rc->buffer_level = MIN(rc->buffer_level, cpi->oxcf.maximum_buffer_size);
+
+ // Set up frame rate and related parameters rate control values.
+ vp9_new_framerate(cpi, cpi->oxcf.framerate);
+
+ // Set absolute upper and lower quality limits
+ rc->worst_quality = cpi->oxcf.worst_allowed_q;
+ rc->best_quality = cpi->oxcf.best_allowed_q;
+
+ cm->interp_filter = DEFAULT_INTERP_FILTER;
+
+ cm->display_width = cpi->oxcf.width;
+ cm->display_height = cpi->oxcf.height;
+
+ if (cpi->initial_width) {
+ // Increasing the size of the frame beyond the first seen frame, or some
+ // otherwise signaled maximum size, is not supported.
+ // TODO(jkoleszar): exit gracefully.
+ assert(cm->width <= cpi->initial_width);
+ assert(cm->height <= cpi->initial_height);
+ }
+ update_frame_size(cpi);
+
+ if ((cpi->svc.number_temporal_layers > 1 &&
+ cpi->oxcf.rc_mode == RC_MODE_CBR) ||
+ (cpi->svc.number_spatial_layers > 1 && cpi->pass == 2)) {
+ vp9_update_layer_context_change_config(cpi,
+ (int)cpi->oxcf.target_bandwidth);
+ }
+
+#if CONFIG_MULTIPLE_ARF
+ vp9_zero(cpi->alt_ref_source);
+#else
+ cpi->alt_ref_source = NULL;
+#endif
+ rc->is_src_frame_alt_ref = 0;
+
+#if 0
+ // Experimental RD Code
+ cpi->frame_distortion = 0;
+ cpi->last_frame_distortion = 0;
+#endif
+
+ set_tile_limits(cpi);
+
+ cpi->ext_refresh_frame_flags_pending = 0;
+ cpi->ext_refresh_frame_context_pending = 0;
+}
+
+#ifndef M_LOG2_E
+#define M_LOG2_E 0.693147180559945309417
+#endif
+#define log2f(x) (log (x) / (float) M_LOG2_E)
+
+static void cal_nmvjointsadcost(int *mvjointsadcost) {
+ mvjointsadcost[0] = 600;
+ mvjointsadcost[1] = 300;
+ mvjointsadcost[2] = 300;
+ mvjointsadcost[3] = 300;
+}
+
+static void cal_nmvsadcosts(int *mvsadcost[2]) {
+ int i = 1;
+
+ mvsadcost[0][0] = 0;
+ mvsadcost[1][0] = 0;
+
+ do {
+ double z = 256 * (2 * (log2f(8 * i) + .6));
+ mvsadcost[0][i] = (int)z;
+ mvsadcost[1][i] = (int)z;
+ mvsadcost[0][-i] = (int)z;
+ mvsadcost[1][-i] = (int)z;
+ } while (++i <= MV_MAX);
+}
+
+static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
+ int i = 1;
+
+ mvsadcost[0][0] = 0;
+ mvsadcost[1][0] = 0;
+
+ do {
+ double z = 256 * (2 * (log2f(8 * i) + .6));
+ mvsadcost[0][i] = (int)z;
+ mvsadcost[1][i] = (int)z;
+ mvsadcost[0][-i] = (int)z;
+ mvsadcost[1][-i] = (int)z;
+ } while (++i <= MV_MAX);
+}
+
+
+VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf) {
+ unsigned int i, j;
+ VP9_COMP *const cpi = vpx_memalign(32, sizeof(VP9_COMP));
+ VP9_COMMON *const cm = cpi != NULL ? &cpi->common : NULL;
+
+ if (!cm)
+ return NULL;
+
+ vp9_zero(*cpi);
+
+ if (setjmp(cm->error.jmp)) {
+ cm->error.setjmp = 0;
+ vp9_remove_compressor(cpi);
+ return 0;
+ }
+
+ cm->error.setjmp = 1;
+
+ vp9_rtcd();
+
+ cpi->use_svc = 0;
+
+ init_config(cpi, oxcf);
+ vp9_rc_init(&cpi->oxcf, cpi->pass, &cpi->rc);
+
+ cm->current_video_frame = 0;
+
+ // Set reference frame sign bias for ALTREF frame to 1 (for now)
+ cm->ref_frame_sign_bias[ALTREF_FRAME] = 1;
+
+ cpi->gold_is_last = 0;
+ cpi->alt_is_last = 0;
+ cpi->gold_is_alt = 0;
+
+ // Create the encoder segmentation map and set all entries to 0
+ CHECK_MEM_ERROR(cm, cpi->segmentation_map,
+ vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
+
+ // Create a complexity map used for rd adjustment
+ CHECK_MEM_ERROR(cm, cpi->complexity_map,
+ vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
+
+ // Create a map used for cyclic background refresh.
+ CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
+ vp9_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
+
+ // And a place holder structure is the coding context
+ // for use if we want to save and restore it
+ CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
+ vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
+
+ CHECK_MEM_ERROR(cm, cpi->active_map, vpx_calloc(cm->MBs, 1));
+ vpx_memset(cpi->active_map, 1, cm->MBs);
+ cpi->active_map_enabled = 0;
+
+ for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
+ sizeof(cpi->mbgraph_stats[0])); i++) {
+ CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
+ vpx_calloc(cm->MBs *
+ sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
+ }
+
+ cpi->refresh_alt_ref_frame = 0;
+
+#if CONFIG_MULTIPLE_ARF
+ // Turn multiple ARF usage on/off. This is a quick hack for the initial test
+ // version. It should eventually be set via the codec API.
+ cpi->multi_arf_enabled = 1;
+
+ if (cpi->multi_arf_enabled) {
+ cpi->sequence_number = 0;
+ cpi->frame_coding_order_period = 0;
+ vp9_zero(cpi->frame_coding_order);
+ vp9_zero(cpi->arf_buffer_idx);
+ }
+#endif
+
+ cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
+#if CONFIG_INTERNAL_STATS
+ cpi->b_calculate_ssimg = 0;
+
+ cpi->count = 0;
+ cpi->bytes = 0;
+
+ if (cpi->b_calculate_psnr) {
+ cpi->total_y = 0.0;
+ cpi->total_u = 0.0;
+ cpi->total_v = 0.0;
+ cpi->total = 0.0;
+ cpi->total_sq_error = 0;
+ cpi->total_samples = 0;
+
+ cpi->totalp_y = 0.0;
+ cpi->totalp_u = 0.0;
+ cpi->totalp_v = 0.0;
+ cpi->totalp = 0.0;
+ cpi->totalp_sq_error = 0;
+ cpi->totalp_samples = 0;
+
+ cpi->tot_recode_hits = 0;
+ cpi->summed_quality = 0;
+ cpi->summed_weights = 0;
+ cpi->summedp_quality = 0;
+ cpi->summedp_weights = 0;
+ }
+
+ if (cpi->b_calculate_ssimg) {
+ cpi->total_ssimg_y = 0;
+ cpi->total_ssimg_u = 0;
+ cpi->total_ssimg_v = 0;
+ cpi->total_ssimg_all = 0;
+ }
+
+#endif
+
+ cpi->first_time_stamp_ever = INT64_MAX;
+
+ cal_nmvjointsadcost(cpi->mb.nmvjointsadcost);
+ cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX];
+ cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX];
+ cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX];
+ cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX];
+ cal_nmvsadcosts(cpi->mb.nmvsadcost);
+
+ cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX];
+ cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX];
+ cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX];
+ cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX];
+ cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp);
+
+#ifdef OUTPUT_YUV_SRC
+ yuv_file = fopen("bd.yuv", "ab");
+#endif
+#ifdef OUTPUT_YUV_REC
+ yuv_rec_file = fopen("rec.yuv", "wb");
+#endif
+
+#if 0
+ framepsnr = fopen("framepsnr.stt", "a");
+ kf_list = fopen("kf_list.stt", "w");
+#endif
+
+ cpi->output_pkt_list = oxcf->output_pkt_list;
+
+ cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
+
+ if (cpi->pass == 1) {
+ vp9_init_first_pass(cpi);
+ } else if (cpi->pass == 2) {
+ const size_t packet_sz = sizeof(FIRSTPASS_STATS);
+ const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
+
+ if (cpi->svc.number_spatial_layers > 1
+ && cpi->svc.number_temporal_layers == 1) {
+ FIRSTPASS_STATS *const stats = oxcf->two_pass_stats_in.buf;
+ FIRSTPASS_STATS *stats_copy[VPX_SS_MAX_LAYERS] = {0};
+ int i;
+
+ for (i = 0; i < oxcf->ss_number_layers; ++i) {
+ FIRSTPASS_STATS *const last_packet_for_layer =
+ &stats[packets - oxcf->ss_number_layers + i];
+ const int layer_id = (int)last_packet_for_layer->spatial_layer_id;
+ const int packets_in_layer = (int)last_packet_for_layer->count + 1;
+ if (layer_id >= 0 && layer_id < oxcf->ss_number_layers) {
+ LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer_id];
+
+ vpx_free(lc->rc_twopass_stats_in.buf);
+
+ lc->rc_twopass_stats_in.sz = packets_in_layer * packet_sz;
+ CHECK_MEM_ERROR(cm, lc->rc_twopass_stats_in.buf,
+ vpx_malloc(lc->rc_twopass_stats_in.sz));
+ lc->twopass.stats_in_start = lc->rc_twopass_stats_in.buf;
+ lc->twopass.stats_in = lc->twopass.stats_in_start;
+ lc->twopass.stats_in_end = lc->twopass.stats_in_start
+ + packets_in_layer - 1;
+ stats_copy[layer_id] = lc->rc_twopass_stats_in.buf;
+ }
+ }
+
+ for (i = 0; i < packets; ++i) {
+ const int layer_id = (int)stats[i].spatial_layer_id;
+ if (layer_id >= 0 && layer_id < oxcf->ss_number_layers
+ && stats_copy[layer_id] != NULL) {
+ *stats_copy[layer_id] = stats[i];
+ ++stats_copy[layer_id];
+ }
+ }
+
+ vp9_init_second_pass_spatial_svc(cpi);
+ } else {
+ cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
+ cpi->twopass.stats_in = cpi->twopass.stats_in_start;
+ cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
+
+ vp9_init_second_pass(cpi);
+ }
+ }
+
+ set_speed_features(cpi);
+
+ // Default rd threshold factors for mode selection
+ for (i = 0; i < BLOCK_SIZES; ++i) {
+ for (j = 0; j < MAX_MODES; ++j)
+ cpi->rd.thresh_freq_fact[i][j] = 32;
+ }
+
+#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF)\
+ cpi->fn_ptr[BT].sdf = SDF; \
+ cpi->fn_ptr[BT].sdaf = SDAF; \
+ cpi->fn_ptr[BT].vf = VF; \
+ cpi->fn_ptr[BT].svf = SVF; \
+ cpi->fn_ptr[BT].svaf = SVAF; \
+ cpi->fn_ptr[BT].sdx3f = SDX3F; \
+ cpi->fn_ptr[BT].sdx8f = SDX8F; \
+ cpi->fn_ptr[BT].sdx4df = SDX4DF;
+
+ BFP(BLOCK_32X16, vp9_sad32x16, vp9_sad32x16_avg,
+ vp9_variance32x16, vp9_sub_pixel_variance32x16,
+ vp9_sub_pixel_avg_variance32x16, NULL, NULL, vp9_sad32x16x4d)
+
+ BFP(BLOCK_16X32, vp9_sad16x32, vp9_sad16x32_avg,
+ vp9_variance16x32, vp9_sub_pixel_variance16x32,
+ vp9_sub_pixel_avg_variance16x32, NULL, NULL, vp9_sad16x32x4d)
+
+ BFP(BLOCK_64X32, vp9_sad64x32, vp9_sad64x32_avg,
+ vp9_variance64x32, vp9_sub_pixel_variance64x32,
+ vp9_sub_pixel_avg_variance64x32, NULL, NULL, vp9_sad64x32x4d)
+
+ BFP(BLOCK_32X64, vp9_sad32x64, vp9_sad32x64_avg,
+ vp9_variance32x64, vp9_sub_pixel_variance32x64,
+ vp9_sub_pixel_avg_variance32x64, NULL, NULL, vp9_sad32x64x4d)
+
+ BFP(BLOCK_32X32, vp9_sad32x32, vp9_sad32x32_avg,
+ vp9_variance32x32, vp9_sub_pixel_variance32x32,
+ vp9_sub_pixel_avg_variance32x32, vp9_sad32x32x3, vp9_sad32x32x8,
+ vp9_sad32x32x4d)
+
+ BFP(BLOCK_64X64, vp9_sad64x64, vp9_sad64x64_avg,
+ vp9_variance64x64, vp9_sub_pixel_variance64x64,
+ vp9_sub_pixel_avg_variance64x64, vp9_sad64x64x3, vp9_sad64x64x8,
+ vp9_sad64x64x4d)
+
+ BFP(BLOCK_16X16, vp9_sad16x16, vp9_sad16x16_avg,
+ vp9_variance16x16, vp9_sub_pixel_variance16x16,
+ vp9_sub_pixel_avg_variance16x16, vp9_sad16x16x3, vp9_sad16x16x8,
+ vp9_sad16x16x4d)
+
+ BFP(BLOCK_16X8, vp9_sad16x8, vp9_sad16x8_avg,
+ vp9_variance16x8, vp9_sub_pixel_variance16x8,
+ vp9_sub_pixel_avg_variance16x8,
+ vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d)
+
+ BFP(BLOCK_8X16, vp9_sad8x16, vp9_sad8x16_avg,
+ vp9_variance8x16, vp9_sub_pixel_variance8x16,
+ vp9_sub_pixel_avg_variance8x16,
+ vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d)
+
+ BFP(BLOCK_8X8, vp9_sad8x8, vp9_sad8x8_avg,
+ vp9_variance8x8, vp9_sub_pixel_variance8x8,
+ vp9_sub_pixel_avg_variance8x8,
+ vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d)
+
+ BFP(BLOCK_8X4, vp9_sad8x4, vp9_sad8x4_avg,
+ vp9_variance8x4, vp9_sub_pixel_variance8x4,
+ vp9_sub_pixel_avg_variance8x4, NULL, vp9_sad8x4x8, vp9_sad8x4x4d)
+
+ BFP(BLOCK_4X8, vp9_sad4x8, vp9_sad4x8_avg,
+ vp9_variance4x8, vp9_sub_pixel_variance4x8,
+ vp9_sub_pixel_avg_variance4x8, NULL, vp9_sad4x8x8, vp9_sad4x8x4d)
+
+ BFP(BLOCK_4X4, vp9_sad4x4, vp9_sad4x4_avg,
+ vp9_variance4x4, vp9_sub_pixel_variance4x4,
+ vp9_sub_pixel_avg_variance4x4,
+ vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d)
+
+ cpi->full_search_sad = vp9_full_search_sad;
+ cpi->diamond_search_sad = vp9_diamond_search_sad;
+ cpi->refining_search_sad = vp9_refining_search_sad;
+
+ /* vp9_init_quantizer() is first called here. Add check in
+ * vp9_frame_init_quantizer() so that vp9_init_quantizer is only
+ * called later when needed. This will avoid unnecessary calls of
+ * vp9_init_quantizer() for every frame.
+ */
+ vp9_init_quantizer(cpi);
+
+ vp9_loop_filter_init(cm);
+
+ cm->error.setjmp = 0;
+
+ return cpi;
+}
+
+void vp9_remove_compressor(VP9_COMP *cpi) {
+ unsigned int i;
+
+ if (!cpi)
+ return;
+
+ if (cpi && (cpi->common.current_video_frame > 0)) {
+#if CONFIG_INTERNAL_STATS
+
+ vp9_clear_system_state();
+
+ // printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
+ if (cpi->pass != 1) {
+ FILE *f = fopen("opsnr.stt", "a");
+ double time_encoded = (cpi->last_end_time_stamp_seen
+ - cpi->first_time_stamp_ever) / 10000000.000;
+ double total_encode_time = (cpi->time_receive_data +
+ cpi->time_compress_data) / 1000.000;
+ double dr = (double)cpi->bytes * (double) 8 / (double)1000
+ / time_encoded;
+
+ if (cpi->b_calculate_psnr) {
+ const double total_psnr =
+ vpx_sse_to_psnr((double)cpi->total_samples, 255.0,
+ (double)cpi->total_sq_error);
+ const double totalp_psnr =
+ vpx_sse_to_psnr((double)cpi->totalp_samples, 255.0,
+ (double)cpi->totalp_sq_error);
+ const double total_ssim = 100 * pow(cpi->summed_quality /
+ cpi->summed_weights, 8.0);
+ const double totalp_ssim = 100 * pow(cpi->summedp_quality /
+ cpi->summedp_weights, 8.0);
+
+ fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
+ "VPXSSIM\tVPSSIMP\t Time(ms)\n");
+ fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
+ dr, cpi->total / cpi->count, total_psnr,
+ cpi->totalp / cpi->count, totalp_psnr, total_ssim, totalp_ssim,
+ total_encode_time);
+ }
+
+ if (cpi->b_calculate_ssimg) {
+ fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n");
+ fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
+ cpi->total_ssimg_y / cpi->count,
+ cpi->total_ssimg_u / cpi->count,
+ cpi->total_ssimg_v / cpi->count,
+ cpi->total_ssimg_all / cpi->count, total_encode_time);
+ }
+
+ fclose(f);
+ }
+
+#endif
+
+#if 0
+ {
+ printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
+ printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
+ printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
+ cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
+ cpi->time_compress_data / 1000,
+ (cpi->time_receive_data + cpi->time_compress_data) / 1000);
+ }
+#endif
+ }
+
+ dealloc_compressor_data(cpi);
+ vpx_free(cpi->tok);
+
+ for (i = 0; i < sizeof(cpi->mbgraph_stats) /
+ sizeof(cpi->mbgraph_stats[0]); ++i) {
+ vpx_free(cpi->mbgraph_stats[i].mb_stats);
+ }
+
+ vp9_remove_common(&cpi->common);
+ vpx_free(cpi);
+
+#ifdef OUTPUT_YUV_SRC
+ fclose(yuv_file);
+#endif
+#ifdef OUTPUT_YUV_REC
+ fclose(yuv_rec_file);
+#endif
+
+#if 0
+
+ if (keyfile)
+ fclose(keyfile);
+
+ if (framepsnr)
+ fclose(framepsnr);
+
+ if (kf_list)
+ fclose(kf_list);
+
+#endif
+}
+static int64_t get_sse(const uint8_t *a, int a_stride,
+ const uint8_t *b, int b_stride,
+ int width, int height) {
+ const int dw = width % 16;
+ const int dh = height % 16;
+ int64_t total_sse = 0;
+ unsigned int sse = 0;
+ int sum = 0;
+ int x, y;
+
+ if (dw > 0) {
+ variance(&a[width - dw], a_stride, &b[width - dw], b_stride,
+ dw, height, &sse, &sum);
+ total_sse += sse;
+ }
+
+ if (dh > 0) {
+ variance(&a[(height - dh) * a_stride], a_stride,
+ &b[(height - dh) * b_stride], b_stride,
+ width - dw, dh, &sse, &sum);
+ total_sse += sse;
+ }
+
+ for (y = 0; y < height / 16; ++y) {
+ const uint8_t *pa = a;
+ const uint8_t *pb = b;
+ for (x = 0; x < width / 16; ++x) {
+ vp9_mse16x16(pa, a_stride, pb, b_stride, &sse);
+ total_sse += sse;
+
+ pa += 16;
+ pb += 16;
+ }
+
+ a += 16 * a_stride;
+ b += 16 * b_stride;
+ }
+
+ return total_sse;
+}
+
+typedef struct {
+ double psnr[4]; // total/y/u/v
+ uint64_t sse[4]; // total/y/u/v
+ uint32_t samples[4]; // total/y/u/v
+} PSNR_STATS;
+
+static void calc_psnr(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b,
+ PSNR_STATS *psnr) {
+ const int widths[3] = {a->y_width, a->uv_width, a->uv_width };
+ const int heights[3] = {a->y_height, a->uv_height, a->uv_height};
+ const uint8_t *a_planes[3] = {a->y_buffer, a->u_buffer, a->v_buffer };
+ const int a_strides[3] = {a->y_stride, a->uv_stride, a->uv_stride};
+ const uint8_t *b_planes[3] = {b->y_buffer, b->u_buffer, b->v_buffer };
+ const int b_strides[3] = {b->y_stride, b->uv_stride, b->uv_stride};
+ int i;
+ uint64_t total_sse = 0;
+ uint32_t total_samples = 0;
+
+ for (i = 0; i < 3; ++i) {
+ const int w = widths[i];
+ const int h = heights[i];
+ const uint32_t samples = w * h;
+ const uint64_t sse = get_sse(a_planes[i], a_strides[i],
+ b_planes[i], b_strides[i],
+ w, h);
+ psnr->sse[1 + i] = sse;
+ psnr->samples[1 + i] = samples;
+ psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, 255.0, (double)sse);
+
+ total_sse += sse;
+ total_samples += samples;
+ }
+
+ psnr->sse[0] = total_sse;
+ psnr->samples[0] = total_samples;
+ psnr->psnr[0] = vpx_sse_to_psnr((double)total_samples, 255.0,
+ (double)total_sse);
+}
+
+static void generate_psnr_packet(VP9_COMP *cpi) {
+ struct vpx_codec_cx_pkt pkt;
+ int i;
+ PSNR_STATS psnr;
+ calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr);
+ for (i = 0; i < 4; ++i) {
+ pkt.data.psnr.samples[i] = psnr.samples[i];
+ pkt.data.psnr.sse[i] = psnr.sse[i];
+ pkt.data.psnr.psnr[i] = psnr.psnr[i];
+ }
+ pkt.kind = VPX_CODEC_PSNR_PKT;
+ vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
+}
+
+int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags) {
+ if (ref_frame_flags > 7)
+ return -1;
+
+ cpi->ref_frame_flags = ref_frame_flags;
+ return 0;
+}
+
+void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags) {
+ cpi->ext_refresh_golden_frame = (ref_frame_flags & VP9_GOLD_FLAG) != 0;
+ cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & VP9_ALT_FLAG) != 0;
+ cpi->ext_refresh_last_frame = (ref_frame_flags & VP9_LAST_FLAG) != 0;
+ cpi->ext_refresh_frame_flags_pending = 1;
+}
+
+static YV12_BUFFER_CONFIG *get_vp9_ref_frame_buffer(VP9_COMP *cpi,
+ VP9_REFFRAME ref_frame_flag) {
+ MV_REFERENCE_FRAME ref_frame = NONE;
+ if (ref_frame_flag == VP9_LAST_FLAG)
+ ref_frame = LAST_FRAME;
+ else if (ref_frame_flag == VP9_GOLD_FLAG)
+ ref_frame = GOLDEN_FRAME;
+ else if (ref_frame_flag == VP9_ALT_FLAG)
+ ref_frame = ALTREF_FRAME;
+
+ return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame);
+}
+
+int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
+ YV12_BUFFER_CONFIG *sd) {
+ YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
+ if (cfg) {
+ vp8_yv12_copy_frame(cfg, sd);
+ return 0;
+ } else {
+ return -1;
+ }
+}
+
+int vp9_get_reference_enc(VP9_COMP *cpi, int index, YV12_BUFFER_CONFIG **fb) {
+ VP9_COMMON *cm = &cpi->common;
+
+ if (index < 0 || index >= REF_FRAMES)
+ return -1;
+
+ *fb = &cm->frame_bufs[cm->ref_frame_map[index]].buf;
+ return 0;
+}
+
+int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
+ YV12_BUFFER_CONFIG *sd) {
+ YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
+ if (cfg) {
+ vp8_yv12_copy_frame(sd, cfg);
+ return 0;
+ } else {
+ return -1;
+ }
+}
+
+int vp9_update_entropy(VP9_COMP * cpi, int update) {
+ cpi->ext_refresh_frame_context = update;
+ cpi->ext_refresh_frame_context_pending = 1;
+ return 0;
+}
+
+
+#ifdef OUTPUT_YUV_SRC
+void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) {
+ uint8_t *src = s->y_buffer;
+ int h = s->y_height;
+
+ do {
+ fwrite(src, s->y_width, 1, yuv_file);
+ src += s->y_stride;
+ } while (--h);
+
+ src = s->u_buffer;
+ h = s->uv_height;
+
+ do {
+ fwrite(src, s->uv_width, 1, yuv_file);
+ src += s->uv_stride;
+ } while (--h);
+
+ src = s->v_buffer;
+ h = s->uv_height;
+
+ do {
+ fwrite(src, s->uv_width, 1, yuv_file);
+ src += s->uv_stride;
+ } while (--h);
+}
+#endif
+
+#ifdef OUTPUT_YUV_REC
+void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
+ YV12_BUFFER_CONFIG *s = cm->frame_to_show;
+ uint8_t *src = s->y_buffer;
+ int h = cm->height;
+
+ do {
+ fwrite(src, s->y_width, 1, yuv_rec_file);
+ src += s->y_stride;
+ } while (--h);
+
+ src = s->u_buffer;
+ h = s->uv_height;
+
+ do {
+ fwrite(src, s->uv_width, 1, yuv_rec_file);
+ src += s->uv_stride;
+ } while (--h);
+
+ src = s->v_buffer;
+ h = s->uv_height;
+
+ do {
+ fwrite(src, s->uv_width, 1, yuv_rec_file);
+ src += s->uv_stride;
+ } while (--h);
+
+#if CONFIG_ALPHA
+ if (s->alpha_buffer) {
+ src = s->alpha_buffer;
+ h = s->alpha_height;
+ do {
+ fwrite(src, s->alpha_width, 1, yuv_rec_file);
+ src += s->alpha_stride;
+ } while (--h);
+ }
+#endif
+
+ fflush(yuv_rec_file);
+}
+#endif
+
+static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst) {
+ // TODO(dkovalev): replace YV12_BUFFER_CONFIG with vpx_image_t
+ int i;
+ const uint8_t *const srcs[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
+ src->alpha_buffer};
+ const int src_strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
+ src->alpha_stride};
+ const int src_widths[4] = {src->y_crop_width, src->uv_crop_width,
+ src->uv_crop_width, src->y_crop_width};
+ const int src_heights[4] = {src->y_crop_height, src->uv_crop_height,
+ src->uv_crop_height, src->y_crop_height};
+ uint8_t *const dsts[4] = {dst->y_buffer, dst->u_buffer, dst->v_buffer,
+ dst->alpha_buffer};
+ const int dst_strides[4] = {dst->y_stride, dst->uv_stride, dst->uv_stride,
+ dst->alpha_stride};
+ const int dst_widths[4] = {dst->y_crop_width, dst->uv_crop_width,
+ dst->uv_crop_width, dst->y_crop_width};
+ const int dst_heights[4] = {dst->y_crop_height, dst->uv_crop_height,
+ dst->uv_crop_height, dst->y_crop_height};
+
+ for (i = 0; i < MAX_MB_PLANE; ++i)
+ vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
+ dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
+
+ // TODO(hkuang): Call C version explicitly
+ // as neon version only expand border size 32.
+ vp8_yv12_extend_frame_borders_c(dst);
+}
+
+static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst) {
+ const int src_w = src->y_crop_width;
+ const int src_h = src->y_crop_height;
+ const int dst_w = dst->y_crop_width;
+ const int dst_h = dst->y_crop_height;
+ const uint8_t *const srcs[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
+ src->alpha_buffer};
+ const int src_strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
+ src->alpha_stride};
+ uint8_t *const dsts[4] = {dst->y_buffer, dst->u_buffer, dst->v_buffer,
+ dst->alpha_buffer};
+ const int dst_strides[4] = {dst->y_stride, dst->uv_stride, dst->uv_stride,
+ dst->alpha_stride};
+ int x, y, i;
+
+ for (y = 0; y < dst_h; y += 16) {
+ for (x = 0; x < dst_w; x += 16) {
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ const int factor = (i == 0 || i == 3 ? 1 : 2);
+ const int x_q4 = x * (16 / factor) * src_w / dst_w;
+ const int y_q4 = y * (16 / factor) * src_h / dst_h;
+ const int src_stride = src_strides[i];
+ const int dst_stride = dst_strides[i];
+ const uint8_t *src_ptr = srcs[i] + (y / factor) * src_h / dst_h *
+ src_stride + (x / factor) * src_w / dst_w;
+ uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor);
+
+ vp9_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
+ vp9_sub_pel_filters_8[x_q4 & 0xf], 16 * src_w / dst_w,
+ vp9_sub_pel_filters_8[y_q4 & 0xf], 16 * src_h / dst_h,
+ 16 / factor, 16 / factor);
+ }
+ }
+ }
+
+ // TODO(hkuang): Call C version explicitly
+ // as neon version only expand border size 32.
+ vp8_yv12_extend_frame_borders_c(dst);
+}
+
+static int find_fp_qindex() {
+ int i;
+
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ if (vp9_convert_qindex_to_q(i) >= 30.0) {
+ break;
+ }
+ }
+
+ if (i == QINDEX_RANGE)
+ i--;
+
+ return i;
+}
+
+#define WRITE_RECON_BUFFER 0
+#if WRITE_RECON_BUFFER
+void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) {
+ FILE *yframe;
+ int i;
+ char filename[255];
+
+ snprintf(filename, sizeof(filename), "cx\\y%04d.raw", this_frame);
+ yframe = fopen(filename, "wb");
+
+ for (i = 0; i < frame->y_height; i++)
+ fwrite(frame->y_buffer + i * frame->y_stride,
+ frame->y_width, 1, yframe);
+
+ fclose(yframe);
+ snprintf(filename, sizeof(filename), "cx\\u%04d.raw", this_frame);
+ yframe = fopen(filename, "wb");
+
+ for (i = 0; i < frame->uv_height; i++)
+ fwrite(frame->u_buffer + i * frame->uv_stride,
+ frame->uv_width, 1, yframe);
+
+ fclose(yframe);
+ snprintf(filename, sizeof(filename), "cx\\v%04d.raw", this_frame);
+ yframe = fopen(filename, "wb");
+
+ for (i = 0; i < frame->uv_height; i++)
+ fwrite(frame->v_buffer + i * frame->uv_stride,
+ frame->uv_width, 1, yframe);
+
+ fclose(yframe);
+}
+#endif
+
+// Function to test for conditions that indicate we should loop
+// back and recode a frame.
+static int recode_loop_test(const VP9_COMP *cpi,
+ int high_limit, int low_limit,
+ int q, int maxq, int minq) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ int force_recode = 0;
+
+ // Special case trap if maximum allowed frame size exceeded.
+ if (rc->projected_frame_size > rc->max_frame_bandwidth) {
+ force_recode = 1;
+
+ // Is frame recode allowed.
+ // Yes if either recode mode 1 is selected or mode 2 is selected
+ // and the frame is a key frame, golden frame or alt_ref_frame
+ } else if ((cpi->sf.recode_loop == ALLOW_RECODE) ||
+ ((cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF) &&
+ (cm->frame_type == KEY_FRAME ||
+ cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
+ // General over and under shoot tests
+ if ((rc->projected_frame_size > high_limit && q < maxq) ||
+ (rc->projected_frame_size < low_limit && q > minq)) {
+ force_recode = 1;
+ } else if (cpi->oxcf.rc_mode == RC_MODE_CONSTRAINED_QUALITY) {
+ // Deal with frame undershoot and whether or not we are
+ // below the automatically set cq level.
+ if (q > oxcf->cq_level &&
+ rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
+ force_recode = 1;
+ }
+ }
+ }
+ return force_recode;
+}
+
+void vp9_update_reference_frames(VP9_COMP *cpi) {
+ VP9_COMMON * const cm = &cpi->common;
+
+ // At this point the new frame has been encoded.
+ // If any buffer copy / swapping is signaled it should be done here.
+ if (cm->frame_type == KEY_FRAME) {
+ ref_cnt_fb(cm->frame_bufs,
+ &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
+ ref_cnt_fb(cm->frame_bufs,
+ &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
+ }
+#if CONFIG_MULTIPLE_ARF
+ else if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
+ !cpi->refresh_alt_ref_frame) {
+#else
+ else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
+ !cpi->use_svc) {
+#endif
+ /* Preserve the previously existing golden frame and update the frame in
+ * the alt ref slot instead. This is highly specific to the current use of
+ * alt-ref as a forward reference, and this needs to be generalized as
+ * other uses are implemented (like RTC/temporal scaling)
+ *
+ * The update to the buffer in the alt ref slot was signaled in
+ * vp9_pack_bitstream(), now swap the buffer pointers so that it's treated
+ * as the golden frame next time.
+ */
+ int tmp;
+
+ ref_cnt_fb(cm->frame_bufs,
+ &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
+
+ tmp = cpi->alt_fb_idx;
+ cpi->alt_fb_idx = cpi->gld_fb_idx;
+ cpi->gld_fb_idx = tmp;
+ } else { /* For non key/golden frames */
+ if (cpi->refresh_alt_ref_frame) {
+ int arf_idx = cpi->alt_fb_idx;
+#if CONFIG_MULTIPLE_ARF
+ if (cpi->multi_arf_enabled) {
+ arf_idx = cpi->arf_buffer_idx[cpi->sequence_number + 1];
+ }
+#endif
+ ref_cnt_fb(cm->frame_bufs,
+ &cm->ref_frame_map[arf_idx], cm->new_fb_idx);
+ }
+
+ if (cpi->refresh_golden_frame) {
+ ref_cnt_fb(cm->frame_bufs,
+ &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
+ }
+ }
+
+ if (cpi->refresh_last_frame) {
+ ref_cnt_fb(cm->frame_bufs,
+ &cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
+ }
+}
+
+static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
+ MACROBLOCKD *xd = &cpi->mb.e_mbd;
+ struct loopfilter *lf = &cm->lf;
+ if (xd->lossless) {
+ lf->filter_level = 0;
+ } else {
+ struct vpx_usec_timer timer;
+
+ vp9_clear_system_state();
+
+ vpx_usec_timer_start(&timer);
+
+ vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick);
+
+ vpx_usec_timer_mark(&timer);
+ cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
+ }
+
+ if (lf->filter_level > 0) {
+ vp9_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
+ }
+
+ vp9_extend_frame_inner_borders(cm->frame_to_show);
+}
+
+void vp9_scale_references(VP9_COMP *cpi) {
+ VP9_COMMON *cm = &cpi->common;
+ MV_REFERENCE_FRAME ref_frame;
+
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)];
+ const YV12_BUFFER_CONFIG *const ref = &cm->frame_bufs[idx].buf;
+
+ if (ref->y_crop_width != cm->width ||
+ ref->y_crop_height != cm->height) {
+ const int new_fb = get_free_fb(cm);
+ vp9_realloc_frame_buffer(&cm->frame_bufs[new_fb].buf,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+ VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL);
+ scale_and_extend_frame(ref, &cm->frame_bufs[new_fb].buf);
+ cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
+ } else {
+ cpi->scaled_ref_idx[ref_frame - 1] = idx;
+ cm->frame_bufs[idx].ref_count++;
+ }
+ }
+}
+
+static void release_scaled_references(VP9_COMP *cpi) {
+ VP9_COMMON *cm = &cpi->common;
+ int i;
+
+ for (i = 0; i < 3; i++)
+ cm->frame_bufs[cpi->scaled_ref_idx[i]].ref_count--;
+}
+
+static void full_to_model_count(unsigned int *model_count,
+ unsigned int *full_count) {
+ int n;
+ model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
+ model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
+ model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
+ for (n = THREE_TOKEN; n < EOB_TOKEN; ++n)
+ model_count[TWO_TOKEN] += full_count[n];
+ model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN];
+}
+
+static void full_to_model_counts(vp9_coeff_count_model *model_count,
+ vp9_coeff_count *full_count) {
+ int i, j, k, l;
+
+ for (i = 0; i < PLANE_TYPES; ++i)
+ for (j = 0; j < REF_TYPES; ++j)
+ for (k = 0; k < COEF_BANDS; ++k)
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
+ full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
+}
+
+#if 0 && CONFIG_INTERNAL_STATS
+static void output_frame_level_debug_stats(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
+ int recon_err;
+
+ vp9_clear_system_state();
+
+ recon_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+
+ if (cpi->twopass.total_left_stats.coded_error != 0.0)
+ fprintf(f, "%10u %10d %10d %10d %10d"
+ "%10"PRId64" %10"PRId64" %10"PRId64" %10"PRId64" %10d "
+ "%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf"
+ "%6d %6d %5d %5d %5d "
+ "%10"PRId64" %10.3lf"
+ "%10lf %8u %10d %10d %10d\n",
+ cpi->common.current_video_frame, cpi->rc.this_frame_target,
+ cpi->rc.projected_frame_size,
+ cpi->rc.projected_frame_size / cpi->common.MBs,
+ (cpi->rc.projected_frame_size - cpi->rc.this_frame_target),
+ cpi->rc.vbr_bits_off_target,
+ cpi->rc.total_target_vs_actual,
+ (cpi->oxcf.starting_buffer_level - cpi->rc.bits_off_target),
+ cpi->rc.total_actual_bits, cm->base_qindex,
+ vp9_convert_qindex_to_q(cm->base_qindex),
+ (double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
+ cpi->rc.avg_q,
+ vp9_convert_qindex_to_q(cpi->rc.ni_av_qi),
+ vp9_convert_qindex_to_q(cpi->oxcf.cq_level),
+ cpi->refresh_last_frame, cpi->refresh_golden_frame,
+ cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost,
+ cpi->twopass.bits_left,
+ cpi->twopass.total_left_stats.coded_error,
+ cpi->twopass.bits_left /
+ (1 + cpi->twopass.total_left_stats.coded_error),
+ cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost,
+ cpi->twopass.kf_zeromotion_pct);
+
+ fclose(f);
+
+ if (0) {
+ FILE *const fmodes = fopen("Modes.stt", "a");
+ int i;
+
+ fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
+ cm->frame_type, cpi->refresh_golden_frame,
+ cpi->refresh_alt_ref_frame);
+
+ for (i = 0; i < MAX_MODES; ++i)
+ fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
+
+ fprintf(fmodes, "\n");
+
+ fclose(fmodes);
+ }
+}
+#endif
+
+static void encode_without_recode_loop(VP9_COMP *cpi,
+ int q) {
+ VP9_COMMON *const cm = &cpi->common;
+ vp9_clear_system_state();
+ vp9_set_quantizer(cm, q);
+ setup_frame(cpi);
+ // Variance adaptive and in frame q adjustment experiments are mutually
+ // exclusive.
+ if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+ vp9_vaq_frame_setup(cpi);
+ } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
+ vp9_setup_in_frame_q_adj(cpi);
+ } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
+ vp9_cyclic_refresh_setup(cpi);
+ }
+ // transform / motion compensation build reconstruction frame
+ vp9_encode_frame(cpi);
+
+ // Update the skip mb flag probabilities based on the distribution
+ // seen in the last encoder iteration.
+ // update_base_skip_probs(cpi);
+ vp9_clear_system_state();
+}
+
+static void encode_with_recode_loop(VP9_COMP *cpi,
+ size_t *size,
+ uint8_t *dest,
+ int q,
+ int bottom_index,
+ int top_index) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int loop_count = 0;
+ int loop = 0;
+ int overshoot_seen = 0;
+ int undershoot_seen = 0;
+ int q_low = bottom_index, q_high = top_index;
+ int frame_over_shoot_limit;
+ int frame_under_shoot_limit;
+
+ // Decide frame size bounds
+ vp9_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
+ &frame_under_shoot_limit,
+ &frame_over_shoot_limit);
+
+ do {
+ vp9_clear_system_state();
+
+ vp9_set_quantizer(cm, q);
+
+ if (loop_count == 0)
+ setup_frame(cpi);
+
+ // Variance adaptive and in frame q adjustment experiments are mutually
+ // exclusive.
+ if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+ vp9_vaq_frame_setup(cpi);
+ } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
+ vp9_setup_in_frame_q_adj(cpi);
+ }
+
+ // transform / motion compensation build reconstruction frame
+ vp9_encode_frame(cpi);
+
+ // Update the skip mb flag probabilities based on the distribution
+ // seen in the last encoder iteration.
+ // update_base_skip_probs(cpi);
+
+ vp9_clear_system_state();
+
+ // Dummy pack of the bitstream using up to date stats to get an
+ // accurate estimate of output frame size to determine if we need
+ // to recode.
+ if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
+ save_coding_context(cpi);
+ cpi->dummy_packing = 1;
+ if (!cpi->sf.use_nonrd_pick_mode)
+ vp9_pack_bitstream(cpi, dest, size);
+
+ rc->projected_frame_size = (int)(*size) << 3;
+ restore_coding_context(cpi);
+
+ if (frame_over_shoot_limit == 0)
+ frame_over_shoot_limit = 1;
+ }
+
+ if (cpi->oxcf.rc_mode == RC_MODE_CONSTANT_QUALITY) {
+ loop = 0;
+ } else {
+ if ((cm->frame_type == KEY_FRAME) &&
+ rc->this_key_frame_forced &&
+ (rc->projected_frame_size < rc->max_frame_bandwidth)) {
+ int last_q = q;
+ int kf_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+
+ int high_err_target = cpi->ambient_err;
+ int low_err_target = cpi->ambient_err >> 1;
+
+ // Prevent possible divide by zero error below for perfect KF
+ kf_err += !kf_err;
+
+ // The key frame is not good enough or we can afford
+ // to make it better without undue risk of popping.
+ if ((kf_err > high_err_target &&
+ rc->projected_frame_size <= frame_over_shoot_limit) ||
+ (kf_err > low_err_target &&
+ rc->projected_frame_size <= frame_under_shoot_limit)) {
+ // Lower q_high
+ q_high = q > q_low ? q - 1 : q_low;
+
+ // Adjust Q
+ q = (q * high_err_target) / kf_err;
+ q = MIN(q, (q_high + q_low) >> 1);
+ } else if (kf_err < low_err_target &&
+ rc->projected_frame_size >= frame_under_shoot_limit) {
+ // The key frame is much better than the previous frame
+ // Raise q_low
+ q_low = q < q_high ? q + 1 : q_high;
+
+ // Adjust Q
+ q = (q * low_err_target) / kf_err;
+ q = MIN(q, (q_high + q_low + 1) >> 1);
+ }
+
+ // Clamp Q to upper and lower limits:
+ q = clamp(q, q_low, q_high);
+
+ loop = q != last_q;
+ } else if (recode_loop_test(
+ cpi, frame_over_shoot_limit, frame_under_shoot_limit,
+ q, MAX(q_high, top_index), bottom_index)) {
+ // Is the projected frame size out of range and are we allowed
+ // to attempt to recode.
+ int last_q = q;
+ int retries = 0;
+
+ // Frame size out of permitted range:
+ // Update correction factor & compute new Q to try...
+
+ // Frame is too large
+ if (rc->projected_frame_size > rc->this_frame_target) {
+ // Special case if the projected size is > the max allowed.
+ if (rc->projected_frame_size >= rc->max_frame_bandwidth)
+ q_high = rc->worst_quality;
+
+ // Raise Qlow as to at least the current value
+ q_low = q < q_high ? q + 1 : q_high;
+
+ if (undershoot_seen || loop_count > 1) {
+ // Update rate_correction_factor unless
+ vp9_rc_update_rate_correction_factors(cpi, 1);
+
+ q = (q_high + q_low + 1) / 2;
+ } else {
+ // Update rate_correction_factor unless
+ vp9_rc_update_rate_correction_factors(cpi, 0);
+
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ bottom_index, MAX(q_high, top_index));
+
+ while (q < q_low && retries < 10) {
+ vp9_rc_update_rate_correction_factors(cpi, 0);
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ bottom_index, MAX(q_high, top_index));
+ retries++;
+ }
+ }
+
+ overshoot_seen = 1;
+ } else {
+ // Frame is too small
+ q_high = q > q_low ? q - 1 : q_low;
+
+ if (overshoot_seen || loop_count > 1) {
+ vp9_rc_update_rate_correction_factors(cpi, 1);
+ q = (q_high + q_low) / 2;
+ } else {
+ vp9_rc_update_rate_correction_factors(cpi, 0);
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ bottom_index, top_index);
+ // Special case reset for qlow for constrained quality.
+ // This should only trigger where there is very substantial
+ // undershoot on a frame and the auto cq level is above
+ // the user passsed in value.
+ if (cpi->oxcf.rc_mode == RC_MODE_CONSTRAINED_QUALITY &&
+ q < q_low) {
+ q_low = q;
+ }
+
+ while (q > q_high && retries < 10) {
+ vp9_rc_update_rate_correction_factors(cpi, 0);
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ bottom_index, top_index);
+ retries++;
+ }
+ }
+
+ undershoot_seen = 1;
+ }
+
+ // Clamp Q to upper and lower limits:
+ q = clamp(q, q_low, q_high);
+
+ loop = q != last_q;
+ } else {
+ loop = 0;
+ }
+ }
+
+ // Special case for overlay frame.
+ if (rc->is_src_frame_alt_ref &&
+ rc->projected_frame_size < rc->max_frame_bandwidth)
+ loop = 0;
+
+ if (loop) {
+ loop_count++;
+
+#if CONFIG_INTERNAL_STATS
+ cpi->tot_recode_hits++;
+#endif
+ }
+ } while (loop);
+}
+
+static void get_ref_frame_flags(VP9_COMP *cpi) {
+ if (cpi->refresh_last_frame & cpi->refresh_golden_frame)
+ cpi->gold_is_last = 1;
+ else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame)
+ cpi->gold_is_last = 0;
+
+ if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame)
+ cpi->alt_is_last = 1;
+ else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame)
+ cpi->alt_is_last = 0;
+
+ if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame)
+ cpi->gold_is_alt = 1;
+ else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame)
+ cpi->gold_is_alt = 0;
+
+ cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
+
+ if (cpi->gold_is_last)
+ cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
+
+ if (cpi->rc.frames_till_gf_update_due == INT_MAX)
+ cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
+
+ if (cpi->alt_is_last)
+ cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
+
+ if (cpi->gold_is_alt)
+ cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
+}
+
+static void set_ext_overrides(VP9_COMP *cpi) {
+ // Overrides the defaults with the externally supplied values with
+ // vp9_update_reference() and vp9_update_entropy() calls
+ // Note: The overrides are valid only for the next frame passed
+ // to encode_frame_to_data_rate() function
+ if (cpi->ext_refresh_frame_context_pending) {
+ cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
+ cpi->ext_refresh_frame_context_pending = 0;
+ }
+ if (cpi->ext_refresh_frame_flags_pending) {
+ cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
+ cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
+ cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
+ cpi->ext_refresh_frame_flags_pending = 0;
+ }
+}
+
+YV12_BUFFER_CONFIG *vp9_scale_if_required(VP9_COMMON *cm,
+ YV12_BUFFER_CONFIG *unscaled,
+ YV12_BUFFER_CONFIG *scaled) {
+ if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
+ cm->mi_rows * MI_SIZE != unscaled->y_height) {
+ scale_and_extend_frame_nonnormative(unscaled, scaled);
+ return scaled;
+ } else {
+ return unscaled;
+ }
+}
+
+static void encode_frame_to_data_rate(VP9_COMP *cpi,
+ size_t *size,
+ uint8_t *dest,
+ unsigned int *frame_flags) {
+ VP9_COMMON *const cm = &cpi->common;
+ TX_SIZE t;
+ int q;
+ int top_index;
+ int bottom_index;
+
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ const unsigned int max_mv_def = MIN(cm->width, cm->height);
+ struct segmentation *const seg = &cm->seg;
+ set_ext_overrides(cpi);
+
+ cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
+ &cpi->scaled_source);
+
+ if (cpi->unscaled_last_source != NULL)
+ cpi->Last_Source = vp9_scale_if_required(cm, cpi->unscaled_last_source,
+ &cpi->scaled_last_source);
+
+ vp9_scale_references(cpi);
+
+ vp9_clear_system_state();
+
+ // Enable or disable mode based tweaking of the zbin.
+ // For 2 pass only used where GF/ARF prediction quality
+ // is above a threshold.
+ cpi->zbin_mode_boost = 0;
+ cpi->zbin_mode_boost_enabled = 0;
+
+ // Current default encoder behavior for the altref sign bias.
+ cm->ref_frame_sign_bias[ALTREF_FRAME] = cpi->rc.source_alt_ref_active;
+
+ // Set default state for segment based loop filter update flags.
+ cm->lf.mode_ref_delta_update = 0;
+
+ // Initialize cpi->mv_step_param to default based on max resolution.
+ cpi->mv_step_param = vp9_init_search_range(sf, max_mv_def);
+ // Initialize cpi->max_mv_magnitude and cpi->mv_step_param if appropriate.
+ if (sf->auto_mv_step_size) {
+ if (frame_is_intra_only(cm)) {
+ // Initialize max_mv_magnitude for use in the first INTER frame
+ // after a key/intra-only frame.
+ cpi->max_mv_magnitude = max_mv_def;
+ } else {
+ if (cm->show_frame)
+ // Allow mv_steps to correspond to twice the max mv magnitude found
+ // in the previous frame, capped by the default max_mv_magnitude based
+ // on resolution.
+ cpi->mv_step_param = vp9_init_search_range(sf, MIN(max_mv_def, 2 *
+ cpi->max_mv_magnitude));
+ cpi->max_mv_magnitude = 0;
+ }
+ }
+
+ // Set various flags etc to special state if it is a key frame.
+ if (frame_is_intra_only(cm)) {
+ // Reset the loop filter deltas and segmentation map.
+ vp9_reset_segment_features(&cm->seg);
+
+ // If segmentation is enabled force a map update for key frames.
+ if (seg->enabled) {
+ seg->update_map = 1;
+ seg->update_data = 1;
+ }
+
+ // The alternate reference frame cannot be active for a key frame.
+ cpi->rc.source_alt_ref_active = 0;
+
+ cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0);
+ cm->frame_parallel_decoding_mode =
+ (cpi->oxcf.frame_parallel_decoding_mode != 0);
+
+ // By default, encoder assumes decoder can use prev_mi.
+ cm->coding_use_prev_mi = 1;
+ if (cm->error_resilient_mode) {
+ cm->coding_use_prev_mi = 0;
+ cm->frame_parallel_decoding_mode = 1;
+ cm->reset_frame_context = 0;
+ cm->refresh_frame_context = 0;
+ } else if (cm->intra_only) {
+ // Only reset the current context.
+ cm->reset_frame_context = 2;
+ }
+ }
+
+ // Configure experimental use of segmentation for enhanced coding of
+ // static regions if indicated.
+ // Only allowed in second pass of two pass (as requires lagged coding)
+ // and if the relevant speed feature flag is set.
+ if (cpi->pass == 2 && cpi->sf.static_segmentation)
+ configure_static_seg_features(cpi);
+
+ // For 1 pass CBR, check if we are dropping this frame.
+ // Never drop on key frame.
+ if (cpi->pass == 0 &&
+ cpi->oxcf.rc_mode == RC_MODE_CBR &&
+ cm->frame_type != KEY_FRAME) {
+ if (vp9_rc_drop_frame(cpi)) {
+ vp9_rc_postencode_update_drop_frame(cpi);
+ ++cm->current_video_frame;
+ return;
+ }
+ }
+
+ vp9_clear_system_state();
+
+ vp9_zero(cpi->rd.tx_select_threshes);
+
+#if CONFIG_VP9_POSTPROC
+ if (cpi->oxcf.noise_sensitivity > 0) {
+ int l = 0;
+ switch (cpi->oxcf.noise_sensitivity) {
+ case 1:
+ l = 20;
+ break;
+ case 2:
+ l = 40;
+ break;
+ case 3:
+ l = 60;
+ break;
+ case 4:
+ case 5:
+ l = 100;
+ break;
+ case 6:
+ l = 150;
+ break;
+ }
+ vp9_denoise(cpi->Source, cpi->Source, l);
+ }
+#endif
+
+#ifdef OUTPUT_YUV_SRC
+ vp9_write_yuv_frame(cpi->Source);
+#endif
+
+ set_speed_features(cpi);
+
+ // Decide q and q bounds.
+ q = vp9_rc_pick_q_and_bounds(cpi, &bottom_index, &top_index);
+
+ if (!frame_is_intra_only(cm)) {
+ cm->interp_filter = DEFAULT_INTERP_FILTER;
+ /* TODO: Decide this more intelligently */
+ set_high_precision_mv(cpi, q < HIGH_PRECISION_MV_QTHRESH);
+ }
+
+ if (cpi->sf.recode_loop == DISALLOW_RECODE) {
+ encode_without_recode_loop(cpi, q);
+ } else {
+ encode_with_recode_loop(cpi, size, dest, q, bottom_index, top_index);
+ }
+
+ // Special case code to reduce pulsing when key frames are forced at a
+ // fixed interval. Note the reconstruction error if it is the frame before
+ // the force key frame
+ if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
+ cpi->ambient_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+ }
+
+ // If the encoder forced a KEY_FRAME decision
+ if (cm->frame_type == KEY_FRAME)
+ cpi->refresh_last_frame = 1;
+
+ cm->frame_to_show = get_frame_new_buffer(cm);
+
+#if WRITE_RECON_BUFFER
+ if (cm->show_frame)
+ write_cx_frame_to_file(cm->frame_to_show,
+ cm->current_video_frame);
+ else
+ write_cx_frame_to_file(cm->frame_to_show,
+ cm->current_video_frame + 1000);
+#endif
+
+ // Pick the loop filter level for the frame.
+ loopfilter_frame(cpi, cm);
+
+#if WRITE_RECON_BUFFER
+ if (cm->show_frame)
+ write_cx_frame_to_file(cm->frame_to_show,
+ cm->current_video_frame + 2000);
+ else
+ write_cx_frame_to_file(cm->frame_to_show,
+ cm->current_video_frame + 3000);
+#endif
+
+ // build the bitstream
+ cpi->dummy_packing = 0;
+ vp9_pack_bitstream(cpi, dest, size);
+
+ if (cm->seg.update_map)
+ update_reference_segmentation_map(cpi);
+
+ release_scaled_references(cpi);
+ vp9_update_reference_frames(cpi);
+
+ for (t = TX_4X4; t <= TX_32X32; t++)
+ full_to_model_counts(cm->counts.coef[t], cpi->coef_counts[t]);
+
+ if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode)
+ vp9_adapt_coef_probs(cm);
+
+ if (!frame_is_intra_only(cm)) {
+ if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
+ vp9_adapt_mode_probs(cm);
+ vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
+ }
+ }
+
+ if (cpi->refresh_golden_frame == 1)
+ cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
+ else
+ cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
+
+ if (cpi->refresh_alt_ref_frame == 1)
+ cpi->frame_flags |= FRAMEFLAGS_ALTREF;
+ else
+ cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
+
+ get_ref_frame_flags(cpi);
+
+ cm->last_frame_type = cm->frame_type;
+ vp9_rc_postencode_update(cpi, *size);
+
+#if 0
+ output_frame_level_debug_stats(cpi);
+#endif
+
+ if (cm->frame_type == KEY_FRAME) {
+ // Tell the caller that the frame was coded as a key frame
+ *frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
+
+#if CONFIG_MULTIPLE_ARF
+ // Reset the sequence number.
+ if (cpi->multi_arf_enabled) {
+ cpi->sequence_number = 0;
+ cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
+ cpi->new_frame_coding_order_period = -1;
+ }
+#endif
+ } else {
+ *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
+
+#if CONFIG_MULTIPLE_ARF
+ /* Increment position in the coded frame sequence. */
+ if (cpi->multi_arf_enabled) {
+ ++cpi->sequence_number;
+ if (cpi->sequence_number >= cpi->frame_coding_order_period) {
+ cpi->sequence_number = 0;
+ cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
+ cpi->new_frame_coding_order_period = -1;
+ }
+ cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number];
+ assert(cpi->this_frame_weight >= 0);
+ }
+#endif
+ }
+
+ // Clear the one shot update flags for segmentation map and mode/ref loop
+ // filter deltas.
+ cm->seg.update_map = 0;
+ cm->seg.update_data = 0;
+ cm->lf.mode_ref_delta_update = 0;
+
+ // keep track of the last coded dimensions
+ cm->last_width = cm->width;
+ cm->last_height = cm->height;
+
+ // reset to normal state now that we are done.
+ if (!cm->show_existing_frame)
+ cm->last_show_frame = cm->show_frame;
+
+ if (cm->show_frame) {
+ vp9_swap_mi_and_prev_mi(cm);
+
+ // Don't increment frame counters if this was an altref buffer
+ // update not a real frame
+ ++cm->current_video_frame;
+ if (cpi->use_svc)
+ vp9_inc_frame_in_layer(&cpi->svc);
+ }
+}
+
+static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
+ unsigned int *frame_flags) {
+ vp9_rc_get_svc_params(cpi);
+ encode_frame_to_data_rate(cpi, size, dest, frame_flags);
+}
+
+static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
+ unsigned int *frame_flags) {
+ if (cpi->oxcf.rc_mode == RC_MODE_CBR) {
+ vp9_rc_get_one_pass_cbr_params(cpi);
+ } else {
+ vp9_rc_get_one_pass_vbr_params(cpi);
+ }
+ encode_frame_to_data_rate(cpi, size, dest, frame_flags);
+}
+
+static void Pass1Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
+ unsigned int *frame_flags) {
+ (void) size;
+ (void) dest;
+ (void) frame_flags;
+
+ vp9_rc_get_first_pass_params(cpi);
+ vp9_set_quantizer(&cpi->common, find_fp_qindex());
+ vp9_first_pass(cpi);
+}
+
+static void Pass2Encode(VP9_COMP *cpi, size_t *size,
+ uint8_t *dest, unsigned int *frame_flags) {
+ cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
+
+ vp9_rc_get_second_pass_params(cpi);
+ encode_frame_to_data_rate(cpi, size, dest, frame_flags);
+
+ vp9_twopass_postencode_update(cpi);
+}
+
+static void check_initial_width(VP9_COMP *cpi, int subsampling_x,
+ int subsampling_y) {
+ VP9_COMMON *const cm = &cpi->common;
+
+ if (!cpi->initial_width) {
+ cm->subsampling_x = subsampling_x;
+ cm->subsampling_y = subsampling_y;
+ alloc_raw_frame_buffers(cpi);
+ cpi->initial_width = cm->width;
+ cpi->initial_height = cm->height;
+ }
+}
+
+
+int vp9_receive_raw_frame(VP9_COMP *cpi, unsigned int frame_flags,
+ YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
+ int64_t end_time) {
+ VP9_COMMON *cm = &cpi->common;
+ struct vpx_usec_timer timer;
+ int res = 0;
+ const int subsampling_x = sd->uv_width < sd->y_width;
+ const int subsampling_y = sd->uv_height < sd->y_height;
+
+ check_initial_width(cpi, subsampling_x, subsampling_y);
+ vpx_usec_timer_start(&timer);
+ if (vp9_lookahead_push(cpi->lookahead,
+ sd, time_stamp, end_time, frame_flags))
+ res = -1;
+ vpx_usec_timer_mark(&timer);
+ cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
+
+ if (cm->profile == PROFILE_0 && (subsampling_x != 1 || subsampling_y != 1)) {
+ vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
+ "Non-4:2:0 color space requires profile >= 1");
+ res = -1;
+ }
+
+ return res;
+}
+
+
+static int frame_is_reference(const VP9_COMP *cpi) {
+ const VP9_COMMON *cm = &cpi->common;
+
+ return cm->frame_type == KEY_FRAME ||
+ cpi->refresh_last_frame ||
+ cpi->refresh_golden_frame ||
+ cpi->refresh_alt_ref_frame ||
+ cm->refresh_frame_context ||
+ cm->lf.mode_ref_delta_update ||
+ cm->seg.update_map ||
+ cm->seg.update_data;
+}
+
+#if CONFIG_MULTIPLE_ARF
+int is_next_frame_arf(VP9_COMP *cpi) {
+ // Negative entry in frame_coding_order indicates an ARF at this position.
+ return cpi->frame_coding_order[cpi->sequence_number + 1] < 0 ? 1 : 0;
+}
+#endif
+
+void adjust_frame_rate(VP9_COMP *cpi) {
+ int64_t this_duration;
+ int step = 0;
+
+ if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
+ this_duration = cpi->source->ts_end - cpi->source->ts_start;
+ step = 1;
+ } else {
+ int64_t last_duration = cpi->last_end_time_stamp_seen
+ - cpi->last_time_stamp_seen;
+
+ this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
+
+ // do a step update if the duration changes by 10%
+ if (last_duration)
+ step = (int)((this_duration - last_duration) * 10 / last_duration);
+ }
+
+ if (this_duration) {
+ if (step) {
+ vp9_new_framerate(cpi, 10000000.0 / this_duration);
+ } else {
+ // Average this frame's rate into the last second's average
+ // frame rate. If we haven't seen 1 second yet, then average
+ // over the whole interval seen.
+ const double interval = MIN((double)(cpi->source->ts_end
+ - cpi->first_time_stamp_ever), 10000000.0);
+ double avg_duration = 10000000.0 / cpi->oxcf.framerate;
+ avg_duration *= (interval - avg_duration + this_duration);
+ avg_duration /= interval;
+
+ vp9_new_framerate(cpi, 10000000.0 / avg_duration);
+ }
+ }
+ cpi->last_time_stamp_seen = cpi->source->ts_start;
+ cpi->last_end_time_stamp_seen = cpi->source->ts_end;
+}
+
+int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
+ size_t *size, uint8_t *dest,
+ int64_t *time_stamp, int64_t *time_end, int flush) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->mb.e_mbd;
+ RATE_CONTROL *const rc = &cpi->rc;
+ struct vpx_usec_timer cmptimer;
+ YV12_BUFFER_CONFIG *force_src_buffer = NULL;
+ MV_REFERENCE_FRAME ref_frame;
+
+ if (!cpi)
+ return -1;
+
+ if (cpi->svc.number_spatial_layers > 1 && cpi->pass == 2) {
+ vp9_restore_layer_context(cpi);
+ }
+
+ vpx_usec_timer_start(&cmptimer);
+
+ cpi->source = NULL;
+ cpi->last_source = NULL;
+
+ set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
+
+ // Normal defaults
+ cm->reset_frame_context = 0;
+ cm->refresh_frame_context = 1;
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+
+ // Should we code an alternate reference frame.
+ if (cpi->oxcf.play_alternate && rc->source_alt_ref_pending) {
+ int frames_to_arf;
+
+#if CONFIG_MULTIPLE_ARF
+ assert(!cpi->multi_arf_enabled ||
+ cpi->frame_coding_order[cpi->sequence_number] < 0);
+
+ if (cpi->multi_arf_enabled && (cpi->pass == 2))
+ frames_to_arf = (-cpi->frame_coding_order[cpi->sequence_number])
+ - cpi->next_frame_in_order;
+ else
+#endif
+ frames_to_arf = rc->frames_till_gf_update_due;
+
+ assert(frames_to_arf <= rc->frames_to_key);
+
+ if ((cpi->source = vp9_lookahead_peek(cpi->lookahead, frames_to_arf))) {
+#if CONFIG_MULTIPLE_ARF
+ cpi->alt_ref_source[cpi->arf_buffered] = cpi->source;
+#else
+ cpi->alt_ref_source = cpi->source;
+#endif
+
+ if (cpi->oxcf.arnr_max_frames > 0) {
+ // Produce the filtered ARF frame.
+ // TODO(agrange) merge these two functions.
+ vp9_configure_arnr_filter(cpi, frames_to_arf, rc->gfu_boost);
+ vp9_temporal_filter_prepare(cpi, frames_to_arf);
+ vp9_extend_frame_borders(&cpi->alt_ref_buffer);
+ force_src_buffer = &cpi->alt_ref_buffer;
+ }
+
+ cm->show_frame = 0;
+ cpi->refresh_alt_ref_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_last_frame = 0;
+ rc->is_src_frame_alt_ref = 0;
+
+#if CONFIG_MULTIPLE_ARF
+ if (!cpi->multi_arf_enabled)
+#endif
+ rc->source_alt_ref_pending = 0;
+ } else {
+ rc->source_alt_ref_pending = 0;
+ }
+ }
+
+ if (!cpi->source) {
+#if CONFIG_MULTIPLE_ARF
+ int i;
+#endif
+
+ // Get last frame source.
+ if (cm->current_video_frame > 0) {
+ if ((cpi->last_source = vp9_lookahead_peek(cpi->lookahead, -1)) == NULL)
+ return -1;
+ }
+
+ if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) {
+ cm->show_frame = 1;
+ cm->intra_only = 0;
+
+#if CONFIG_MULTIPLE_ARF
+ // Is this frame the ARF overlay.
+ rc->is_src_frame_alt_ref = 0;
+ for (i = 0; i < cpi->arf_buffered; ++i) {
+ if (cpi->source == cpi->alt_ref_source[i]) {
+ rc->is_src_frame_alt_ref = 1;
+ cpi->refresh_golden_frame = 1;
+ break;
+ }
+ }
+#else
+ rc->is_src_frame_alt_ref = cpi->alt_ref_source &&
+ (cpi->source == cpi->alt_ref_source);
+#endif
+ if (rc->is_src_frame_alt_ref) {
+ // Current frame is an ARF overlay frame.
+#if CONFIG_MULTIPLE_ARF
+ cpi->alt_ref_source[i] = NULL;
+#else
+ cpi->alt_ref_source = NULL;
+#endif
+ // Don't refresh the last buffer for an ARF overlay frame. It will
+ // become the GF so preserve last as an alternative prediction option.
+ cpi->refresh_last_frame = 0;
+ }
+#if CONFIG_MULTIPLE_ARF
+ ++cpi->next_frame_in_order;
+#endif
+ }
+ }
+
+ if (cpi->source) {
+ cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
+ : &cpi->source->img;
+
+ if (cpi->last_source != NULL) {
+ cpi->unscaled_last_source = &cpi->last_source->img;
+ } else {
+ cpi->unscaled_last_source = NULL;
+ }
+
+ *time_stamp = cpi->source->ts_start;
+ *time_end = cpi->source->ts_end;
+ *frame_flags = cpi->source->flags;
+
+#if CONFIG_MULTIPLE_ARF
+ if (cm->frame_type != KEY_FRAME && cpi->pass == 2)
+ rc->source_alt_ref_pending = is_next_frame_arf(cpi);
+#endif
+ } else {
+ *size = 0;
+ if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
+ vp9_end_first_pass(cpi); /* get last stats packet */
+ cpi->twopass.first_pass_done = 1;
+ }
+ return -1;
+ }
+
+ if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
+ cpi->first_time_stamp_ever = cpi->source->ts_start;
+ cpi->last_end_time_stamp_seen = cpi->source->ts_start;
+ }
+
+ // adjust frame rates based on timestamps given
+ if (cm->show_frame) {
+ adjust_frame_rate(cpi);
+ }
+
+ if (cpi->svc.number_temporal_layers > 1 &&
+ cpi->oxcf.rc_mode == RC_MODE_CBR) {
+ vp9_update_temporal_layer_framerate(cpi);
+ vp9_restore_layer_context(cpi);
+ }
+
+ // start with a 0 size frame
+ *size = 0;
+
+ // Clear down mmx registers
+ vp9_clear_system_state();
+
+ /* find a free buffer for the new frame, releasing the reference previously
+ * held.
+ */
+ cm->frame_bufs[cm->new_fb_idx].ref_count--;
+ cm->new_fb_idx = get_free_fb(cm);
+
+#if CONFIG_MULTIPLE_ARF
+ /* Set up the correct ARF frame. */
+ if (cpi->refresh_alt_ref_frame) {
+ ++cpi->arf_buffered;
+ }
+ if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
+ (cpi->pass == 2)) {
+ cpi->alt_fb_idx = cpi->arf_buffer_idx[cpi->sequence_number];
+ }
+#endif
+
+ cpi->frame_flags = *frame_flags;
+
+ if (cpi->pass == 2 &&
+ cm->current_video_frame == 0 &&
+ cpi->oxcf.allow_spatial_resampling &&
+ cpi->oxcf.rc_mode == RC_MODE_VBR) {
+ // Internal scaling is triggered on the first frame.
+ vp9_set_size_literal(cpi, cpi->oxcf.scaled_frame_width,
+ cpi->oxcf.scaled_frame_height);
+ }
+
+ // Reset the frame pointers to the current frame size
+ vp9_realloc_frame_buffer(get_frame_new_buffer(cm),
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+ VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL);
+
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)];
+ YV12_BUFFER_CONFIG *const buf = &cm->frame_bufs[idx].buf;
+ RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1];
+ ref_buf->buf = buf;
+ ref_buf->idx = idx;
+ vp9_setup_scale_factors_for_frame(&ref_buf->sf,
+ buf->y_crop_width, buf->y_crop_height,
+ cm->width, cm->height);
+
+ if (vp9_is_scaled(&ref_buf->sf))
+ vp9_extend_frame_borders(buf);
+ }
+
+ set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
+
+ if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+ vp9_vaq_init();
+ }
+
+ if (cpi->pass == 1 &&
+ (!cpi->use_svc || cpi->svc.number_temporal_layers == 1)) {
+ Pass1Encode(cpi, size, dest, frame_flags);
+ } else if (cpi->pass == 2 &&
+ (!cpi->use_svc || cpi->svc.number_temporal_layers == 1)) {
+ Pass2Encode(cpi, size, dest, frame_flags);
+ } else if (cpi->use_svc) {
+ SvcEncode(cpi, size, dest, frame_flags);
+ } else {
+ // One pass encode
+ Pass0Encode(cpi, size, dest, frame_flags);
+ }
+
+ if (cm->refresh_frame_context)
+ cm->frame_contexts[cm->frame_context_idx] = cm->fc;
+
+ // Frame was dropped, release scaled references.
+ if (*size == 0) {
+ release_scaled_references(cpi);
+ }
+
+ if (*size > 0) {
+ cpi->droppable = !frame_is_reference(cpi);
+ }
+
+ // Save layer specific state.
+ if ((cpi->svc.number_temporal_layers > 1 &&
+ cpi->oxcf.rc_mode == RC_MODE_CBR) ||
+ (cpi->svc.number_spatial_layers > 1 && cpi->pass == 2)) {
+ vp9_save_layer_context(cpi);
+ }
+
+ vpx_usec_timer_mark(&cmptimer);
+ cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
+
+ if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
+ generate_psnr_packet(cpi);
+
+#if CONFIG_INTERNAL_STATS
+
+ if (cpi->pass != 1) {
+ cpi->bytes += (int)(*size);
+
+ if (cm->show_frame) {
+ cpi->count++;
+
+ if (cpi->b_calculate_psnr) {
+ YV12_BUFFER_CONFIG *orig = cpi->Source;
+ YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
+ YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
+ PSNR_STATS psnr;
+ calc_psnr(orig, recon, &psnr);
+
+ cpi->total += psnr.psnr[0];
+ cpi->total_y += psnr.psnr[1];
+ cpi->total_u += psnr.psnr[2];
+ cpi->total_v += psnr.psnr[3];
+ cpi->total_sq_error += psnr.sse[0];
+ cpi->total_samples += psnr.samples[0];
+
+ {
+ PSNR_STATS psnr2;
+ double frame_ssim2 = 0, weight = 0;
+#if CONFIG_VP9_POSTPROC
+ vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
+ cm->lf.filter_level * 10 / 6);
+#endif
+ vp9_clear_system_state();
+
+ calc_psnr(orig, pp, &psnr2);
+
+ cpi->totalp += psnr2.psnr[0];
+ cpi->totalp_y += psnr2.psnr[1];
+ cpi->totalp_u += psnr2.psnr[2];
+ cpi->totalp_v += psnr2.psnr[3];
+ cpi->totalp_sq_error += psnr2.sse[0];
+ cpi->totalp_samples += psnr2.samples[0];
+
+ frame_ssim2 = vp9_calc_ssim(orig, recon, 1, &weight);
+
+ cpi->summed_quality += frame_ssim2 * weight;
+ cpi->summed_weights += weight;
+
+ frame_ssim2 = vp9_calc_ssim(orig, &cm->post_proc_buffer, 1, &weight);
+
+ cpi->summedp_quality += frame_ssim2 * weight;
+ cpi->summedp_weights += weight;
+#if 0
+ {
+ FILE *f = fopen("q_used.stt", "a");
+ fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
+ cpi->common.current_video_frame, y2, u2, v2,
+ frame_psnr2, frame_ssim2);
+ fclose(f);
+ }
+#endif
+ }
+ }
+
+ if (cpi->b_calculate_ssimg) {
+ double y, u, v, frame_all;
+ frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v);
+ cpi->total_ssimg_y += y;
+ cpi->total_ssimg_u += u;
+ cpi->total_ssimg_v += v;
+ cpi->total_ssimg_all += frame_all;
+ }
+ }
+ }
+
+#endif
+ return 0;
+}
+
+int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest,
+ vp9_ppflags_t *flags) {
+ VP9_COMMON *cm = &cpi->common;
+#if !CONFIG_VP9_POSTPROC
+ (void)flags;
+#endif
+
+ if (!cm->show_frame) {
+ return -1;
+ } else {
+ int ret;
+#if CONFIG_VP9_POSTPROC
+ ret = vp9_post_proc_frame(cm, dest, flags);
+#else
+ if (cm->frame_to_show) {
+ *dest = *cm->frame_to_show;
+ dest->y_width = cm->width;
+ dest->y_height = cm->height;
+ dest->uv_width = cm->width >> cm->subsampling_x;
+ dest->uv_height = cm->height >> cm->subsampling_y;
+ ret = 0;
+ } else {
+ ret = -1;
+ }
+#endif // !CONFIG_VP9_POSTPROC
+ vp9_clear_system_state();
+ return ret;
+ }
+}
+
+int vp9_set_active_map(VP9_COMP *cpi, unsigned char *map, int rows, int cols) {
+ if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
+ if (map) {
+ vpx_memcpy(cpi->active_map, map, rows * cols);
+ cpi->active_map_enabled = 1;
+ } else {
+ cpi->active_map_enabled = 0;
+ }
+
+ return 0;
+ } else {
+ // cpi->active_map_enabled = 0;
+ return -1;
+ }
+}
+
+int vp9_set_internal_size(VP9_COMP *cpi,
+ VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
+ VP9_COMMON *cm = &cpi->common;
+ int hr = 0, hs = 0, vr = 0, vs = 0;
+
+ if (horiz_mode > ONETWO || vert_mode > ONETWO)
+ return -1;
+
+ Scale2Ratio(horiz_mode, &hr, &hs);
+ Scale2Ratio(vert_mode, &vr, &vs);
+
+ // always go to the next whole number
+ cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
+ cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
+
+ assert(cm->width <= cpi->initial_width);
+ assert(cm->height <= cpi->initial_height);
+ update_frame_size(cpi);
+ return 0;
+}
+
+int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width,
+ unsigned int height) {
+ VP9_COMMON *cm = &cpi->common;
+
+ check_initial_width(cpi, 1, 1);
+
+ if (width) {
+ cm->width = width;
+ if (cm->width * 5 < cpi->initial_width) {
+ cm->width = cpi->initial_width / 5 + 1;
+ printf("Warning: Desired width too small, changed to %d\n", cm->width);
+ }
+ if (cm->width > cpi->initial_width) {
+ cm->width = cpi->initial_width;
+ printf("Warning: Desired width too large, changed to %d\n", cm->width);
+ }
+ }
+
+ if (height) {
+ cm->height = height;
+ if (cm->height * 5 < cpi->initial_height) {
+ cm->height = cpi->initial_height / 5 + 1;
+ printf("Warning: Desired height too small, changed to %d\n", cm->height);
+ }
+ if (cm->height > cpi->initial_height) {
+ cm->height = cpi->initial_height;
+ printf("Warning: Desired height too large, changed to %d\n", cm->height);
+ }
+ }
+
+ assert(cm->width <= cpi->initial_width);
+ assert(cm->height <= cpi->initial_height);
+ update_frame_size(cpi);
+ return 0;
+}
+
+void vp9_set_svc(VP9_COMP *cpi, int use_svc) {
+ cpi->use_svc = use_svc;
+ return;
+}
+
+int vp9_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b) {
+ assert(a->y_crop_width == b->y_crop_width);
+ assert(a->y_crop_height == b->y_crop_height);
+
+ return (int)get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride,
+ a->y_crop_width, a->y_crop_height);
+}
+
+
+int vp9_get_quantizer(VP9_COMP *cpi) {
+ return cpi->common.base_qindex;
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encoder.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encoder.h
new file mode 100644
index 00000000000..17c826f8cf0
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_encoder.h
@@ -0,0 +1,629 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_ENCODER_H_
+#define VP9_ENCODER_VP9_ENCODER_H_
+
+#include <stdio.h>
+
+#include "./vpx_config.h"
+#include "vpx_ports/mem.h"
+#include "vpx/internal/vpx_codec_internal.h"
+#include "vpx/vp8cx.h"
+
+#include "vp9/common/vp9_ppflags.h"
+#include "vp9/common/vp9_entropy.h"
+#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_onyxc_int.h"
+
+#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
+#include "vp9/encoder/vp9_encodemb.h"
+#include "vp9/encoder/vp9_firstpass.h"
+#include "vp9/encoder/vp9_lookahead.h"
+#include "vp9/encoder/vp9_mbgraph.h"
+#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/encoder/vp9_quantize.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_speed_features.h"
+#include "vp9/encoder/vp9_svc_layercontext.h"
+#include "vp9/encoder/vp9_tokenize.h"
+#include "vp9/encoder/vp9_variance.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define DEFAULT_GF_INTERVAL 10
+
+#define MAX_MODES 30
+#define MAX_REFS 6
+
+typedef struct {
+ int nmvjointcost[MV_JOINTS];
+ int nmvcosts[2][MV_VALS];
+ int nmvcosts_hp[2][MV_VALS];
+
+ vp9_prob segment_pred_probs[PREDICTION_PROBS];
+
+ unsigned char *last_frame_seg_map_copy;
+
+ // 0 = Intra, Last, GF, ARF
+ signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS];
+ // 0 = ZERO_MV, MV
+ signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];
+
+ FRAME_CONTEXT fc;
+} CODING_CONTEXT;
+
+// This enumerator type needs to be kept aligned with the mode order in
+// const MODE_DEFINITION vp9_mode_order[MAX_MODES] used in the rd code.
+typedef enum {
+ THR_NEARESTMV,
+ THR_NEARESTA,
+ THR_NEARESTG,
+
+ THR_DC,
+
+ THR_NEWMV,
+ THR_NEWA,
+ THR_NEWG,
+
+ THR_NEARMV,
+ THR_NEARA,
+ THR_COMP_NEARESTLA,
+ THR_COMP_NEARESTGA,
+
+ THR_TM,
+
+ THR_COMP_NEARLA,
+ THR_COMP_NEWLA,
+ THR_NEARG,
+ THR_COMP_NEARGA,
+ THR_COMP_NEWGA,
+
+ THR_ZEROMV,
+ THR_ZEROG,
+ THR_ZEROA,
+ THR_COMP_ZEROLA,
+ THR_COMP_ZEROGA,
+
+ THR_H_PRED,
+ THR_V_PRED,
+ THR_D135_PRED,
+ THR_D207_PRED,
+ THR_D153_PRED,
+ THR_D63_PRED,
+ THR_D117_PRED,
+ THR_D45_PRED,
+} THR_MODES;
+
+typedef enum {
+ THR_LAST,
+ THR_GOLD,
+ THR_ALTR,
+ THR_COMP_LA,
+ THR_COMP_GA,
+ THR_INTRA,
+} THR_MODES_SUB8X8;
+
+typedef enum {
+ // encode_breakout is disabled.
+ ENCODE_BREAKOUT_DISABLED = 0,
+ // encode_breakout is enabled.
+ ENCODE_BREAKOUT_ENABLED = 1,
+ // encode_breakout is enabled with small max_thresh limit.
+ ENCODE_BREAKOUT_LIMITED = 2
+} ENCODE_BREAKOUT_TYPE;
+
+typedef enum {
+ NORMAL = 0,
+ FOURFIVE = 1,
+ THREEFIVE = 2,
+ ONETWO = 3
+} VPX_SCALING;
+
+typedef enum {
+ RC_MODE_VBR = 0,
+ RC_MODE_CBR = 1,
+ RC_MODE_CONSTRAINED_QUALITY = 2,
+ RC_MODE_CONSTANT_QUALITY = 3,
+} RC_MODE;
+
+typedef enum {
+ // Good Quality Fast Encoding. The encoder balances quality with the
+ // amount of time it takes to encode the output. (speed setting
+ // controls how fast)
+ ONE_PASS_GOOD = 1,
+
+ // One Pass - Best Quality. The encoder places priority on the
+ // quality of the output over encoding speed. The output is compressed
+ // at the highest possible quality. This option takes the longest
+ // amount of time to encode. (speed setting ignored)
+ ONE_PASS_BEST = 2,
+
+ // Two Pass - First Pass. The encoder generates a file of statistics
+ // for use in the second encoding pass. (speed setting controls how fast)
+ TWO_PASS_FIRST = 3,
+
+ // Two Pass - Second Pass. The encoder uses the statistics that were
+ // generated in the first encoding pass to create the compressed
+ // output. (speed setting controls how fast)
+ TWO_PASS_SECOND_GOOD = 4,
+
+ // Two Pass - Second Pass Best. The encoder uses the statistics that
+ // were generated in the first encoding pass to create the compressed
+ // output using the highest possible quality, and taking a
+ // longer amount of time to encode. (speed setting ignored)
+ TWO_PASS_SECOND_BEST = 5,
+
+ // Realtime/Live Encoding. This mode is optimized for realtime
+ // encoding (for example, capturing a television signal or feed from
+ // a live camera). (speed setting controls how fast)
+ REALTIME = 6,
+} MODE;
+
+typedef enum {
+ FRAMEFLAGS_KEY = 1 << 0,
+ FRAMEFLAGS_GOLDEN = 1 << 1,
+ FRAMEFLAGS_ALTREF = 1 << 2,
+} FRAMETYPE_FLAGS;
+
+typedef enum {
+ NO_AQ = 0,
+ VARIANCE_AQ = 1,
+ COMPLEXITY_AQ = 2,
+ CYCLIC_REFRESH_AQ = 3,
+ AQ_MODE_COUNT // This should always be the last member of the enum
+} AQ_MODE;
+
+
+typedef struct VP9EncoderConfig {
+ BITSTREAM_PROFILE profile;
+ BIT_DEPTH bit_depth;
+ int width; // width of data passed to the compressor
+ int height; // height of data passed to the compressor
+ double framerate; // set to passed in framerate
+ int64_t target_bandwidth; // bandwidth to be used in kilobits per second
+
+ int noise_sensitivity; // pre processing blur: recommendation 0
+ int sharpness; // sharpening output: recommendation 0:
+ int speed;
+ unsigned int rc_max_intra_bitrate_pct;
+
+ MODE mode;
+
+ // Key Framing Operations
+ int auto_key; // autodetect cut scenes and set the keyframes
+ int key_freq; // maximum distance to key frame.
+
+ int lag_in_frames; // how many frames lag before we start encoding
+
+ // ----------------------------------------------------------------
+ // DATARATE CONTROL OPTIONS
+
+ RC_MODE rc_mode; // vbr, cbr, constrained quality or constant quality
+
+ // buffer targeting aggressiveness
+ int under_shoot_pct;
+ int over_shoot_pct;
+
+ // buffering parameters
+ int64_t starting_buffer_level; // in seconds
+ int64_t optimal_buffer_level;
+ int64_t maximum_buffer_size;
+
+ // Frame drop threshold.
+ int drop_frames_water_mark;
+
+ // controlling quality
+ int fixed_q;
+ int worst_allowed_q;
+ int best_allowed_q;
+ int cq_level;
+ int lossless;
+ AQ_MODE aq_mode; // Adaptive Quantization mode
+
+ // Internal frame size scaling.
+ int allow_spatial_resampling;
+ int scaled_frame_width;
+ int scaled_frame_height;
+
+ // Enable feature to reduce the frame quantization every x frames.
+ int frame_periodic_boost;
+
+ // two pass datarate control
+ int two_pass_vbrbias; // two pass datarate control tweaks
+ int two_pass_vbrmin_section;
+ int two_pass_vbrmax_section;
+ // END DATARATE CONTROL OPTIONS
+ // ----------------------------------------------------------------
+
+ // Spatial and temporal scalability.
+ int ss_number_layers; // Number of spatial layers.
+ int ts_number_layers; // Number of temporal layers.
+ // Bitrate allocation for spatial layers.
+ int ss_target_bitrate[VPX_SS_MAX_LAYERS];
+ // Bitrate allocation (CBR mode) and framerate factor, for temporal layers.
+ int ts_target_bitrate[VPX_TS_MAX_LAYERS];
+ int ts_rate_decimator[VPX_TS_MAX_LAYERS];
+
+ // these parameters aren't to be used in final build don't use!!!
+ int play_alternate;
+ int alt_freq;
+
+ int encode_breakout; // early breakout : for video conf recommend 800
+
+ /* Bitfield defining the error resiliency features to enable.
+ * Can provide decodable frames after losses in previous
+ * frames and decodable partitions after losses in the same frame.
+ */
+ unsigned int error_resilient_mode;
+
+ /* Bitfield defining the parallel decoding mode where the
+ * decoding in successive frames may be conducted in parallel
+ * just by decoding the frame headers.
+ */
+ unsigned int frame_parallel_decoding_mode;
+
+ int arnr_max_frames;
+ int arnr_strength;
+ int arnr_type;
+
+ int tile_columns;
+ int tile_rows;
+
+ struct vpx_fixed_buf two_pass_stats_in;
+ struct vpx_codec_pkt_list *output_pkt_list;
+
+ vp8e_tuning tuning;
+} VP9EncoderConfig;
+
+static INLINE int is_best_mode(MODE mode) {
+ return mode == ONE_PASS_BEST || mode == TWO_PASS_SECOND_BEST;
+}
+
+typedef struct RD_OPT {
+ // Thresh_mult is used to set a threshold for the rd score. A higher value
+ // means that we will accept the best mode so far more often. This number
+ // is used in combination with the current block size, and thresh_freq_fact
+ // to pick a threshold.
+ int thresh_mult[MAX_MODES];
+ int thresh_mult_sub8x8[MAX_REFS];
+
+ int threshes[MAX_SEGMENTS][BLOCK_SIZES][MAX_MODES];
+ int thresh_freq_fact[BLOCK_SIZES][MAX_MODES];
+
+ int64_t comp_pred_diff[REFERENCE_MODES];
+ int64_t prediction_type_threshes[MAX_REF_FRAMES][REFERENCE_MODES];
+ int64_t tx_select_diff[TX_MODES];
+ // FIXME(rbultje) can this overflow?
+ int tx_select_threshes[MAX_REF_FRAMES][TX_MODES];
+
+ int64_t filter_diff[SWITCHABLE_FILTER_CONTEXTS];
+ int64_t filter_threshes[MAX_REF_FRAMES][SWITCHABLE_FILTER_CONTEXTS];
+ int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
+ int64_t mask_filter;
+
+ int RDMULT;
+ int RDDIV;
+} RD_OPT;
+
+typedef struct VP9_COMP {
+ QUANTS quants;
+ MACROBLOCK mb;
+ VP9_COMMON common;
+ VP9EncoderConfig oxcf;
+ struct lookahead_ctx *lookahead;
+ struct lookahead_entry *source;
+#if CONFIG_MULTIPLE_ARF
+ struct lookahead_entry *alt_ref_source[REF_FRAMES];
+#else
+ struct lookahead_entry *alt_ref_source;
+#endif
+ struct lookahead_entry *last_source;
+
+ YV12_BUFFER_CONFIG *Source;
+ YV12_BUFFER_CONFIG *Last_Source; // NULL for first frame and alt_ref frames
+ YV12_BUFFER_CONFIG *un_scaled_source;
+ YV12_BUFFER_CONFIG scaled_source;
+ YV12_BUFFER_CONFIG *unscaled_last_source;
+ YV12_BUFFER_CONFIG scaled_last_source;
+
+ int gold_is_last; // gold same as last frame ( short circuit gold searches)
+ int alt_is_last; // Alt same as last ( short circuit altref search)
+ int gold_is_alt; // don't do both alt and gold search ( just do gold).
+
+ int scaled_ref_idx[3];
+ int lst_fb_idx;
+ int gld_fb_idx;
+ int alt_fb_idx;
+
+#if CONFIG_MULTIPLE_ARF
+ int alt_ref_fb_idx[REF_FRAMES - 3];
+#endif
+ int refresh_last_frame;
+ int refresh_golden_frame;
+ int refresh_alt_ref_frame;
+
+ int ext_refresh_frame_flags_pending;
+ int ext_refresh_last_frame;
+ int ext_refresh_golden_frame;
+ int ext_refresh_alt_ref_frame;
+
+ int ext_refresh_frame_context_pending;
+ int ext_refresh_frame_context;
+
+ YV12_BUFFER_CONFIG last_frame_uf;
+
+ TOKENEXTRA *tok;
+ unsigned int tok_count[4][1 << 6];
+
+#if CONFIG_MULTIPLE_ARF
+ // Position within a frame coding order (including any additional ARF frames).
+ unsigned int sequence_number;
+ // Next frame in naturally occurring order that has not yet been coded.
+ int next_frame_in_order;
+#endif
+
+ // Ambient reconstruction err target for force key frames
+ int ambient_err;
+
+ RD_OPT rd;
+
+ CODING_CONTEXT coding_context;
+
+ int zbin_mode_boost;
+ int zbin_mode_boost_enabled;
+ int active_arnr_frames; // <= cpi->oxcf.arnr_max_frames
+ int active_arnr_strength; // <= cpi->oxcf.arnr_max_strength
+
+ int64_t last_time_stamp_seen;
+ int64_t last_end_time_stamp_seen;
+ int64_t first_time_stamp_ever;
+
+ RATE_CONTROL rc;
+
+ vp9_coeff_count coef_counts[TX_SIZES][PLANE_TYPES];
+
+ struct vpx_codec_pkt_list *output_pkt_list;
+
+ MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS];
+ int mbgraph_n_frames; // number of frames filled in the above
+ int static_mb_pct; // % forced skip mbs by segmentation
+
+ int pass;
+
+ int ref_frame_flags;
+
+ SPEED_FEATURES sf;
+
+ unsigned int max_mv_magnitude;
+ int mv_step_param;
+
+ // Default value is 1. From first pass stats, encode_breakout may be disabled.
+ ENCODE_BREAKOUT_TYPE allow_encode_breakout;
+
+ // Get threshold from external input. In real time mode, it can be
+ // overwritten according to encoding speed.
+ int encode_breakout;
+
+ unsigned char *segmentation_map;
+
+ // segment threashold for encode breakout
+ int segment_encode_breakout[MAX_SEGMENTS];
+
+ unsigned char *complexity_map;
+
+ unsigned char *active_map;
+ unsigned int active_map_enabled;
+
+ CYCLIC_REFRESH *cyclic_refresh;
+
+ fractional_mv_step_fp *find_fractional_mv_step;
+ fractional_mv_step_comp_fp *find_fractional_mv_step_comp;
+ vp9_full_search_fn_t full_search_sad;
+ vp9_refining_search_fn_t refining_search_sad;
+ vp9_diamond_search_fn_t diamond_search_sad;
+ vp9_variance_fn_ptr_t fn_ptr[BLOCK_SIZES];
+ uint64_t time_receive_data;
+ uint64_t time_compress_data;
+ uint64_t time_pick_lpf;
+ uint64_t time_encode_sb_row;
+
+ struct twopass_rc twopass;
+
+ YV12_BUFFER_CONFIG alt_ref_buffer;
+ YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS];
+
+#if CONFIG_INTERNAL_STATS
+ unsigned int mode_chosen_counts[MAX_MODES];
+
+ int count;
+ double total_y;
+ double total_u;
+ double total_v;
+ double total;
+ uint64_t total_sq_error;
+ uint64_t total_samples;
+
+ double totalp_y;
+ double totalp_u;
+ double totalp_v;
+ double totalp;
+ uint64_t totalp_sq_error;
+ uint64_t totalp_samples;
+
+ int bytes;
+ double summed_quality;
+ double summed_weights;
+ double summedp_quality;
+ double summedp_weights;
+ unsigned int tot_recode_hits;
+
+
+ double total_ssimg_y;
+ double total_ssimg_u;
+ double total_ssimg_v;
+ double total_ssimg_all;
+
+ int b_calculate_ssimg;
+#endif
+ int b_calculate_psnr;
+
+ int droppable;
+
+ int dummy_packing; /* flag to indicate if packing is dummy */
+
+ unsigned int tx_stepdown_count[TX_SIZES];
+
+ int initial_width;
+ int initial_height;
+
+ int use_svc;
+
+ SVC svc;
+
+ int use_large_partition_rate;
+
+ int frame_flags;
+
+ search_site_config ss_cfg;
+
+ int mbmode_cost[INTRA_MODES];
+ unsigned inter_mode_cost[INTER_MODE_CONTEXTS][INTER_MODES];
+ int intra_uv_mode_cost[FRAME_TYPES][INTRA_MODES];
+ int y_mode_costs[INTRA_MODES][INTRA_MODES][INTRA_MODES];
+ int switchable_interp_costs[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
+
+#if CONFIG_MULTIPLE_ARF
+ // ARF tracking variables.
+ int multi_arf_enabled;
+ unsigned int frame_coding_order_period;
+ unsigned int new_frame_coding_order_period;
+ int frame_coding_order[MAX_LAG_BUFFERS * 2];
+ int arf_buffer_idx[MAX_LAG_BUFFERS * 3 / 2];
+ int arf_weight[MAX_LAG_BUFFERS];
+ int arf_buffered;
+ int this_frame_weight;
+ int max_arf_level;
+#endif
+} VP9_COMP;
+
+void vp9_initialize_enc();
+
+struct VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf);
+void vp9_remove_compressor(VP9_COMP *cpi);
+
+void vp9_change_config(VP9_COMP *cpi, const VP9EncoderConfig *oxcf);
+
+ // receive a frames worth of data. caller can assume that a copy of this
+ // frame is made and not just a copy of the pointer..
+int vp9_receive_raw_frame(VP9_COMP *cpi, unsigned int frame_flags,
+ YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
+ int64_t end_time_stamp);
+
+int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
+ size_t *size, uint8_t *dest,
+ int64_t *time_stamp, int64_t *time_end, int flush);
+
+int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest,
+ vp9_ppflags_t *flags);
+
+int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags);
+
+void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags);
+
+int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
+ YV12_BUFFER_CONFIG *sd);
+
+int vp9_get_reference_enc(VP9_COMP *cpi, int index,
+ YV12_BUFFER_CONFIG **fb);
+
+int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
+ YV12_BUFFER_CONFIG *sd);
+
+int vp9_update_entropy(VP9_COMP *cpi, int update);
+
+int vp9_set_active_map(VP9_COMP *cpi, unsigned char *map, int rows, int cols);
+
+int vp9_set_internal_size(VP9_COMP *cpi,
+ VPX_SCALING horiz_mode, VPX_SCALING vert_mode);
+
+int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width,
+ unsigned int height);
+
+void vp9_set_svc(VP9_COMP *cpi, int use_svc);
+
+int vp9_get_quantizer(struct VP9_COMP *cpi);
+
+static INLINE int get_ref_frame_idx(const VP9_COMP *cpi,
+ MV_REFERENCE_FRAME ref_frame) {
+ if (ref_frame == LAST_FRAME) {
+ return cpi->lst_fb_idx;
+ } else if (ref_frame == GOLDEN_FRAME) {
+ return cpi->gld_fb_idx;
+ } else {
+ return cpi->alt_fb_idx;
+ }
+}
+
+static INLINE YV12_BUFFER_CONFIG *get_ref_frame_buffer(
+ VP9_COMP *cpi, MV_REFERENCE_FRAME ref_frame) {
+ VP9_COMMON * const cm = &cpi->common;
+ return &cm->frame_bufs[cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)]]
+ .buf;
+}
+
+// Intra only frames, golden frames (except alt ref overlays) and
+// alt ref frames tend to be coded at a higher than ambient quality
+static INLINE int frame_is_boosted(const VP9_COMP *cpi) {
+ return frame_is_intra_only(&cpi->common) || cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref) ||
+ vp9_is_upper_layer_key_frame(cpi);
+}
+
+static INLINE int get_token_alloc(int mb_rows, int mb_cols) {
+ // TODO(JBB): make this work for alpha channel and double check we can't
+ // exceed this token count if we have a 32x32 transform crossing a boundary
+ // at a multiple of 16.
+ // mb_rows, cols are in units of 16 pixels. We assume 3 planes all at full
+ // resolution. We assume up to 1 token per pixel, and then allow
+ // a head room of 4.
+ return mb_rows * mb_cols * (16 * 16 * 3 + 4);
+}
+
+int vp9_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b);
+
+void vp9_alloc_compressor_data(VP9_COMP *cpi);
+
+void vp9_scale_references(VP9_COMP *cpi);
+
+void vp9_update_reference_frames(VP9_COMP *cpi);
+
+int64_t vp9_rescale(int64_t val, int64_t num, int denom);
+
+YV12_BUFFER_CONFIG *vp9_scale_if_required(VP9_COMMON *cm,
+ YV12_BUFFER_CONFIG *unscaled,
+ YV12_BUFFER_CONFIG *scaled);
+
+static INLINE void set_ref_ptrs(VP9_COMMON *cm, MACROBLOCKD *xd,
+ MV_REFERENCE_FRAME ref0,
+ MV_REFERENCE_FRAME ref1) {
+ xd->block_refs[0] = &cm->frame_refs[ref0 >= LAST_FRAME ? ref0 - LAST_FRAME
+ : 0];
+ xd->block_refs[1] = &cm->frame_refs[ref1 >= LAST_FRAME ? ref1 - LAST_FRAME
+ : 0];
+}
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_ENCODER_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_extend.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_extend.c
new file mode 100644
index 00000000000..dcbb5ac3537
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_extend.c
@@ -0,0 +1,143 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vpx_mem/vpx_mem.h"
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/encoder/vp9_extend.h"
+
+static void copy_and_extend_plane(const uint8_t *src, int src_pitch,
+ uint8_t *dst, int dst_pitch,
+ int w, int h,
+ int extend_top, int extend_left,
+ int extend_bottom, int extend_right) {
+ int i, linesize;
+
+ // copy the left and right most columns out
+ const uint8_t *src_ptr1 = src;
+ const uint8_t *src_ptr2 = src + w - 1;
+ uint8_t *dst_ptr1 = dst - extend_left;
+ uint8_t *dst_ptr2 = dst + w;
+
+ for (i = 0; i < h; i++) {
+ vpx_memset(dst_ptr1, src_ptr1[0], extend_left);
+ vpx_memcpy(dst_ptr1 + extend_left, src_ptr1, w);
+ vpx_memset(dst_ptr2, src_ptr2[0], extend_right);
+ src_ptr1 += src_pitch;
+ src_ptr2 += src_pitch;
+ dst_ptr1 += dst_pitch;
+ dst_ptr2 += dst_pitch;
+ }
+
+ // Now copy the top and bottom lines into each line of the respective
+ // borders
+ src_ptr1 = dst - extend_left;
+ src_ptr2 = dst + dst_pitch * (h - 1) - extend_left;
+ dst_ptr1 = dst + dst_pitch * (-extend_top) - extend_left;
+ dst_ptr2 = dst + dst_pitch * (h) - extend_left;
+ linesize = extend_left + extend_right + w;
+
+ for (i = 0; i < extend_top; i++) {
+ vpx_memcpy(dst_ptr1, src_ptr1, linesize);
+ dst_ptr1 += dst_pitch;
+ }
+
+ for (i = 0; i < extend_bottom; i++) {
+ vpx_memcpy(dst_ptr2, src_ptr2, linesize);
+ dst_ptr2 += dst_pitch;
+ }
+}
+
+void vp9_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst) {
+ // Extend src frame in buffer
+ // Altref filtering assumes 16 pixel extension
+ const int et_y = 16;
+ const int el_y = 16;
+ // Motion estimation may use src block variance with the block size up
+ // to 64x64, so the right and bottom need to be extended to 64 multiple
+ // or up to 16, whichever is greater.
+ const int eb_y = MAX(ALIGN_POWER_OF_TWO(src->y_width, 6) - src->y_width,
+ 16);
+ const int er_y = MAX(ALIGN_POWER_OF_TWO(src->y_height, 6) - src->y_height,
+ 16);
+ const int uv_width_subsampling = (src->uv_width != src->y_width);
+ const int uv_height_subsampling = (src->uv_height != src->y_height);
+ const int et_uv = et_y >> uv_height_subsampling;
+ const int el_uv = el_y >> uv_width_subsampling;
+ const int eb_uv = eb_y >> uv_height_subsampling;
+ const int er_uv = er_y >> uv_width_subsampling;
+
+#if CONFIG_ALPHA
+ const int et_a = dst->border >> (dst->alpha_height != dst->y_height);
+ const int el_a = dst->border >> (dst->alpha_width != dst->y_width);
+ const int eb_a = et_a + dst->alpha_height - src->alpha_height;
+ const int er_a = el_a + dst->alpha_width - src->alpha_width;
+
+ copy_and_extend_plane(src->alpha_buffer, src->alpha_stride,
+ dst->alpha_buffer, dst->alpha_stride,
+ src->alpha_width, src->alpha_height,
+ et_a, el_a, eb_a, er_a);
+#endif
+
+ copy_and_extend_plane(src->y_buffer, src->y_stride,
+ dst->y_buffer, dst->y_stride,
+ src->y_width, src->y_height,
+ et_y, el_y, eb_y, er_y);
+
+ copy_and_extend_plane(src->u_buffer, src->uv_stride,
+ dst->u_buffer, dst->uv_stride,
+ src->uv_width, src->uv_height,
+ et_uv, el_uv, eb_uv, er_uv);
+
+ copy_and_extend_plane(src->v_buffer, src->uv_stride,
+ dst->v_buffer, dst->uv_stride,
+ src->uv_width, src->uv_height,
+ et_uv, el_uv, eb_uv, er_uv);
+}
+
+void vp9_copy_and_extend_frame_with_rect(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst,
+ int srcy, int srcx,
+ int srch, int srcw) {
+ // If the side is not touching the bounder then don't extend.
+ const int et_y = srcy ? 0 : dst->border;
+ const int el_y = srcx ? 0 : dst->border;
+ const int eb_y = srcy + srch != src->y_height ? 0 :
+ dst->border + dst->y_height - src->y_height;
+ const int er_y = srcx + srcw != src->y_width ? 0 :
+ dst->border + dst->y_width - src->y_width;
+ const int src_y_offset = srcy * src->y_stride + srcx;
+ const int dst_y_offset = srcy * dst->y_stride + srcx;
+
+ const int et_uv = ROUND_POWER_OF_TWO(et_y, 1);
+ const int el_uv = ROUND_POWER_OF_TWO(el_y, 1);
+ const int eb_uv = ROUND_POWER_OF_TWO(eb_y, 1);
+ const int er_uv = ROUND_POWER_OF_TWO(er_y, 1);
+ const int src_uv_offset = ((srcy * src->uv_stride) >> 1) + (srcx >> 1);
+ const int dst_uv_offset = ((srcy * dst->uv_stride) >> 1) + (srcx >> 1);
+ const int srch_uv = ROUND_POWER_OF_TWO(srch, 1);
+ const int srcw_uv = ROUND_POWER_OF_TWO(srcw, 1);
+
+ copy_and_extend_plane(src->y_buffer + src_y_offset, src->y_stride,
+ dst->y_buffer + dst_y_offset, dst->y_stride,
+ srcw, srch,
+ et_y, el_y, eb_y, er_y);
+
+ copy_and_extend_plane(src->u_buffer + src_uv_offset, src->uv_stride,
+ dst->u_buffer + dst_uv_offset, dst->uv_stride,
+ srcw_uv, srch_uv,
+ et_uv, el_uv, eb_uv, er_uv);
+
+ copy_and_extend_plane(src->v_buffer + src_uv_offset, src->uv_stride,
+ dst->v_buffer + dst_uv_offset, dst->uv_stride,
+ srcw_uv, srch_uv,
+ et_uv, el_uv, eb_uv, er_uv);
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_extend.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_extend.h
new file mode 100644
index 00000000000..058fe09cf98
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_extend.h
@@ -0,0 +1,33 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_EXTEND_H_
+#define VP9_ENCODER_VP9_EXTEND_H_
+
+#include "vpx_scale/yv12config.h"
+#include "vpx/vpx_integer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+void vp9_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst);
+
+void vp9_copy_and_extend_frame_with_rect(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst,
+ int srcy, int srcx,
+ int srch, int srcw);
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_EXTEND_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_firstpass.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_firstpass.c
index c83954e0ceb..ed72d786661 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_firstpass.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_firstpass.c
@@ -8,32 +8,34 @@
* be found in the AUTHORS file in the root of the source tree.
*/
-#include <math.h>
#include <limits.h>
+#include <math.h>
#include <stdio.h>
-#include "vp9/encoder/vp9_block.h"
-#include "vp9/encoder/vp9_onyx_int.h"
-#include "vp9/encoder/vp9_variance.h"
-#include "vp9/encoder/vp9_encodeintra.h"
-#include "vp9/encoder/vp9_mcomp.h"
-#include "vp9/encoder/vp9_firstpass.h"
+
+#include "./vpx_scale_rtcd.h"
+
+#include "vpx_mem/vpx_mem.h"
#include "vpx_scale/vpx_scale.h"
+#include "vpx_scale/yv12config.h"
+
+#include "vp9/common/vp9_entropymv.h"
+#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_reconinter.h" // vp9_setup_dst_planes()
+#include "vp9/common/vp9_systemdependent.h"
+
+#include "vp9/encoder/vp9_aq_variance.h"
+#include "vp9/encoder/vp9_block.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemb.h"
-#include "vp9/common/vp9_extend.h"
-#include "vp9/common/vp9_systemdependent.h"
-#include "vpx_mem/vpx_mem.h"
-#include "vpx_scale/yv12config.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_extend.h"
+#include "vp9/encoder/vp9_firstpass.h"
+#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_quantize.h"
-#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_ratectrl.h"
-#include "vp9/common/vp9_quant_common.h"
-#include "vp9/common/vp9_entropymv.h"
-#include "vp9/encoder/vp9_encodemv.h"
-#include "vp9/encoder/vp9_vaq.h"
-#include "./vpx_scale_rtcd.h"
-// TODO(jkoleszar): for setup_dst_planes
-#include "vp9/common/vp9_reconinter.h"
+#include "vp9/encoder/vp9_rdopt.h"
+#include "vp9/encoder/vp9_variance.h"
#define OUTPUT_FPF 0
@@ -50,8 +52,17 @@
#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
-#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0
-#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0
+#define MIN_KF_BOOST 300
+
+#if CONFIG_MULTIPLE_ARF
+// Set MIN_GF_INTERVAL to 1 for the full decomposition.
+#define MIN_GF_INTERVAL 2
+#else
+#define MIN_GF_INTERVAL 4
+#endif
+
+
+// #define LONG_TERM_VBR_CORRECTION
static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) {
YV12_BUFFER_CONFIG temp = *a;
@@ -59,51 +70,41 @@ static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) {
*b = temp;
}
-static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame);
-
-static int select_cq_level(int qindex) {
- int ret_val = QINDEX_RANGE - 1;
- int i;
-
- double target_q = (vp9_convert_qindex_to_q(qindex) * 0.5847) + 1.0;
-
- for (i = 0; i < QINDEX_RANGE; i++) {
- if (target_q <= vp9_convert_qindex_to_q(i)) {
- ret_val = i;
- break;
- }
- }
-
- return ret_val;
+static int gfboost_qadjust(int qindex) {
+ const double q = vp9_convert_qindex_to_q(qindex);
+ return (int)((0.00000828 * q * q * q) +
+ (-0.0055 * q * q) +
+ (1.32 * q) + 79.3);
}
-
// Resets the first pass file to the given position using a relative seek from
// the current position.
-static void reset_fpf_position(VP9_COMP *cpi, FIRSTPASS_STATS *position) {
- cpi->twopass.stats_in = position;
+static void reset_fpf_position(struct twopass_rc *p,
+ const FIRSTPASS_STATS *position) {
+ p->stats_in = position;
}
-static int lookup_next_frame_stats(VP9_COMP *cpi, FIRSTPASS_STATS *next_frame) {
- if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
+static int lookup_next_frame_stats(const struct twopass_rc *p,
+ FIRSTPASS_STATS *next_frame) {
+ if (p->stats_in >= p->stats_in_end)
return EOF;
- *next_frame = *cpi->twopass.stats_in;
+ *next_frame = *p->stats_in;
return 1;
}
-// Read frame stats at an offset from the current position
-static int read_frame_stats(VP9_COMP *cpi,
- FIRSTPASS_STATS *frame_stats,
- int offset) {
- FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in;
- // Check legality of offset
+// Read frame stats at an offset from the current position.
+static int read_frame_stats(const struct twopass_rc *p,
+ FIRSTPASS_STATS *frame_stats, int offset) {
+ const FIRSTPASS_STATS *fps_ptr = p->stats_in;
+
+ // Check legality of offset.
if (offset >= 0) {
- if (&fps_ptr[offset] >= cpi->twopass.stats_in_end)
+ if (&fps_ptr[offset] >= p->stats_in_end)
return EOF;
} else if (offset < 0) {
- if (&fps_ptr[offset] < cpi->twopass.stats_in_start)
+ if (&fps_ptr[offset] < p->stats_in_start)
return EOF;
}
@@ -111,19 +112,17 @@ static int read_frame_stats(VP9_COMP *cpi,
return 1;
}
-static int input_stats(VP9_COMP *cpi, FIRSTPASS_STATS *fps) {
- if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
+static int input_stats(struct twopass_rc *p, FIRSTPASS_STATS *fps) {
+ if (p->stats_in >= p->stats_in_end)
return EOF;
- *fps = *cpi->twopass.stats_in;
- cpi->twopass.stats_in =
- (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS));
+ *fps = *p->stats_in;
+ ++p->stats_in;
return 1;
}
-static void output_stats(const VP9_COMP *cpi,
- struct vpx_codec_pkt_list *pktlist,
- FIRSTPASS_STATS *stats) {
+static void output_stats(FIRSTPASS_STATS *stats,
+ struct vpx_codec_pkt_list *pktlist) {
struct vpx_codec_cx_pkt pkt;
pkt.kind = VPX_CODEC_STATS_PKT;
pkt.data.twopass_stats.buf = stats;
@@ -132,12 +131,11 @@ static void output_stats(const VP9_COMP *cpi,
// TEMP debug code
#if OUTPUT_FPF
-
{
FILE *fpfile;
fpfile = fopen("firstpass.stt", "a");
- fprintf(stdout, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f"
+ fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f"
"%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
"%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n",
stats->frame,
@@ -184,10 +182,13 @@ static void zero_stats(FIRSTPASS_STATS *section) {
section->new_mv_count = 0.0;
section->count = 0.0;
section->duration = 1.0;
+ section->spatial_layer_id = 0;
}
-static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
+static void accumulate_stats(FIRSTPASS_STATS *section,
+ const FIRSTPASS_STATS *frame) {
section->frame += frame->frame;
+ section->spatial_layer_id = frame->spatial_layer_id;
section->intra_error += frame->intra_error;
section->coded_error += frame->coded_error;
section->sr_coded_error += frame->sr_coded_error;
@@ -208,7 +209,8 @@ static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
section->duration += frame->duration;
}
-static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
+static void subtract_stats(FIRSTPASS_STATS *section,
+ const FIRSTPASS_STATS *frame) {
section->frame -= frame->frame;
section->intra_error -= frame->intra_error;
section->coded_error -= frame->coded_error;
@@ -254,13 +256,27 @@ static void avg_stats(FIRSTPASS_STATS *section) {
// Calculate a modified Error used in distributing bits between easier and
// harder frames.
-static double calculate_modified_err(VP9_COMP *cpi,
- FIRSTPASS_STATS *this_frame) {
- const FIRSTPASS_STATS *const stats = &cpi->twopass.total_stats;
- const double av_err = stats->ssim_weighted_pred_err / stats->count;
- const double this_err = this_frame->ssim_weighted_pred_err;
- return av_err * pow(this_err / DOUBLE_DIVIDE_CHECK(av_err),
- this_err > av_err ? POW1 : POW2);
+static double calculate_modified_err(const VP9_COMP *cpi,
+ const FIRSTPASS_STATS *this_frame) {
+ const struct twopass_rc *twopass = &cpi->twopass;
+ const SVC *const svc = &cpi->svc;
+ const FIRSTPASS_STATS *stats;
+ double av_err;
+ double modified_error;
+
+ if (svc->number_spatial_layers > 1 &&
+ svc->number_temporal_layers == 1) {
+ twopass = &svc->layer_context[svc->spatial_layer_id].twopass;
+ }
+
+ stats = &twopass->total_stats;
+ av_err = stats->ssim_weighted_pred_err / stats->count;
+ modified_error = av_err * pow(this_frame->ssim_weighted_pred_err /
+ DOUBLE_DIVIDE_CHECK(av_err),
+ cpi->oxcf.two_pass_vbrbias / 100.0);
+
+ return fclamp(modified_error,
+ twopass->modified_error_min, twopass->modified_error_max);
}
static const double weight_table[256] = {
@@ -303,43 +319,34 @@ static const double weight_table[256] = {
1.000000, 1.000000, 1.000000, 1.000000
};
-static double simple_weight(YV12_BUFFER_CONFIG *source) {
+static double simple_weight(const YV12_BUFFER_CONFIG *buf) {
int i, j;
+ double sum = 0.0;
+ const int w = buf->y_crop_width;
+ const int h = buf->y_crop_height;
+ const uint8_t *row = buf->y_buffer;
+
+ for (i = 0; i < h; ++i) {
+ const uint8_t *pixel = row;
+ for (j = 0; j < w; ++j)
+ sum += weight_table[*pixel++];
+ row += buf->y_stride;
+ }
- uint8_t *src = source->y_buffer;
- double sum_weights = 0.0;
-
- // Loop through the Y plane examining levels and creating a weight for
- // the image.
- i = source->y_height;
- do {
- j = source->y_width;
- do {
- sum_weights += weight_table[ *src];
- src++;
- } while (--j);
- src -= source->y_width;
- src += source->y_stride;
- } while (--i);
-
- sum_weights /= (source->y_height * source->y_width);
-
- return sum_weights;
+ return MAX(0.1, sum / (w * h));
}
-
-// This function returns the current per frame maximum bitrate target.
-static int frame_max_bits(VP9_COMP *cpi) {
- // Max allocation for a single frame based on the max section guidelines
- // passed in and how many bits are left.
- // For VBR base this on the bits and frames left plus the
- // two_pass_vbrmax_section rate passed in by the user.
- const double max_bits = (1.0 * cpi->twopass.bits_left /
- (cpi->twopass.total_stats.count - cpi->common.current_video_frame)) *
- (cpi->oxcf.two_pass_vbrmax_section / 100.0);
-
- // Trap case where we are out of bits.
- return MAX((int)max_bits, 0);
+// This function returns the maximum target rate per frame.
+static int frame_max_bits(const RATE_CONTROL *rc,
+ const VP9EncoderConfig *oxcf) {
+ int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
+ (int64_t)oxcf->two_pass_vbrmax_section) / 100;
+ if (max_bits < 0)
+ max_bits = 0;
+ else if (max_bits > rc->max_frame_bandwidth)
+ max_bits = rc->max_frame_bandwidth;
+
+ return (int)max_bits;
}
void vp9_init_first_pass(VP9_COMP *cpi) {
@@ -347,157 +354,145 @@ void vp9_init_first_pass(VP9_COMP *cpi) {
}
void vp9_end_first_pass(VP9_COMP *cpi) {
- output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats);
+ if (cpi->use_svc && cpi->svc.number_temporal_layers == 1) {
+ int i;
+ for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
+ output_stats(&cpi->svc.layer_context[i].twopass.total_stats,
+ cpi->output_pkt_list);
+ }
+ } else {
+ output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
+ }
}
-static void zz_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
- YV12_BUFFER_CONFIG *recon_buffer,
- int *best_motion_err, int recon_yoffset) {
- MACROBLOCKD *const xd = &x->e_mbd;
-
- // Set up pointers for this macro block recon buffer
- xd->plane[0].pre[0].buf = recon_buffer->y_buffer + recon_yoffset;
-
- switch (xd->mi_8x8[0]->mbmi.sb_type) {
+static vp9_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
+ switch (bsize) {
case BLOCK_8X8:
- vp9_mse8x8(x->plane[0].src.buf, x->plane[0].src.stride,
- xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride,
- (unsigned int *)(best_motion_err));
- break;
+ return vp9_mse8x8;
case BLOCK_16X8:
- vp9_mse16x8(x->plane[0].src.buf, x->plane[0].src.stride,
- xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride,
- (unsigned int *)(best_motion_err));
- break;
+ return vp9_mse16x8;
case BLOCK_8X16:
- vp9_mse8x16(x->plane[0].src.buf, x->plane[0].src.stride,
- xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride,
- (unsigned int *)(best_motion_err));
- break;
+ return vp9_mse8x16;
default:
- vp9_mse16x16(x->plane[0].src.buf, x->plane[0].src.stride,
- xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride,
- (unsigned int *)(best_motion_err));
- break;
+ return vp9_mse16x16;
}
}
+static unsigned int get_prediction_error(BLOCK_SIZE bsize,
+ const struct buf_2d *src,
+ const struct buf_2d *ref) {
+ unsigned int sse;
+ const vp9_variance_fn_t fn = get_block_variance_fn(bsize);
+ fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
+ return sse;
+}
+
+// Refine the motion search range according to the frame dimension
+// for first pass test.
+static int get_search_range(const VP9_COMMON *cm) {
+ int sr = 0;
+ const int dim = MIN(cm->width, cm->height);
+
+ while ((dim << sr) < MAX_FULL_PEL_VAL)
+ ++sr;
+ return sr;
+}
+
static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
- int_mv *ref_mv, MV *best_mv,
- YV12_BUFFER_CONFIG *recon_buffer,
- int *best_motion_err, int recon_yoffset) {
+ const MV *ref_mv, MV *best_mv,
+ int *best_motion_err) {
MACROBLOCKD *const xd = &x->e_mbd;
- int num00;
-
- int_mv tmp_mv;
- int_mv ref_mv_full;
+ MV tmp_mv = {0, 0};
+ MV ref_mv_full = {ref_mv->row >> 3, ref_mv->col >> 3};
+ int num00, tmp_err, n;
+ const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+ vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
+ const int new_mv_mode_penalty = 256;
- int tmp_err;
int step_param = 3;
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
- int n;
- vp9_variance_fn_ptr_t v_fn_ptr =
- cpi->fn_ptr[xd->mi_8x8[0]->mbmi.sb_type];
- int new_mv_mode_penalty = 256;
-
- int sr = 0;
- int quart_frm = MIN(cpi->common.width, cpi->common.height);
-
- // refine the motion search range accroding to the frame dimension
- // for first pass test
- while ((quart_frm << sr) < MAX_FULL_PEL_VAL)
- sr++;
- if (sr)
- sr--;
-
- step_param += sr;
+ const int sr = get_search_range(&cpi->common);
+ step_param += sr;
further_steps -= sr;
- // override the default variance function to use MSE
- switch (xd->mi_8x8[0]->mbmi.sb_type) {
- case BLOCK_8X8:
- v_fn_ptr.vf = vp9_mse8x8;
- break;
- case BLOCK_16X8:
- v_fn_ptr.vf = vp9_mse16x8;
- break;
- case BLOCK_8X16:
- v_fn_ptr.vf = vp9_mse8x16;
- break;
- default:
- v_fn_ptr.vf = vp9_mse16x16;
- break;
- }
-
- // Set up pointers for this macro block recon buffer
- xd->plane[0].pre[0].buf = recon_buffer->y_buffer + recon_yoffset;
+ // Override the default variance function to use MSE.
+ v_fn_ptr.vf = get_block_variance_fn(bsize);
- // Initial step/diamond search centred on best mv
- tmp_mv.as_int = 0;
- ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3;
- ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3;
- tmp_err = cpi->diamond_search_sad(x, &ref_mv_full, &tmp_mv, step_param,
- x->sadperbit16, &num00, &v_fn_ptr,
- x->nmvjointcost,
- x->mvcost, ref_mv);
+ // Center the initial step/diamond search on best mv.
+ tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
+ step_param,
+ x->sadperbit16, &num00, &v_fn_ptr, ref_mv);
+ if (tmp_err < INT_MAX)
+ tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
if (tmp_err < INT_MAX - new_mv_mode_penalty)
tmp_err += new_mv_mode_penalty;
if (tmp_err < *best_motion_err) {
*best_motion_err = tmp_err;
- best_mv->row = tmp_mv.as_mv.row;
- best_mv->col = tmp_mv.as_mv.col;
+ *best_mv = tmp_mv;
}
- // Further step/diamond searches as necessary
+ // Carry out further step/diamond searches as necessary.
n = num00;
num00 = 0;
while (n < further_steps) {
- n++;
+ ++n;
if (num00) {
- num00--;
+ --num00;
} else {
- tmp_err = cpi->diamond_search_sad(x, &ref_mv_full, &tmp_mv,
+ tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
step_param + n, x->sadperbit16,
- &num00, &v_fn_ptr,
- x->nmvjointcost,
- x->mvcost, ref_mv);
+ &num00, &v_fn_ptr, ref_mv);
+ if (tmp_err < INT_MAX)
+ tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
if (tmp_err < INT_MAX - new_mv_mode_penalty)
tmp_err += new_mv_mode_penalty;
if (tmp_err < *best_motion_err) {
*best_motion_err = tmp_err;
- best_mv->row = tmp_mv.as_mv.row;
- best_mv->col = tmp_mv.as_mv.col;
+ *best_mv = tmp_mv;
}
}
}
}
+static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) {
+ if (2 * mb_col + 1 < cm->mi_cols) {
+ return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16
+ : BLOCK_16X8;
+ } else {
+ return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16
+ : BLOCK_8X8;
+ }
+}
+
void vp9_first_pass(VP9_COMP *cpi) {
int mb_row, mb_col;
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
TileInfo tile;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ const PICK_MODE_CONTEXT *ctx = &x->pc_root->none;
+ int i;
int recon_yoffset, recon_uvoffset;
- const int lst_yv12_idx = cm->ref_frame_map[cpi->lst_fb_idx];
- const int gld_yv12_idx = cm->ref_frame_map[cpi->gld_fb_idx];
- YV12_BUFFER_CONFIG *const lst_yv12 = &cm->yv12_fb[lst_yv12_idx];
- YV12_BUFFER_CONFIG *const gld_yv12 = &cm->yv12_fb[gld_yv12_idx];
+ YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
+ YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
- const int recon_y_stride = lst_yv12->y_stride;
- const int recon_uv_stride = lst_yv12->uv_stride;
+ int recon_y_stride = lst_yv12->y_stride;
+ int recon_uv_stride = lst_yv12->uv_stride;
+ int uv_mb_height = 16 >> (lst_yv12->y_height > lst_yv12->uv_height);
int64_t intra_error = 0;
int64_t coded_error = 0;
int64_t sr_coded_error = 0;
int sum_mvr = 0, sum_mvc = 0;
int sum_mvr_abs = 0, sum_mvc_abs = 0;
- int sum_mvrs = 0, sum_mvcs = 0;
+ int64_t sum_mvrs = 0, sum_mvcs = 0;
int mvcount = 0;
int intercount = 0;
int second_ref_count = 0;
@@ -506,103 +501,124 @@ void vp9_first_pass(VP9_COMP *cpi) {
int new_mv_count = 0;
int sum_in_vectors = 0;
uint32_t lastmv_as_int = 0;
+ struct twopass_rc *twopass = &cpi->twopass;
+ const MV zero_mv = {0, 0};
+ const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
+
+ vp9_clear_system_state();
+
+ if (cpi->use_svc && cpi->svc.number_temporal_layers == 1) {
+ MV_REFERENCE_FRAME ref_frame = LAST_FRAME;
+ const YV12_BUFFER_CONFIG *scaled_ref_buf = NULL;
+ twopass = &cpi->svc.layer_context[cpi->svc.spatial_layer_id].twopass;
- int_mv zero_ref_mv;
+ vp9_scale_references(cpi);
- zero_ref_mv.as_int = 0;
+ // Use either last frame or alt frame for motion search.
+ if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
+ scaled_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME);
+ ref_frame = LAST_FRAME;
+ } else if (cpi->ref_frame_flags & VP9_ALT_FLAG) {
+ scaled_ref_buf = vp9_get_scaled_ref_frame(cpi, ALTREF_FRAME);
+ ref_frame = ALTREF_FRAME;
+ }
+
+ if (scaled_ref_buf != NULL) {
+ // Update the stride since we are using scaled reference buffer
+ first_ref_buf = scaled_ref_buf;
+ recon_y_stride = first_ref_buf->y_stride;
+ recon_uv_stride = first_ref_buf->uv_stride;
+ uv_mb_height = 16 >> (first_ref_buf->y_height > first_ref_buf->uv_height);
+ }
- vp9_clear_system_state(); // __asm emms;
+ // Disable golden frame for svc first pass for now.
+ gld_yv12 = NULL;
+ set_ref_ptrs(cm, xd, ref_frame, NONE);
+
+ cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
+ &cpi->scaled_source);
+ }
vp9_setup_src_planes(x, cpi->Source, 0, 0);
- setup_pre_planes(xd, 0, lst_yv12, 0, 0, NULL);
- setup_dst_planes(xd, new_yv12, 0, 0);
+ vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
+ vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0);
- xd->mi_8x8 = cm->mi_grid_visible;
- // required for vp9_frame_init_quantizer
- xd->mi_8x8[0] = cm->mi;
+ xd->mi = cm->mi_grid_visible;
+ xd->mi[0] = cm->mi;
- setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
+ vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
vp9_frame_init_quantizer(cpi);
- // Initialise the MV cost table to the defaults
- // if( cm->current_video_frame == 0)
- // if ( 0 )
- {
- vp9_init_mv_probs(cm);
- vp9_initialize_rd_consts(cpi);
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][1];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
+ p[i].eobs = ctx->eobs_pbuf[i][1];
}
+ x->skip_recode = 0;
+
+ vp9_init_mv_probs(cm);
+ vp9_initialize_rd_consts(cpi);
- // tiling is ignored in the first pass
+ // Tiling is ignored in the first pass.
vp9_tile_init(&tile, cm, 0, 0);
- // for each macroblock row in image
- for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
+ for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
int_mv best_ref_mv;
best_ref_mv.as_int = 0;
- // reset above block coeffs
+ // Reset above block coeffs.
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
- recon_uvoffset = (mb_row * recon_uv_stride * 8);
+ recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height);
// Set up limit values for motion vectors to prevent them extending
- // outside the UMV borders
+ // outside the UMV borders.
x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
+ BORDER_MV_PIXELS_B16;
- // for each macroblock col in image
- for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
+ for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
int this_error;
- int gf_motion_error = INT_MAX;
- int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
- double error_weight;
+ const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
+ double error_weight = 1.0;
+ const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
- vp9_clear_system_state(); // __asm emms;
- error_weight = 1.0; // avoid uninitialized warnings
+ vp9_clear_system_state();
xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
xd->left_available = (mb_col != 0);
-
- if (mb_col * 2 + 1 < cm->mi_cols) {
- if (mb_row * 2 + 1 < cm->mi_rows) {
- xd->mi_8x8[0]->mbmi.sb_type = BLOCK_16X16;
- } else {
- xd->mi_8x8[0]->mbmi.sb_type = BLOCK_16X8;
- }
- } else {
- if (mb_row * 2 + 1 < cm->mi_rows) {
- xd->mi_8x8[0]->mbmi.sb_type = BLOCK_8X16;
- } else {
- xd->mi_8x8[0]->mbmi.sb_type = BLOCK_8X8;
- }
- }
- xd->mi_8x8[0]->mbmi.ref_frame[0] = INTRA_FRAME;
+ xd->mi[0]->mbmi.sb_type = bsize;
+ xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
set_mi_row_col(xd, &tile,
- mb_row << 1,
- 1 << mi_height_log2(xd->mi_8x8[0]->mbmi.sb_type),
- mb_col << 1,
- 1 << mi_width_log2(xd->mi_8x8[0]->mbmi.sb_type),
+ mb_row << 1, num_8x8_blocks_high_lookup[bsize],
+ mb_col << 1, num_8x8_blocks_wide_lookup[bsize],
cm->mi_rows, cm->mi_cols);
- if (cpi->sf.variance_adaptive_quantization) {
- int energy = vp9_block_energy(cpi, x, xd->mi_8x8[0]->mbmi.sb_type);
+ if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+ const int energy = vp9_block_energy(cpi, x, bsize);
error_weight = vp9_vaq_inv_q_ratio(energy);
}
- // do intra 16x16 prediction
- this_error = vp9_encode_intra(x, use_dc_pred);
- if (cpi->sf.variance_adaptive_quantization) {
- vp9_clear_system_state(); // __asm emms;
- this_error *= error_weight;
+ // Do intra 16x16 prediction.
+ x->skip_encode = 0;
+ xd->mi[0]->mbmi.mode = DC_PRED;
+ xd->mi[0]->mbmi.tx_size = use_dc_pred ?
+ (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
+ vp9_encode_intra_block_plane(x, bsize, 0);
+ this_error = vp9_get_mb_ss(x->plane[0].src_diff);
+
+ if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+ vp9_clear_system_state();
+ this_error = (int)(this_error * error_weight);
}
- // intrapenalty below deals with situations where the intra and inter
- // error scores are very low (eg a plain black frame).
+ // Intrapenalty below deals with situations where the intra and inter
+ // error scores are very low (e.g. a plain black frame).
// We do not have special cases in first pass for 0,0 and nearest etc so
// all inter modes carry an overhead cost estimate for the mv.
// When the error score is very low this causes us to pick all or lots of
@@ -610,44 +626,43 @@ void vp9_first_pass(VP9_COMP *cpi) {
// This penalty adds a cost matching that of a 0,0 mv to the intra case.
this_error += intrapenalty;
- // Cumulative intra error total
+ // Accumulate the intra error.
intra_error += (int64_t)this_error;
// Set up limit values for motion vectors to prevent them extending
// outside the UMV borders.
x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
- x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16)
- + BORDER_MV_PIXELS_B16;
+ x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
- // Other than for the first frame do a motion search
+ // Other than for the first frame do a motion search.
if (cm->current_video_frame > 0) {
- int tmp_err;
- int motion_error = INT_MAX;
+ int tmp_err, motion_error;
int_mv mv, tmp_mv;
- // Simple 0,0 motion with no mv overhead
- zz_motion_search(cpi, x, lst_yv12, &motion_error, recon_yoffset);
+ xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
+ motion_error = get_prediction_error(bsize, &x->plane[0].src,
+ &xd->plane[0].pre[0]);
+ // Assume 0,0 motion with no mv overhead.
mv.as_int = tmp_mv.as_int = 0;
// Test last reference frame using the previous best mv as the
- // starting point (best reference) for the search
- first_pass_motion_search(cpi, x, &best_ref_mv,
- &mv.as_mv, lst_yv12,
- &motion_error, recon_yoffset);
- if (cpi->sf.variance_adaptive_quantization) {
- vp9_clear_system_state(); // __asm emms;
- motion_error *= error_weight;
+ // starting point (best reference) for the search.
+ first_pass_motion_search(cpi, x, &best_ref_mv.as_mv, &mv.as_mv,
+ &motion_error);
+ if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+ vp9_clear_system_state();
+ motion_error = (int)(motion_error * error_weight);
}
// If the current best reference mv is not centered on 0,0 then do a 0,0
// based search as well.
if (best_ref_mv.as_int) {
tmp_err = INT_MAX;
- first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv,
- lst_yv12, &tmp_err, recon_yoffset);
- if (cpi->sf.variance_adaptive_quantization) {
- vp9_clear_system_state(); // __asm emms;
- tmp_err *= error_weight;
+ first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv,
+ &tmp_err);
+ if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+ vp9_clear_system_state();
+ tmp_err = (int)(tmp_err * error_weight);
}
if (tmp_err < motion_error) {
@@ -656,34 +671,34 @@ void vp9_first_pass(VP9_COMP *cpi) {
}
}
- // Experimental search in an older reference frame
- if (cm->current_video_frame > 1) {
- // Simple 0,0 motion with no mv overhead
- zz_motion_search(cpi, x, gld_yv12,
- &gf_motion_error, recon_yoffset);
-
- first_pass_motion_search(cpi, x, &zero_ref_mv,
- &tmp_mv.as_mv, gld_yv12,
- &gf_motion_error, recon_yoffset);
- if (cpi->sf.variance_adaptive_quantization) {
- vp9_clear_system_state(); // __asm emms;
- gf_motion_error *= error_weight;
- }
+ // Search in an older reference frame.
+ if (cm->current_video_frame > 1 && gld_yv12 != NULL) {
+ // Assume 0,0 motion with no mv overhead.
+ int gf_motion_error;
+
+ xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
+ gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
+ &xd->plane[0].pre[0]);
- if ((gf_motion_error < motion_error) &&
- (gf_motion_error < this_error)) {
- second_ref_count++;
+ first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv,
+ &gf_motion_error);
+ if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+ vp9_clear_system_state();
+ gf_motion_error = (int)(gf_motion_error * error_weight);
}
- // Reset to last frame as reference buffer
- xd->plane[0].pre[0].buf = lst_yv12->y_buffer + recon_yoffset;
- xd->plane[1].pre[0].buf = lst_yv12->u_buffer + recon_uvoffset;
- xd->plane[2].pre[0].buf = lst_yv12->v_buffer + recon_uvoffset;
+ if (gf_motion_error < motion_error && gf_motion_error < this_error)
+ ++second_ref_count;
- // In accumulating a score for the older reference frame
- // take the best of the motion predicted score and
- // the intra coded error (just as will be done for)
- // accumulation of "coded_error" for the last frame.
+ // Reset to last frame as reference buffer.
+ xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
+ xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
+ xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
+
+ // In accumulating a score for the older reference frame take the
+ // best of the motion predicted score and the intra coded error
+ // (just as will be done for) accumulation of "coded_error" for
+ // the last frame.
if (gf_motion_error < this_error)
sr_coded_error += gf_motion_error;
else
@@ -691,74 +706,69 @@ void vp9_first_pass(VP9_COMP *cpi) {
} else {
sr_coded_error += motion_error;
}
- /* Intra assumed best */
+ // Start by assuming that intra mode is best.
best_ref_mv.as_int = 0;
if (motion_error <= this_error) {
- // Keep a count of cases where the inter and intra were
- // very close and very low. This helps with scene cut
- // detection for example in cropped clips with black bars
- // at the sides or top and bottom.
- if ((((this_error - intrapenalty) * 9) <=
- (motion_error * 10)) &&
- (this_error < (2 * intrapenalty))) {
- neutral_count++;
- }
+ // Keep a count of cases where the inter and intra were very close
+ // and very low. This helps with scene cut detection for example in
+ // cropped clips with black bars at the sides or top and bottom.
+ if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
+ this_error < 2 * intrapenalty)
+ ++neutral_count;
mv.as_mv.row *= 8;
mv.as_mv.col *= 8;
this_error = motion_error;
- vp9_set_mbmode_and_mvs(x, NEWMV, &mv);
- xd->mi_8x8[0]->mbmi.tx_size = TX_4X4;
- xd->mi_8x8[0]->mbmi.ref_frame[0] = LAST_FRAME;
- xd->mi_8x8[0]->mbmi.ref_frame[1] = NONE;
- vp9_build_inter_predictors_sby(xd, mb_row << 1,
- mb_col << 1,
- xd->mi_8x8[0]->mbmi.sb_type);
- vp9_encode_sby(x, xd->mi_8x8[0]->mbmi.sb_type);
+ xd->mi[0]->mbmi.mode = NEWMV;
+ xd->mi[0]->mbmi.mv[0] = mv;
+ xd->mi[0]->mbmi.tx_size = TX_4X4;
+ xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME;
+ xd->mi[0]->mbmi.ref_frame[1] = NONE;
+ vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
+ vp9_encode_sby_pass1(x, bsize);
sum_mvr += mv.as_mv.row;
sum_mvr_abs += abs(mv.as_mv.row);
sum_mvc += mv.as_mv.col;
sum_mvc_abs += abs(mv.as_mv.col);
sum_mvrs += mv.as_mv.row * mv.as_mv.row;
sum_mvcs += mv.as_mv.col * mv.as_mv.col;
- intercount++;
+ ++intercount;
best_ref_mv.as_int = mv.as_int;
- // Was the vector non-zero
if (mv.as_int) {
- mvcount++;
+ ++mvcount;
- // Was it different from the last non zero vector
+ // Non-zero vector, was it different from the last non zero vector?
if (mv.as_int != lastmv_as_int)
- new_mv_count++;
+ ++new_mv_count;
lastmv_as_int = mv.as_int;
- // Does the Row vector point inwards or outwards
+ // Does the row vector point inwards or outwards?
if (mb_row < cm->mb_rows / 2) {
if (mv.as_mv.row > 0)
- sum_in_vectors--;
+ --sum_in_vectors;
else if (mv.as_mv.row < 0)
- sum_in_vectors++;
+ ++sum_in_vectors;
} else if (mb_row > cm->mb_rows / 2) {
if (mv.as_mv.row > 0)
- sum_in_vectors++;
+ ++sum_in_vectors;
else if (mv.as_mv.row < 0)
- sum_in_vectors--;
+ --sum_in_vectors;
}
- // Does the Row vector point inwards or outwards
+ // Does the col vector point inwards or outwards?
if (mb_col < cm->mb_cols / 2) {
if (mv.as_mv.col > 0)
- sum_in_vectors--;
+ --sum_in_vectors;
else if (mv.as_mv.col < 0)
- sum_in_vectors++;
+ ++sum_in_vectors;
} else if (mb_col > cm->mb_cols / 2) {
if (mv.as_mv.col > 0)
- sum_in_vectors++;
+ ++sum_in_vectors;
else if (mv.as_mv.col < 0)
- sum_in_vectors--;
+ --sum_in_vectors;
}
}
}
@@ -767,108 +777,104 @@ void vp9_first_pass(VP9_COMP *cpi) {
}
coded_error += (int64_t)this_error;
- // adjust to the next column of macroblocks
+ // Adjust to the next column of MBs.
x->plane[0].src.buf += 16;
- x->plane[1].src.buf += 8;
- x->plane[2].src.buf += 8;
+ x->plane[1].src.buf += uv_mb_height;
+ x->plane[2].src.buf += uv_mb_height;
recon_yoffset += 16;
- recon_uvoffset += 8;
+ recon_uvoffset += uv_mb_height;
}
- // adjust to the next row of mbs
+ // Adjust to the next row of MBs.
x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
- x->plane[1].src.buf += 8 * x->plane[1].src.stride - 8 * cm->mb_cols;
- x->plane[2].src.buf += 8 * x->plane[1].src.stride - 8 * cm->mb_cols;
+ x->plane[1].src.buf += uv_mb_height * x->plane[1].src.stride -
+ uv_mb_height * cm->mb_cols;
+ x->plane[2].src.buf += uv_mb_height * x->plane[1].src.stride -
+ uv_mb_height * cm->mb_cols;
- vp9_clear_system_state(); // __asm emms;
+ vp9_clear_system_state();
}
- vp9_clear_system_state(); // __asm emms;
+ vp9_clear_system_state();
{
- double weight = 0.0;
-
FIRSTPASS_STATS fps;
- fps.frame = cm->current_video_frame;
+ fps.frame = cm->current_video_frame;
+ fps.spatial_layer_id = cpi->svc.spatial_layer_id;
fps.intra_error = (double)(intra_error >> 8);
fps.coded_error = (double)(coded_error >> 8);
fps.sr_coded_error = (double)(sr_coded_error >> 8);
- weight = simple_weight(cpi->Source);
-
-
- if (weight < 0.1)
- weight = 0.1;
-
- fps.ssim_weighted_pred_err = fps.coded_error * weight;
-
- fps.pcnt_inter = 0.0;
- fps.pcnt_motion = 0.0;
- fps.MVr = 0.0;
- fps.mvr_abs = 0.0;
- fps.MVc = 0.0;
- fps.mvc_abs = 0.0;
- fps.MVrv = 0.0;
- fps.MVcv = 0.0;
- fps.mv_in_out_count = 0.0;
- fps.new_mv_count = 0.0;
- fps.count = 1.0;
-
- fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
- fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
- fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs;
+ fps.ssim_weighted_pred_err = fps.coded_error * simple_weight(cpi->Source);
+ fps.count = 1.0;
+ fps.pcnt_inter = (double)intercount / cm->MBs;
+ fps.pcnt_second_ref = (double)second_ref_count / cm->MBs;
+ fps.pcnt_neutral = (double)neutral_count / cm->MBs;
if (mvcount > 0) {
- fps.MVr = (double)sum_mvr / (double)mvcount;
- fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
- fps.MVc = (double)sum_mvc / (double)mvcount;
- fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
- fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) /
- (double)mvcount;
- fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) /
- (double)mvcount;
- fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
+ fps.MVr = (double)sum_mvr / mvcount;
+ fps.mvr_abs = (double)sum_mvr_abs / mvcount;
+ fps.MVc = (double)sum_mvc / mvcount;
+ fps.mvc_abs = (double)sum_mvc_abs / mvcount;
+ fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / mvcount)) / mvcount;
+ fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / mvcount)) / mvcount;
+ fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
fps.new_mv_count = new_mv_count;
-
- fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
+ fps.pcnt_motion = (double)mvcount / cm->MBs;
+ } else {
+ fps.MVr = 0.0;
+ fps.mvr_abs = 0.0;
+ fps.MVc = 0.0;
+ fps.mvc_abs = 0.0;
+ fps.MVrv = 0.0;
+ fps.MVcv = 0.0;
+ fps.mv_in_out_count = 0.0;
+ fps.new_mv_count = 0.0;
+ fps.pcnt_motion = 0.0;
}
// TODO(paulwilkins): Handle the case when duration is set to 0, or
// something less than the full time between subsequent values of
// cpi->source_time_stamp.
- fps.duration = (double)(cpi->source->ts_end
- - cpi->source->ts_start);
+ fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start);
- // don't want to do output stats with a stack variable!
- cpi->twopass.this_frame_stats = fps;
- output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats);
- accumulate_stats(&cpi->twopass.total_stats, &fps);
+ // Don't want to do output stats with a stack variable!
+ twopass->this_frame_stats = fps;
+ output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
+ accumulate_stats(&twopass->total_stats, &fps);
}
// Copy the previous Last Frame back into gf and and arf buffers if
- // the prediction is good enough... but also dont allow it to lag too far
- if ((cpi->twopass.sr_update_lag > 3) ||
+ // the prediction is good enough... but also don't allow it to lag too far.
+ if ((twopass->sr_update_lag > 3) ||
((cm->current_video_frame > 0) &&
- (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) &&
- ((cpi->twopass.this_frame_stats.intra_error /
- DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) >
- 2.0))) {
- vp8_yv12_copy_frame(lst_yv12, gld_yv12);
- cpi->twopass.sr_update_lag = 1;
+ (twopass->this_frame_stats.pcnt_inter > 0.20) &&
+ ((twopass->this_frame_stats.intra_error /
+ DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
+ if (gld_yv12 != NULL) {
+ vp8_yv12_copy_frame(lst_yv12, gld_yv12);
+ }
+ twopass->sr_update_lag = 1;
} else {
- cpi->twopass.sr_update_lag++;
+ ++twopass->sr_update_lag;
}
- // swap frame pointers so last frame refers to the frame we just compressed
- swap_yv12(lst_yv12, new_yv12);
- vp9_extend_frame_borders(lst_yv12, cm->subsampling_x, cm->subsampling_y);
+ vp9_extend_frame_borders(new_yv12);
+
+ if (cpi->use_svc && cpi->svc.number_temporal_layers == 1) {
+ vp9_update_reference_frames(cpi);
+ } else {
+ // Swap frame pointers so last frame refers to the frame we just compressed.
+ swap_yv12(lst_yv12, new_yv12);
+ }
// Special case for the first frame. Copy into the GF buffer as a second
// reference.
- if (cm->current_video_frame == 0)
+ if (cm->current_video_frame == 0 && gld_yv12 != NULL) {
vp8_yv12_copy_frame(lst_yv12, gld_yv12);
+ }
- // use this to see what the first pass reconstruction looks like
+ // Use this to see what the first pass reconstruction looks like.
if (0) {
char filename[512];
FILE *recon_file;
@@ -884,52 +890,7 @@ void vp9_first_pass(VP9_COMP *cpi) {
fclose(recon_file);
}
- cm->current_video_frame++;
-}
-
-// Estimate a cost per mb attributable to overheads such as the coding of
-// modes and motion vectors.
-// Currently simplistic in its assumptions for testing.
-//
-
-
-static double bitcost(double prob) {
- return -(log(prob) / log(2.0));
-}
-
-static int64_t estimate_modemvcost(VP9_COMP *cpi,
- FIRSTPASS_STATS *fpstats) {
-#if 0
- int mv_cost;
- int mode_cost;
-
- double av_pct_inter = fpstats->pcnt_inter / fpstats->count;
- double av_pct_motion = fpstats->pcnt_motion / fpstats->count;
- double av_intra = (1.0 - av_pct_inter);
-
- double zz_cost;
- double motion_cost;
- double intra_cost;
-
- zz_cost = bitcost(av_pct_inter - av_pct_motion);
- motion_cost = bitcost(av_pct_motion);
- intra_cost = bitcost(av_intra);
-
- // Estimate of extra bits per mv overhead for mbs
- // << 9 is the normalization to the (bits * 512) used in vp9_bits_per_mb
- mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;
-
- // Crude estimate of overhead cost from modes
- // << 9 is the normalization to (bits * 512) used in vp9_bits_per_mb
- mode_cost =
- (int)((((av_pct_inter - av_pct_motion) * zz_cost) +
- (av_pct_motion * motion_cost) +
- (av_intra * intra_cost)) * cpi->common.MBs) << 9;
-
- // return mv_cost + mode_cost;
- // TODO(paulwilkins): Fix overhead costs for extended Q range.
-#endif
- return 0;
+ ++cm->current_video_frame;
}
static double calc_correction_factor(double err_per_mb,
@@ -940,340 +901,182 @@ static double calc_correction_factor(double err_per_mb,
const double error_term = err_per_mb / err_divisor;
// Adjustment based on actual quantizer to power term.
- const double power_term = MIN(vp9_convert_qindex_to_q(q) * 0.01 + pt_low,
+ const double power_term = MIN(vp9_convert_qindex_to_q(q) * 0.0125 + pt_low,
pt_high);
- // Calculate correction factor
+ // Calculate correction factor.
if (power_term < 1.0)
assert(error_term >= 0.0);
return fclamp(pow(error_term, power_term), 0.05, 5.0);
}
-// Given a current maxQ value sets a range for future values.
-// PGW TODO..
-// This code removes direct dependency on QIndex to determine the range
-// (now uses the actual quantizer) but has not been tuned.
-static void adjust_maxq_qrange(VP9_COMP *cpi) {
- int i;
- // Set the max corresponding to cpi->avg_q * 2.0
- double q = cpi->avg_q * 2.0;
- cpi->twopass.maxq_max_limit = cpi->worst_quality;
- for (i = cpi->best_quality; i <= cpi->worst_quality; i++) {
- cpi->twopass.maxq_max_limit = i;
- if (vp9_convert_qindex_to_q(i) >= q)
- break;
- }
-
- // Set the min corresponding to cpi->avg_q * 0.5
- q = cpi->avg_q * 0.5;
- cpi->twopass.maxq_min_limit = cpi->best_quality;
- for (i = cpi->worst_quality; i >= cpi->best_quality; i--) {
- cpi->twopass.maxq_min_limit = i;
- if (vp9_convert_qindex_to_q(i) <= q)
- break;
- }
-}
+static int get_twopass_worst_quality(const VP9_COMP *cpi,
+ const FIRSTPASS_STATS *stats,
+ int section_target_bandwidth) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
-static int estimate_max_q(VP9_COMP *cpi,
- FIRSTPASS_STATS *fpstats,
- int section_target_bandwitdh) {
- int q;
- int num_mbs = cpi->common.MBs;
- int target_norm_bits_per_mb;
-
- double section_err = fpstats->coded_error / fpstats->count;
- double sr_correction;
- double err_per_mb = section_err / num_mbs;
- double err_correction_factor;
- double speed_correction = 1.0;
-
- if (section_target_bandwitdh <= 0)
- return cpi->twopass.maxq_max_limit; // Highest value allowed
-
- target_norm_bits_per_mb = section_target_bandwitdh < (1 << 20)
- ? (512 * section_target_bandwitdh) / num_mbs
- : 512 * (section_target_bandwitdh / num_mbs);
-
- // Look at the drop in prediction quality between the last frame
- // and the GF buffer (which contained an older frame).
- if (fpstats->sr_coded_error > fpstats->coded_error) {
- double sr_err_diff = (fpstats->sr_coded_error - fpstats->coded_error) /
- (fpstats->count * cpi->common.MBs);
- sr_correction = fclamp(pow(sr_err_diff / 32.0, 0.25), 0.75, 1.25);
+ if (section_target_bandwidth <= 0) {
+ return rc->worst_quality; // Highest value allowed
} else {
- sr_correction = 0.75;
- }
-
- // Calculate a corrective factor based on a rolling ratio of bits spent
- // vs target bits
- if (cpi->rolling_target_bits > 0 &&
- cpi->active_worst_quality < cpi->worst_quality) {
- double rolling_ratio = (double)cpi->rolling_actual_bits /
- (double)cpi->rolling_target_bits;
-
- if (rolling_ratio < 0.95)
- cpi->twopass.est_max_qcorrection_factor -= 0.005;
- else if (rolling_ratio > 1.05)
- cpi->twopass.est_max_qcorrection_factor += 0.005;
-
- cpi->twopass.est_max_qcorrection_factor = fclamp(
- cpi->twopass.est_max_qcorrection_factor, 0.1, 10.0);
- }
-
- // Corrections for higher compression speed settings
- // (reduced compression expected)
- // FIXME(jimbankoski): Once we settle on vp9 speed features we need to
- // change this code.
- if (cpi->compressor_speed == 1)
- speed_correction = cpi->oxcf.cpu_used <= 5 ?
- 1.04 + (/*cpi->oxcf.cpu_used*/0 * 0.04) :
- 1.25;
-
- // Try and pick a max Q that will be high enough to encode the
- // content at the given rate.
- for (q = cpi->twopass.maxq_min_limit; q < cpi->twopass.maxq_max_limit; q++) {
- int bits_per_mb_at_this_q;
-
- err_correction_factor = calc_correction_factor(err_per_mb,
- ERR_DIVISOR, 0.4, 0.90, q) *
- sr_correction * speed_correction *
- cpi->twopass.est_max_qcorrection_factor;
-
- bits_per_mb_at_this_q = vp9_bits_per_mb(INTER_FRAME, q,
- err_correction_factor);
-
- if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
- break;
- }
-
- // Restriction on active max q for constrained quality mode.
- if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY &&
- q < cpi->cq_target_quality)
- q = cpi->cq_target_quality;
-
- // Adjust maxq_min_limit and maxq_max_limit limits based on
- // average q observed in clip for non kf/gf/arf frames
- // Give average a chance to settle though.
- // PGW TODO.. This code is broken for the extended Q range
- if (cpi->ni_frames > ((int)cpi->twopass.total_stats.count >> 8) &&
- cpi->ni_frames > 25)
- adjust_maxq_qrange(cpi);
-
- return q;
-}
-
-// For cq mode estimate a cq level that matches the observed
-// complexity and data rate.
-static int estimate_cq(VP9_COMP *cpi,
- FIRSTPASS_STATS *fpstats,
- int section_target_bandwitdh) {
- int q;
- int num_mbs = cpi->common.MBs;
- int target_norm_bits_per_mb;
-
- double section_err = (fpstats->coded_error / fpstats->count);
- double err_per_mb = section_err / num_mbs;
- double err_correction_factor;
- double sr_err_diff;
- double sr_correction;
- double speed_correction = 1.0;
- double clip_iiratio;
- double clip_iifactor;
-
- target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
- ? (512 * section_target_bandwitdh) / num_mbs
- : 512 * (section_target_bandwitdh / num_mbs);
-
-
- // Corrections for higher compression speed settings
- // (reduced compression expected)
- if (cpi->compressor_speed == 1) {
- if (cpi->oxcf.cpu_used <= 5)
- speed_correction = 1.04 + (/*cpi->oxcf.cpu_used*/ 0 * 0.04);
- else
- speed_correction = 1.25;
- }
-
- // Look at the drop in prediction quality between the last frame
- // and the GF buffer (which contained an older frame).
- if (fpstats->sr_coded_error > fpstats->coded_error) {
- sr_err_diff =
- (fpstats->sr_coded_error - fpstats->coded_error) /
- (fpstats->count * cpi->common.MBs);
- sr_correction = (sr_err_diff / 32.0);
- sr_correction = pow(sr_correction, 0.25);
- if (sr_correction < 0.75)
- sr_correction = 0.75;
- else if (sr_correction > 1.25)
- sr_correction = 1.25;
- } else {
- sr_correction = 0.75;
- }
-
- // II ratio correction factor for clip as a whole
- clip_iiratio = cpi->twopass.total_stats.intra_error /
- DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error);
- clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
- if (clip_iifactor < 0.80)
- clip_iifactor = 0.80;
-
- // Try and pick a Q that can encode the content at the given rate.
- for (q = 0; q < MAXQ; q++) {
- int bits_per_mb_at_this_q;
-
- // Error per MB based correction factor
- err_correction_factor =
- calc_correction_factor(err_per_mb, 100.0, 0.4, 0.90, q) *
- sr_correction * speed_correction * clip_iifactor;
+ const int num_mbs = cpi->common.MBs;
+ const double section_err = stats->coded_error / stats->count;
+ const double err_per_mb = section_err / num_mbs;
+ const double speed_term = 1.0 + 0.04 * oxcf->speed;
+ const int target_norm_bits_per_mb = ((uint64_t)section_target_bandwidth <<
+ BPER_MB_NORMBITS) / num_mbs;
+ int q;
+ int is_svc_upper_layer = 0;
+ if (cpi->use_svc && cpi->svc.number_temporal_layers == 1 &&
+ cpi->svc.spatial_layer_id > 0) {
+ is_svc_upper_layer = 1;
+ }
- bits_per_mb_at_this_q =
- vp9_bits_per_mb(INTER_FRAME, q, err_correction_factor);
+ // Try and pick a max Q that will be high enough to encode the
+ // content at the given rate.
+ for (q = rc->best_quality; q < rc->worst_quality; ++q) {
+ const double factor =
+ calc_correction_factor(err_per_mb, ERR_DIVISOR,
+ is_svc_upper_layer ? 0.8 : 0.5,
+ is_svc_upper_layer ? 1.0 : 0.90, q);
+ const int bits_per_mb = vp9_rc_bits_per_mb(INTER_FRAME, q,
+ factor * speed_term);
+ if (bits_per_mb <= target_norm_bits_per_mb)
+ break;
+ }
- if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
- break;
+ // Restriction on active max q for constrained quality mode.
+ if (cpi->oxcf.rc_mode == RC_MODE_CONSTRAINED_QUALITY)
+ q = MAX(q, oxcf->cq_level);
+ return q;
}
-
- // Clip value to range "best allowed to (worst allowed - 1)"
- q = select_cq_level(q);
- if (q >= cpi->worst_quality)
- q = cpi->worst_quality - 1;
- if (q < cpi->best_quality)
- q = cpi->best_quality;
-
- return q;
}
extern void vp9_new_framerate(VP9_COMP *cpi, double framerate);
void vp9_init_second_pass(VP9_COMP *cpi) {
- FIRSTPASS_STATS this_frame;
- FIRSTPASS_STATS *start_pos;
-
- double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.framerate;
- double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth *
- cpi->oxcf.two_pass_vbrmin_section / 100);
-
- if (two_pass_min_rate < lower_bounds_min_rate)
- two_pass_min_rate = lower_bounds_min_rate;
-
- zero_stats(&cpi->twopass.total_stats);
- zero_stats(&cpi->twopass.total_left_stats);
-
- if (!cpi->twopass.stats_in_end)
+ SVC *const svc = &cpi->svc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const int is_spatial_svc = (svc->number_spatial_layers > 1) &&
+ (svc->number_temporal_layers == 1);
+ struct twopass_rc *const twopass = is_spatial_svc ?
+ &svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass;
+ double frame_rate;
+ FIRSTPASS_STATS *stats;
+
+ zero_stats(&twopass->total_stats);
+ zero_stats(&twopass->total_left_stats);
+
+ if (!twopass->stats_in_end)
return;
- cpi->twopass.total_stats = *cpi->twopass.stats_in_end;
- cpi->twopass.total_left_stats = cpi->twopass.total_stats;
+ stats = &twopass->total_stats;
+
+ *stats = *twopass->stats_in_end;
+ twopass->total_left_stats = *stats;
- // each frame can have a different duration, as the frame rate in the source
- // isn't guaranteed to be constant. The frame rate prior to the first frame
- // encoded in the second pass is a guess. However the sum duration is not.
- // Its calculated based on the actual durations of all frames from the first
- // pass.
- vp9_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count /
- cpi->twopass.total_stats.duration);
+ frame_rate = 10000000.0 * stats->count / stats->duration;
+ // Each frame can have a different duration, as the frame rate in the source
+ // isn't guaranteed to be constant. The frame rate prior to the first frame
+ // encoded in the second pass is a guess. However, the sum duration is not.
+ // It is calculated based on the actual durations of all frames from the
+ // first pass.
- cpi->output_framerate = cpi->oxcf.framerate;
- cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration *
- cpi->oxcf.target_bandwidth / 10000000.0);
- cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration *
- two_pass_min_rate / 10000000.0);
+ if (is_spatial_svc) {
+ vp9_update_spatial_layer_framerate(cpi, frame_rate);
+ twopass->bits_left = (int64_t)(stats->duration *
+ svc->layer_context[svc->spatial_layer_id].target_bandwidth /
+ 10000000.0);
+ } else {
+ vp9_new_framerate(cpi, frame_rate);
+ twopass->bits_left = (int64_t)(stats->duration * oxcf->target_bandwidth /
+ 10000000.0);
+ }
// Calculate a minimum intra value to be used in determining the IIratio
// scores used in the second pass. We have this minimum to make sure
// that clips that are static but "low complexity" in the intra domain
- // are still boosted appropriately for KF/GF/ARF
- cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
- cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
+ // are still boosted appropriately for KF/GF/ARF.
+ if (!is_spatial_svc) {
+ // We don't know the number of MBs for each layer at this point.
+ // So we will do it later.
+ twopass->kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
+ twopass->gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
+ }
- // This variable monitors how far behind the second ref update is lagging
- cpi->twopass.sr_update_lag = 1;
+ // This variable monitors how far behind the second ref update is lagging.
+ twopass->sr_update_lag = 1;
- // Scan the first pass file and calculate an average Intra / Inter error score
- // ratio for the sequence.
+ // Scan the first pass file and calculate an average Intra / Inter error
+ // score ratio for the sequence.
{
+ const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
+ FIRSTPASS_STATS this_frame;
double sum_iiratio = 0.0;
- double IIRatio;
- start_pos = cpi->twopass.stats_in; // Note the starting "file" position.
-
- while (input_stats(cpi, &this_frame) != EOF) {
- IIRatio = this_frame.intra_error
- / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
- IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
- sum_iiratio += IIRatio;
+ while (input_stats(twopass, &this_frame) != EOF) {
+ const double iiratio = this_frame.intra_error /
+ DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
+ sum_iiratio += fclamp(iiratio, 1.0, 20.0);
}
- cpi->twopass.avg_iiratio = sum_iiratio /
- DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count);
+ twopass->avg_iiratio = sum_iiratio /
+ DOUBLE_DIVIDE_CHECK((double)stats->count);
- // Reset file position
- reset_fpf_position(cpi, start_pos);
+ reset_fpf_position(twopass, start_pos);
}
// Scan the first pass file and calculate a modified total error based upon
// the bias/power function used to allocate bits.
{
- start_pos = cpi->twopass.stats_in; // Note starting "file" position
+ const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
+ FIRSTPASS_STATS this_frame;
+ const double av_error = stats->ssim_weighted_pred_err /
+ DOUBLE_DIVIDE_CHECK(stats->count);
+
- cpi->twopass.modified_error_total = 0.0;
- cpi->twopass.modified_error_used = 0.0;
+ twopass->modified_error_total = 0.0;
+ twopass->modified_error_min =
+ (av_error * oxcf->two_pass_vbrmin_section) / 100;
+ twopass->modified_error_max =
+ (av_error * oxcf->two_pass_vbrmax_section) / 100;
- while (input_stats(cpi, &this_frame) != EOF) {
- cpi->twopass.modified_error_total +=
+ while (input_stats(twopass, &this_frame) != EOF) {
+ twopass->modified_error_total +=
calculate_modified_err(cpi, &this_frame);
}
- cpi->twopass.modified_error_left = cpi->twopass.modified_error_total;
+ twopass->modified_error_left = twopass->modified_error_total;
- reset_fpf_position(cpi, start_pos); // Reset file position
+ reset_fpf_position(twopass, start_pos);
}
-}
-void vp9_end_second_pass(VP9_COMP *cpi) {
+ // Reset the vbr bits off target counter
+ cpi->rc.vbr_bits_off_target = 0;
}
-// This function gives and estimate of how badly we believe
-// the prediction quality is decaying from frame to frame.
-static double get_prediction_decay_rate(VP9_COMP *cpi,
- FIRSTPASS_STATS *next_frame) {
- double prediction_decay_rate;
- double second_ref_decay;
- double mb_sr_err_diff;
-
- // Initial basis is the % mbs inter coded
- prediction_decay_rate = next_frame->pcnt_inter;
-
+// This function gives an estimate of how badly we believe the prediction
+// quality is decaying from frame to frame.
+static double get_prediction_decay_rate(const VP9_COMMON *cm,
+ const FIRSTPASS_STATS *next_frame) {
// Look at the observed drop in prediction quality between the last frame
// and the GF buffer (which contains an older frame).
- mb_sr_err_diff = (next_frame->sr_coded_error - next_frame->coded_error) /
- cpi->common.MBs;
- if (mb_sr_err_diff <= 512.0) {
- second_ref_decay = 1.0 - (mb_sr_err_diff / 512.0);
- second_ref_decay = pow(second_ref_decay, 0.5);
- if (second_ref_decay < 0.85)
- second_ref_decay = 0.85;
- else if (second_ref_decay > 1.0)
- second_ref_decay = 1.0;
- } else {
- second_ref_decay = 0.85;
- }
+ const double mb_sr_err_diff = (next_frame->sr_coded_error -
+ next_frame->coded_error) / cm->MBs;
+ const double second_ref_decay = mb_sr_err_diff <= 512.0
+ ? fclamp(pow(1.0 - (mb_sr_err_diff / 512.0), 0.5), 0.85, 1.0)
+ : 0.85;
- if (second_ref_decay < prediction_decay_rate)
- prediction_decay_rate = second_ref_decay;
-
- return prediction_decay_rate;
+ return MIN(second_ref_decay, next_frame->pcnt_inter);
}
// Function to test for a condition where a complex transition is followed
// by a static section. For example in slide shows where there is a fade
// between slides. This is to help with more optimal kf and gf positioning.
-static int detect_transition_to_still(
- VP9_COMP *cpi,
- int frame_interval,
- int still_interval,
- double loop_decay_rate,
- double last_decay_rate) {
+static int detect_transition_to_still(struct twopass_rc *twopass,
+ int frame_interval, int still_interval,
+ double loop_decay_rate,
+ double last_decay_rate) {
int trans_to_still = 0;
// Break clause to detect very still sections after motion
@@ -1283,25 +1086,21 @@ static int detect_transition_to_still(
loop_decay_rate >= 0.999 &&
last_decay_rate < 0.9) {
int j;
- FIRSTPASS_STATS *position = cpi->twopass.stats_in;
+ const FIRSTPASS_STATS *position = twopass->stats_in;
FIRSTPASS_STATS tmp_next_frame;
- double zz_inter;
- // Look ahead a few frames to see if static condition
- // persists...
- for (j = 0; j < still_interval; j++) {
- if (EOF == input_stats(cpi, &tmp_next_frame))
+ // Look ahead a few frames to see if static condition persists...
+ for (j = 0; j < still_interval; ++j) {
+ if (EOF == input_stats(twopass, &tmp_next_frame))
break;
- zz_inter =
- (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion);
- if (zz_inter < 0.999)
+ if (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion < 0.999)
break;
}
- // Reset file position
- reset_fpf_position(cpi, position);
- // Only if it does do we signal a transition to still
+ reset_fpf_position(twopass, position);
+
+ // Only if it does do we signal a transition to still.
if (j == still_interval)
trans_to_still = 1;
}
@@ -1311,20 +1110,20 @@ static int detect_transition_to_still(
// This function detects a flash through the high relative pcnt_second_ref
// score in the frame following a flash frame. The offset passed in should
-// reflect this
-static int detect_flash(VP9_COMP *cpi, int offset) {
+// reflect this.
+static int detect_flash(const struct twopass_rc *twopass, int offset) {
FIRSTPASS_STATS next_frame;
int flash_detected = 0;
// Read the frame data.
// The return is FALSE (no flash detected) if not a valid frame
- if (read_frame_stats(cpi, &next_frame, offset) != EOF) {
+ if (read_frame_stats(twopass, &next_frame, offset) != EOF) {
// What we are looking for here is a situation where there is a
// brief break in prediction (such as a flash) but subsequent frames
// are reasonably well predicted by an earlier (pre flash) frame.
// The recovery after a flash is indicated by a high pcnt_second_ref
- // comapred to pcnt_inter.
+ // compared to pcnt_inter.
if (next_frame.pcnt_second_ref > next_frame.pcnt_inter &&
next_frame.pcnt_second_ref >= 0.5)
flash_detected = 1;
@@ -1333,56 +1132,48 @@ static int detect_flash(VP9_COMP *cpi, int offset) {
return flash_detected;
}
-// Update the motion related elements to the GF arf boost calculation
+// Update the motion related elements to the GF arf boost calculation.
static void accumulate_frame_motion_stats(
FIRSTPASS_STATS *this_frame,
double *this_frame_mv_in_out,
double *mv_in_out_accumulator,
double *abs_mv_in_out_accumulator,
double *mv_ratio_accumulator) {
- // double this_frame_mv_in_out;
- double this_frame_mvr_ratio;
- double this_frame_mvc_ratio;
double motion_pct;
// Accumulate motion stats.
motion_pct = this_frame->pcnt_motion;
- // Accumulate Motion In/Out of frame stats
+ // Accumulate Motion In/Out of frame stats.
*this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
*mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
- *abs_mv_in_out_accumulator +=
- fabs(this_frame->mv_in_out_count * motion_pct);
+ *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct);
// Accumulate a measure of how uniform (or conversely how random)
- // the motion field is. (A ratio of absmv / mv)
+ // the motion field is (a ratio of absmv / mv).
if (motion_pct > 0.05) {
- this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
+ const double this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
- this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
+ const double this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
- *mv_ratio_accumulator +=
- (this_frame_mvr_ratio < this_frame->mvr_abs)
+ *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs)
? (this_frame_mvr_ratio * motion_pct)
: this_frame->mvr_abs * motion_pct;
- *mv_ratio_accumulator +=
- (this_frame_mvc_ratio < this_frame->mvc_abs)
+ *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs)
? (this_frame_mvc_ratio * motion_pct)
: this_frame->mvc_abs * motion_pct;
}
}
// Calculate a baseline boost number for the current frame.
-static double calc_frame_boost(
- VP9_COMP *cpi,
- FIRSTPASS_STATS *this_frame,
- double this_frame_mv_in_out) {
+static double calc_frame_boost(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame,
+ double this_frame_mv_in_out) {
double frame_boost;
- // Underlying boost factor is based on inter intra error ratio
+ // Underlying boost factor is based on inter intra error ratio.
if (this_frame->intra_error > cpi->twopass.gf_intra_err_min)
frame_boost = (IIFACTOR * this_frame->intra_error /
DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
@@ -1390,28 +1181,23 @@ static double calc_frame_boost(
frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min /
DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
- // Increase boost for frames where new data coming into frame
- // (eg zoom out). Slightly reduce boost if there is a net balance
- // of motion out of the frame (zoom in).
- // The range for this_frame_mv_in_out is -1.0 to +1.0
+ // Increase boost for frames where new data coming into frame (e.g. zoom out).
+ // Slightly reduce boost if there is a net balance of motion out of the frame
+ // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
if (this_frame_mv_in_out > 0.0)
frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
- // In extreme case boost is halved
+ // In the extreme case the boost is halved.
else
frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
- // Clip to maximum
- if (frame_boost > GF_RMAX)
- frame_boost = GF_RMAX;
-
- return frame_boost;
+ return MIN(frame_boost, GF_RMAX);
}
static int calc_arf_boost(VP9_COMP *cpi, int offset,
int f_frames, int b_frames,
int *f_boost, int *b_boost) {
FIRSTPASS_STATS this_frame;
-
+ struct twopass_rc *const twopass = &cpi->twopass;
int i;
double boost_score = 0.0;
double mv_ratio_accumulator = 0.0;
@@ -1422,12 +1208,12 @@ static int calc_arf_boost(VP9_COMP *cpi, int offset,
int arf_boost;
int flash_detected = 0;
- // Search forward from the proposed arf/next gf position
- for (i = 0; i < f_frames; i++) {
- if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF)
+ // Search forward from the proposed arf/next gf position.
+ for (i = 0; i < f_frames; ++i) {
+ if (read_frame_stats(twopass, &this_frame, (i + offset)) == EOF)
break;
- // Update the motion related elements to the boost calculation
+ // Update the motion related elements to the boost calculation.
accumulate_frame_motion_stats(&this_frame,
&this_frame_mv_in_out, &mv_in_out_accumulator,
&abs_mv_in_out_accumulator,
@@ -1435,12 +1221,12 @@ static int calc_arf_boost(VP9_COMP *cpi, int offset,
// We want to discount the flash frame itself and the recovery
// frame that follows as both will have poor scores.
- flash_detected = detect_flash(cpi, (i + offset)) ||
- detect_flash(cpi, (i + offset + 1));
+ flash_detected = detect_flash(twopass, i + offset) ||
+ detect_flash(twopass, i + offset + 1);
- // Cumulative effect of prediction quality decay
+ // Accumulate the effect of prediction quality decay.
if (!flash_detected) {
- decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame);
+ decay_accumulator *= get_prediction_decay_rate(&cpi->common, &this_frame);
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
? MIN_DECAY_FACTOR : decay_accumulator;
}
@@ -1451,7 +1237,7 @@ static int calc_arf_boost(VP9_COMP *cpi, int offset,
*f_boost = (int)boost_score;
- // Reset for backward looking loop
+ // Reset for backward looking loop.
boost_score = 0.0;
mv_ratio_accumulator = 0.0;
decay_accumulator = 1.0;
@@ -1459,12 +1245,12 @@ static int calc_arf_boost(VP9_COMP *cpi, int offset,
mv_in_out_accumulator = 0.0;
abs_mv_in_out_accumulator = 0.0;
- // Search backward towards last gf position
- for (i = -1; i >= -b_frames; i--) {
- if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF)
+ // Search backward towards last gf position.
+ for (i = -1; i >= -b_frames; --i) {
+ if (read_frame_stats(twopass, &this_frame, (i + offset)) == EOF)
break;
- // Update the motion related elements to the boost calculation
+ // Update the motion related elements to the boost calculation.
accumulate_frame_motion_stats(&this_frame,
&this_frame_mv_in_out, &mv_in_out_accumulator,
&abs_mv_in_out_accumulator,
@@ -1472,12 +1258,12 @@ static int calc_arf_boost(VP9_COMP *cpi, int offset,
// We want to discount the the flash frame itself and the recovery
// frame that follows as both will have poor scores.
- flash_detected = detect_flash(cpi, (i + offset)) ||
- detect_flash(cpi, (i + offset + 1));
+ flash_detected = detect_flash(twopass, i + offset) ||
+ detect_flash(twopass, i + offset + 1);
- // Cumulative effect of prediction quality decay
+ // Cumulative effect of prediction quality decay.
if (!flash_detected) {
- decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame);
+ decay_accumulator *= get_prediction_decay_rate(&cpi->common, &this_frame);
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
? MIN_DECAY_FACTOR : decay_accumulator;
}
@@ -1525,8 +1311,7 @@ static void schedule_frames(VP9_COMP *cpi, const int start, const int end,
return;
}
- // ARF Group: work out the ARF schedule.
- // Mark ARF frames as negative.
+ // ARF Group: Work out the ARF schedule and mark ARF frames as negative.
if (end < 0) {
// printf("start:%d end:%d\n", -end, -end);
// ARF frame is at the end of the range.
@@ -1578,6 +1363,8 @@ void define_fixed_arf_period(VP9_COMP *cpi) {
cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number];
assert(cpi->this_frame_weight >= 0);
+ cpi->twopass.gf_zeromotion_pct = 0;
+
// Initialize frame coding order variables.
cpi->new_frame_coding_order_period = 0;
cpi->next_frame_in_order = 0;
@@ -1586,16 +1373,16 @@ void define_fixed_arf_period(VP9_COMP *cpi) {
vp9_zero(cpi->arf_buffer_idx);
vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight));
- if (cpi->twopass.frames_to_key <= (FIXED_ARF_GROUP_SIZE + 8)) {
+ if (cpi->rc.frames_to_key <= (FIXED_ARF_GROUP_SIZE + 8)) {
// Setup a GF group close to the keyframe.
- cpi->source_alt_ref_pending = 0;
- cpi->baseline_gf_interval = cpi->twopass.frames_to_key;
- schedule_frames(cpi, 0, (cpi->baseline_gf_interval - 1), 2, 0, 0);
+ cpi->rc.source_alt_ref_pending = 0;
+ cpi->rc.baseline_gf_interval = cpi->rc.frames_to_key;
+ schedule_frames(cpi, 0, (cpi->rc.baseline_gf_interval - 1), 2, 0, 0);
} else {
// Setup a fixed period ARF group.
- cpi->source_alt_ref_pending = 1;
- cpi->baseline_gf_interval = FIXED_ARF_GROUP_SIZE;
- schedule_frames(cpi, 0, -(cpi->baseline_gf_interval - 1), 2, 1, 0);
+ cpi->rc.source_alt_ref_pending = 1;
+ cpi->rc.baseline_gf_interval = FIXED_ARF_GROUP_SIZE;
+ schedule_frames(cpi, 0, -(cpi->rc.baseline_gf_interval - 1), 2, 1, 0);
}
// Replace level indicator of -1 with correct level.
@@ -1631,10 +1418,91 @@ void define_fixed_arf_period(VP9_COMP *cpi) {
}
#endif
+// Calculate a section intra ratio used in setting max loop filter.
+static void calculate_section_intra_ratio(struct twopass_rc *twopass,
+ const FIRSTPASS_STATS *start_pos,
+ int section_length) {
+ FIRSTPASS_STATS next_frame;
+ FIRSTPASS_STATS sectionstats;
+ int i;
+
+ vp9_zero(next_frame);
+ vp9_zero(sectionstats);
+
+ reset_fpf_position(twopass, start_pos);
+
+ for (i = 0; i < section_length; ++i) {
+ input_stats(twopass, &next_frame);
+ accumulate_stats(&sectionstats, &next_frame);
+ }
+
+ avg_stats(&sectionstats);
+
+ twopass->section_intra_rating =
+ (int)(sectionstats.intra_error /
+ DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
+
+ reset_fpf_position(twopass, start_pos);
+}
+
+// Calculate the total bits to allocate in this GF/ARF group.
+static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi,
+ double gf_group_err) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const struct twopass_rc *const twopass = &cpi->twopass;
+ const int max_bits = frame_max_bits(rc, &cpi->oxcf);
+ int64_t total_group_bits;
+
+ // Calculate the bits to be allocated to the group as a whole.
+ if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
+ total_group_bits = (int64_t)(twopass->kf_group_bits *
+ (gf_group_err / twopass->kf_group_error_left));
+ } else {
+ total_group_bits = 0;
+ }
+
+ // Clamp odd edge cases.
+ total_group_bits = (total_group_bits < 0) ?
+ 0 : (total_group_bits > twopass->kf_group_bits) ?
+ twopass->kf_group_bits : total_group_bits;
+
+ // Clip based on user supplied data rate variability limit.
+ if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
+ total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
+
+ return total_group_bits;
+}
+
+// Calculate the number bits extra to assign to boosted frames in a group.
+static int calculate_boost_bits(int frame_count,
+ int boost, int64_t total_group_bits) {
+ int allocation_chunks;
+
+ // return 0 for invalid inputs (could arise e.g. through rounding errors)
+ if (!boost || (total_group_bits <= 0) || (frame_count <= 0) )
+ return 0;
+
+ allocation_chunks = (frame_count * 100) + boost;
+
+ // Prevent overflow.
+ if (boost > 1023) {
+ int divisor = boost >> 10;
+ boost /= divisor;
+ allocation_chunks /= divisor;
+ }
+
+ // Calculate the number of extra bits for use in the boosted frame or frames.
+ return MAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), 0);
+}
+
+
// Analyse and define a gf/arf group.
static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
- FIRSTPASS_STATS next_frame = { 0 };
- FIRSTPASS_STATS *start_pos;
+ RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ struct twopass_rc *const twopass = &cpi->twopass;
+ FIRSTPASS_STATS next_frame;
+ const FIRSTPASS_STATS *start_pos;
int i;
double boost_score = 0.0;
double old_boost_score = 0.0;
@@ -1646,40 +1514,36 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
double decay_accumulator = 1.0;
double zero_motion_accumulator = 1.0;
- double loop_decay_rate = 1.00; // Starting decay rate
+ double loop_decay_rate = 1.00;
double last_loop_decay_rate = 1.00;
double this_frame_mv_in_out = 0.0;
double mv_in_out_accumulator = 0.0;
double abs_mv_in_out_accumulator = 0.0;
double mv_ratio_accumulator_thresh;
- int max_bits = frame_max_bits(cpi); // Max for a single frame
-
- unsigned int allow_alt_ref =
- cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
+ unsigned int allow_alt_ref = oxcf->play_alternate && oxcf->lag_in_frames;
int f_boost = 0;
int b_boost = 0;
int flash_detected;
int active_max_gf_interval;
- cpi->twopass.gf_group_bits = 0;
-
- vp9_clear_system_state(); // __asm emms;
+ vp9_clear_system_state();
+ vp9_zero(next_frame);
- start_pos = cpi->twopass.stats_in;
+ twopass->gf_group_bits = 0;
+ start_pos = twopass->stats_in;
// Load stats for the current frame.
mod_frame_err = calculate_modified_err(cpi, this_frame);
- // Note the error of the frame at the start of the group (this will be
- // the GF frame error if we code a normal gf
+ // Note the error of the frame at the start of the group. This will be
+ // the GF frame error if we code a normal gf.
gf_first_frame_err = mod_frame_err;
- // Special treatment if the current frame is a key frame (which is also
- // a gf). If it is then its error score (and hence bit allocation) need
- // to be subtracted out from the calculation for the GF group
- if (cpi->common.frame_type == KEY_FRAME)
+ // If this is a key frame or the overlay from a previous arf then
+ // the error score / cost of this frame has already been accounted for.
+ if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active)
gf_group_err -= gf_first_frame_err;
// Motion breakout threshold for loop below depends on image size.
@@ -1691,71 +1555,67 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
// bits to spare and are better with a smaller interval and smaller boost.
// At high Q when there are few bits to spare we are better with a longer
// interval to spread the cost of the GF.
+ //
active_max_gf_interval =
- 12 + ((int)vp9_convert_qindex_to_q(cpi->active_worst_quality) >> 5);
+ 12 + ((int)vp9_convert_qindex_to_q(rc->last_q[INTER_FRAME]) >> 5);
- if (active_max_gf_interval > cpi->max_gf_interval)
- active_max_gf_interval = cpi->max_gf_interval;
+ if (active_max_gf_interval > rc->max_gf_interval)
+ active_max_gf_interval = rc->max_gf_interval;
i = 0;
- while (((i < cpi->twopass.static_scene_max_gf_interval) ||
- ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
- (i < cpi->twopass.frames_to_key)) {
- i++; // Increment the loop counter
+ while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
+ ++i;
- // Accumulate error score of frames in this gf group
+ // Accumulate error score of frames in this gf group.
mod_frame_err = calculate_modified_err(cpi, this_frame);
gf_group_err += mod_frame_err;
- if (EOF == input_stats(cpi, &next_frame))
+ if (EOF == input_stats(twopass, &next_frame))
break;
// Test for the case where there is a brief flash but the prediction
// quality back to an earlier frame is then restored.
- flash_detected = detect_flash(cpi, 0);
+ flash_detected = detect_flash(twopass, 0);
- // Update the motion related elements to the boost calculation
+ // Update the motion related elements to the boost calculation.
accumulate_frame_motion_stats(&next_frame,
&this_frame_mv_in_out, &mv_in_out_accumulator,
&abs_mv_in_out_accumulator,
&mv_ratio_accumulator);
- // Cumulative effect of prediction quality decay
+ // Accumulate the effect of prediction quality decay.
if (!flash_detected) {
last_loop_decay_rate = loop_decay_rate;
- loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
+ loop_decay_rate = get_prediction_decay_rate(&cpi->common, &next_frame);
decay_accumulator = decay_accumulator * loop_decay_rate;
// Monitor for static sections.
if ((next_frame.pcnt_inter - next_frame.pcnt_motion) <
zero_motion_accumulator) {
- zero_motion_accumulator =
- (next_frame.pcnt_inter - next_frame.pcnt_motion);
+ zero_motion_accumulator = next_frame.pcnt_inter -
+ next_frame.pcnt_motion;
}
- // Break clause to detect very still sections after motion
- // (for example a static image after a fade or other transition).
- if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
+ // Break clause to detect very still sections after motion. For example,
+ // a static image after a fade or other transition.
+ if (detect_transition_to_still(twopass, i, 5, loop_decay_rate,
last_loop_decay_rate)) {
allow_alt_ref = 0;
break;
}
}
- // Calculate a boost number for this frame
- boost_score +=
- (decay_accumulator *
+ // Calculate a boost number for this frame.
+ boost_score += (decay_accumulator *
calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out));
// Break out conditions.
if (
- // Break at cpi->max_gf_interval unless almost totally static
+ // Break at cpi->max_gf_interval unless almost totally static.
(i >= active_max_gf_interval && (zero_motion_accumulator < 0.995)) ||
(
- // Don't break out with a very short interval
+ // Don't break out with a very short interval.
(i > MIN_GF_INTERVAL) &&
- // Don't break out very close to a key frame
- ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) &&
((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) &&
(!flash_detected) &&
((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
@@ -1771,26 +1631,23 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
old_boost_score = boost_score;
}
- cpi->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
+ twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
- // Don't allow a gf too near the next kf
- if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) {
- while (i < cpi->twopass.frames_to_key) {
- i++;
+ // Don't allow a gf too near the next kf.
+ if ((rc->frames_to_key - i) < MIN_GF_INTERVAL) {
+ while (i < (rc->frames_to_key + !rc->next_key_frame_forced)) {
+ ++i;
- if (EOF == input_stats(cpi, this_frame))
+ if (EOF == input_stats(twopass, this_frame))
break;
- if (i < cpi->twopass.frames_to_key) {
+ if (i < rc->frames_to_key) {
mod_frame_err = calculate_modified_err(cpi, this_frame);
gf_group_err += mod_frame_err;
}
}
}
- // Set the interval until the next gf or arf.
- cpi->baseline_gf_interval = i;
-
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
// Initialize frame coding order variables.
@@ -1803,36 +1660,39 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
}
#endif
- // Should we use the alternate reference frame
+ // Set the interval until the next gf.
+ if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active)
+ rc->baseline_gf_interval = i - 1;
+ else
+ rc->baseline_gf_interval = i;
+
+ // Should we use the alternate reference frame.
if (allow_alt_ref &&
(i < cpi->oxcf.lag_in_frames) &&
(i >= MIN_GF_INTERVAL) &&
- // dont use ARF very near next kf
- (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) &&
- ((next_frame.pcnt_inter > 0.75) ||
- (next_frame.pcnt_second_ref > 0.5)) &&
- ((mv_in_out_accumulator / (double)i > -0.2) ||
- (mv_in_out_accumulator > -2.0)) &&
- (boost_score > 100)) {
- // Alternative boost calculation for alt ref
- cpi->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost,
- &b_boost);
- cpi->source_alt_ref_pending = 1;
+ // For real scene cuts (not forced kfs) don't allow arf very near kf.
+ (rc->next_key_frame_forced ||
+ (i <= (rc->frames_to_key - MIN_GF_INTERVAL)))) {
+ // Calculate the boost for alt ref.
+ rc->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost,
+ &b_boost);
+ rc->source_alt_ref_pending = 1;
#if CONFIG_MULTIPLE_ARF
// Set the ARF schedule.
if (cpi->multi_arf_enabled) {
- schedule_frames(cpi, 0, -(cpi->baseline_gf_interval - 1), 2, 1, 0);
+ schedule_frames(cpi, 0, -(rc->baseline_gf_interval - 1), 2, 1, 0);
}
#endif
} else {
- cpi->gfu_boost = (int)boost_score;
- cpi->source_alt_ref_pending = 0;
+ rc->gfu_boost = (int)boost_score;
+ rc->source_alt_ref_pending = 0;
#if CONFIG_MULTIPLE_ARF
// Set the GF schedule.
if (cpi->multi_arf_enabled) {
- schedule_frames(cpi, 0, cpi->baseline_gf_interval - 1, 2, 0, 0);
- assert(cpi->new_frame_coding_order_period == cpi->baseline_gf_interval);
+ schedule_frames(cpi, 0, rc->baseline_gf_interval - 1, 2, 0, 0);
+ assert(cpi->new_frame_coding_order_period ==
+ rc->baseline_gf_interval);
}
#endif
}
@@ -1874,493 +1734,150 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
}
#endif
#endif
+ // Reset the file position.
+ reset_fpf_position(twopass, start_pos);
- // Now decide how many bits should be allocated to the GF group as a
- // proportion of those remaining in the kf group.
- // The final key frame group in the clip is treated as a special case
- // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left.
- // This is also important for short clips where there may only be one
- // key frame.
- if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count -
- cpi->common.current_video_frame)) {
- cpi->twopass.kf_group_bits =
- (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0;
- }
-
- // Calculate the bits to be allocated to the group as a whole
- if ((cpi->twopass.kf_group_bits > 0) &&
- (cpi->twopass.kf_group_error_left > 0)) {
- cpi->twopass.gf_group_bits =
- (int64_t)(cpi->twopass.kf_group_bits *
- (gf_group_err / cpi->twopass.kf_group_error_left));
- } else {
- cpi->twopass.gf_group_bits = 0;
- }
- cpi->twopass.gf_group_bits =
- (cpi->twopass.gf_group_bits < 0)
- ? 0
- : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
- ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits;
-
- // Clip cpi->twopass.gf_group_bits based on user supplied data rate
- // variability limit (cpi->oxcf.two_pass_vbrmax_section)
- if (cpi->twopass.gf_group_bits >
- (int64_t)max_bits * cpi->baseline_gf_interval)
- cpi->twopass.gf_group_bits = (int64_t)max_bits * cpi->baseline_gf_interval;
-
- // Reset the file position
- reset_fpf_position(cpi, start_pos);
-
- // Update the record of error used so far (only done once per gf group)
- cpi->twopass.modified_error_used += gf_group_err;
-
- // Assign bits to the arf or gf.
- for (i = 0;
- i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME);
- ++i) {
- int allocation_chunks;
- int q = cpi->oxcf.fixed_q < 0 ? cpi->last_q[INTER_FRAME]
- : cpi->oxcf.fixed_q;
- int gf_bits;
-
- int boost = (cpi->gfu_boost * vp9_gfboost_qadjust(q)) / 100;
-
- // Set max and minimum boost and hence minimum allocation
- boost = clamp(boost, 125, (cpi->baseline_gf_interval + 1) * 200);
-
- if (cpi->source_alt_ref_pending && i == 0)
- allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + boost;
- else
- allocation_chunks = (cpi->baseline_gf_interval * 100) + (boost - 100);
+ // Calculate the bits to be allocated to the gf/arf group as a whole
+ twopass->gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
- // Prevent overflow
- if (boost > 1023) {
- int divisor = boost >> 10;
- boost /= divisor;
- allocation_chunks /= divisor;
- }
+ // Calculate the extra bits to be used for boosted frame(s)
+ {
+ int q = rc->last_q[INTER_FRAME];
+ int boost = (rc->gfu_boost * gfboost_qadjust(q)) / 100;
- // Calculate the number of bits to be spent on the gf or arf based on
- // the boost number
- gf_bits = (int)((double)boost * (cpi->twopass.gf_group_bits /
- (double)allocation_chunks));
-
- // If the frame that is to be boosted is simpler than the average for
- // the gf/arf group then use an alternative calculation
- // based on the error score of the frame itself
- if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) {
- double alt_gf_grp_bits =
- (double)cpi->twopass.kf_group_bits *
- (mod_frame_err * (double)cpi->baseline_gf_interval) /
- DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left);
-
- int alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits /
- (double)allocation_chunks));
-
- if (gf_bits > alt_gf_bits)
- gf_bits = alt_gf_bits;
- } else {
- // If it is harder than other frames in the group make sure it at
- // least receives an allocation in keeping with its relative error
- // score, otherwise it may be worse off than an "un-boosted" frame.
- int alt_gf_bits = (int)((double)cpi->twopass.kf_group_bits *
- mod_frame_err /
- DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left));
-
- if (alt_gf_bits > gf_bits)
- gf_bits = alt_gf_bits;
- }
+ // Set max and minimum boost and hence minimum allocation.
+ boost = clamp(boost, 125, (rc->baseline_gf_interval + 1) * 200);
- // Dont allow a negative value for gf_bits
- if (gf_bits < 0)
- gf_bits = 0;
+ // Calculate the extra bits to be used for boosted frame(s)
+ twopass->gf_bits = calculate_boost_bits(rc->baseline_gf_interval,
+ boost, twopass->gf_group_bits);
- // Add in minimum for a frame
- gf_bits += cpi->min_frame_bandwidth;
- if (i == 0) {
- cpi->twopass.gf_bits = gf_bits;
- }
- if (i == 1 || (!cpi->source_alt_ref_pending
- && (cpi->common.frame_type != KEY_FRAME))) {
- // Per frame bit target for this frame
- cpi->per_frame_bandwidth = gf_bits;
+ // For key frames the frame target rate is set already.
+ // NOTE: We dont bother to check for the special case of ARF overlay
+ // frames here, as there is clamping code for this in the function
+ // vp9_rc_clamp_pframe_target_size(), which applies to one and two pass
+ // encodes.
+ if (cpi->common.frame_type != KEY_FRAME &&
+ !vp9_is_upper_layer_key_frame(cpi)) {
+ vp9_rc_set_frame_target(cpi, twopass->gf_bits);
}
}
- {
- // Adjust KF group bits and error remaining
- cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err;
- cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
-
- if (cpi->twopass.kf_group_bits < 0)
- cpi->twopass.kf_group_bits = 0;
-
- // Note the error score left in the remaining frames of the group.
- // For normal GFs we want to remove the error score for the first frame
- // of the group (except in Key frame case where this has already
- // happened)
- if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME)
- cpi->twopass.gf_group_error_left = (int64_t)(gf_group_err
- - gf_first_frame_err);
- else
- cpi->twopass.gf_group_error_left = (int64_t)gf_group_err;
-
- cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits
- - cpi->min_frame_bandwidth;
-
- if (cpi->twopass.gf_group_bits < 0)
- cpi->twopass.gf_group_bits = 0;
-
- // This condition could fail if there are two kfs very close together
- // despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the
- // calculation of alt_extra_bits.
- if (cpi->baseline_gf_interval >= 3) {
- const int boost = cpi->source_alt_ref_pending ? b_boost : cpi->gfu_boost;
-
- if (boost >= 150) {
- int alt_extra_bits;
- int pct_extra = (boost - 100) / 50;
- pct_extra = (pct_extra > 20) ? 20 : pct_extra;
-
- alt_extra_bits = (int)((cpi->twopass.gf_group_bits * pct_extra) / 100);
- cpi->twopass.gf_group_bits -= alt_extra_bits;
- }
- }
+ // Adjust KF group bits and error remaining.
+ twopass->kf_group_error_left -= (int64_t)gf_group_err;
+
+ // If this is an arf update we want to remove the score for the overlay
+ // frame at the end which will usually be very cheap to code.
+ // The overlay frame has already, in effect, been coded so we want to spread
+ // the remaining bits among the other frames.
+ // For normal GFs remove the score for the GF itself unless this is
+ // also a key frame in which case it has already been accounted for.
+ if (rc->source_alt_ref_pending) {
+ twopass->gf_group_error_left = (int64_t)(gf_group_err - mod_frame_err);
+ } else if (cpi->common.frame_type != KEY_FRAME) {
+ twopass->gf_group_error_left = (int64_t)(gf_group_err
+ - gf_first_frame_err);
+ } else {
+ twopass->gf_group_error_left = (int64_t)gf_group_err;
}
+ // Calculate a section intra ratio used in setting max loop filter.
if (cpi->common.frame_type != KEY_FRAME) {
- FIRSTPASS_STATS sectionstats;
-
- zero_stats(&sectionstats);
- reset_fpf_position(cpi, start_pos);
-
- for (i = 0; i < cpi->baseline_gf_interval; i++) {
- input_stats(cpi, &next_frame);
- accumulate_stats(&sectionstats, &next_frame);
- }
-
- avg_stats(&sectionstats);
-
- cpi->twopass.section_intra_rating = (int)
- (sectionstats.intra_error /
- DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
-
- reset_fpf_position(cpi, start_pos);
+ calculate_section_intra_ratio(twopass, start_pos, rc->baseline_gf_interval);
}
}
// Allocate bits to a normal frame that is neither a gf an arf or a key frame.
static void assign_std_frame_bits(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ struct twopass_rc *twopass = &cpi->twopass;
+ // For a single frame.
+ const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
+ // Calculate modified prediction error used in bit allocation.
+ const double modified_err = calculate_modified_err(cpi, this_frame);
int target_frame_size;
-
- double modified_err;
double err_fraction;
- // Max for a single frame.
- int max_bits = frame_max_bits(cpi);
-
- // Calculate modified prediction error used in bit allocation.
- modified_err = calculate_modified_err(cpi, this_frame);
-
- if (cpi->twopass.gf_group_error_left > 0)
+ if (twopass->gf_group_error_left > 0)
// What portion of the remaining GF group error is used by this frame.
- err_fraction = modified_err / cpi->twopass.gf_group_error_left;
+ err_fraction = modified_err / twopass->gf_group_error_left;
else
err_fraction = 0.0;
// How many of those bits available for allocation should we give it?
- target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction);
+ target_frame_size = (int)((double)twopass->gf_group_bits * err_fraction);
// Clip target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at
// the top end.
- if (target_frame_size < 0) {
- target_frame_size = 0;
- } else {
- if (target_frame_size > max_bits)
- target_frame_size = max_bits;
-
- if (target_frame_size > cpi->twopass.gf_group_bits)
- target_frame_size = (int)cpi->twopass.gf_group_bits;
- }
+ target_frame_size = clamp(target_frame_size, 0,
+ MIN(max_bits, (int)twopass->gf_group_bits));
// Adjust error and bits remaining.
- cpi->twopass.gf_group_error_left -= (int64_t)modified_err;
- cpi->twopass.gf_group_bits -= target_frame_size;
-
- if (cpi->twopass.gf_group_bits < 0)
- cpi->twopass.gf_group_bits = 0;
-
- // Add in the minimum number of bits that is set aside for every frame.
- target_frame_size += cpi->min_frame_bandwidth;
+ twopass->gf_group_error_left -= (int64_t)modified_err;
// Per frame bit target for this frame.
- cpi->per_frame_bandwidth = target_frame_size;
+ vp9_rc_set_frame_target(cpi, target_frame_size);
}
-// Make a damped adjustment to the active max q.
-static int adjust_active_maxq(int old_maxqi, int new_maxqi) {
- int i;
- const double old_q = vp9_convert_qindex_to_q(old_maxqi);
- const double new_q = vp9_convert_qindex_to_q(new_maxqi);
- const double target_q = ((old_q * 7.0) + new_q) / 8.0;
-
- if (target_q > old_q) {
- for (i = old_maxqi; i <= new_maxqi; i++)
- if (vp9_convert_qindex_to_q(i) >= target_q)
- return i;
- } else {
- for (i = old_maxqi; i >= new_maxqi; i--)
- if (vp9_convert_qindex_to_q(i) <= target_q)
- return i;
- }
-
- return new_maxqi;
-}
-
-void vp9_second_pass(VP9_COMP *cpi) {
- int tmp_q;
- int frames_left = (int)(cpi->twopass.total_stats.count -
- cpi->common.current_video_frame);
-
- FIRSTPASS_STATS this_frame;
- FIRSTPASS_STATS this_frame_copy;
-
- double this_frame_intra_error;
- double this_frame_coded_error;
-
- if (!cpi->twopass.stats_in)
- return;
-
- vp9_clear_system_state();
-
- if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
- cpi->active_worst_quality = cpi->oxcf.cq_level;
- } else {
- // Special case code for first frame.
- if (cpi->common.current_video_frame == 0) {
- int section_target_bandwidth =
- (int)(cpi->twopass.bits_left / frames_left);
- cpi->twopass.est_max_qcorrection_factor = 1.0;
-
- // Set a cq_level in constrained quality mode.
- // Commenting this code out for now since it does not seem to be
- // working well.
- /*
- if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
- int est_cq = estimate_cq(cpi, &cpi->twopass.total_left_stats,
- section_target_bandwidth);
-
- if (est_cq > cpi->cq_target_quality)
- cpi->cq_target_quality = est_cq;
- else
- cpi->cq_target_quality = cpi->oxcf.cq_level;
- }
- */
-
- // guess at maxq needed in 2nd pass
- cpi->twopass.maxq_max_limit = cpi->worst_quality;
- cpi->twopass.maxq_min_limit = cpi->best_quality;
-
- tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats,
- section_target_bandwidth);
-
- cpi->active_worst_quality = tmp_q;
- cpi->ni_av_qi = tmp_q;
- cpi->avg_q = vp9_convert_qindex_to_q(tmp_q);
-
-#ifndef ONE_SHOT_Q_ESTIMATE
- // Limit the maxq value returned subsequently.
- // This increases the risk of overspend or underspend if the initial
- // estimate for the clip is bad, but helps prevent excessive
- // variation in Q, especially near the end of a clip
- // where for example a small overspend may cause Q to crash
- adjust_maxq_qrange(cpi);
-#endif
- }
-
-#ifndef ONE_SHOT_Q_ESTIMATE
- // The last few frames of a clip almost always have to few or too many
- // bits and for the sake of over exact rate control we dont want to make
- // radical adjustments to the allowed quantizer range just to use up a
- // few surplus bits or get beneath the target rate.
- else if ((cpi->common.current_video_frame <
- (((unsigned int)cpi->twopass.total_stats.count * 255) >> 8)) &&
- ((cpi->common.current_video_frame + cpi->baseline_gf_interval) <
- (unsigned int)cpi->twopass.total_stats.count)) {
- int section_target_bandwidth =
- (int)(cpi->twopass.bits_left / frames_left);
- if (frames_left < 1)
- frames_left = 1;
-
- tmp_q = estimate_max_q(
- cpi,
- &cpi->twopass.total_left_stats,
- section_target_bandwidth);
-
- // Make a damped adjustment to active max Q
- cpi->active_worst_quality =
- adjust_active_maxq(cpi->active_worst_quality, tmp_q);
- }
-#endif
- }
- vp9_zero(this_frame);
- if (EOF == input_stats(cpi, &this_frame))
- return;
-
- this_frame_intra_error = this_frame.intra_error;
- this_frame_coded_error = this_frame.coded_error;
-
- // keyframe and section processing !
- if (cpi->twopass.frames_to_key == 0) {
- // Define next KF group and assign bits to it
- this_frame_copy = this_frame;
- find_next_key_frame(cpi, &this_frame_copy);
- }
-
- // Is this a GF / ARF (Note that a KF is always also a GF)
- if (cpi->frames_till_gf_update_due == 0) {
- // Define next gf group and assign bits to it
- this_frame_copy = this_frame;
-
- cpi->gf_zeromotion_pct = 0;
-
-#if CONFIG_MULTIPLE_ARF
- if (cpi->multi_arf_enabled) {
- define_fixed_arf_period(cpi);
- } else {
-#endif
- define_gf_group(cpi, &this_frame_copy);
-#if CONFIG_MULTIPLE_ARF
- }
-#endif
-
- if (cpi->gf_zeromotion_pct > 995) {
- // As long as max_thresh for encode breakout is small enough, it is ok
- // to enable it for no-show frame, i.e. set enable_encode_breakout to 2.
- if (!cpi->common.show_frame)
- cpi->enable_encode_breakout = 0;
- else
- cpi->enable_encode_breakout = 2;
- }
-
- // If we are going to code an altref frame at the end of the group
- // and the current frame is not a key frame....
- // If the previous group used an arf this frame has already benefited
- // from that arf boost and it should not be given extra bits
- // If the previous group was NOT coded using arf we may want to apply
- // some boost to this GF as well
- if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) {
- // Assign a standard frames worth of bits from those allocated
- // to the GF group
- int bak = cpi->per_frame_bandwidth;
- this_frame_copy = this_frame;
- assign_std_frame_bits(cpi, &this_frame_copy);
- cpi->per_frame_bandwidth = bak;
- }
- } else {
- // Otherwise this is an ordinary frame
- // Assign bits from those allocated to the GF group
- this_frame_copy = this_frame;
- assign_std_frame_bits(cpi, &this_frame_copy);
- }
-
- // Keep a globally available copy of this and the next frame's iiratio.
- cpi->twopass.this_iiratio = (int)(this_frame_intra_error /
- DOUBLE_DIVIDE_CHECK(this_frame_coded_error));
- {
- FIRSTPASS_STATS next_frame;
- if (lookup_next_frame_stats(cpi, &next_frame) != EOF) {
- cpi->twopass.next_iiratio = (int)(next_frame.intra_error /
- DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
- }
- }
-
- // Set nominal per second bandwidth for this frame
- cpi->target_bandwidth = (int)(cpi->per_frame_bandwidth
- * cpi->output_framerate);
- if (cpi->target_bandwidth < 0)
- cpi->target_bandwidth = 0;
-
- cpi->twopass.frames_to_key--;
-
- // Update the total stats remaining structure
- subtract_stats(&cpi->twopass.total_left_stats, &this_frame);
-}
-
-static int test_candidate_kf(VP9_COMP *cpi,
- FIRSTPASS_STATS *last_frame,
- FIRSTPASS_STATS *this_frame,
- FIRSTPASS_STATS *next_frame) {
+static int test_candidate_kf(struct twopass_rc *twopass,
+ const FIRSTPASS_STATS *last_frame,
+ const FIRSTPASS_STATS *this_frame,
+ const FIRSTPASS_STATS *next_frame) {
int is_viable_kf = 0;
- // Does the frame satisfy the primary criteria of a key frame
- // If so, then examine how well it predicts subsequent frames
+ // Does the frame satisfy the primary criteria of a key frame?
+ // If so, then examine how well it predicts subsequent frames.
if ((this_frame->pcnt_second_ref < 0.10) &&
(next_frame->pcnt_second_ref < 0.10) &&
((this_frame->pcnt_inter < 0.05) ||
- (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .35) &&
+ (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < 0.35) &&
((this_frame->intra_error /
DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
((fabs(last_frame->coded_error - this_frame->coded_error) /
- DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
- .40) ||
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > 0.40) ||
(fabs(last_frame->intra_error - this_frame->intra_error) /
- DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
- .40) ||
+ DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > 0.40) ||
((next_frame->intra_error /
DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) {
int i;
- FIRSTPASS_STATS *start_pos;
-
- FIRSTPASS_STATS local_next_frame;
-
+ const FIRSTPASS_STATS *start_pos = twopass->stats_in;
+ FIRSTPASS_STATS local_next_frame = *next_frame;
double boost_score = 0.0;
double old_boost_score = 0.0;
double decay_accumulator = 1.0;
- double next_iiratio;
-
- local_next_frame = *next_frame;
-
- // Note the starting file position so we can reset to it
- start_pos = cpi->twopass.stats_in;
- // Examine how well the key frame predicts subsequent frames
- for (i = 0; i < 16; i++) {
- next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error /
- DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
+ // Examine how well the key frame predicts subsequent frames.
+ for (i = 0; i < 16; ++i) {
+ double next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error /
+ DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
if (next_iiratio > RMAX)
next_iiratio = RMAX;
- // Cumulative effect of decay in prediction quality
+ // Cumulative effect of decay in prediction quality.
if (local_next_frame.pcnt_inter > 0.85)
- decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
+ decay_accumulator *= local_next_frame.pcnt_inter;
else
- decay_accumulator =
- decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
+ decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
- // decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
-
- // Keep a running total
+ // Keep a running total.
boost_score += (decay_accumulator * next_iiratio);
- // Test various breakout clauses
+ // Test various breakout clauses.
if ((local_next_frame.pcnt_inter < 0.05) ||
(next_iiratio < 1.5) ||
(((local_next_frame.pcnt_inter -
local_next_frame.pcnt_neutral) < 0.20) &&
(next_iiratio < 3.0)) ||
((boost_score - old_boost_score) < 3.0) ||
- (local_next_frame.intra_error < 200)
- ) {
+ (local_next_frame.intra_error < 200)) {
break;
}
old_boost_score = boost_score;
// Get the next frame details
- if (EOF == input_stats(cpi, &local_next_frame))
+ if (EOF == input_stats(twopass, &local_next_frame))
break;
}
@@ -2370,7 +1887,7 @@ static int test_candidate_kf(VP9_COMP *cpi,
is_viable_kf = 1;
} else {
// Reset the file position
- reset_fpf_position(cpi, start_pos);
+ reset_fpf_position(twopass, start_pos);
is_viable_kf = 0;
}
@@ -2378,343 +1895,445 @@ static int test_candidate_kf(VP9_COMP *cpi,
return is_viable_kf;
}
+
static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
int i, j;
- FIRSTPASS_STATS last_frame;
- FIRSTPASS_STATS first_frame;
+ RATE_CONTROL *const rc = &cpi->rc;
+ struct twopass_rc *const twopass = &cpi->twopass;
+ const FIRSTPASS_STATS first_frame = *this_frame;
+ const FIRSTPASS_STATS *start_position = twopass->stats_in;
FIRSTPASS_STATS next_frame;
- FIRSTPASS_STATS *start_position;
-
+ FIRSTPASS_STATS last_frame;
double decay_accumulator = 1.0;
double zero_motion_accumulator = 1.0;
- double boost_score = 0;
- double loop_decay_rate;
-
+ double boost_score = 0.0;
double kf_mod_err = 0.0;
double kf_group_err = 0.0;
- double kf_group_intra_err = 0.0;
- double kf_group_coded_err = 0.0;
double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
vp9_zero(next_frame);
- vp9_clear_system_state(); // __asm emms;
- start_position = cpi->twopass.stats_in;
-
cpi->common.frame_type = KEY_FRAME;
- // is this a forced key frame by interval
- cpi->this_key_frame_forced = cpi->next_key_frame_forced;
-
- // Clear the alt ref active flag as this can never be active on a key frame
- cpi->source_alt_ref_active = 0;
+ // Is this a forced key frame by interval.
+ rc->this_key_frame_forced = rc->next_key_frame_forced;
- // Kf is always a gf so clear frames till next gf counter
- cpi->frames_till_gf_update_due = 0;
+ // Clear the alt ref active flag as this can never be active on a key frame.
+ rc->source_alt_ref_active = 0;
- cpi->twopass.frames_to_key = 1;
+ // KF is always a GF so clear frames till next gf counter.
+ rc->frames_till_gf_update_due = 0;
- // Take a copy of the initial frame details
- first_frame = *this_frame;
+ rc->frames_to_key = 1;
- cpi->twopass.kf_group_bits = 0; // Total bits available to kf group
- cpi->twopass.kf_group_error_left = 0; // Group modified error score.
+ twopass->kf_group_bits = 0; // Total bits available to kf group
+ twopass->kf_group_error_left = 0; // Group modified error score.
kf_mod_err = calculate_modified_err(cpi, this_frame);
- // find the next keyframe
+ // Find the next keyframe.
i = 0;
- while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) {
- // Accumulate kf group error
+ while (twopass->stats_in < twopass->stats_in_end &&
+ rc->frames_to_key < cpi->oxcf.key_freq) {
+ // Accumulate kf group error.
kf_group_err += calculate_modified_err(cpi, this_frame);
- // These figures keep intra and coded error counts for all frames including
- // key frames in the group. The effect of the key frame itself can be
- // subtracted out using the first_frame data collected above.
- kf_group_intra_err += this_frame->intra_error;
- kf_group_coded_err += this_frame->coded_error;
-
- // load a the next frame's stats
+ // Load the next frame's stats.
last_frame = *this_frame;
- input_stats(cpi, this_frame);
+ input_stats(twopass, this_frame);
// Provided that we are not at the end of the file...
- if (cpi->oxcf.auto_key
- && lookup_next_frame_stats(cpi, &next_frame) != EOF) {
- // Normal scene cut check
- if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame))
- break;
+ if (cpi->oxcf.auto_key &&
+ lookup_next_frame_stats(twopass, &next_frame) != EOF) {
+ double loop_decay_rate;
+ // Check for a scene cut.
+ if (test_candidate_kf(twopass, &last_frame, this_frame, &next_frame))
+ break;
- // How fast is prediction quality decaying
- loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
+ // How fast is the prediction quality decaying?
+ loop_decay_rate = get_prediction_decay_rate(&cpi->common, &next_frame);
// We want to know something about the recent past... rather than
- // as used elsewhere where we are concened with decay in prediction
+ // as used elsewhere where we are concerned with decay in prediction
// quality since the last GF or KF.
recent_loop_decay[i % 8] = loop_decay_rate;
decay_accumulator = 1.0;
- for (j = 0; j < 8; j++)
+ for (j = 0; j < 8; ++j)
decay_accumulator *= recent_loop_decay[j];
// Special check for transition or high motion followed by a
- // to a static scene.
- if (detect_transition_to_still(cpi, i, cpi->key_frame_frequency - i,
+ // static scene.
+ if (detect_transition_to_still(twopass, i, cpi->oxcf.key_freq - i,
loop_decay_rate, decay_accumulator))
break;
- // Step on to the next frame
- cpi->twopass.frames_to_key++;
+ // Step on to the next frame.
+ ++rc->frames_to_key;
// If we don't have a real key frame within the next two
- // forcekeyframeevery intervals then break out of the loop.
- if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency)
+ // key_freq intervals then break out of the loop.
+ if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq)
break;
} else {
- cpi->twopass.frames_to_key++;
+ ++rc->frames_to_key;
}
- i++;
+ ++i;
}
// If there is a max kf interval set by the user we must obey it.
// We already breakout of the loop above at 2x max.
- // This code centers the extra kf if the actual natural
- // interval is between 1x and 2x
- if (cpi->oxcf.auto_key
- && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) {
- FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in;
- FIRSTPASS_STATS tmp_frame;
+ // This code centers the extra kf if the actual natural interval
+ // is between 1x and 2x.
+ if (cpi->oxcf.auto_key &&
+ rc->frames_to_key > cpi->oxcf.key_freq) {
+ FIRSTPASS_STATS tmp_frame = first_frame;
- cpi->twopass.frames_to_key /= 2;
+ rc->frames_to_key /= 2;
- // Copy first frame details
- tmp_frame = first_frame;
-
- // Reset to the start of the group
- reset_fpf_position(cpi, start_position);
+ // Reset to the start of the group.
+ reset_fpf_position(twopass, start_position);
kf_group_err = 0;
- kf_group_intra_err = 0;
- kf_group_coded_err = 0;
- // Rescan to get the correct error data for the forced kf group
- for (i = 0; i < cpi->twopass.frames_to_key; i++) {
- // Accumulate kf group errors
+ // Rescan to get the correct error data for the forced kf group.
+ for (i = 0; i < rc->frames_to_key; ++i) {
kf_group_err += calculate_modified_err(cpi, &tmp_frame);
- kf_group_intra_err += tmp_frame.intra_error;
- kf_group_coded_err += tmp_frame.coded_error;
-
- // Load a the next frame's stats
- input_stats(cpi, &tmp_frame);
+ input_stats(twopass, &tmp_frame);
}
-
- // Reset to the start of the group
- reset_fpf_position(cpi, current_pos);
-
- cpi->next_key_frame_forced = 1;
+ rc->next_key_frame_forced = 1;
+ } else if (twopass->stats_in == twopass->stats_in_end ||
+ rc->frames_to_key >= cpi->oxcf.key_freq) {
+ rc->next_key_frame_forced = 1;
} else {
- cpi->next_key_frame_forced = 0;
+ rc->next_key_frame_forced = 0;
}
- // Special case for the last frame of the file
- if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) {
- // Accumulate kf group error
- kf_group_err += calculate_modified_err(cpi, this_frame);
- // These figures keep intra and coded error counts for all frames including
- // key frames in the group. The effect of the key frame itself can be
- // subtracted out using the first_frame data collected above.
- kf_group_intra_err += this_frame->intra_error;
- kf_group_coded_err += this_frame->coded_error;
+ // Special case for the last key frame of the file.
+ if (twopass->stats_in >= twopass->stats_in_end) {
+ // Accumulate kf group error.
+ kf_group_err += calculate_modified_err(cpi, this_frame);
}
// Calculate the number of bits that should be assigned to the kf group.
- if ((cpi->twopass.bits_left > 0) &&
- (cpi->twopass.modified_error_left > 0.0)) {
- // Max for a single normal frame (not key frame)
- int max_bits = frame_max_bits(cpi);
+ if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
+ // Maximum number of bits for a single normal frame (not key frame).
+ const int max_bits = frame_max_bits(rc, &cpi->oxcf);
- // Maximum bits for the kf group
+ // Maximum number of bits allocated to the key frame group.
int64_t max_grp_bits;
// Default allocation based on bits left and relative
- // complexity of the section
- cpi->twopass.kf_group_bits = (int64_t)(cpi->twopass.bits_left *
- (kf_group_err /
- cpi->twopass.modified_error_left));
+ // complexity of the section.
+ twopass->kf_group_bits = (int64_t)(twopass->bits_left *
+ (kf_group_err / twopass->modified_error_left));
// Clip based on maximum per frame rate defined by the user.
- max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key;
- if (cpi->twopass.kf_group_bits > max_grp_bits)
- cpi->twopass.kf_group_bits = max_grp_bits;
+ max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
+ if (twopass->kf_group_bits > max_grp_bits)
+ twopass->kf_group_bits = max_grp_bits;
} else {
- cpi->twopass.kf_group_bits = 0;
+ twopass->kf_group_bits = 0;
}
- // Reset the first pass file position
- reset_fpf_position(cpi, start_position);
+ twopass->kf_group_bits = MAX(0, twopass->kf_group_bits);
+
+ // Reset the first pass file position.
+ reset_fpf_position(twopass, start_position);
- // Determine how big to make this keyframe based on how well the subsequent
- // frames use inter blocks.
+ // Scan through the kf group collating various stats used to deteermine
+ // how many bits to spend on it.
decay_accumulator = 1.0;
boost_score = 0.0;
- loop_decay_rate = 1.00; // Starting decay rate
-
- // Scan through the kf group collating various stats.
- for (i = 0; i < cpi->twopass.frames_to_key; i++) {
- double r;
-
- if (EOF == input_stats(cpi, &next_frame))
+ for (i = 0; i < rc->frames_to_key; ++i) {
+ if (EOF == input_stats(twopass, &next_frame))
break;
// Monitor for static sections.
if ((next_frame.pcnt_inter - next_frame.pcnt_motion) <
- zero_motion_accumulator) {
- zero_motion_accumulator =
- (next_frame.pcnt_inter - next_frame.pcnt_motion);
+ zero_motion_accumulator) {
+ zero_motion_accumulator = (next_frame.pcnt_inter -
+ next_frame.pcnt_motion);
}
// For the first few frames collect data to decide kf boost.
- if (i <= (cpi->max_gf_interval * 2)) {
- if (next_frame.intra_error > cpi->twopass.kf_intra_err_min)
+ if (i <= (rc->max_gf_interval * 2)) {
+ double r;
+ if (next_frame.intra_error > twopass->kf_intra_err_min)
r = (IIKFACTOR2 * next_frame.intra_error /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
else
- r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min /
+ r = (IIKFACTOR2 * twopass->kf_intra_err_min /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
if (r > RMAX)
r = RMAX;
- // How fast is prediction quality decaying
- if (!detect_flash(cpi, 0)) {
- loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
- decay_accumulator = decay_accumulator * loop_decay_rate;
- decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
- ? MIN_DECAY_FACTOR : decay_accumulator;
+ // How fast is prediction quality decaying.
+ if (!detect_flash(twopass, 0)) {
+ const double loop_decay_rate = get_prediction_decay_rate(&cpi->common,
+ &next_frame);
+ decay_accumulator *= loop_decay_rate;
+ decay_accumulator = MAX(decay_accumulator, MIN_DECAY_FACTOR);
}
boost_score += (decay_accumulator * r);
}
}
- {
- FIRSTPASS_STATS sectionstats;
+ // Store the zero motion percentage
+ twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
+
+ // Calculate a section intra ratio used in setting max loop filter.
+ calculate_section_intra_ratio(twopass, start_position, rc->frames_to_key);
+
+ // Work out how many bits to allocate for the key frame itself.
+ rc->kf_boost = (int)boost_score;
+
+ if (rc->kf_boost < (rc->frames_to_key * 3))
+ rc->kf_boost = (rc->frames_to_key * 3);
+ if (rc->kf_boost < MIN_KF_BOOST)
+ rc->kf_boost = MIN_KF_BOOST;
+
+ twopass->kf_bits = calculate_boost_bits((rc->frames_to_key - 1),
+ rc->kf_boost, twopass->kf_group_bits);
+
+ twopass->kf_group_bits -= twopass->kf_bits;
+
+ // Per frame bit target for this frame.
+ vp9_rc_set_frame_target(cpi, twopass->kf_bits);
+
+ // Note the total error score of the kf group minus the key frame itself.
+ twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
+
+ // Adjust the count of total modified error left.
+ // The count of bits left is adjusted elsewhere based on real coded frame
+ // sizes.
+ twopass->modified_error_left -= kf_group_err;
+}
+
+void vp9_rc_get_first_pass_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ if (!cpi->refresh_alt_ref_frame &&
+ (cm->current_video_frame == 0 ||
+ (cpi->frame_flags & FRAMEFLAGS_KEY))) {
+ cm->frame_type = KEY_FRAME;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+ // Do not use periodic key frames.
+ cpi->rc.frames_to_key = INT_MAX;
+}
+
+// For VBR...adjustment to the frame target based on error from previous frames
+void vbr_rate_correction(int * this_frame_target,
+ const int64_t vbr_bits_off_target) {
+ int max_delta = (*this_frame_target * 15) / 100;
+
+ // vbr_bits_off_target > 0 means we have extra bits to spend
+ if (vbr_bits_off_target > 0) {
+ *this_frame_target +=
+ (vbr_bits_off_target > max_delta) ? max_delta
+ : (int)vbr_bits_off_target;
+ } else {
+ *this_frame_target -=
+ (vbr_bits_off_target < -max_delta) ? max_delta
+ : (int)-vbr_bits_off_target;
+ }
+}
+
+void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ struct twopass_rc *const twopass = &cpi->twopass;
+ int frames_left;
+ FIRSTPASS_STATS this_frame;
+ FIRSTPASS_STATS this_frame_copy;
+
+ double this_frame_intra_error;
+ double this_frame_coded_error;
+ int target;
+ LAYER_CONTEXT *lc = NULL;
+ const int is_spatial_svc = (cpi->use_svc &&
+ cpi->svc.number_temporal_layers == 1);
+ if (is_spatial_svc) {
+ lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id];
+ frames_left = (int)(twopass->total_stats.count -
+ lc->current_video_frame_in_layer);
+ } else {
+ frames_left = (int)(twopass->total_stats.count -
+ cm->current_video_frame);
+ }
+
+ if (!twopass->stats_in)
+ return;
+
+ if (cpi->refresh_alt_ref_frame) {
+ int modified_target = twopass->gf_bits;
+ rc->base_frame_target = twopass->gf_bits;
+ cm->frame_type = INTER_FRAME;
+#ifdef LONG_TERM_VBR_CORRECTION
+ // Correction to rate target based on prior over or under shoot.
+ if (cpi->oxcf.rc_mode == RC_MODE_VBR)
+ vbr_rate_correction(&modified_target, rc->vbr_bits_off_target);
+#endif
+ vp9_rc_set_frame_target(cpi, modified_target);
+ return;
+ }
+
+ vp9_clear_system_state();
+
+ if (is_spatial_svc && twopass->kf_intra_err_min == 0) {
+ twopass->kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
+ twopass->gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
+ }
+
+ if (cpi->oxcf.rc_mode == RC_MODE_CONSTANT_QUALITY) {
+ twopass->active_worst_quality = cpi->oxcf.cq_level;
+ } else if (cm->current_video_frame == 0 ||
+ (is_spatial_svc && lc->current_video_frame_in_layer == 0)) {
+ // Special case code for first frame.
+ const int section_target_bandwidth = (int)(twopass->bits_left /
+ frames_left);
+ const int tmp_q = get_twopass_worst_quality(cpi, &twopass->total_left_stats,
+ section_target_bandwidth);
+ twopass->active_worst_quality = tmp_q;
+ rc->ni_av_qi = tmp_q;
+ rc->avg_q = vp9_convert_qindex_to_q(tmp_q);
+ }
+ vp9_zero(this_frame);
+ if (EOF == input_stats(twopass, &this_frame))
+ return;
- zero_stats(&sectionstats);
- reset_fpf_position(cpi, start_position);
+ this_frame_intra_error = this_frame.intra_error;
+ this_frame_coded_error = this_frame.coded_error;
- for (i = 0; i < cpi->twopass.frames_to_key; i++) {
- input_stats(cpi, &next_frame);
- accumulate_stats(&sectionstats, &next_frame);
+ // Keyframe and section processing.
+ if (rc->frames_to_key == 0 ||
+ (cpi->frame_flags & FRAMEFLAGS_KEY)) {
+ // Define next KF group and assign bits to it.
+ this_frame_copy = this_frame;
+ find_next_key_frame(cpi, &this_frame_copy);
+ // Don't place key frame in any enhancement layers in spatial svc
+ if (is_spatial_svc) {
+ lc->is_key_frame = 1;
+ if (cpi->svc.spatial_layer_id > 0) {
+ cm->frame_type = INTER_FRAME;
+ }
+ }
+ } else {
+ if (is_spatial_svc) {
+ lc->is_key_frame = 0;
}
+ cm->frame_type = INTER_FRAME;
+ }
+
+ // Is this frame a GF / ARF? (Note: a key frame is always also a GF).
+ if (rc->frames_till_gf_update_due == 0) {
+ // Define next gf group and assign bits to it.
+ this_frame_copy = this_frame;
- avg_stats(&sectionstats);
-
- cpi->twopass.section_intra_rating = (int)
- (sectionstats.intra_error
- / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
- }
-
- // Reset the first pass file position
- reset_fpf_position(cpi, start_position);
-
- // Work out how many bits to allocate for the key frame itself
- if (1) {
- int kf_boost = (int)boost_score;
- int allocation_chunks;
- int alt_kf_bits;
-
- if (kf_boost < (cpi->twopass.frames_to_key * 3))
- kf_boost = (cpi->twopass.frames_to_key * 3);
-
- if (kf_boost < 300) // Min KF boost
- kf_boost = 300;
-
- // Make a note of baseline boost and the zero motion
- // accumulator value for use elsewhere.
- cpi->kf_boost = kf_boost;
- cpi->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
-
- // We do three calculations for kf size.
- // The first is based on the error score for the whole kf group.
- // The second (optionaly) on the key frames own error if this is
- // smaller than the average for the group.
- // The final one insures that the frame receives at least the
- // allocation it would have received based on its own error score vs
- // the error score remaining
- // Special case if the sequence appears almost totaly static
- // In this case we want to spend almost all of the bits on the
- // key frame.
- // cpi->twopass.frames_to_key-1 because key frame itself is taken
- // care of by kf_boost.
- if (zero_motion_accumulator >= 0.99) {
- allocation_chunks =
- ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost;
+#if CONFIG_MULTIPLE_ARF
+ if (cpi->multi_arf_enabled) {
+ define_fixed_arf_period(cpi);
} else {
- allocation_chunks =
- ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost;
+#endif
+ define_gf_group(cpi, &this_frame_copy);
+#if CONFIG_MULTIPLE_ARF
}
+#endif
- // Prevent overflow
- if (kf_boost > 1028) {
- int divisor = kf_boost >> 10;
- kf_boost /= divisor;
- allocation_chunks /= divisor;
+ if (twopass->gf_zeromotion_pct > 995) {
+ // As long as max_thresh for encode breakout is small enough, it is ok
+ // to enable it for show frame, i.e. set allow_encode_breakout to
+ // ENCODE_BREAKOUT_LIMITED.
+ if (!cm->show_frame)
+ cpi->allow_encode_breakout = ENCODE_BREAKOUT_DISABLED;
+ else
+ cpi->allow_encode_breakout = ENCODE_BREAKOUT_LIMITED;
}
- cpi->twopass.kf_group_bits =
- (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;
-
- // Calculate the number of bits to be spent on the key frame
- cpi->twopass.kf_bits =
- (int)((double)kf_boost *
- ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));
-
- // If the key frame is actually easier than the average for the
- // kf group (which does sometimes happen... eg a blank intro frame)
- // Then use an alternate calculation based on the kf error score
- // which should give a smaller key frame.
- if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) {
- double alt_kf_grp_bits =
- ((double)cpi->twopass.bits_left *
- (kf_mod_err * (double)cpi->twopass.frames_to_key) /
- DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));
-
- alt_kf_bits = (int)((double)kf_boost *
- (alt_kf_grp_bits / (double)allocation_chunks));
-
- if (cpi->twopass.kf_bits > alt_kf_bits) {
- cpi->twopass.kf_bits = alt_kf_bits;
- }
- } else {
- // Else if it is much harder than other frames in the group make sure
- // it at least receives an allocation in keeping with its relative
- // error score
- alt_kf_bits =
- (int)((double)cpi->twopass.bits_left *
- (kf_mod_err /
- DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)));
-
- if (alt_kf_bits > cpi->twopass.kf_bits) {
- cpi->twopass.kf_bits = alt_kf_bits;
- }
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ cpi->refresh_golden_frame = 1;
+ } else {
+ // Otherwise this is an ordinary frame.
+ // Assign bits from those allocated to the GF group.
+ this_frame_copy = this_frame;
+ assign_std_frame_bits(cpi, &this_frame_copy);
+ }
+
+ // Keep a globally available copy of this and the next frame's iiratio.
+ twopass->this_iiratio = (int)(this_frame_intra_error /
+ DOUBLE_DIVIDE_CHECK(this_frame_coded_error));
+ {
+ FIRSTPASS_STATS next_frame;
+ if (lookup_next_frame_stats(twopass, &next_frame) != EOF) {
+ twopass->next_iiratio = (int)(next_frame.intra_error /
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
}
+ }
- cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
- // Add in the minimum frame allowance
- cpi->twopass.kf_bits += cpi->min_frame_bandwidth;
+ if (cpi->common.frame_type == KEY_FRAME)
+ target = vp9_rc_clamp_iframe_target_size(cpi, rc->this_frame_target);
+ else
+ target = vp9_rc_clamp_pframe_target_size(cpi, rc->this_frame_target);
- // Peer frame bit target for this frame
- cpi->per_frame_bandwidth = cpi->twopass.kf_bits;
- // Convert to a per second bitrate
- cpi->target_bandwidth = (int)(cpi->twopass.kf_bits *
- cpi->output_framerate);
- }
+ rc->base_frame_target = target;
+#ifdef LONG_TERM_VBR_CORRECTION
+ // Correction to rate target based on prior over or under shoot.
+ if (cpi->oxcf.rc_mode == RC_MODE_VBR)
+ vbr_rate_correction(&target, rc->vbr_bits_off_target);
+#endif
+ vp9_rc_set_frame_target(cpi, target);
- // Note the total error score of the kf group minus the key frame itself
- cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err);
+ // Update the total stats remaining structure.
+ subtract_stats(&twopass->total_left_stats, &this_frame);
+}
- // Adjust the count of total modified error left.
- // The count of bits left is adjusted elsewhere based on real coded frame
- // sizes.
- cpi->twopass.modified_error_left -= kf_group_err;
+void vp9_twopass_postencode_update(VP9_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+#ifdef LONG_TERM_VBR_CORRECTION
+ // In this experimental mode, the VBR correction is done exclusively through
+ // rc->vbr_bits_off_target. Based on the sign of this value, a limited %
+ // adjustment is made to the target rate of subsequent frames, to try and
+ // push it back towards 0. This mode is less likely to suffer from
+ // extreme behaviour at the end of a clip or group of frames.
+ const int bits_used = rc->base_frame_target;
+ rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
+#else
+ // In this mode, VBR correction is acheived by altering bits_left,
+ // kf_group_bits & gf_group_bits to reflect any deviation from the target
+ // rate in this frame. This alters the allocation of bits to the
+ // remaning frames in the group / clip.
+ //
+ // This method can give rise to unstable behaviour near the end of a clip
+ // or kf/gf group of frames where any accumulated error is corrected over an
+ // ever decreasing number of frames. Hence we change the balance of target
+ // vs. actual bitrate gradually as we progress towards the end of the
+ // sequence in order to mitigate this effect.
+ const double progress =
+ (double)(cpi->twopass.stats_in - cpi->twopass.stats_in_start) /
+ (cpi->twopass.stats_in_end - cpi->twopass.stats_in_start);
+ const int bits_used = (int)(progress * rc->this_frame_target +
+ (1.0 - progress) * rc->projected_frame_size);
+#endif
+
+ cpi->twopass.bits_left -= bits_used;
+ cpi->twopass.bits_left = MAX(cpi->twopass.bits_left, 0);
+
+#ifdef LONG_TERM_VBR_CORRECTION
+ if (cpi->common.frame_type != KEY_FRAME &&
+ !vp9_is_upper_layer_key_frame(cpi)) {
+#else
+ if (cpi->common.frame_type == KEY_FRAME ||
+ vp9_is_upper_layer_key_frame(cpi)) {
+ // For key frames kf_group_bits already had the target bits subtracted out.
+ // So now update to the correct value based on the actual bits used.
+ cpi->twopass.kf_group_bits += cpi->rc.this_frame_target - bits_used;
+ } else {
+#endif
+ cpi->twopass.kf_group_bits -= bits_used;
+ cpi->twopass.gf_group_bits -= bits_used;
+ cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
+ }
+ cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_firstpass.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_firstpass.h
index c18d11e0431..f7ba423b91f 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_firstpass.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_firstpass.h
@@ -10,14 +10,92 @@
#ifndef VP9_ENCODER_VP9_FIRSTPASS_H_
#define VP9_ENCODER_VP9_FIRSTPASS_H_
-#include "vp9/encoder/vp9_onyx_int.h"
-void vp9_init_first_pass(VP9_COMP *cpi);
-void vp9_first_pass(VP9_COMP *cpi);
-void vp9_end_first_pass(VP9_COMP *cpi);
+#ifdef __cplusplus
+extern "C" {
+#endif
-void vp9_init_second_pass(VP9_COMP *cpi);
-void vp9_second_pass(VP9_COMP *cpi);
-void vp9_end_second_pass(VP9_COMP *cpi);
+typedef struct {
+ double frame;
+ double intra_error;
+ double coded_error;
+ double sr_coded_error;
+ double ssim_weighted_pred_err;
+ double pcnt_inter;
+ double pcnt_motion;
+ double pcnt_second_ref;
+ double pcnt_neutral;
+ double MVr;
+ double mvr_abs;
+ double MVc;
+ double mvc_abs;
+ double MVrv;
+ double MVcv;
+ double mv_in_out_count;
+ double new_mv_count;
+ double duration;
+ double count;
+ int64_t spatial_layer_id;
+} FIRSTPASS_STATS;
+
+struct twopass_rc {
+ unsigned int section_intra_rating;
+ unsigned int next_iiratio;
+ unsigned int this_iiratio;
+ FIRSTPASS_STATS total_stats;
+ FIRSTPASS_STATS this_frame_stats;
+ const FIRSTPASS_STATS *stats_in;
+ const FIRSTPASS_STATS *stats_in_start;
+ const FIRSTPASS_STATS *stats_in_end;
+ FIRSTPASS_STATS total_left_stats;
+ int first_pass_done;
+ int64_t bits_left;
+ int64_t clip_bits_total;
+ double avg_iiratio;
+ double modified_error_min;
+ double modified_error_max;
+ double modified_error_total;
+ double modified_error_left;
+ double kf_intra_err_min;
+ double gf_intra_err_min;
+ int kf_bits;
+ // Remaining error from uncoded frames in a gf group. Two pass use only
+ int64_t gf_group_error_left;
+
+ // Projected total bits available for a key frame group of frames
+ int64_t kf_group_bits;
+
+ // Error score of frames still to be coded in kf group
+ int64_t kf_group_error_left;
+
+ // Projected Bits available for a group of frames including 1 GF or ARF
+ int64_t gf_group_bits;
+ // Bits for the golden frame or ARF - 2 pass only
+ int gf_bits;
+ int alt_extra_bits;
+
+ int sr_update_lag;
+
+ int kf_zeromotion_pct;
+ int gf_zeromotion_pct;
+
+ int active_worst_quality;
+};
+
+struct VP9_COMP;
+
+void vp9_init_first_pass(struct VP9_COMP *cpi);
+void vp9_rc_get_first_pass_params(struct VP9_COMP *cpi);
+void vp9_first_pass(struct VP9_COMP *cpi);
+void vp9_end_first_pass(struct VP9_COMP *cpi);
+
+void vp9_init_second_pass(struct VP9_COMP *cpi);
+void vp9_rc_get_second_pass_params(struct VP9_COMP *cpi);
+
+// Post encode update of the rate control parameters for 2-pass
+void vp9_twopass_postencode_update(struct VP9_COMP *cpi);
+#ifdef __cplusplus
+} // extern "C"
+#endif
#endif // VP9_ENCODER_VP9_FIRSTPASS_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_lookahead.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_lookahead.c
index c28c868457a..abe71e681d3 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_lookahead.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_lookahead.c
@@ -11,9 +11,15 @@
#include <stdlib.h>
#include "./vpx_config.h"
+
#include "vp9/common/vp9_common.h"
+
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_extend.h"
#include "vp9/encoder/vp9_lookahead.h"
-#include "vp9/common/vp9_extend.h"
+
+// The max of past frames we want to keep in the queue.
+#define MAX_PRE_FRAMES 1
struct lookahead_ctx {
unsigned int max_sz; /* Absolute size of the queue */
@@ -25,8 +31,8 @@ struct lookahead_ctx {
/* Return the buffer at the given absolute index and increment the index */
-static struct lookahead_entry * pop(struct lookahead_ctx *ctx,
- unsigned int *idx) {
+static struct lookahead_entry *pop(struct lookahead_ctx *ctx,
+ unsigned int *idx) {
unsigned int index = *idx;
struct lookahead_entry *buf = ctx->buf + index;
@@ -52,16 +58,19 @@ void vp9_lookahead_destroy(struct lookahead_ctx *ctx) {
}
-struct lookahead_ctx * vp9_lookahead_init(unsigned int width,
- unsigned int height,
- unsigned int subsampling_x,
- unsigned int subsampling_y,
- unsigned int depth) {
+struct lookahead_ctx *vp9_lookahead_init(unsigned int width,
+ unsigned int height,
+ unsigned int subsampling_x,
+ unsigned int subsampling_y,
+ unsigned int depth) {
struct lookahead_ctx *ctx = NULL;
// Clamp the lookahead queue depth
depth = clamp(depth, 1, MAX_LAG_BUFFERS);
+ // Allocate memory to keep previous source frames available.
+ depth += MAX_PRE_FRAMES;
+
// Allocate the lookahead structures
ctx = calloc(1, sizeof(*ctx));
if (ctx) {
@@ -73,7 +82,7 @@ struct lookahead_ctx * vp9_lookahead_init(unsigned int width,
for (i = 0; i < depth; i++)
if (vp9_alloc_frame_buffer(&ctx->buf[i].img,
width, height, subsampling_x, subsampling_y,
- VP9BORDERINPIXELS))
+ VP9_ENC_BORDER_IN_PIXELS))
goto bail;
}
return ctx;
@@ -85,8 +94,7 @@ struct lookahead_ctx * vp9_lookahead_init(unsigned int width,
#define USE_PARTIAL_COPY 0
int vp9_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src,
- int64_t ts_start, int64_t ts_end, unsigned int flags,
- unsigned char *active_map) {
+ int64_t ts_start, int64_t ts_end, unsigned int flags) {
struct lookahead_entry *buf;
#if USE_PARTIAL_COPY
int row, col, active_end;
@@ -94,7 +102,7 @@ int vp9_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src,
int mb_cols = (src->y_width + 15) >> 4;
#endif
- if (ctx->sz + 1 > ctx->max_sz)
+ if (ctx->sz + 1 + MAX_PRE_FRAMES > ctx->max_sz)
return 1;
ctx->sz++;
buf = pop(ctx, &ctx->write_idx);
@@ -157,11 +165,11 @@ int vp9_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src,
}
-struct lookahead_entry * vp9_lookahead_pop(struct lookahead_ctx *ctx,
- int drain) {
+struct lookahead_entry *vp9_lookahead_pop(struct lookahead_ctx *ctx,
+ int drain) {
struct lookahead_entry *buf = NULL;
- if (ctx->sz && (drain || ctx->sz == ctx->max_sz)) {
+ if (ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) {
buf = pop(ctx, &ctx->read_idx);
ctx->sz--;
}
@@ -169,17 +177,28 @@ struct lookahead_entry * vp9_lookahead_pop(struct lookahead_ctx *ctx,
}
-struct lookahead_entry * vp9_lookahead_peek(struct lookahead_ctx *ctx,
- int index) {
+struct lookahead_entry *vp9_lookahead_peek(struct lookahead_ctx *ctx,
+ int index) {
struct lookahead_entry *buf = NULL;
- assert(index < (int)ctx->max_sz);
- if (index < (int)ctx->sz) {
- index += ctx->read_idx;
- if (index >= (int)ctx->max_sz)
- index -= ctx->max_sz;
- buf = ctx->buf + index;
+ if (index >= 0) {
+ // Forward peek
+ if (index < (int)ctx->sz) {
+ index += ctx->read_idx;
+ if (index >= (int)ctx->max_sz)
+ index -= ctx->max_sz;
+ buf = ctx->buf + index;
+ }
+ } else if (index < 0) {
+ // Backward peek
+ if (-index <= MAX_PRE_FRAMES) {
+ index += ctx->read_idx;
+ if (index < 0)
+ index += ctx->max_sz;
+ buf = ctx->buf + index;
+ }
}
+
return buf;
}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_lookahead.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_lookahead.h
index c773f8fcc6d..ff63c0d0d75 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_lookahead.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_lookahead.h
@@ -14,6 +14,10 @@
#include "vpx_scale/yv12config.h"
#include "vpx/vpx_integer.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
+
#define MAX_LAG_BUFFERS 25
struct lookahead_entry {
@@ -59,8 +63,7 @@ void vp9_lookahead_destroy(struct lookahead_ctx *ctx);
* \param[in] active_map Map that specifies which macroblock is active
*/
int vp9_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src,
- int64_t ts_start, int64_t ts_end, unsigned int flags,
- unsigned char *active_map);
+ int64_t ts_start, int64_t ts_end, unsigned int flags);
/**\brief Get the next source buffer to encode
@@ -94,4 +97,8 @@ struct lookahead_entry *vp9_lookahead_peek(struct lookahead_ctx *ctx,
*/
unsigned int vp9_lookahead_depth(struct lookahead_ctx *ctx);
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
#endif // VP9_ENCODER_VP9_LOOKAHEAD_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mbgraph.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mbgraph.c
index 7b605b212f8..5e87d283324 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mbgraph.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mbgraph.c
@@ -11,7 +11,6 @@
#include <limits.h>
#include "vpx_mem/vpx_mem.h"
-#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_mcomp.h"
@@ -21,57 +20,50 @@
#include "vp9/common/vp9_systemdependent.h"
-
static unsigned int do_16x16_motion_iteration(VP9_COMP *cpi,
- int_mv *ref_mv,
- int_mv *dst_mv,
+ const MV *ref_mv,
+ MV *dst_mv,
int mb_row,
int mb_col) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
- unsigned int best_err;
const int tmp_col_min = x->mv_col_min;
const int tmp_col_max = x->mv_col_max;
const int tmp_row_min = x->mv_row_min;
const int tmp_row_max = x->mv_row_max;
- int_mv ref_full;
+ MV ref_full;
// Further step/diamond searches as necessary
int step_param = cpi->sf.reduce_first_step_size +
- (cpi->speed < 8 ? (cpi->speed > 5 ? 1 : 0) : 2);
- step_param = MIN(step_param, (cpi->sf.max_step_search_steps - 2));
+ (cpi->oxcf.speed > 5 ? 1 : 0);
+ step_param = MIN(step_param, cpi->sf.max_step_search_steps - 2);
- vp9_clamp_mv_min_max(x, &ref_mv->as_mv);
+ vp9_set_mv_search_range(x, ref_mv);
- ref_full.as_mv.col = ref_mv->as_mv.col >> 3;
- ref_full.as_mv.row = ref_mv->as_mv.row >> 3;
+ ref_full.col = ref_mv->col >> 3;
+ ref_full.row = ref_mv->row >> 3;
/*cpi->sf.search_method == HEX*/
- best_err = vp9_hex_search(x, &ref_full.as_mv, step_param, x->errorperbit,
- 0, &v_fn_ptr,
- 0, &ref_mv->as_mv, &dst_mv->as_mv);
+ vp9_hex_search(x, &ref_full, step_param, x->errorperbit, 0, &v_fn_ptr, 0,
+ ref_mv, dst_mv);
// Try sub-pixel MC
// if (bestsme > error_thresh && bestsme < INT_MAX)
{
int distortion;
unsigned int sse;
- best_err = cpi->find_fractional_mv_step(
- x,
- &dst_mv->as_mv, &ref_mv->as_mv,
- cpi->common.allow_high_precision_mv,
- x->errorperbit, &v_fn_ptr,
- 0, cpi->sf.subpel_iters_per_step, NULL, NULL,
- & distortion, &sse);
+ cpi->find_fractional_mv_step(
+ x, dst_mv, ref_mv, cpi->common.allow_high_precision_mv, x->errorperbit,
+ &v_fn_ptr, 0, cpi->sf.subpel_iters_per_step, NULL, NULL, &distortion,
+ &sse);
}
- vp9_set_mbmode_and_mvs(x, NEWMV, dst_mv);
+ xd->mi[0]->mbmi.mode = NEWMV;
+ xd->mi[0]->mbmi.mv[0].as_mv = *dst_mv;
+
vp9_build_inter_predictors_sby(xd, mb_row, mb_col, BLOCK_16X16);
- best_err = vp9_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride,
- xd->plane[0].dst.buf, xd->plane[0].dst.stride,
- INT_MAX);
/* restore UMV window */
x->mv_col_min = tmp_col_min;
@@ -79,15 +71,17 @@ static unsigned int do_16x16_motion_iteration(VP9_COMP *cpi,
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
- return best_err;
+ return vp9_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride,
+ xd->plane[0].dst.buf, xd->plane[0].dst.stride,
+ INT_MAX);
}
-static int do_16x16_motion_search(VP9_COMP *cpi, int_mv *ref_mv, int_mv *dst_mv,
- int mb_row, int mb_col) {
+static int do_16x16_motion_search(VP9_COMP *cpi, const MV *ref_mv,
+ int_mv *dst_mv, int mb_row, int mb_col) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
unsigned int err, tmp_err;
- int_mv tmp_mv;
+ MV tmp_mv;
// Try zero MV first
// FIXME should really use something like near/nearest MV and/or MV prediction
@@ -101,20 +95,19 @@ static int do_16x16_motion_search(VP9_COMP *cpi, int_mv *ref_mv, int_mv *dst_mv,
tmp_err = do_16x16_motion_iteration(cpi, ref_mv, &tmp_mv, mb_row, mb_col);
if (tmp_err < err) {
err = tmp_err;
- dst_mv->as_int = tmp_mv.as_int;
+ dst_mv->as_mv = tmp_mv;
}
// If the current best reference mv is not centered on 0,0 then do a 0,0
// based search as well.
- if (ref_mv->as_int) {
+ if (ref_mv->row != 0 || ref_mv->col != 0) {
unsigned int tmp_err;
- int_mv zero_ref_mv, tmp_mv;
+ MV zero_ref_mv = {0, 0}, tmp_mv;
- zero_ref_mv.as_int = 0;
tmp_err = do_16x16_motion_iteration(cpi, &zero_ref_mv, &tmp_mv,
mb_row, mb_col);
if (tmp_err < err) {
- dst_mv->as_int = tmp_mv.as_int;
+ dst_mv->as_mv = tmp_mv;
err = tmp_err;
}
}
@@ -137,12 +130,10 @@ static int do_16x16_zerozero_search(VP9_COMP *cpi, int_mv *dst_mv) {
return err;
}
-static int find_best_16x16_intra(VP9_COMP *cpi,
- int mb_y_offset,
- MB_PREDICTION_MODE *pbest_mode) {
+static int find_best_16x16_intra(VP9_COMP *cpi, PREDICTION_MODE *pbest_mode) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
- MB_PREDICTION_MODE best_mode = -1, mode;
+ PREDICTION_MODE best_mode = -1, mode;
unsigned int best_err = INT_MAX;
// calculate SATD for each intra prediction mode;
@@ -150,10 +141,11 @@ static int find_best_16x16_intra(VP9_COMP *cpi,
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
unsigned int err;
- xd->mi_8x8[0]->mbmi.mode = mode;
+ xd->mi[0]->mbmi.mode = mode;
vp9_predict_intra_block(xd, 0, 2, TX_16X16, mode,
x->plane[0].src.buf, x->plane[0].src.stride,
- xd->plane[0].dst.buf, xd->plane[0].dst.stride);
+ xd->plane[0].dst.buf, xd->plane[0].dst.stride,
+ 0, 0, 0);
err = vp9_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride,
xd->plane[0].dst.buf, xd->plane[0].dst.stride, best_err);
@@ -177,11 +169,8 @@ static void update_mbgraph_mb_stats
YV12_BUFFER_CONFIG *buf,
int mb_y_offset,
YV12_BUFFER_CONFIG *golden_ref,
- int_mv *prev_golden_ref_mv,
- int gld_y_offset,
+ const MV *prev_golden_ref_mv,
YV12_BUFFER_CONFIG *alt_ref,
- int_mv *prev_alt_ref_mv,
- int arf_y_offset,
int mb_row,
int mb_col
) {
@@ -198,7 +187,7 @@ static void update_mbgraph_mb_stats
xd->plane[0].dst.stride = get_frame_new_buffer(cm)->y_stride;
// do intra 16x16 prediction
- intra_error = find_best_16x16_intra(cpi, mb_y_offset,
+ intra_error = find_best_16x16_intra(cpi,
&stats->ref[INTRA_FRAME].m.mode);
if (intra_error <= 0)
intra_error = 1;
@@ -246,34 +235,31 @@ static void update_mbgraph_frame_stats(VP9_COMP *cpi,
int mb_col, mb_row, offset = 0;
int mb_y_offset = 0, arf_y_offset = 0, gld_y_offset = 0;
- int_mv arf_top_mv, gld_top_mv;
- MODE_INFO mi_local = { { 0 } };
+ MV arf_top_mv = {0, 0}, gld_top_mv = {0, 0};
+ MODE_INFO mi_local;
+ vp9_zero(mi_local);
// Set up limit values for motion vectors to prevent them extending outside
// the UMV borders.
- arf_top_mv.as_int = 0;
- gld_top_mv.as_int = 0;
x->mv_row_min = -BORDER_MV_PIXELS_B16;
x->mv_row_max = (cm->mb_rows - 1) * 8 + BORDER_MV_PIXELS_B16;
xd->up_available = 0;
xd->plane[0].dst.stride = buf->y_stride;
xd->plane[0].pre[0].stride = buf->y_stride;
xd->plane[1].dst.stride = buf->uv_stride;
- xd->mi_8x8[0] = &mi_local;
+ xd->mi[0] = &mi_local;
mi_local.mbmi.sb_type = BLOCK_16X16;
mi_local.mbmi.ref_frame[0] = LAST_FRAME;
mi_local.mbmi.ref_frame[1] = NONE;
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
- int_mv arf_left_mv, gld_left_mv;
+ MV arf_left_mv = arf_top_mv, gld_left_mv = gld_top_mv;
int mb_y_in_offset = mb_y_offset;
int arf_y_in_offset = arf_y_offset;
int gld_y_in_offset = gld_y_offset;
// Set up limit values for motion vectors to prevent them extending outside
// the UMV borders.
- arf_left_mv.as_int = arf_top_mv.as_int;
- gld_left_mv.as_int = gld_top_mv.as_int;
x->mv_col_min = -BORDER_MV_PIXELS_B16;
x->mv_col_max = (cm->mb_cols - 1) * 8 + BORDER_MV_PIXELS_B16;
xd->left_available = 0;
@@ -282,14 +268,13 @@ static void update_mbgraph_frame_stats(VP9_COMP *cpi,
MBGRAPH_MB_STATS *mb_stats = &stats->mb_stats[offset + mb_col];
update_mbgraph_mb_stats(cpi, mb_stats, buf, mb_y_in_offset,
- golden_ref, &gld_left_mv, gld_y_in_offset,
- alt_ref, &arf_left_mv, arf_y_in_offset,
+ golden_ref, &gld_left_mv, alt_ref,
mb_row, mb_col);
- arf_left_mv.as_int = mb_stats->ref[ALTREF_FRAME].m.mv.as_int;
- gld_left_mv.as_int = mb_stats->ref[GOLDEN_FRAME].m.mv.as_int;
+ arf_left_mv = mb_stats->ref[ALTREF_FRAME].m.mv.as_mv;
+ gld_left_mv = mb_stats->ref[GOLDEN_FRAME].m.mv.as_mv;
if (mb_col == 0) {
- arf_top_mv.as_int = arf_left_mv.as_int;
- gld_top_mv.as_int = gld_left_mv.as_int;
+ arf_top_mv = arf_left_mv;
+ gld_top_mv = gld_left_mv;
}
xd->left_available = 1;
mb_y_in_offset += 16;
@@ -324,8 +309,8 @@ static void separate_arf_mbs(VP9_COMP *cpi) {
1));
// We are not interested in results beyond the alt ref itself.
- if (n_frames > cpi->frames_till_gf_update_due)
- n_frames = cpi->frames_till_gf_update_due;
+ if (n_frames > cpi->rc.frames_till_gf_update_due)
+ n_frames = cpi->rc.frames_till_gf_update_due;
// defer cost to reference frames
for (i = n_frames - 1; i >= 0; i--) {
@@ -356,7 +341,7 @@ static void separate_arf_mbs(VP9_COMP *cpi) {
for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
// If any of the blocks in the sequence failed then the MB
// goes in segment 0
- if (arf_not_zz[mi_row/2*cm->mb_cols + mi_col/2]) {
+ if (arf_not_zz[mi_row / 2 * cm->mb_cols + mi_col / 2]) {
ncnt[0]++;
cpi->segmentation_map[mi_row * cm->mi_cols + mi_col] = 0;
} else {
@@ -378,11 +363,10 @@ static void separate_arf_mbs(VP9_COMP *cpi) {
else
cpi->static_mb_pct = 0;
- cpi->seg0_cnt = ncnt[0];
- vp9_enable_segmentation((VP9_PTR)cpi);
+ vp9_enable_segmentation(&cm->seg);
} else {
cpi->static_mb_pct = 0;
- vp9_disable_segmentation((VP9_PTR)cpi);
+ vp9_disable_segmentation(&cm->seg);
}
// Free localy allocated storage
@@ -392,15 +376,13 @@ static void separate_arf_mbs(VP9_COMP *cpi) {
void vp9_update_mbgraph_stats(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int i, n_frames = vp9_lookahead_depth(cpi->lookahead);
- YV12_BUFFER_CONFIG *golden_ref =
- &cm->yv12_fb[cm->ref_frame_map[cpi->gld_fb_idx]];
+ YV12_BUFFER_CONFIG *golden_ref = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
// we need to look ahead beyond where the ARF transitions into
// being a GF - so exit if we don't look ahead beyond that
- if (n_frames <= cpi->frames_till_gf_update_due)
+ if (n_frames <= cpi->rc.frames_till_gf_update_due)
return;
- if (n_frames > (int)cpi->frames_till_alt_ref_frame)
- n_frames = cpi->frames_till_alt_ref_frame;
+
if (n_frames > MAX_LAG_BUFFERS)
n_frames = MAX_LAG_BUFFERS;
@@ -426,7 +408,7 @@ void vp9_update_mbgraph_stats(VP9_COMP *cpi) {
golden_ref, cpi->Source);
}
- vp9_clear_system_state(); // __asm emms;
+ vp9_clear_system_state();
separate_arf_mbs(cpi);
}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mbgraph.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mbgraph.h
index c5bca4d01f5..c3af972bc00 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mbgraph.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mbgraph.h
@@ -11,6 +11,30 @@
#ifndef VP9_ENCODER_VP9_MBGRAPH_H_
#define VP9_ENCODER_VP9_MBGRAPH_H_
-void vp9_update_mbgraph_stats(VP9_COMP *cpi);
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+ struct {
+ int err;
+ union {
+ int_mv mv;
+ PREDICTION_MODE mode;
+ } m;
+ } ref[MAX_REF_FRAMES];
+} MBGRAPH_MB_STATS;
+
+typedef struct {
+ MBGRAPH_MB_STATS *mb_stats;
+} MBGRAPH_FRAME_STATS;
+
+struct VP9_COMP;
+
+void vp9_update_mbgraph_stats(struct VP9_COMP *cpi);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
#endif // VP9_ENCODER_VP9_MBGRAPH_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mcomp.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mcomp.c
index a52f5b1b0af..4f7d6f17cd8 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mcomp.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mcomp.c
@@ -16,19 +16,28 @@
#include "vpx_mem/vpx_mem.h"
-#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_common.h"
-#include "vp9/encoder/vp9_onyx_int.h"
+#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_mcomp.h"
// #define NEW_DIAMOND_SEARCH
-void vp9_clamp_mv_min_max(MACROBLOCK *x, MV *mv) {
- const int col_min = (mv->col >> 3) - MAX_FULL_PEL_VAL + (mv->col & 7 ? 1 : 0);
- const int row_min = (mv->row >> 3) - MAX_FULL_PEL_VAL + (mv->row & 7 ? 1 : 0);
- const int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL;
- const int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL;
+static INLINE const uint8_t *get_buf_from_mv(const struct buf_2d *buf,
+ const MV *mv) {
+ return &buf->buf[mv->row * buf->stride + mv->col];
+}
+
+void vp9_set_mv_search_range(MACROBLOCK *x, const MV *mv) {
+ int col_min = (mv->col >> 3) - MAX_FULL_PEL_VAL + (mv->col & 7 ? 1 : 0);
+ int row_min = (mv->row >> 3) - MAX_FULL_PEL_VAL + (mv->row & 7 ? 1 : 0);
+ int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL;
+ int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL;
+
+ col_min = MAX(col_min, (MV_LOW >> 3) + 1);
+ row_min = MAX(row_min, (MV_LOW >> 3) + 1);
+ col_max = MIN(col_max, (MV_UPP >> 3) - 1);
+ row_max = MIN(row_max, (MV_UPP >> 3) - 1);
// Get intersection of UMV window and valid MV window to reduce # of checks
// in diamond search.
@@ -42,7 +51,7 @@ void vp9_clamp_mv_min_max(MACROBLOCK *x, MV *mv) {
x->mv_row_max = row_max;
}
-int vp9_init_search_range(VP9_COMP *cpi, int size) {
+int vp9_init_search_range(const SPEED_FEATURES *sf, int size) {
int sr = 0;
// Minimum search size no matter what the passed in value.
@@ -51,16 +60,13 @@ int vp9_init_search_range(VP9_COMP *cpi, int size) {
while ((size << sr) < MAX_FULL_PEL_VAL)
sr++;
- if (sr)
- sr--;
-
- sr += cpi->sf.reduce_first_step_size;
- sr = MIN(sr, (cpi->sf.max_step_search_steps - 2));
+ sr += sf->reduce_first_step_size;
+ sr = MIN(sr, (sf->max_step_search_steps - 2));
return sr;
}
static INLINE int mv_cost(const MV *mv,
- const int *joint_cost, int *comp_cost[2]) {
+ const int *joint_cost, int *const comp_cost[2]) {
return joint_cost[vp9_get_mv_joint(mv)] +
comp_cost[0][mv->row] + comp_cost[1][mv->col];
}
@@ -84,63 +90,43 @@ static int mv_err_cost(const MV *mv, const MV *ref,
return 0;
}
-static int mvsad_err_cost(const MV *mv, const MV *ref,
- const int *mvjsadcost, int *mvsadcost[2],
+static int mvsad_err_cost(const MACROBLOCK *x, const MV *mv, const MV *ref,
int error_per_bit) {
- if (mvsadcost) {
+ if (x->nmvsadcost) {
const MV diff = { mv->row - ref->row,
mv->col - ref->col };
- return ROUND_POWER_OF_TWO(mv_cost(&diff, mvjsadcost, mvsadcost) *
- error_per_bit, 8);
+ return ROUND_POWER_OF_TWO(mv_cost(&diff, x->nmvjointsadcost,
+ x->nmvsadcost) * error_per_bit, 8);
}
return 0;
}
-void vp9_init_dsmotion_compensation(MACROBLOCK *x, int stride) {
- int len;
- int search_site_count = 0;
+void vp9_init_dsmotion_compensation(search_site_config *cfg, int stride) {
+ int len, ss_count = 1;
- // Generate offsets for 4 search sites per step.
- x->ss[search_site_count].mv.col = 0;
- x->ss[search_site_count].mv.row = 0;
- x->ss[search_site_count].offset = 0;
- search_site_count++;
+ cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0;
+ cfg->ss[0].offset = 0;
for (len = MAX_FIRST_STEP; len > 0; len /= 2) {
- // Compute offsets for search sites.
- x->ss[search_site_count].mv.col = 0;
- x->ss[search_site_count].mv.row = -len;
- x->ss[search_site_count].offset = -len * stride;
- search_site_count++;
-
- // Compute offsets for search sites.
- x->ss[search_site_count].mv.col = 0;
- x->ss[search_site_count].mv.row = len;
- x->ss[search_site_count].offset = len * stride;
- search_site_count++;
-
- // Compute offsets for search sites.
- x->ss[search_site_count].mv.col = -len;
- x->ss[search_site_count].mv.row = 0;
- x->ss[search_site_count].offset = -len;
- search_site_count++;
-
- // Compute offsets for search sites.
- x->ss[search_site_count].mv.col = len;
- x->ss[search_site_count].mv.row = 0;
- x->ss[search_site_count].offset = len;
- search_site_count++;
+ // Generate offsets for 4 search sites per step.
+ const MV ss_mvs[] = {{-len, 0}, {len, 0}, {0, -len}, {0, len}};
+ int i;
+ for (i = 0; i < 4; ++i) {
+ search_site *const ss = &cfg->ss[ss_count++];
+ ss->mv = ss_mvs[i];
+ ss->offset = ss->mv.row * stride + ss->mv.col;
+ }
}
- x->ss_count = search_site_count;
- x->searches_per_step = 4;
+ cfg->ss_count = ss_count;
+ cfg->searches_per_step = 4;
}
-void vp9_init3smotion_compensation(MACROBLOCK *x, int stride) {
+void vp9_init3smotion_compensation(search_site_config *cfg, int stride) {
int len, ss_count = 1;
- x->ss[0].mv.col = x->ss[0].mv.row = 0;
- x->ss[0].offset = 0;
+ cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0;
+ cfg->ss[0].offset = 0;
for (len = MAX_FIRST_STEP; len > 0; len /= 2) {
// Generate offsets for 8 search sites per step.
@@ -150,14 +136,14 @@ void vp9_init3smotion_compensation(MACROBLOCK *x, int stride) {
};
int i;
for (i = 0; i < 8; ++i) {
- search_site *const ss = &x->ss[ss_count++];
+ search_site *const ss = &cfg->ss[ss_count++];
ss->mv = ss_mvs[i];
ss->offset = ss->mv.row * stride + ss->mv.col;
}
}
- x->ss_count = ss_count;
- x->searches_per_step = 8;
+ cfg->ss_count = ss_count;
+ cfg->searches_per_step = 8;
}
/*
@@ -178,35 +164,34 @@ void vp9_init3smotion_compensation(MACROBLOCK *x, int stride) {
error_per_bit + 4096) >> 13 : 0)
-#define SP(x) (((x) & 7) << 1) // convert motion vector component to offset
- // for svf calc
-
-#define IFMVCV(r, c, s, e) \
- if (c >= minc && c <= maxc && r >= minr && r <= maxr) \
- s \
- else \
- e;
+// convert motion vector component to offset for svf calc
+static INLINE int sp(int x) {
+ return (x & 7) << 1;
+}
-/* pointer to predictor base of a motionvector */
-#define PRE(r, c) (y + (((r) >> 3) * y_stride + ((c) >> 3) -(offset)))
+static INLINE const uint8_t *pre(const uint8_t *buf, int stride, int r, int c) {
+ return &buf[(r >> 3) * stride + (c >> 3)];
+}
/* returns subpixel variance error function */
#define DIST(r, c) \
- vfp->svf(PRE(r, c), y_stride, SP(c), SP(r), z, src_stride, &sse)
+ vfp->svf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \
+ src_stride, &sse)
/* checks if (r, c) has better score than previous best */
#define CHECK_BETTER(v, r, c) \
- IFMVCV(r, c, { \
- thismse = (DIST(r, c)); \
- if ((v = MVC(r, c) + thismse) < besterr) { \
- besterr = v; \
- br = r; \
- bc = c; \
- *distortion = thismse; \
- *sse1 = sse; \
- } \
- }, \
- v = INT_MAX;)
+ if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \
+ thismse = (DIST(r, c)); \
+ if ((v = MVC(r, c) + thismse) < besterr) { \
+ besterr = v; \
+ br = r; \
+ bc = c; \
+ *distortion = thismse; \
+ *sse1 = sse; \
+ } \
+ } else { \
+ v = INT_MAX; \
+ }
#define FIRST_LEVEL_CHECKS \
{ \
@@ -273,105 +258,7 @@ void vp9_init3smotion_compensation(MACROBLOCK *x, int stride) {
} \
}
-int vp9_find_best_sub_pixel_iterative(MACROBLOCK *x,
- MV *bestmv, const MV *ref_mv,
- int allow_hp,
- int error_per_bit,
- const vp9_variance_fn_ptr_t *vfp,
- int forced_stop,
- int iters_per_step,
- int *mvjcost, int *mvcost[2],
- int *distortion,
- unsigned int *sse1) {
- uint8_t *z = x->plane[0].src.buf;
- int src_stride = x->plane[0].src.stride;
- MACROBLOCKD *xd = &x->e_mbd;
-
- unsigned int besterr = INT_MAX;
- unsigned int sse;
- unsigned int whichdir;
- unsigned int halfiters = iters_per_step;
- unsigned int quarteriters = iters_per_step;
- unsigned int eighthiters = iters_per_step;
- int thismse;
-
- const int y_stride = xd->plane[0].pre[0].stride;
- const int offset = bestmv->row * y_stride + bestmv->col;
- uint8_t *y = xd->plane[0].pre[0].buf + offset;
-
- int rr = ref_mv->row;
- int rc = ref_mv->col;
- int br = bestmv->row * 8;
- int bc = bestmv->col * 8;
- int hstep = 4;
- const int minc = MAX(x->mv_col_min * 8, ref_mv->col - MV_MAX);
- const int maxc = MIN(x->mv_col_max * 8, ref_mv->col + MV_MAX);
- const int minr = MAX(x->mv_row_min * 8, ref_mv->row - MV_MAX);
- const int maxr = MIN(x->mv_row_max * 8, ref_mv->row + MV_MAX);
-
- int tr = br;
- int tc = bc;
-
- // central mv
- bestmv->row <<= 3;
- bestmv->col <<= 3;
-
- // calculate central point error
- besterr = vfp->vf(y, y_stride, z, src_stride, sse1);
- *distortion = besterr;
- besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
-
- // TODO(jbb): Each subsequent iteration checks at least one point in
- // common with the last iteration could be 2 if diagonal is selected.
- while (halfiters--) {
- // 1/2 pel
- FIRST_LEVEL_CHECKS;
- // no reason to check the same one again.
- if (tr == br && tc == bc)
- break;
- tr = br;
- tc = bc;
- }
-
- // TODO(yaowu): Each subsequent iteration checks at least one point in common
- // with the last iteration could be 2 if diagonal is selected.
-
- // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
- if (forced_stop != 2) {
- hstep >>= 1;
- while (quarteriters--) {
- FIRST_LEVEL_CHECKS;
- // no reason to check the same one again.
- if (tr == br && tc == bc)
- break;
- tr = br;
- tc = bc;
- }
- }
-
- if (allow_hp && vp9_use_mv_hp(ref_mv) && forced_stop == 0) {
- hstep >>= 1;
- while (eighthiters--) {
- FIRST_LEVEL_CHECKS;
- // no reason to check the same one again.
- if (tr == br && tc == bc)
- break;
- tr = br;
- tc = bc;
- }
- }
-
- bestmv->row = br;
- bestmv->col = bc;
-
- if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
- (abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
- return INT_MAX;
-
- return besterr;
-}
-
-int vp9_find_best_sub_pixel_tree(MACROBLOCK *x,
+int vp9_find_best_sub_pixel_tree(const MACROBLOCK *x,
MV *bestmv, const MV *ref_mv,
int allow_hp,
int error_per_bit,
@@ -381,9 +268,9 @@ int vp9_find_best_sub_pixel_tree(MACROBLOCK *x,
int *mvjcost, int *mvcost[2],
int *distortion,
unsigned int *sse1) {
- uint8_t *z = x->plane[0].src.buf;
+ const uint8_t *const z = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
- MACROBLOCKD *xd = &x->e_mbd;
+ const MACROBLOCKD *xd = &x->e_mbd;
unsigned int besterr = INT_MAX;
unsigned int sse;
unsigned int whichdir;
@@ -394,7 +281,7 @@ int vp9_find_best_sub_pixel_tree(MACROBLOCK *x,
const int y_stride = xd->plane[0].pre[0].stride;
const int offset = bestmv->row * y_stride + bestmv->col;
- uint8_t *y = xd->plane[0].pre[0].buf + offset;
+ const uint8_t *const y = xd->plane[0].pre[0].buf;
int rr = ref_mv->row;
int rc = ref_mv->col;
@@ -414,7 +301,7 @@ int vp9_find_best_sub_pixel_tree(MACROBLOCK *x,
bestmv->col *= 8;
// calculate central point error
- besterr = vfp->vf(y, y_stride, z, src_stride, sse1);
+ besterr = vfp->vf(y + offset, y_stride, z, src_stride, sse1);
*distortion = besterr;
besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
@@ -446,6 +333,10 @@ int vp9_find_best_sub_pixel_tree(MACROBLOCK *x,
tr = br;
tc = bc;
}
+ // These lines insure static analysis doesn't warn that
+ // tr and tc aren't used after the above point.
+ (void) tr;
+ (void) tc;
bestmv->row = br;
bestmv->col = bc;
@@ -460,113 +351,10 @@ int vp9_find_best_sub_pixel_tree(MACROBLOCK *x,
#undef DIST
/* returns subpixel variance error function */
#define DIST(r, c) \
- vfp->svaf(PRE(r, c), y_stride, SP(c), SP(r), \
+ vfp->svaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \
z, src_stride, &sse, second_pred)
-int vp9_find_best_sub_pixel_comp_iterative(MACROBLOCK *x,
- MV *bestmv, const MV *ref_mv,
- int allow_hp,
- int error_per_bit,
- const vp9_variance_fn_ptr_t *vfp,
- int forced_stop,
- int iters_per_step,
- int *mvjcost, int *mvcost[2],
- int *distortion,
- unsigned int *sse1,
- const uint8_t *second_pred,
- int w, int h) {
- uint8_t *const z = x->plane[0].src.buf;
- const int src_stride = x->plane[0].src.stride;
- MACROBLOCKD *const xd = &x->e_mbd;
-
- unsigned int besterr = INT_MAX;
- unsigned int sse;
- unsigned int whichdir;
- unsigned int halfiters = iters_per_step;
- unsigned int quarteriters = iters_per_step;
- unsigned int eighthiters = iters_per_step;
- int thismse;
-
- DECLARE_ALIGNED_ARRAY(16, uint8_t, comp_pred, 64 * 64);
- const int y_stride = xd->plane[0].pre[0].stride;
- const int offset = bestmv->row * y_stride + bestmv->col;
- uint8_t *const y = xd->plane[0].pre[0].buf + offset;
-
- int rr = ref_mv->row;
- int rc = ref_mv->col;
- int br = bestmv->row * 8;
- int bc = bestmv->col * 8;
- int hstep = 4;
- const int minc = MAX(x->mv_col_min * 8, ref_mv->col - MV_MAX);
- const int maxc = MIN(x->mv_col_max * 8, ref_mv->col + MV_MAX);
- const int minr = MAX(x->mv_row_min * 8, ref_mv->row - MV_MAX);
- const int maxr = MIN(x->mv_row_max * 8, ref_mv->row + MV_MAX);
-
- int tr = br;
- int tc = bc;
-
- // central mv
- bestmv->row *= 8;
- bestmv->col *= 8;
-
- // calculate central point error
- // TODO(yunqingwang): central pointer error was already calculated in full-
- // pixel search, and can be passed in this function.
- comp_avg_pred(comp_pred, second_pred, w, h, y, y_stride);
- besterr = vfp->vf(comp_pred, w, z, src_stride, sse1);
- *distortion = besterr;
- besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
-
- // Each subsequent iteration checks at least one point in
- // common with the last iteration could be 2 ( if diag selected)
- while (halfiters--) {
- // 1/2 pel
- FIRST_LEVEL_CHECKS;
- // no reason to check the same one again.
- if (tr == br && tc == bc)
- break;
- tr = br;
- tc = bc;
- }
-
- // Each subsequent iteration checks at least one point in common with
- // the last iteration could be 2 ( if diag selected) 1/4 pel
-
- // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
- if (forced_stop != 2) {
- hstep >>= 1;
- while (quarteriters--) {
- FIRST_LEVEL_CHECKS;
- // no reason to check the same one again.
- if (tr == br && tc == bc)
- break;
- tr = br;
- tc = bc;
- }
- }
-
- if (allow_hp && vp9_use_mv_hp(ref_mv) && forced_stop == 0) {
- hstep >>= 1;
- while (eighthiters--) {
- FIRST_LEVEL_CHECKS;
- // no reason to check the same one again.
- if (tr == br && tc == bc)
- break;
- tr = br;
- tc = bc;
- }
- }
- bestmv->row = br;
- bestmv->col = bc;
-
- if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
- (abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
- return INT_MAX;
-
- return besterr;
-}
-
-int vp9_find_best_sub_pixel_comp_tree(MACROBLOCK *x,
+int vp9_find_best_sub_pixel_comp_tree(const MACROBLOCK *x,
MV *bestmv, const MV *ref_mv,
int allow_hp,
int error_per_bit,
@@ -578,21 +366,21 @@ int vp9_find_best_sub_pixel_comp_tree(MACROBLOCK *x,
unsigned int *sse1,
const uint8_t *second_pred,
int w, int h) {
- uint8_t *z = x->plane[0].src.buf;
+ const uint8_t *const z = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
- MACROBLOCKD *xd = &x->e_mbd;
+ const MACROBLOCKD *xd = &x->e_mbd;
unsigned int besterr = INT_MAX;
unsigned int sse;
unsigned int whichdir;
int thismse;
- unsigned int halfiters = iters_per_step;
- unsigned int quarteriters = iters_per_step;
- unsigned int eighthiters = iters_per_step;
+ const unsigned int halfiters = iters_per_step;
+ const unsigned int quarteriters = iters_per_step;
+ const unsigned int eighthiters = iters_per_step;
DECLARE_ALIGNED_ARRAY(16, uint8_t, comp_pred, 64 * 64);
const int y_stride = xd->plane[0].pre[0].stride;
const int offset = bestmv->row * y_stride + bestmv->col;
- uint8_t *y = xd->plane[0].pre[0].buf + offset;
+ const uint8_t *const y = xd->plane[0].pre[0].buf;
int rr = ref_mv->row;
int rc = ref_mv->col;
@@ -614,7 +402,7 @@ int vp9_find_best_sub_pixel_comp_tree(MACROBLOCK *x,
// calculate central point error
// TODO(yunqingwang): central pointer error was already calculated in full-
// pixel search, and can be passed in this function.
- comp_avg_pred(comp_pred, second_pred, w, h, y, y_stride);
+ vp9_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride);
besterr = vfp->vf(comp_pred, w, z, src_stride, sse1);
*distortion = besterr;
besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
@@ -652,6 +440,11 @@ int vp9_find_best_sub_pixel_comp_tree(MACROBLOCK *x,
tr = br;
tc = bc;
}
+ // These lines insure static analysis doesn't warn that
+ // tr and tc aren't used after the above point.
+ (void) tr;
+ (void) tc;
+
bestmv->row = br;
bestmv->col = bc;
@@ -665,48 +458,33 @@ int vp9_find_best_sub_pixel_comp_tree(MACROBLOCK *x,
#undef MVC
#undef PRE
#undef DIST
-#undef IFMVCV
#undef CHECK_BETTER
-#undef SP
-#define CHECK_BOUNDS(range) \
- {\
- all_in = 1;\
- all_in &= ((br-range) >= x->mv_row_min);\
- all_in &= ((br+range) <= x->mv_row_max);\
- all_in &= ((bc-range) >= x->mv_col_min);\
- all_in &= ((bc+range) <= x->mv_col_max);\
- }
+static INLINE int check_bounds(const MACROBLOCK *x, int row, int col,
+ int range) {
+ return ((row - range) >= x->mv_row_min) &
+ ((row + range) <= x->mv_row_max) &
+ ((col - range) >= x->mv_col_min) &
+ ((col + range) <= x->mv_col_max);
+}
-#define CHECK_POINT \
- {\
- if (this_mv.col < x->mv_col_min) continue;\
- if (this_mv.col > x->mv_col_max) continue;\
- if (this_mv.row < x->mv_row_min) continue;\
- if (this_mv.row > x->mv_row_max) continue;\
- }
+static INLINE int is_mv_in(const MACROBLOCK *x, const MV *mv) {
+ return (mv->col >= x->mv_col_min) && (mv->col <= x->mv_col_max) &&
+ (mv->row >= x->mv_row_min) && (mv->row <= x->mv_row_max);
+}
#define CHECK_BETTER \
{\
- if (thissad < bestsad)\
- {\
+ if (thissad < bestsad) {\
if (use_mvcost) \
- thissad += mvsad_err_cost(&this_mv, &fcenter_mv.as_mv, \
- mvjsadcost, mvsadcost, \
- sad_per_bit);\
- if (thissad < bestsad)\
- {\
+ thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);\
+ if (thissad < bestsad) {\
bestsad = thissad;\
best_site = i;\
}\
}\
}
-#define get_next_chkpts(list, i, n) \
- list[0] = ((i) == 0 ? (n) - 1 : (i) - 1); \
- list[1] = (i); \
- list[2] = ((i) == (n) - 1 ? 0 : (i) + 1);
-
#define MAX_PATTERN_SCALES 11
#define MAX_PATTERN_CANDIDATES 8 // max number of canddiates per scale
#define PATTERN_CANDIDATES_REF 3 // number of refinement candidates
@@ -715,56 +493,40 @@ int vp9_find_best_sub_pixel_comp_tree(MACROBLOCK *x,
// Each scale can have a different number of candidates and shape of
// candidates as indicated in the num_candidates and candidates arrays
// passed into this function
-static int vp9_pattern_search(MACROBLOCK *x,
+static int vp9_pattern_search(const MACROBLOCK *x,
MV *ref_mv,
int search_param,
int sad_per_bit,
- int do_init_search,
- int do_refine,
+ int do_init_search, int do_refine,
const vp9_variance_fn_ptr_t *vfp,
int use_mvcost,
const MV *center_mv, MV *best_mv,
const int num_candidates[MAX_PATTERN_SCALES],
const MV candidates[MAX_PATTERN_SCALES]
[MAX_PATTERN_CANDIDATES]) {
- const MACROBLOCKD* const xd = &x->e_mbd;
+ const MACROBLOCKD *const xd = &x->e_mbd;
static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = {
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
};
int i, j, s, t;
- uint8_t *what = x->plane[0].src.buf;
- int what_stride = x->plane[0].src.stride;
- int in_what_stride = xd->plane[0].pre[0].stride;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
int br, bc;
- MV this_mv;
int bestsad = INT_MAX;
int thissad;
- uint8_t *base_offset;
- uint8_t *this_offset;
int k = -1;
- int all_in;
- int best_site = -1;
- int_mv fcenter_mv;
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
int best_init_s = search_param_to_steps[search_param];
- int *mvjsadcost = x->nmvjointsadcost;
- int *mvsadcost[2] = {x->nmvsadcost[0], x->nmvsadcost[1]};
-
- fcenter_mv.as_mv.row = center_mv->row >> 3;
- fcenter_mv.as_mv.col = center_mv->col >> 3;
-
// adjust ref_mv to make sure it is within MV range
clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
br = ref_mv->row;
bc = ref_mv->col;
// Work out the start point for the search
- base_offset = (uint8_t *)(xd->plane[0].pre[0].buf);
- this_offset = base_offset + (br * in_what_stride) + bc;
- this_mv.row = br;
- this_mv.col = bc;
- bestsad = vfp->sdf(what, what_stride, this_offset, in_what_stride, 0x7fffffff)
- + mvsad_err_cost(&this_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
+ bestsad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride,
+ 0x7fffffff) + mvsad_err_cost(x, ref_mv, &fcenter_mv,
+ sad_per_bit);
// Search all possible scales upto the search param around the center point
// pick the scale of the point that is best as the starting scale of
@@ -773,27 +535,25 @@ static int vp9_pattern_search(MACROBLOCK *x,
s = best_init_s;
best_init_s = -1;
for (t = 0; t <= s; ++t) {
- best_site = -1;
- CHECK_BOUNDS((1 << t))
- if (all_in) {
+ int best_site = -1;
+ if (check_bounds(x, br, bc, 1 << t)) {
for (i = 0; i < num_candidates[t]; i++) {
- this_mv.row = br + candidates[t][i].row;
- this_mv.col = bc + candidates[t][i].col;
- this_offset = base_offset + (this_mv.row * in_what_stride) +
- this_mv.col;
- thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride,
- bestsad);
+ const MV this_mv = {br + candidates[t][i].row,
+ bc + candidates[t][i].col};
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride, bestsad);
CHECK_BETTER
}
} else {
for (i = 0; i < num_candidates[t]; i++) {
- this_mv.row = br + candidates[t][i].row;
- this_mv.col = bc + candidates[t][i].col;
- CHECK_POINT
- this_offset = base_offset + (this_mv.row * in_what_stride) +
- this_mv.col;
- thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride,
- bestsad);
+ const MV this_mv = {br + candidates[t][i].row,
+ bc + candidates[t][i].col};
+ if (!is_mv_in(x, &this_mv))
+ continue;
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride, bestsad);
CHECK_BETTER
}
}
@@ -813,31 +573,30 @@ static int vp9_pattern_search(MACROBLOCK *x,
// If the center point is still the best, just skip this and move to
// the refinement step.
if (best_init_s != -1) {
+ int best_site = -1;
s = best_init_s;
- best_site = -1;
+
do {
// No need to search all 6 points the 1st time if initial search was used
if (!do_init_search || s != best_init_s) {
- CHECK_BOUNDS((1 << s))
- if (all_in) {
+ if (check_bounds(x, br, bc, 1 << s)) {
for (i = 0; i < num_candidates[s]; i++) {
- this_mv.row = br + candidates[s][i].row;
- this_mv.col = bc + candidates[s][i].col;
- this_offset = base_offset + (this_mv.row * in_what_stride) +
- this_mv.col;
- thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride,
- bestsad);
+ const MV this_mv = {br + candidates[s][i].row,
+ bc + candidates[s][i].col};
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride, bestsad);
CHECK_BETTER
}
} else {
for (i = 0; i < num_candidates[s]; i++) {
- this_mv.row = br + candidates[s][i].row;
- this_mv.col = bc + candidates[s][i].col;
- CHECK_POINT
- this_offset = base_offset + (this_mv.row * in_what_stride) +
- this_mv.col;
- thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride,
- bestsad);
+ const MV this_mv = {br + candidates[s][i].row,
+ bc + candidates[s][i].col};
+ if (!is_mv_in(x, &this_mv))
+ continue;
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride, bestsad);
CHECK_BETTER
}
}
@@ -854,28 +613,28 @@ static int vp9_pattern_search(MACROBLOCK *x,
do {
int next_chkpts_indices[PATTERN_CANDIDATES_REF];
best_site = -1;
- CHECK_BOUNDS((1 << s))
+ next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
+ next_chkpts_indices[1] = k;
+ next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
- get_next_chkpts(next_chkpts_indices, k, num_candidates[s]);
- if (all_in) {
+ if (check_bounds(x, br, bc, 1 << s)) {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
- this_mv.row = br + candidates[s][next_chkpts_indices[i]].row;
- this_mv.col = bc + candidates[s][next_chkpts_indices[i]].col;
- this_offset = base_offset + (this_mv.row * (in_what_stride)) +
- this_mv.col;
- thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride,
- bestsad);
+ const MV this_mv = {br + candidates[s][next_chkpts_indices[i]].row,
+ bc + candidates[s][next_chkpts_indices[i]].col};
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride, bestsad);
CHECK_BETTER
}
} else {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
- this_mv.row = br + candidates[s][next_chkpts_indices[i]].row;
- this_mv.col = bc + candidates[s][next_chkpts_indices[i]].col;
- CHECK_POINT
- this_offset = base_offset + (this_mv.row * (in_what_stride)) +
- this_mv.col;
- thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride,
- bestsad);
+ const MV this_mv = {br + candidates[s][next_chkpts_indices[i]].row,
+ bc + candidates[s][next_chkpts_indices[i]].col};
+ if (!is_mv_in(x, &this_mv))
+ continue;
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride, bestsad);
CHECK_BETTER
}
}
@@ -892,34 +651,31 @@ static int vp9_pattern_search(MACROBLOCK *x,
// Check 4 1-away neighbors if do_refine is true.
// For most well-designed schemes do_refine will not be necessary.
if (do_refine) {
- static const MV neighbors[4] = {
- {0, -1}, { -1, 0}, {1, 0}, {0, 1},
- };
+ static const MV neighbors[4] = {{0, -1}, { -1, 0}, {1, 0}, {0, 1}};
+
for (j = 0; j < 16; j++) {
- best_site = -1;
- CHECK_BOUNDS(1)
- if (all_in) {
+ int best_site = -1;
+ if (check_bounds(x, br, bc, 1)) {
for (i = 0; i < 4; i++) {
- this_mv.row = br + neighbors[i].row;
- this_mv.col = bc + neighbors[i].col;
- this_offset = base_offset + (this_mv.row * (in_what_stride)) +
- this_mv.col;
- thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride,
- bestsad);
+ const MV this_mv = {br + neighbors[i].row,
+ bc + neighbors[i].col};
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride, bestsad);
CHECK_BETTER
}
} else {
for (i = 0; i < 4; i++) {
- this_mv.row = br + neighbors[i].row;
- this_mv.col = bc + neighbors[i].col;
- CHECK_POINT
- this_offset = base_offset + (this_mv.row * (in_what_stride)) +
- this_mv.col;
- thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride,
- bestsad);
+ const MV this_mv = {br + neighbors[i].row,
+ bc + neighbors[i].col};
+ if (!is_mv_in(x, &this_mv))
+ continue;
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride, bestsad);
CHECK_BETTER
}
- }
+ }
if (best_site == -1) {
break;
@@ -933,22 +689,43 @@ static int vp9_pattern_search(MACROBLOCK *x,
best_mv->row = br;
best_mv->col = bc;
- this_offset = base_offset + (best_mv->row * in_what_stride) +
- best_mv->col;
- this_mv.row = best_mv->row * 8;
- this_mv.col = best_mv->col * 8;
- if (bestsad == INT_MAX)
- return INT_MAX;
+ return bestsad;
+}
- return vfp->vf(what, what_stride, this_offset, in_what_stride,
- (unsigned int *)&bestsad) +
- use_mvcost ? mv_err_cost(&this_mv, center_mv,
- x->nmvjointcost, x->mvcost, x->errorperbit)
- : 0;
+int vp9_get_mvpred_var(const MACROBLOCK *x,
+ const MV *best_mv, const MV *center_mv,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const MV mv = {best_mv->row * 8, best_mv->col * 8};
+ unsigned int unused;
+
+ return vfp->vf(what->buf, what->stride,
+ get_buf_from_mv(in_what, best_mv), in_what->stride, &unused) +
+ (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost,
+ x->mvcost, x->errorperbit) : 0);
}
+int vp9_get_mvpred_av_var(const MACROBLOCK *x,
+ const MV *best_mv, const MV *center_mv,
+ const uint8_t *second_pred,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const MV mv = {best_mv->row * 8, best_mv->col * 8};
+ unsigned int unused;
+
+ return vfp->svaf(get_buf_from_mv(in_what, best_mv), in_what->stride, 0, 0,
+ what->buf, what->stride, &unused, second_pred) +
+ (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost,
+ x->mvcost, x->errorperbit) : 0);
+}
-int vp9_hex_search(MACROBLOCK *x,
+int vp9_hex_search(const MACROBLOCK *x,
MV *ref_mv,
int search_param,
int sad_per_bit,
@@ -976,14 +753,13 @@ int vp9_hex_search(MACROBLOCK *x,
{{-512, -1024}, {512, -1024}, {1024, 0}, {512, 1024}, { -512, 1024},
{ -1024, 0}},
};
- return
- vp9_pattern_search(x, ref_mv, search_param, sad_per_bit,
- do_init_search, 0, vfp, use_mvcost,
- center_mv, best_mv,
- hex_num_candidates, hex_candidates);
+ return vp9_pattern_search(x, ref_mv, search_param, sad_per_bit,
+ do_init_search, 0, vfp, use_mvcost,
+ center_mv, best_mv,
+ hex_num_candidates, hex_candidates);
}
-int vp9_bigdia_search(MACROBLOCK *x,
+int vp9_bigdia_search(const MACROBLOCK *x,
MV *ref_mv,
int search_param,
int sad_per_bit,
@@ -1024,7 +800,7 @@ int vp9_bigdia_search(MACROBLOCK *x,
bigdia_num_candidates, bigdia_candidates);
}
-int vp9_square_search(MACROBLOCK *x,
+int vp9_square_search(const MACROBLOCK *x,
MV *ref_mv,
int search_param,
int sad_per_bit,
@@ -1063,96 +839,159 @@ int vp9_square_search(MACROBLOCK *x,
do_init_search, 0, vfp, use_mvcost,
center_mv, best_mv,
square_num_candidates, square_candidates);
-};
-
-#undef CHECK_BOUNDS
-#undef CHECK_POINT
-#undef CHECK_BETTER
-
-int vp9_diamond_search_sad_c(MACROBLOCK *x,
- int_mv *ref_mv, int_mv *best_mv,
- int search_param, int sad_per_bit, int *num00,
- vp9_variance_fn_ptr_t *fn_ptr, int *mvjcost,
- int *mvcost[2], int_mv *center_mv) {
- int i, j, step;
-
- const MACROBLOCKD* const xd = &x->e_mbd;
- uint8_t *what = x->plane[0].src.buf;
- int what_stride = x->plane[0].src.stride;
- uint8_t *in_what;
- int in_what_stride = xd->plane[0].pre[0].stride;
- uint8_t *best_address;
-
- int tot_steps;
- int_mv this_mv;
+}
- int bestsad = INT_MAX;
- int best_site = 0;
- int last_site = 0;
+int vp9_fast_hex_search(const MACROBLOCK *x,
+ MV *ref_mv,
+ int search_param,
+ int sad_per_bit,
+ int do_init_search, // must be zero for fast_hex
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost,
+ const MV *center_mv,
+ MV *best_mv) {
+ return vp9_hex_search(x, ref_mv, MAX(MAX_MVSEARCH_STEPS - 2, search_param),
+ sad_per_bit, do_init_search, vfp, use_mvcost,
+ center_mv, best_mv);
+}
- int ref_row, ref_col;
- int this_row_offset, this_col_offset;
- search_site *ss;
+int vp9_fast_dia_search(const MACROBLOCK *x,
+ MV *ref_mv,
+ int search_param,
+ int sad_per_bit,
+ int do_init_search,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost,
+ const MV *center_mv,
+ MV *best_mv) {
+ return vp9_bigdia_search(x, ref_mv, MAX(MAX_MVSEARCH_STEPS - 2, search_param),
+ sad_per_bit, do_init_search, vfp, use_mvcost,
+ center_mv, best_mv);
+}
- uint8_t *check_here;
- int thissad;
- int_mv fcenter_mv;
+#undef CHECK_BETTER
- int *mvjsadcost = x->nmvjointsadcost;
- int *mvsadcost[2] = {x->nmvsadcost[0], x->nmvsadcost[1]};
+int vp9_full_range_search_c(const MACROBLOCK *x,
+ const search_site_config *cfg,
+ MV *ref_mv, MV *best_mv,
+ int search_param, int sad_per_bit, int *num00,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const int range = 64;
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ unsigned int best_sad = INT_MAX;
+ int r, c, i;
+ int start_col, end_col, start_row, end_row;
+
+ // The cfg and search_param parameters are not used in this search variant
+ (void)cfg;
+ (void)search_param;
- fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3;
- fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3;
+ clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
+ *best_mv = *ref_mv;
+ *num00 = 11;
+ best_sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride,
+ 0x7fffffff) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+ start_row = MAX(-range, x->mv_row_min - ref_mv->row);
+ start_col = MAX(-range, x->mv_col_min - ref_mv->col);
+ end_row = MIN(range, x->mv_row_max - ref_mv->row);
+ end_col = MIN(range, x->mv_col_max - ref_mv->col);
+
+ for (r = start_row; r <= end_row; ++r) {
+ for (c = start_col; c <= end_col; c += 4) {
+ if (c + 3 <= end_col) {
+ unsigned int sads[4];
+ const uint8_t *addrs[4];
+ for (i = 0; i < 4; ++i) {
+ const MV mv = {ref_mv->row + r, ref_mv->col + c + i};
+ addrs[i] = get_buf_from_mv(in_what, &mv);
+ }
- clamp_mv(&ref_mv->as_mv,
- x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
- ref_row = ref_mv->as_mv.row;
- ref_col = ref_mv->as_mv.col;
- *num00 = 0;
- best_mv->as_mv.row = ref_row;
- best_mv->as_mv.col = ref_col;
+ fn_ptr->sdx4df(what->buf, what->stride, addrs, in_what->stride, sads);
- // Work out the start point for the search
- in_what = (uint8_t *)(xd->plane[0].pre[0].buf +
- (ref_row * (xd->plane[0].pre[0].stride)) + ref_col);
- best_address = in_what;
+ for (i = 0; i < 4; ++i) {
+ if (sads[i] < best_sad) {
+ const MV mv = {ref_mv->row + r, ref_mv->col + c + i};
+ const unsigned int sad = sads[i] +
+ mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
+ }
+ }
+ } else {
+ for (i = 0; i < end_col - c; ++i) {
+ const MV mv = {ref_mv->row + r, ref_mv->col + c + i};
+ unsigned int sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &mv), in_what->stride, best_sad);
+ if (sad < best_sad) {
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
+ }
+ }
+ }
+ }
+ }
- // Check the starting position
- bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride, 0x7fffffff)
- + mvsad_err_cost(&best_mv->as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
+ return best_sad;
+}
+int vp9_diamond_search_sad_c(const MACROBLOCK *x,
+ const search_site_config *cfg,
+ MV *ref_mv, MV *best_mv,
+ int search_param, int sad_per_bit, int *num00,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
// search_param determines the length of the initial step and hence the number
// of iterations
// 0 = initial step (MAX_FIRST_STEP) pel : 1 = (MAX_FIRST_STEP/2) pel, 2 =
// (MAX_FIRST_STEP/4) pel... etc.
- ss = &x->ss[search_param * x->searches_per_step];
- tot_steps = (x->ss_count / x->searches_per_step) - search_param;
+ const search_site *const ss = &cfg->ss[search_param * cfg->searches_per_step];
+ const int tot_steps = (cfg->ss_count / cfg->searches_per_step) - search_param;
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ const uint8_t *best_address, *in_what_ref;
+ int best_sad = INT_MAX;
+ int best_site = 0;
+ int last_site = 0;
+ int i, j, step;
+
+ clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
+ in_what_ref = get_buf_from_mv(in_what, ref_mv);
+ best_address = in_what_ref;
+ *num00 = 0;
+ *best_mv = *ref_mv;
+
+ // Check the starting position
+ best_sad = fn_ptr->sdf(what->buf, what->stride,
+ best_address, in_what->stride, 0x7fffffff) +
+ mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit);
i = 1;
for (step = 0; step < tot_steps; step++) {
- for (j = 0; j < x->searches_per_step; j++) {
- // Trap illegal vectors
- this_row_offset = best_mv->as_mv.row + ss[i].mv.row;
- this_col_offset = best_mv->as_mv.col + ss[i].mv.col;
-
- if ((this_col_offset > x->mv_col_min) &&
- (this_col_offset < x->mv_col_max) &&
- (this_row_offset > x->mv_row_min) &&
- (this_row_offset < x->mv_row_max)) {
- check_here = ss[i].offset + best_address;
- thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride,
- bestsad);
-
- if (thissad < bestsad) {
- this_mv.as_mv.row = this_row_offset;
- this_mv.as_mv.col = this_col_offset;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
- if (thissad < bestsad) {
- bestsad = thissad;
+ for (j = 0; j < cfg->searches_per_step; j++) {
+ const MV mv = {best_mv->row + ss[i].mv.row,
+ best_mv->col + ss[i].mv.col};
+ if (is_mv_in(x, &mv)) {
+ int sad = fn_ptr->sdf(what->buf, what->stride,
+ best_address + ss[i].offset, in_what->stride,
+ best_sad);
+ if (sad < best_sad) {
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
best_site = i;
}
}
@@ -1162,30 +1001,24 @@ int vp9_diamond_search_sad_c(MACROBLOCK *x,
}
if (best_site != last_site) {
- best_mv->as_mv.row += ss[best_site].mv.row;
- best_mv->as_mv.col += ss[best_site].mv.col;
+ best_mv->row += ss[best_site].mv.row;
+ best_mv->col += ss[best_site].mv.col;
best_address += ss[best_site].offset;
last_site = best_site;
#if defined(NEW_DIAMOND_SEARCH)
while (1) {
- this_row_offset = best_mv->as_mv.row + ss[best_site].mv.row;
- this_col_offset = best_mv->as_mv.col + ss[best_site].mv.col;
- if ((this_col_offset > x->mv_col_min) &&
- (this_col_offset < x->mv_col_max) &&
- (this_row_offset > x->mv_row_min) &&
- (this_row_offset < x->mv_row_max)) {
- check_here = ss[best_site].offset + best_address;
- thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride,
- bestsad);
- if (thissad < bestsad) {
- this_mv.as_mv.row = this_row_offset;
- this_mv.as_mv.col = this_col_offset;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
- if (thissad < bestsad) {
- bestsad = thissad;
- best_mv->as_mv.row += ss[best_site].mv.row;
- best_mv->as_mv.col += ss[best_site].mv.col;
+ const MV this_mv = {best_mv->row + ss[best_site].mv.row,
+ best_mv->col + ss[best_site].mv.col};
+ if (is_mv_in(x, &this_mv)) {
+ int sad = fn_ptr->sdf(what->buf, what->stride,
+ best_address + ss[best_site].offset,
+ in_what->stride, best_sad);
+ if (sad < best_sad) {
+ sad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ best_mv->row += ss[best_site].mv.row;
+ best_mv->col += ss[best_site].mv.col;
best_address += ss[best_site].offset;
continue;
}
@@ -1194,39 +1027,27 @@ int vp9_diamond_search_sad_c(MACROBLOCK *x,
break;
};
#endif
- } else if (best_address == in_what) {
+ } else if (best_address == in_what_ref) {
(*num00)++;
}
}
-
- this_mv.as_mv.row = best_mv->as_mv.row * 8;
- this_mv.as_mv.col = best_mv->as_mv.col * 8;
-
- if (bestsad == INT_MAX)
- return INT_MAX;
-
- return fn_ptr->vf(what, what_stride, best_address, in_what_stride,
- (unsigned int *)(&thissad)) +
- mv_err_cost(&this_mv.as_mv, &center_mv->as_mv,
- mvjcost, mvcost, x->errorperbit);
+ return best_sad;
}
-int vp9_diamond_search_sadx4(MACROBLOCK *x,
- int_mv *ref_mv, int_mv *best_mv, int search_param,
+int vp9_diamond_search_sadx4(const MACROBLOCK *x,
+ const search_site_config *cfg,
+ MV *ref_mv, MV *best_mv, int search_param,
int sad_per_bit, int *num00,
- vp9_variance_fn_ptr_t *fn_ptr,
- int *mvjcost, int *mvcost[2], int_mv *center_mv) {
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv) {
int i, j, step;
- const MACROBLOCKD* const xd = &x->e_mbd;
+ const MACROBLOCKD *const xd = &x->e_mbd;
uint8_t *what = x->plane[0].src.buf;
- int what_stride = x->plane[0].src.stride;
- uint8_t *in_what;
- int in_what_stride = xd->plane[0].pre[0].stride;
- uint8_t *best_address;
-
- int tot_steps;
- int_mv this_mv;
+ const int what_stride = x->plane[0].src.stride;
+ const uint8_t *in_what;
+ const int in_what_stride = xd->plane[0].pre[0].stride;
+ const uint8_t *best_address;
unsigned int bestsad = INT_MAX;
int best_site = 0;
@@ -1234,45 +1055,30 @@ int vp9_diamond_search_sadx4(MACROBLOCK *x,
int ref_row;
int ref_col;
- int this_row_offset;
- int this_col_offset;
- search_site *ss;
-
- uint8_t *check_here;
- unsigned int thissad;
- int_mv fcenter_mv;
-
- int *mvjsadcost = x->nmvjointsadcost;
- int *mvsadcost[2] = {x->nmvsadcost[0], x->nmvsadcost[1]};
- fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3;
- fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3;
+ // search_param determines the length of the initial step and hence the number
+ // of iterations.
+ // 0 = initial step (MAX_FIRST_STEP) pel
+ // 1 = (MAX_FIRST_STEP/2) pel,
+ // 2 = (MAX_FIRST_STEP/4) pel...
+ const search_site *ss = &cfg->ss[search_param * cfg->searches_per_step];
+ const int tot_steps = (cfg->ss_count / cfg->searches_per_step) - search_param;
- clamp_mv(&ref_mv->as_mv,
- x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
- ref_row = ref_mv->as_mv.row;
- ref_col = ref_mv->as_mv.col;
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
+ ref_row = ref_mv->row;
+ ref_col = ref_mv->col;
*num00 = 0;
- best_mv->as_mv.row = ref_row;
- best_mv->as_mv.col = ref_col;
+ best_mv->row = ref_row;
+ best_mv->col = ref_col;
// Work out the start point for the search
- in_what = (uint8_t *)(xd->plane[0].pre[0].buf +
- (ref_row * (xd->plane[0].pre[0].stride)) + ref_col);
+ in_what = xd->plane[0].pre[0].buf + ref_row * in_what_stride + ref_col;
best_address = in_what;
// Check the starting position
bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride, 0x7fffffff)
- + mvsad_err_cost(&best_mv->as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
- // search_param determines the length of the initial step and hence the number
- // of iterations.
- // 0 = initial step (MAX_FIRST_STEP) pel
- // 1 = (MAX_FIRST_STEP/2) pel,
- // 2 = (MAX_FIRST_STEP/4) pel...
- ss = &x->ss[search_param * x->searches_per_step];
- tot_steps = (x->ss_count / x->searches_per_step) - search_param;
+ + mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit);
i = 1;
@@ -1281,10 +1087,10 @@ int vp9_diamond_search_sadx4(MACROBLOCK *x,
// All_in is true if every one of the points we are checking are within
// the bounds of the image.
- all_in &= ((best_mv->as_mv.row + ss[i].mv.row) > x->mv_row_min);
- all_in &= ((best_mv->as_mv.row + ss[i + 1].mv.row) < x->mv_row_max);
- all_in &= ((best_mv->as_mv.col + ss[i + 2].mv.col) > x->mv_col_min);
- all_in &= ((best_mv->as_mv.col + ss[i + 3].mv.col) < x->mv_col_max);
+ all_in &= ((best_mv->row + ss[i].mv.row) > x->mv_row_min);
+ all_in &= ((best_mv->row + ss[i + 1].mv.row) < x->mv_row_max);
+ all_in &= ((best_mv->col + ss[i + 2].mv.col) > x->mv_col_min);
+ all_in &= ((best_mv->col + ss[i + 3].mv.col) < x->mv_col_max);
// If all the pixels are within the bounds we don't check whether the
// search point is valid in this loop, otherwise we check each point
@@ -1292,7 +1098,7 @@ int vp9_diamond_search_sadx4(MACROBLOCK *x,
if (all_in) {
unsigned int sad_array[4];
- for (j = 0; j < x->searches_per_step; j += 4) {
+ for (j = 0; j < cfg->searches_per_step; j += 4) {
unsigned char const *block_offset[4];
for (t = 0; t < 4; t++)
@@ -1303,11 +1109,10 @@ int vp9_diamond_search_sadx4(MACROBLOCK *x,
for (t = 0; t < 4; t++, i++) {
if (sad_array[t] < bestsad) {
- this_mv.as_mv.row = best_mv->as_mv.row + ss[i].mv.row;
- this_mv.as_mv.col = best_mv->as_mv.col + ss[i].mv.col;
- sad_array[t] += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
+ const MV this_mv = {best_mv->row + ss[i].mv.row,
+ best_mv->col + ss[i].mv.col};
+ sad_array[t] += mvsad_err_cost(x, &this_mv, &fcenter_mv,
+ sad_per_bit);
if (sad_array[t] < bestsad) {
bestsad = sad_array[t];
best_site = i;
@@ -1316,25 +1121,18 @@ int vp9_diamond_search_sadx4(MACROBLOCK *x,
}
}
} else {
- for (j = 0; j < x->searches_per_step; j++) {
+ for (j = 0; j < cfg->searches_per_step; j++) {
// Trap illegal vectors
- this_row_offset = best_mv->as_mv.row + ss[i].mv.row;
- this_col_offset = best_mv->as_mv.col + ss[i].mv.col;
+ const MV this_mv = {best_mv->row + ss[i].mv.row,
+ best_mv->col + ss[i].mv.col};
- if ((this_col_offset > x->mv_col_min) &&
- (this_col_offset < x->mv_col_max) &&
- (this_row_offset > x->mv_row_min) &&
- (this_row_offset < x->mv_row_max)) {
- check_here = ss[i].offset + best_address;
- thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride,
- bestsad);
+ if (is_mv_in(x, &this_mv)) {
+ const uint8_t *const check_here = ss[i].offset + best_address;
+ unsigned int thissad = fn_ptr->sdf(what, what_stride, check_here,
+ in_what_stride, bestsad);
if (thissad < bestsad) {
- this_mv.as_mv.row = this_row_offset;
- this_mv.as_mv.col = this_col_offset;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
+ thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
if (thissad < bestsad) {
bestsad = thissad;
best_site = i;
@@ -1345,30 +1143,25 @@ int vp9_diamond_search_sadx4(MACROBLOCK *x,
}
}
if (best_site != last_site) {
- best_mv->as_mv.row += ss[best_site].mv.row;
- best_mv->as_mv.col += ss[best_site].mv.col;
+ best_mv->row += ss[best_site].mv.row;
+ best_mv->col += ss[best_site].mv.col;
best_address += ss[best_site].offset;
last_site = best_site;
#if defined(NEW_DIAMOND_SEARCH)
while (1) {
- this_row_offset = best_mv->as_mv.row + ss[best_site].mv.row;
- this_col_offset = best_mv->as_mv.col + ss[best_site].mv.col;
- if ((this_col_offset > x->mv_col_min) &&
- (this_col_offset < x->mv_col_max) &&
- (this_row_offset > x->mv_row_min) &&
- (this_row_offset < x->mv_row_max)) {
- check_here = ss[best_site].offset + best_address;
- thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride,
- bestsad);
+ const MV this_mv = {best_mv->row + ss[best_site].mv.row,
+ best_mv->col + ss[best_site].mv.col};
+ if (is_mv_in(x, &this_mv)) {
+ const uint8_t *const check_here = ss[best_site].offset + best_address;
+ unsigned int thissad = fn_ptr->sdf(what, what_stride, check_here,
+ in_what_stride, bestsad);
if (thissad < bestsad) {
- this_mv.as_mv.row = this_row_offset;
- this_mv.as_mv.col = this_col_offset;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
+ thissad += mvsad_err_cost(&this_mv, &fcenter_mv,
mvjsadcost, mvsadcost, sad_per_bit);
if (thissad < bestsad) {
bestsad = thissad;
- best_mv->as_mv.row += ss[best_site].mv.row;
- best_mv->as_mv.col += ss[best_site].mv.col;
+ best_mv->row += ss[best_site].mv.row;
+ best_mv->col += ss[best_site].mv.col;
best_address += ss[best_site].offset;
continue;
}
@@ -1381,498 +1174,287 @@ int vp9_diamond_search_sadx4(MACROBLOCK *x,
(*num00)++;
}
}
-
- this_mv.as_mv.row = best_mv->as_mv.row * 8;
- this_mv.as_mv.col = best_mv->as_mv.col * 8;
-
- if (bestsad == INT_MAX)
- return INT_MAX;
-
- return fn_ptr->vf(what, what_stride, best_address, in_what_stride,
- (unsigned int *)(&thissad)) +
- mv_err_cost(&this_mv.as_mv, &center_mv->as_mv,
- mvjcost, mvcost, x->errorperbit);
+ return bestsad;
}
/* do_refine: If last step (1-away) of n-step search doesn't pick the center
point as the best match, we will do a final 1-away diamond
refining search */
-int vp9_full_pixel_diamond(VP9_COMP *cpi, MACROBLOCK *x,
- int_mv *mvp_full, int step_param,
- int sadpb, int further_steps,
- int do_refine, vp9_variance_fn_ptr_t *fn_ptr,
- int_mv *ref_mv, int_mv *dst_mv) {
- int_mv temp_mv;
- int thissme, n, num00;
- int bestsme = cpi->diamond_search_sad(x, mvp_full, &temp_mv,
- step_param, sadpb, &num00,
- fn_ptr, x->nmvjointcost,
- x->mvcost, ref_mv);
- dst_mv->as_int = temp_mv.as_int;
-
- n = num00;
- num00 = 0;
-
- /* If there won't be more n-step search, check to see if refining search is
- * needed. */
+int vp9_full_pixel_diamond(const VP9_COMP *cpi, MACROBLOCK *x,
+ MV *mvp_full, int step_param,
+ int sadpb, int further_steps, int do_refine,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *ref_mv, MV *dst_mv) {
+ MV temp_mv;
+ int thissme, n, num00 = 0;
+ int bestsme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv,
+ step_param, sadpb, &n,
+ fn_ptr, ref_mv);
+ if (bestsme < INT_MAX)
+ bestsme = vp9_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
+ *dst_mv = temp_mv;
+
+ // If there won't be more n-step search, check to see if refining search is
+ // needed.
if (n > further_steps)
do_refine = 0;
while (n < further_steps) {
- n++;
+ ++n;
if (num00) {
num00--;
} else {
- thissme = cpi->diamond_search_sad(x, mvp_full, &temp_mv,
+ thissme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv,
step_param + n, sadpb, &num00,
- fn_ptr, x->nmvjointcost, x->mvcost,
- ref_mv);
+ fn_ptr, ref_mv);
+ if (thissme < INT_MAX)
+ thissme = vp9_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
- /* check to see if refining search is needed. */
- if (num00 > (further_steps - n))
+ // check to see if refining search is needed.
+ if (num00 > further_steps - n)
do_refine = 0;
if (thissme < bestsme) {
bestsme = thissme;
- dst_mv->as_int = temp_mv.as_int;
+ *dst_mv = temp_mv;
}
}
}
- /* final 1-away diamond refining search */
- if (do_refine == 1) {
- int search_range = 8;
- int_mv best_mv;
- best_mv.as_int = dst_mv->as_int;
+ // final 1-away diamond refining search
+ if (do_refine) {
+ const int search_range = 8;
+ MV best_mv = *dst_mv;
thissme = cpi->refining_search_sad(x, &best_mv, sadpb, search_range,
- fn_ptr, x->nmvjointcost, x->mvcost,
- ref_mv);
-
+ fn_ptr, ref_mv);
+ if (thissme < INT_MAX)
+ thissme = vp9_get_mvpred_var(x, &best_mv, ref_mv, fn_ptr, 1);
if (thissme < bestsme) {
bestsme = thissme;
- dst_mv->as_int = best_mv.as_int;
+ *dst_mv = best_mv;
}
}
return bestsme;
}
-int vp9_full_search_sad_c(MACROBLOCK *x, int_mv *ref_mv,
+int vp9_full_search_sad_c(const MACROBLOCK *x, const MV *ref_mv,
int sad_per_bit, int distance,
- vp9_variance_fn_ptr_t *fn_ptr, int *mvjcost,
- int *mvcost[2],
- int_mv *center_mv, int n) {
- const MACROBLOCKD* const xd = &x->e_mbd;
- uint8_t *what = x->plane[0].src.buf;
- int what_stride = x->plane[0].src.stride;
- uint8_t *in_what;
- int in_what_stride = xd->plane[0].pre[0].stride;
- int mv_stride = xd->plane[0].pre[0].stride;
- uint8_t *bestaddress;
- int_mv *best_mv = &x->e_mbd.mi_8x8[0]->bmi[n].as_mv[0];
- int_mv this_mv;
- int bestsad = INT_MAX;
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv, MV *best_mv) {
int r, c;
-
- uint8_t *check_here;
- int thissad;
-
- int ref_row = ref_mv->as_mv.row;
- int ref_col = ref_mv->as_mv.col;
-
- int row_min = ref_row - distance;
- int row_max = ref_row + distance;
- int col_min = ref_col - distance;
- int col_max = ref_col + distance;
- int_mv fcenter_mv;
-
- int *mvjsadcost = x->nmvjointsadcost;
- int *mvsadcost[2] = {x->nmvsadcost[0], x->nmvsadcost[1]};
-
- fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3;
- fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3;
-
- // Work out the mid point for the search
- in_what = xd->plane[0].pre[0].buf;
- bestaddress = in_what + (ref_row * xd->plane[0].pre[0].stride) + ref_col;
-
- best_mv->as_mv.row = ref_row;
- best_mv->as_mv.col = ref_col;
-
- // Baseline value at the centre
- bestsad = fn_ptr->sdf(what, what_stride, bestaddress,
- in_what_stride, 0x7fffffff)
- + mvsad_err_cost(&best_mv->as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
- // Apply further limits to prevent us looking using vectors that stretch
- // beyond the UMV border
- col_min = MAX(col_min, x->mv_col_min);
- col_max = MIN(col_max, x->mv_col_max);
- row_min = MAX(row_min, x->mv_row_min);
- row_max = MIN(row_max, x->mv_row_max);
-
- for (r = row_min; r < row_max; r++) {
- this_mv.as_mv.row = r;
- check_here = r * mv_stride + in_what + col_min;
-
- for (c = col_min; c < col_max; c++) {
- thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride,
- bestsad);
-
- this_mv.as_mv.col = c;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
- if (thissad < bestsad) {
- bestsad = thissad;
- best_mv->as_mv.row = r;
- best_mv->as_mv.col = c;
- bestaddress = check_here;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
+ const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
+ const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
+ const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ int best_sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride, 0x7fffffff) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+ *best_mv = *ref_mv;
+
+ for (r = row_min; r < row_max; ++r) {
+ for (c = col_min; c < col_max; ++c) {
+ const MV mv = {r, c};
+ const int sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &mv), in_what->stride, best_sad) +
+ mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
}
-
- check_here++;
}
}
-
- this_mv.as_mv.row = best_mv->as_mv.row * 8;
- this_mv.as_mv.col = best_mv->as_mv.col * 8;
-
- if (bestsad < INT_MAX)
- return fn_ptr->vf(what, what_stride, bestaddress, in_what_stride,
- (unsigned int *)(&thissad)) +
- mv_err_cost(&this_mv.as_mv, &center_mv->as_mv,
- mvjcost, mvcost, x->errorperbit);
- else
- return INT_MAX;
+ return best_sad;
}
-int vp9_full_search_sadx3(MACROBLOCK *x, int_mv *ref_mv,
+int vp9_full_search_sadx3(const MACROBLOCK *x, const MV *ref_mv,
int sad_per_bit, int distance,
- vp9_variance_fn_ptr_t *fn_ptr, int *mvjcost,
- int *mvcost[2], int_mv *center_mv, int n) {
- const MACROBLOCKD* const xd = &x->e_mbd;
- uint8_t *what = x->plane[0].src.buf;
- int what_stride = x->plane[0].src.stride;
- uint8_t *in_what;
- int in_what_stride = xd->plane[0].pre[0].stride;
- int mv_stride = xd->plane[0].pre[0].stride;
- uint8_t *bestaddress;
- int_mv *best_mv = &x->e_mbd.mi_8x8[0]->bmi[n].as_mv[0];
- int_mv this_mv;
- unsigned int bestsad = INT_MAX;
- int r, c;
-
- uint8_t *check_here;
- unsigned int thissad;
-
- int ref_row = ref_mv->as_mv.row;
- int ref_col = ref_mv->as_mv.col;
-
- int row_min = ref_row - distance;
- int row_max = ref_row + distance;
- int col_min = ref_col - distance;
- int col_max = ref_col + distance;
-
- unsigned int sad_array[3];
- int_mv fcenter_mv;
-
- int *mvjsadcost = x->nmvjointsadcost;
- int *mvsadcost[2] = {x->nmvsadcost[0], x->nmvsadcost[1]};
-
- fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3;
- fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3;
-
- // Work out the mid point for the search
- in_what = xd->plane[0].pre[0].buf;
- bestaddress = in_what + (ref_row * xd->plane[0].pre[0].stride) + ref_col;
-
- best_mv->as_mv.row = ref_row;
- best_mv->as_mv.col = ref_col;
-
- // Baseline value at the centre
- bestsad = fn_ptr->sdf(what, what_stride,
- bestaddress, in_what_stride, 0x7fffffff)
- + mvsad_err_cost(&best_mv->as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
- // Apply further limits to prevent us looking using vectors that stretch
- // beyond the UMV border
- col_min = MAX(col_min, x->mv_col_min);
- col_max = MIN(col_max, x->mv_col_max);
- row_min = MAX(row_min, x->mv_row_min);
- row_max = MIN(row_max, x->mv_row_max);
-
- for (r = row_min; r < row_max; r++) {
- this_mv.as_mv.row = r;
- check_here = r * mv_stride + in_what + col_min;
- c = col_min;
-
- while ((c + 2) < col_max) {
- int i;
-
- fn_ptr->sdx3f(what, what_stride, check_here, in_what_stride, sad_array);
-
- for (i = 0; i < 3; i++) {
- thissad = sad_array[i];
-
- if (thissad < bestsad) {
- this_mv.as_mv.col = c;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
- if (thissad < bestsad) {
- bestsad = thissad;
- best_mv->as_mv.row = r;
- best_mv->as_mv.col = c;
- bestaddress = check_here;
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv, MV *best_mv) {
+ int r;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
+ const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
+ const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
+ const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride, 0x7fffffff) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+ *best_mv = *ref_mv;
+
+ for (r = row_min; r < row_max; ++r) {
+ int c = col_min;
+ const uint8_t *check_here = &in_what->buf[r * in_what->stride + c];
+
+ if (fn_ptr->sdx3f != NULL) {
+ while ((c + 2) < col_max) {
+ int i;
+ unsigned int sads[3];
+
+ fn_ptr->sdx3f(what->buf, what->stride, check_here, in_what->stride,
+ sads);
+
+ for (i = 0; i < 3; ++i) {
+ unsigned int sad = sads[i];
+ if (sad < best_sad) {
+ const MV mv = {r, c};
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
}
+ ++check_here;
+ ++c;
}
-
- check_here++;
- c++;
}
}
while (c < col_max) {
- thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride,
- bestsad);
-
- if (thissad < bestsad) {
- this_mv.as_mv.col = c;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
- if (thissad < bestsad) {
- bestsad = thissad;
- best_mv->as_mv.row = r;
- best_mv->as_mv.col = c;
- bestaddress = check_here;
+ unsigned int sad = fn_ptr->sdf(what->buf, what->stride,
+ check_here, in_what->stride, best_sad);
+ if (sad < best_sad) {
+ const MV mv = {r, c};
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
}
}
-
- check_here++;
- c++;
+ ++check_here;
+ ++c;
}
}
- this_mv.as_mv.row = best_mv->as_mv.row * 8;
- this_mv.as_mv.col = best_mv->as_mv.col * 8;
-
- if (bestsad < INT_MAX)
- return fn_ptr->vf(what, what_stride, bestaddress, in_what_stride,
- (unsigned int *)(&thissad)) +
- mv_err_cost(&this_mv.as_mv, &center_mv->as_mv,
- mvjcost, mvcost, x->errorperbit);
- else
- return INT_MAX;
+ return best_sad;
}
-int vp9_full_search_sadx8(MACROBLOCK *x, int_mv *ref_mv,
+int vp9_full_search_sadx8(const MACROBLOCK *x, const MV *ref_mv,
int sad_per_bit, int distance,
- vp9_variance_fn_ptr_t *fn_ptr,
- int *mvjcost, int *mvcost[2],
- int_mv *center_mv, int n) {
- const MACROBLOCKD* const xd = &x->e_mbd;
- uint8_t *what = x->plane[0].src.buf;
- int what_stride = x->plane[0].src.stride;
- uint8_t *in_what;
- int in_what_stride = xd->plane[0].pre[0].stride;
- int mv_stride = xd->plane[0].pre[0].stride;
- uint8_t *bestaddress;
- int_mv *best_mv = &x->e_mbd.mi_8x8[0]->bmi[n].as_mv[0];
- int_mv this_mv;
- unsigned int bestsad = INT_MAX;
- int r, c;
-
- uint8_t *check_here;
- unsigned int thissad;
-
- int ref_row = ref_mv->as_mv.row;
- int ref_col = ref_mv->as_mv.col;
-
- int row_min = ref_row - distance;
- int row_max = ref_row + distance;
- int col_min = ref_col - distance;
- int col_max = ref_col + distance;
-
- DECLARE_ALIGNED_ARRAY(16, uint32_t, sad_array8, 8);
- unsigned int sad_array[3];
- int_mv fcenter_mv;
-
- int *mvjsadcost = x->nmvjointsadcost;
- int *mvsadcost[2] = {x->nmvsadcost[0], x->nmvsadcost[1]};
-
- fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3;
- fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3;
-
- // Work out the mid point for the search
- in_what = xd->plane[0].pre[0].buf;
- bestaddress = in_what + (ref_row * xd->plane[0].pre[0].stride) + ref_col;
-
- best_mv->as_mv.row = ref_row;
- best_mv->as_mv.col = ref_col;
-
- // Baseline value at the centre
- bestsad = fn_ptr->sdf(what, what_stride,
- bestaddress, in_what_stride, 0x7fffffff)
- + mvsad_err_cost(&best_mv->as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
- // Apply further limits to prevent us looking using vectors that stretch
- // beyond the UMV border
- col_min = MAX(col_min, x->mv_col_min);
- col_max = MIN(col_max, x->mv_col_max);
- row_min = MAX(row_min, x->mv_row_min);
- row_max = MIN(row_max, x->mv_row_max);
-
- for (r = row_min; r < row_max; r++) {
- this_mv.as_mv.row = r;
- check_here = r * mv_stride + in_what + col_min;
- c = col_min;
-
- while ((c + 7) < col_max) {
- int i;
-
- fn_ptr->sdx8f(what, what_stride, check_here, in_what_stride, sad_array8);
-
- for (i = 0; i < 8; i++) {
- thissad = (unsigned int)sad_array8[i];
-
- if (thissad < bestsad) {
- this_mv.as_mv.col = c;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
- if (thissad < bestsad) {
- bestsad = thissad;
- best_mv->as_mv.row = r;
- best_mv->as_mv.col = c;
- bestaddress = check_here;
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv, MV *best_mv) {
+ int r;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
+ const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
+ const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
+ const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride, 0x7fffffff) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+ *best_mv = *ref_mv;
+
+ for (r = row_min; r < row_max; ++r) {
+ int c = col_min;
+ const uint8_t *check_here = &in_what->buf[r * in_what->stride + c];
+
+ if (fn_ptr->sdx8f != NULL) {
+ while ((c + 7) < col_max) {
+ int i;
+ unsigned int sads[8];
+
+ fn_ptr->sdx8f(what->buf, what->stride, check_here, in_what->stride,
+ sads);
+
+ for (i = 0; i < 8; ++i) {
+ unsigned int sad = sads[i];
+ if (sad < best_sad) {
+ const MV mv = {r, c};
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
}
+ ++check_here;
+ ++c;
}
-
- check_here++;
- c++;
}
}
- while ((c + 2) < col_max && fn_ptr->sdx3f != NULL) {
- int i;
-
- fn_ptr->sdx3f(what, what_stride, check_here, in_what_stride, sad_array);
-
- for (i = 0; i < 3; i++) {
- thissad = sad_array[i];
-
- if (thissad < bestsad) {
- this_mv.as_mv.col = c;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
- if (thissad < bestsad) {
- bestsad = thissad;
- best_mv->as_mv.row = r;
- best_mv->as_mv.col = c;
- bestaddress = check_here;
+ if (fn_ptr->sdx3f != NULL) {
+ while ((c + 2) < col_max) {
+ int i;
+ unsigned int sads[3];
+
+ fn_ptr->sdx3f(what->buf, what->stride, check_here, in_what->stride,
+ sads);
+
+ for (i = 0; i < 3; ++i) {
+ unsigned int sad = sads[i];
+ if (sad < best_sad) {
+ const MV mv = {r, c};
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
}
+ ++check_here;
+ ++c;
}
-
- check_here++;
- c++;
}
}
while (c < col_max) {
- thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride,
- bestsad);
-
- if (thissad < bestsad) {
- this_mv.as_mv.col = c;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, sad_per_bit);
-
- if (thissad < bestsad) {
- bestsad = thissad;
- best_mv->as_mv.row = r;
- best_mv->as_mv.col = c;
- bestaddress = check_here;
+ unsigned int sad = fn_ptr->sdf(what->buf, what->stride,
+ check_here, in_what->stride, best_sad);
+ if (sad < best_sad) {
+ const MV mv = {r, c};
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
}
}
-
- check_here++;
- c++;
+ ++check_here;
+ ++c;
}
}
- this_mv.as_mv.row = best_mv->as_mv.row * 8;
- this_mv.as_mv.col = best_mv->as_mv.col * 8;
-
- if (bestsad < INT_MAX)
- return fn_ptr->vf(what, what_stride, bestaddress, in_what_stride,
- (unsigned int *)(&thissad)) +
- mv_err_cost(&this_mv.as_mv, &center_mv->as_mv,
- mvjcost, mvcost, x->errorperbit);
- else
- return INT_MAX;
+ return best_sad;
}
-int vp9_refining_search_sad_c(MACROBLOCK *x,
- int_mv *ref_mv, int error_per_bit,
- int search_range, vp9_variance_fn_ptr_t *fn_ptr,
- int *mvjcost, int *mvcost[2], int_mv *center_mv) {
- const MACROBLOCKD* const xd = &x->e_mbd;
- MV neighbors[4] = {{ -1, 0}, {0, -1}, {0, 1}, {1, 0}};
- int i, j;
- int this_row_offset, this_col_offset;
-
- int what_stride = x->plane[0].src.stride;
- int in_what_stride = xd->plane[0].pre[0].stride;
- uint8_t *what = x->plane[0].src.buf;
- uint8_t *best_address = xd->plane[0].pre[0].buf +
- (ref_mv->as_mv.row * xd->plane[0].pre[0].stride) +
- ref_mv->as_mv.col;
- uint8_t *check_here;
- unsigned int thissad;
- int_mv this_mv;
- unsigned int bestsad = INT_MAX;
- int_mv fcenter_mv;
-
- int *mvjsadcost = x->nmvjointsadcost;
- int *mvsadcost[2] = {x->nmvsadcost[0], x->nmvsadcost[1]};
- fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3;
- fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3;
-
- bestsad = fn_ptr->sdf(what, what_stride, best_address,
- in_what_stride, 0x7fffffff) +
- mvsad_err_cost(&ref_mv->as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, error_per_bit);
+int vp9_refining_search_sad_c(const MACROBLOCK *x,
+ MV *ref_mv, int error_per_bit,
+ int search_range,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv) {
+ const MV neighbors[4] = {{ -1, 0}, {0, -1}, {0, 1}, {1, 0}};
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv),
+ in_what->stride, 0x7fffffff) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit);
+ int i, j;
for (i = 0; i < search_range; i++) {
int best_site = -1;
for (j = 0; j < 4; j++) {
- this_row_offset = ref_mv->as_mv.row + neighbors[j].row;
- this_col_offset = ref_mv->as_mv.col + neighbors[j].col;
-
- if ((this_col_offset > x->mv_col_min) &&
- (this_col_offset < x->mv_col_max) &&
- (this_row_offset > x->mv_row_min) &&
- (this_row_offset < x->mv_row_max)) {
- check_here = (neighbors[j].row) * in_what_stride + neighbors[j].col +
- best_address;
- thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride,
- bestsad);
-
- if (thissad < bestsad) {
- this_mv.as_mv.row = this_row_offset;
- this_mv.as_mv.col = this_col_offset;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, error_per_bit);
-
- if (thissad < bestsad) {
- bestsad = thissad;
+ const MV mv = {ref_mv->row + neighbors[j].row,
+ ref_mv->col + neighbors[j].col};
+ if (is_mv_in(x, &mv)) {
+ unsigned int sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &mv), in_what->stride, best_sad);
+ if (sad < best_sad) {
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
best_site = j;
}
}
@@ -1882,110 +1464,71 @@ int vp9_refining_search_sad_c(MACROBLOCK *x,
if (best_site == -1) {
break;
} else {
- ref_mv->as_mv.row += neighbors[best_site].row;
- ref_mv->as_mv.col += neighbors[best_site].col;
- best_address += (neighbors[best_site].row) * in_what_stride +
- neighbors[best_site].col;
+ ref_mv->row += neighbors[best_site].row;
+ ref_mv->col += neighbors[best_site].col;
}
}
-
- this_mv.as_mv.row = ref_mv->as_mv.row * 8;
- this_mv.as_mv.col = ref_mv->as_mv.col * 8;
-
- if (bestsad < INT_MAX)
- return fn_ptr->vf(what, what_stride, best_address, in_what_stride,
- (unsigned int *)(&thissad)) +
- mv_err_cost(&this_mv.as_mv, &center_mv->as_mv,
- mvjcost, mvcost, x->errorperbit);
- else
- return INT_MAX;
+ return best_sad;
}
-int vp9_refining_search_sadx4(MACROBLOCK *x,
- int_mv *ref_mv, int error_per_bit,
- int search_range, vp9_variance_fn_ptr_t *fn_ptr,
- int *mvjcost, int *mvcost[2], int_mv *center_mv) {
- const MACROBLOCKD* const xd = &x->e_mbd;
- MV neighbors[4] = {{ -1, 0}, {0, -1}, {0, 1}, {1, 0}};
+int vp9_refining_search_sadx4(const MACROBLOCK *x,
+ MV *ref_mv, int error_per_bit,
+ int search_range,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MV neighbors[4] = {{ -1, 0}, {0, -1}, {0, 1}, {1, 0}};
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ const uint8_t *best_address = get_buf_from_mv(in_what, ref_mv);
+ unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride, best_address,
+ in_what->stride, 0x7fffffff) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit);
int i, j;
- int this_row_offset, this_col_offset;
-
- int what_stride = x->plane[0].src.stride;
- int in_what_stride = xd->plane[0].pre[0].stride;
- uint8_t *what = x->plane[0].src.buf;
- uint8_t *best_address = xd->plane[0].pre[0].buf +
- (ref_mv->as_mv.row * xd->plane[0].pre[0].stride) +
- ref_mv->as_mv.col;
- uint8_t *check_here;
- unsigned int thissad;
- int_mv this_mv;
- unsigned int bestsad = INT_MAX;
- int_mv fcenter_mv;
-
- int *mvjsadcost = x->nmvjointsadcost;
- int *mvsadcost[2] = {x->nmvsadcost[0], x->nmvsadcost[1]};
-
- fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3;
- fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3;
-
- bestsad = fn_ptr->sdf(what, what_stride, best_address,
- in_what_stride, 0x7fffffff) +
- mvsad_err_cost(&ref_mv->as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, error_per_bit);
for (i = 0; i < search_range; i++) {
int best_site = -1;
- int all_in = ((ref_mv->as_mv.row - 1) > x->mv_row_min) &
- ((ref_mv->as_mv.row + 1) < x->mv_row_max) &
- ((ref_mv->as_mv.col - 1) > x->mv_col_min) &
- ((ref_mv->as_mv.col + 1) < x->mv_col_max);
+ const int all_in = ((ref_mv->row - 1) > x->mv_row_min) &
+ ((ref_mv->row + 1) < x->mv_row_max) &
+ ((ref_mv->col - 1) > x->mv_col_min) &
+ ((ref_mv->col + 1) < x->mv_col_max);
if (all_in) {
- unsigned int sad_array[4];
- unsigned char const *block_offset[4];
- block_offset[0] = best_address - in_what_stride;
- block_offset[1] = best_address - 1;
- block_offset[2] = best_address + 1;
- block_offset[3] = best_address + in_what_stride;
-
- fn_ptr->sdx4df(what, what_stride, block_offset, in_what_stride,
- sad_array);
-
- for (j = 0; j < 4; j++) {
- if (sad_array[j] < bestsad) {
- this_mv.as_mv.row = ref_mv->as_mv.row + neighbors[j].row;
- this_mv.as_mv.col = ref_mv->as_mv.col + neighbors[j].col;
- sad_array[j] += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, error_per_bit);
-
- if (sad_array[j] < bestsad) {
- bestsad = sad_array[j];
+ unsigned int sads[4];
+ const uint8_t *const positions[4] = {
+ best_address - in_what->stride,
+ best_address - 1,
+ best_address + 1,
+ best_address + in_what->stride
+ };
+
+ fn_ptr->sdx4df(what->buf, what->stride, positions, in_what->stride, sads);
+
+ for (j = 0; j < 4; ++j) {
+ if (sads[j] < best_sad) {
+ const MV mv = {ref_mv->row + neighbors[j].row,
+ ref_mv->col + neighbors[j].col};
+ sads[j] += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
+ if (sads[j] < best_sad) {
+ best_sad = sads[j];
best_site = j;
}
}
}
} else {
- for (j = 0; j < 4; j++) {
- this_row_offset = ref_mv->as_mv.row + neighbors[j].row;
- this_col_offset = ref_mv->as_mv.col + neighbors[j].col;
-
- if ((this_col_offset > x->mv_col_min) &&
- (this_col_offset < x->mv_col_max) &&
- (this_row_offset > x->mv_row_min) &&
- (this_row_offset < x->mv_row_max)) {
- check_here = (neighbors[j].row) * in_what_stride + neighbors[j].col +
- best_address;
- thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride,
- bestsad);
-
- if (thissad < bestsad) {
- this_mv.as_mv.row = this_row_offset;
- this_mv.as_mv.col = this_col_offset;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, error_per_bit);
-
- if (thissad < bestsad) {
- bestsad = thissad;
+ for (j = 0; j < 4; ++j) {
+ const MV mv = {ref_mv->row + neighbors[j].row,
+ ref_mv->col + neighbors[j].col};
+
+ if (is_mv_in(x, &mv)) {
+ unsigned int sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &mv),
+ in_what->stride, best_sad);
+ if (sad < best_sad) {
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
best_site = j;
}
}
@@ -1996,88 +1539,50 @@ int vp9_refining_search_sadx4(MACROBLOCK *x,
if (best_site == -1) {
break;
} else {
- ref_mv->as_mv.row += neighbors[best_site].row;
- ref_mv->as_mv.col += neighbors[best_site].col;
- best_address += (neighbors[best_site].row) * in_what_stride +
- neighbors[best_site].col;
+ ref_mv->row += neighbors[best_site].row;
+ ref_mv->col += neighbors[best_site].col;
+ best_address = get_buf_from_mv(in_what, ref_mv);
}
}
- this_mv.as_mv.row = ref_mv->as_mv.row * 8;
- this_mv.as_mv.col = ref_mv->as_mv.col * 8;
-
- if (bestsad < INT_MAX)
- return fn_ptr->vf(what, what_stride, best_address, in_what_stride,
- (unsigned int *)(&thissad)) +
- mv_err_cost(&this_mv.as_mv, &center_mv->as_mv,
- mvjcost, mvcost, x->errorperbit);
- else
- return INT_MAX;
+ return best_sad;
}
-/* This function is called when we do joint motion search in comp_inter_inter
- * mode.
- */
-int vp9_refining_search_8p_c(MACROBLOCK *x,
- int_mv *ref_mv, int error_per_bit,
- int search_range, vp9_variance_fn_ptr_t *fn_ptr,
- int *mvjcost, int *mvcost[2], int_mv *center_mv,
- const uint8_t *second_pred, int w, int h) {
- const MACROBLOCKD* const xd = &x->e_mbd;
- MV neighbors[8] = {{-1, 0}, {0, -1}, {0, 1}, {1, 0},
- {-1, -1}, {1, -1}, {-1, 1}, {1, 1}};
+// This function is called when we do joint motion search in comp_inter_inter
+// mode.
+int vp9_refining_search_8p_c(const MACROBLOCK *x,
+ MV *ref_mv, int error_per_bit,
+ int search_range,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv,
+ const uint8_t *second_pred) {
+ const MV neighbors[8] = {{-1, 0}, {0, -1}, {0, 1}, {1, 0},
+ {-1, -1}, {1, -1}, {-1, 1}, {1, 1}};
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ unsigned int best_sad = fn_ptr->sdaf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride,
+ second_pred, 0x7fffffff) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit);
int i, j;
- int this_row_offset, this_col_offset;
- int what_stride = x->plane[0].src.stride;
- int in_what_stride = xd->plane[0].pre[0].stride;
- uint8_t *what = x->plane[0].src.buf;
- uint8_t *best_address = xd->plane[0].pre[0].buf +
- (ref_mv->as_mv.row * xd->plane[0].pre[0].stride) +
- ref_mv->as_mv.col;
- uint8_t *check_here;
- unsigned int thissad;
- int_mv this_mv;
- unsigned int bestsad = INT_MAX;
- int_mv fcenter_mv;
-
- int *mvjsadcost = x->nmvjointsadcost;
- int *mvsadcost[2] = {x->nmvsadcost[0], x->nmvsadcost[1]};
-
- fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3;
- fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3;
-
- /* Get compound pred by averaging two pred blocks. */
- bestsad = fn_ptr->sdaf(what, what_stride, best_address, in_what_stride,
- second_pred, 0x7fffffff) +
- mvsad_err_cost(&ref_mv->as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, error_per_bit);
-
- for (i = 0; i < search_range; i++) {
+ for (i = 0; i < search_range; ++i) {
int best_site = -1;
- for (j = 0; j < 8; j++) {
- this_row_offset = ref_mv->as_mv.row + neighbors[j].row;
- this_col_offset = ref_mv->as_mv.col + neighbors[j].col;
-
- if ((this_col_offset > x->mv_col_min) &&
- (this_col_offset < x->mv_col_max) &&
- (this_row_offset > x->mv_row_min) &&
- (this_row_offset < x->mv_row_max)) {
- check_here = (neighbors[j].row) * in_what_stride + neighbors[j].col +
- best_address;
-
- /* Get compound block and use it to calculate SAD. */
- thissad = fn_ptr->sdaf(what, what_stride, check_here, in_what_stride,
- second_pred, bestsad);
-
- if (thissad < bestsad) {
- this_mv.as_mv.row = this_row_offset;
- this_mv.as_mv.col = this_col_offset;
- thissad += mvsad_err_cost(&this_mv.as_mv, &fcenter_mv.as_mv,
- mvjsadcost, mvsadcost, error_per_bit);
- if (thissad < bestsad) {
- bestsad = thissad;
+ for (j = 0; j < 8; ++j) {
+ const MV mv = {ref_mv->row + neighbors[j].row,
+ ref_mv->col + neighbors[j].col};
+
+ if (is_mv_in(x, &mv)) {
+ unsigned int sad = fn_ptr->sdaf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &mv), in_what->stride,
+ second_pred, best_sad);
+ if (sad < best_sad) {
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
best_site = j;
}
}
@@ -2087,24 +1592,9 @@ int vp9_refining_search_8p_c(MACROBLOCK *x,
if (best_site == -1) {
break;
} else {
- ref_mv->as_mv.row += neighbors[best_site].row;
- ref_mv->as_mv.col += neighbors[best_site].col;
- best_address += (neighbors[best_site].row) * in_what_stride +
- neighbors[best_site].col;
+ ref_mv->row += neighbors[best_site].row;
+ ref_mv->col += neighbors[best_site].col;
}
}
-
- this_mv.as_mv.row = ref_mv->as_mv.row * 8;
- this_mv.as_mv.col = ref_mv->as_mv.col * 8;
-
- if (bestsad < INT_MAX) {
- // FIXME(rbultje, yunqing): add full-pixel averaging variance functions
- // so we don't have to use the subpixel with xoff=0,yoff=0 here.
- return fn_ptr->svaf(best_address, in_what_stride, 0, 0, what, what_stride,
- (unsigned int *)(&thissad), second_pred) +
- mv_err_cost(&this_mv.as_mv, &center_mv->as_mv,
- mvjcost, mvcost, x->errorperbit);
- } else {
- return INT_MAX;
- }
+ return best_sad;
}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mcomp.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mcomp.h
index bcab679c7e6..873edf376de 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mcomp.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_mcomp.h
@@ -15,64 +15,83 @@
#include "vp9/encoder/vp9_block.h"
#include "vp9/encoder/vp9_variance.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
+
// The maximum number of steps in a step search given the largest
// allowed initial step
#define MAX_MVSEARCH_STEPS 11
-// Max full pel mv specified in 1 pel units
-#define MAX_FULL_PEL_VAL ((1 << (MAX_MVSEARCH_STEPS)) - 1)
+// Max full pel mv specified in the unit of full pixel
+// Enable the use of motion vector in range [-1023, 1023].
+#define MAX_FULL_PEL_VAL ((1 << (MAX_MVSEARCH_STEPS - 1)) - 1)
// Maximum size of the first step in full pel units
#define MAX_FIRST_STEP (1 << (MAX_MVSEARCH_STEPS-1))
// Allowed motion vector pixel distance outside image border
// for Block_16x16
#define BORDER_MV_PIXELS_B16 (16 + VP9_INTERP_EXTEND)
+// motion search site
+typedef struct search_site {
+ MV mv;
+ int offset;
+} search_site;
+
+typedef struct search_site_config {
+ search_site ss[8 * MAX_MVSEARCH_STEPS + 1];
+ int ss_count;
+ int searches_per_step;
+} search_site_config;
+
+void vp9_init_dsmotion_compensation(search_site_config *cfg, int stride);
+void vp9_init3smotion_compensation(search_site_config *cfg, int stride);
-void vp9_clamp_mv_min_max(MACROBLOCK *x, MV *mv);
+void vp9_set_mv_search_range(MACROBLOCK *x, const MV *mv);
int vp9_mv_bit_cost(const MV *mv, const MV *ref,
const int *mvjcost, int *mvcost[2], int weight);
-void vp9_init_dsmotion_compensation(MACROBLOCK *x, int stride);
-void vp9_init3smotion_compensation(MACROBLOCK *x, int stride);
+
+// Utility to compute variance + MV rate cost for a given MV
+int vp9_get_mvpred_var(const MACROBLOCK *x,
+ const MV *best_mv, const MV *center_mv,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost);
+int vp9_get_mvpred_av_var(const MACROBLOCK *x,
+ const MV *best_mv, const MV *center_mv,
+ const uint8_t *second_pred,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost);
struct VP9_COMP;
-int vp9_init_search_range(struct VP9_COMP *cpi, int size);
+struct SPEED_FEATURES;
+
+int vp9_init_search_range(const struct SPEED_FEATURES *sf, int size);
// Runs sequence of diamond searches in smaller steps for RD
-int vp9_full_pixel_diamond(struct VP9_COMP *cpi, MACROBLOCK *x,
- int_mv *mvp_full, int step_param,
+int vp9_full_pixel_diamond(const struct VP9_COMP *cpi, MACROBLOCK *x,
+ MV *mvp_full, int step_param,
int sadpb, int further_steps, int do_refine,
- vp9_variance_fn_ptr_t *fn_ptr,
- int_mv *ref_mv, int_mv *dst_mv);
-
-int vp9_hex_search(MACROBLOCK *x,
- MV *ref_mv,
- int search_param,
- int error_per_bit,
- int do_init_search,
- const vp9_variance_fn_ptr_t *vf,
- int use_mvcost,
- const MV *center_mv,
- MV *best_mv);
-int vp9_bigdia_search(MACROBLOCK *x,
- MV *ref_mv,
- int search_param,
- int error_per_bit,
- int do_init_search,
- const vp9_variance_fn_ptr_t *vf,
- int use_mvcost,
- const MV *center_mv,
- MV *best_mv);
-int vp9_square_search(MACROBLOCK *x,
- MV *ref_mv,
- int search_param,
- int error_per_bit,
- int do_init_search,
- const vp9_variance_fn_ptr_t *vf,
- int use_mvcost,
- const MV *center_mv,
- MV *best_mv);
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *ref_mv, MV *dst_mv);
+
+typedef int (integer_mv_pattern_search_fn) (
+ const MACROBLOCK *x,
+ MV *ref_mv,
+ int search_param,
+ int error_per_bit,
+ int do_init_search,
+ const vp9_variance_fn_ptr_t *vf,
+ int use_mvcost,
+ const MV *center_mv,
+ MV *best_mv);
+
+integer_mv_pattern_search_fn vp9_hex_search;
+integer_mv_pattern_search_fn vp9_bigdia_search;
+integer_mv_pattern_search_fn vp9_square_search;
+integer_mv_pattern_search_fn vp9_fast_hex_search;
+integer_mv_pattern_search_fn vp9_fast_dia_search;
typedef int (fractional_mv_step_fp) (
- MACROBLOCK *x,
+ const MACROBLOCK *x,
MV *bestmv, const MV *ref_mv,
int allow_hp,
int error_per_bit,
@@ -83,11 +102,11 @@ typedef int (fractional_mv_step_fp) (
int *mvcost[2],
int *distortion,
unsigned int *sse);
-extern fractional_mv_step_fp vp9_find_best_sub_pixel_iterative;
+
extern fractional_mv_step_fp vp9_find_best_sub_pixel_tree;
typedef int (fractional_mv_step_comp_fp) (
- MACROBLOCK *x,
+ const MACROBLOCK *x,
MV *bestmv, const MV *ref_mv,
int allow_hp,
int error_per_bit,
@@ -98,34 +117,36 @@ typedef int (fractional_mv_step_comp_fp) (
int *distortion, unsigned int *sse1,
const uint8_t *second_pred,
int w, int h);
-extern fractional_mv_step_comp_fp vp9_find_best_sub_pixel_comp_iterative;
+
extern fractional_mv_step_comp_fp vp9_find_best_sub_pixel_comp_tree;
-typedef int (*vp9_full_search_fn_t)(MACROBLOCK *x,
- int_mv *ref_mv, int sad_per_bit,
- int distance, vp9_variance_fn_ptr_t *fn_ptr,
- int *mvjcost, int *mvcost[2],
- int_mv *center_mv, int n);
+typedef int (*vp9_full_search_fn_t)(const MACROBLOCK *x,
+ const MV *ref_mv, int sad_per_bit,
+ int distance,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv, MV *best_mv);
-typedef int (*vp9_refining_search_fn_t)(MACROBLOCK *x,
- int_mv *ref_mv, int sad_per_bit,
+typedef int (*vp9_refining_search_fn_t)(const MACROBLOCK *x,
+ MV *ref_mv, int sad_per_bit,
int distance,
- vp9_variance_fn_ptr_t *fn_ptr,
- int *mvjcost, int *mvcost[2],
- int_mv *center_mv);
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv);
-typedef int (*vp9_diamond_search_fn_t)(MACROBLOCK *x,
- int_mv *ref_mv, int_mv *best_mv,
+typedef int (*vp9_diamond_search_fn_t)(const MACROBLOCK *x,
+ const search_site_config *cfg,
+ MV *ref_mv, MV *best_mv,
int search_param, int sad_per_bit,
int *num00,
- vp9_variance_fn_ptr_t *fn_ptr,
- int *mvjcost, int *mvcost[2],
- int_mv *center_mv);
-
-int vp9_refining_search_8p_c(MACROBLOCK *x,
- int_mv *ref_mv, int error_per_bit,
- int search_range, vp9_variance_fn_ptr_t *fn_ptr,
- int *mvjcost, int *mvcost[2],
- int_mv *center_mv, const uint8_t *second_pred,
- int w, int h);
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv);
+
+int vp9_refining_search_8p_c(const MACROBLOCK *x,
+ MV *ref_mv, int error_per_bit,
+ int search_range,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv, const uint8_t *second_pred);
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
#endif // VP9_ENCODER_VP9_MCOMP_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_modecosts.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_modecosts.c
deleted file mode 100644
index 7eb65923244..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_modecosts.c
+++ /dev/null
@@ -1,43 +0,0 @@
-/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-
-#include "vp9/common/vp9_blockd.h"
-#include "vp9/encoder/vp9_onyx_int.h"
-#include "vp9/encoder/vp9_treewriter.h"
-#include "vp9/common/vp9_entropymode.h"
-
-
-void vp9_init_mode_costs(VP9_COMP *c) {
- VP9_COMMON *const cm = &c->common;
- const vp9_tree_index *KT = vp9_intra_mode_tree;
- int i, j;
-
- for (i = 0; i < INTRA_MODES; i++) {
- for (j = 0; j < INTRA_MODES; j++) {
- vp9_cost_tokens((int *)c->mb.y_mode_costs[i][j], vp9_kf_y_mode_prob[i][j],
- KT);
- }
- }
-
- // TODO(rbultje) separate tables for superblock costing?
- vp9_cost_tokens(c->mb.mbmode_cost, cm->fc.y_mode_prob[1],
- vp9_intra_mode_tree);
- vp9_cost_tokens(c->mb.intra_uv_mode_cost[1],
- cm->fc.uv_mode_prob[INTRA_MODES - 1], vp9_intra_mode_tree);
- vp9_cost_tokens(c->mb.intra_uv_mode_cost[0],
- vp9_kf_uv_mode_prob[INTRA_MODES - 1],
- vp9_intra_mode_tree);
-
- for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
- vp9_cost_tokens((int *)c->mb.switchable_interp_costs[i],
- cm->fc.switchable_interp_prob[i],
- vp9_switchable_interp_tree);
-}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_onyx_if.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_onyx_if.c
deleted file mode 100644
index b664f1e998e..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_onyx_if.c
+++ /dev/null
@@ -1,4319 +0,0 @@
-/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-#include <math.h>
-#include <stdio.h>
-#include <limits.h>
-
-#include "./vpx_config.h"
-#include "./vpx_scale_rtcd.h"
-
-#include "vp9/common/vp9_alloccommon.h"
-#include "vp9/common/vp9_filter.h"
-#include "vp9/common/vp9_idct.h"
-#if CONFIG_VP9_POSTPROC
-#include "vp9/common/vp9_postproc.h"
-#endif
-#include "vp9/common/vp9_reconinter.h"
-#include "vp9/common/vp9_systemdependent.h"
-#include "vp9/common/vp9_tile_common.h"
-#include "vp9/encoder/vp9_firstpass.h"
-#include "vp9/encoder/vp9_mbgraph.h"
-#include "vp9/encoder/vp9_onyx_int.h"
-#include "vp9/encoder/vp9_picklpf.h"
-#include "vp9/encoder/vp9_psnr.h"
-#include "vp9/encoder/vp9_ratectrl.h"
-#include "vp9/encoder/vp9_rdopt.h"
-#include "vp9/encoder/vp9_segmentation.h"
-#include "vp9/encoder/vp9_temporal_filter.h"
-#include "vp9/encoder/vp9_vaq.h"
-
-#include "vpx_ports/vpx_timer.h"
-
-
-extern void print_tree_update_probs();
-
-static void set_default_lf_deltas(struct loopfilter *lf);
-
-#define DEFAULT_INTERP_FILTER SWITCHABLE
-
-#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
-
-#define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv
- // for altref computation.
-#define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision
- // mv. Choose a very high value for
- // now so that HIGH_PRECISION is always
- // chosen.
-
-// Masks for partially or completely disabling split mode
-#define DISABLE_ALL_SPLIT 0x3F
-#define DISABLE_ALL_INTER_SPLIT 0x1F
-#define DISABLE_COMPOUND_SPLIT 0x18
-#define LAST_AND_INTRA_SPLIT_ONLY 0x1E
-
-#if CONFIG_INTERNAL_STATS
-extern double vp9_calc_ssim(YV12_BUFFER_CONFIG *source,
- YV12_BUFFER_CONFIG *dest, int lumamask,
- double *weight);
-
-
-extern double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source,
- YV12_BUFFER_CONFIG *dest, double *ssim_y,
- double *ssim_u, double *ssim_v);
-
-
-#endif
-
-// #define OUTPUT_YUV_REC
-
-#ifdef OUTPUT_YUV_SRC
-FILE *yuv_file;
-#endif
-#ifdef OUTPUT_YUV_REC
-FILE *yuv_rec_file;
-#endif
-
-#if 0
-FILE *framepsnr;
-FILE *kf_list;
-FILE *keyfile;
-#endif
-
-
-#ifdef ENTROPY_STATS
-extern int intra_mode_stats[INTRA_MODES]
- [INTRA_MODES]
- [INTRA_MODES];
-#endif
-
-#ifdef MODE_STATS
-extern void init_tx_count_stats();
-extern void write_tx_count_stats();
-extern void init_switchable_interp_stats();
-extern void write_switchable_interp_stats();
-#endif
-
-#ifdef SPEEDSTATS
-unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0};
-#endif
-
-#if defined(SECTIONBITS_OUTPUT)
-extern unsigned __int64 Sectionbits[500];
-#endif
-
-extern void vp9_init_quantizer(VP9_COMP *cpi);
-
-// Tables relating active max Q to active min Q
-static int kf_low_motion_minq[QINDEX_RANGE];
-static int kf_high_motion_minq[QINDEX_RANGE];
-static int gf_low_motion_minq[QINDEX_RANGE];
-static int gf_high_motion_minq[QINDEX_RANGE];
-static int inter_minq[QINDEX_RANGE];
-static int afq_low_motion_minq[QINDEX_RANGE];
-static int afq_high_motion_minq[QINDEX_RANGE];
-
-static INLINE void Scale2Ratio(int mode, int *hr, int *hs) {
- switch (mode) {
- case NORMAL:
- *hr = 1;
- *hs = 1;
- break;
- case FOURFIVE:
- *hr = 4;
- *hs = 5;
- break;
- case THREEFIVE:
- *hr = 3;
- *hs = 5;
- break;
- case ONETWO:
- *hr = 1;
- *hs = 2;
- break;
- default:
- *hr = 1;
- *hs = 1;
- assert(0);
- break;
- }
-}
-
-// Functions to compute the active minq lookup table entries based on a
-// formulaic approach to facilitate easier adjustment of the Q tables.
-// The formulae were derived from computing a 3rd order polynomial best
-// fit to the original data (after plotting real maxq vs minq (not q index))
-static int calculate_minq_index(double maxq,
- double x3, double x2, double x1, double c) {
- int i;
- const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c,
- maxq);
-
- // Special case handling to deal with the step from q2.0
- // down to lossless mode represented by q 1.0.
- if (minqtarget <= 2.0)
- return 0;
-
- for (i = 0; i < QINDEX_RANGE; i++) {
- if (minqtarget <= vp9_convert_qindex_to_q(i))
- return i;
- }
-
- return QINDEX_RANGE - 1;
-}
-
-static void init_minq_luts(void) {
- int i;
-
- for (i = 0; i < QINDEX_RANGE; i++) {
- const double maxq = vp9_convert_qindex_to_q(i);
-
-
- kf_low_motion_minq[i] = calculate_minq_index(maxq,
- 0.000001,
- -0.0004,
- 0.15,
- 0.0);
- kf_high_motion_minq[i] = calculate_minq_index(maxq,
- 0.000002,
- -0.0012,
- 0.5,
- 0.0);
-
- gf_low_motion_minq[i] = calculate_minq_index(maxq,
- 0.0000015,
- -0.0009,
- 0.32,
- 0.0);
- gf_high_motion_minq[i] = calculate_minq_index(maxq,
- 0.0000021,
- -0.00125,
- 0.50,
- 0.0);
- inter_minq[i] = calculate_minq_index(maxq,
- 0.00000271,
- -0.00113,
- 0.75,
- 0.0);
- afq_low_motion_minq[i] = calculate_minq_index(maxq,
- 0.0000015,
- -0.0009,
- 0.33,
- 0.0);
- afq_high_motion_minq[i] = calculate_minq_index(maxq,
- 0.0000021,
- -0.00125,
- 0.55,
- 0.0);
- }
-}
-
-static int get_active_quality(int q,
- int gfu_boost,
- int low,
- int high,
- int *low_motion_minq,
- int *high_motion_minq) {
- int active_best_quality;
- if (gfu_boost > high) {
- active_best_quality = low_motion_minq[q];
- } else if (gfu_boost < low) {
- active_best_quality = high_motion_minq[q];
- } else {
- const int gap = high - low;
- const int offset = high - gfu_boost;
- const int qdiff = high_motion_minq[q] - low_motion_minq[q];
- const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
- active_best_quality = low_motion_minq[q] + adjustment;
- }
- return active_best_quality;
-}
-
-static void set_mvcost(VP9_COMP *cpi) {
- MACROBLOCK *const mb = &cpi->mb;
- if (cpi->common.allow_high_precision_mv) {
- mb->mvcost = mb->nmvcost_hp;
- mb->mvsadcost = mb->nmvsadcost_hp;
- } else {
- mb->mvcost = mb->nmvcost;
- mb->mvsadcost = mb->nmvsadcost;
- }
-}
-
-void vp9_initialize_enc() {
- static int init_done = 0;
-
- if (!init_done) {
- vp9_initialize_common();
- vp9_tokenize_initialize();
- vp9_init_quant_tables();
- vp9_init_me_luts();
- init_minq_luts();
- // init_base_skip_probs();
- init_done = 1;
- }
-}
-
-static void setup_features(VP9_COMMON *cm) {
- struct loopfilter *const lf = &cm->lf;
- struct segmentation *const seg = &cm->seg;
-
- // Set up default state for MB feature flags
- seg->enabled = 0;
-
- seg->update_map = 0;
- seg->update_data = 0;
- vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
-
- vp9_clearall_segfeatures(seg);
-
- lf->mode_ref_delta_enabled = 0;
- lf->mode_ref_delta_update = 0;
- vp9_zero(lf->ref_deltas);
- vp9_zero(lf->mode_deltas);
- vp9_zero(lf->last_ref_deltas);
- vp9_zero(lf->last_mode_deltas);
-
- set_default_lf_deltas(lf);
-}
-
-static void dealloc_compressor_data(VP9_COMP *cpi) {
- // Delete sementation map
- vpx_free(cpi->segmentation_map);
- cpi->segmentation_map = 0;
- vpx_free(cpi->common.last_frame_seg_map);
- cpi->common.last_frame_seg_map = 0;
- vpx_free(cpi->coding_context.last_frame_seg_map_copy);
- cpi->coding_context.last_frame_seg_map_copy = 0;
-
- vpx_free(cpi->active_map);
- cpi->active_map = 0;
-
- vp9_free_frame_buffers(&cpi->common);
-
- vp9_free_frame_buffer(&cpi->last_frame_uf);
- vp9_free_frame_buffer(&cpi->scaled_source);
- vp9_free_frame_buffer(&cpi->alt_ref_buffer);
- vp9_lookahead_destroy(cpi->lookahead);
-
- vpx_free(cpi->tok);
- cpi->tok = 0;
-
- // Activity mask based per mb zbin adjustments
- vpx_free(cpi->mb_activity_map);
- cpi->mb_activity_map = 0;
- vpx_free(cpi->mb_norm_activity_map);
- cpi->mb_norm_activity_map = 0;
-
- vpx_free(cpi->above_context[0]);
- cpi->above_context[0] = NULL;
-
- vpx_free(cpi->above_seg_context);
- cpi->above_seg_context = NULL;
-}
-
-// Computes a q delta (in "q index" terms) to get from a starting q value
-// to a target value
-// target q value
-int vp9_compute_qdelta(VP9_COMP *cpi, double qstart, double qtarget) {
- int i;
- int start_index = cpi->worst_quality;
- int target_index = cpi->worst_quality;
-
- // Convert the average q value to an index.
- for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
- start_index = i;
- if (vp9_convert_qindex_to_q(i) >= qstart)
- break;
- }
-
- // Convert the q target to an index
- for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
- target_index = i;
- if (vp9_convert_qindex_to_q(i) >= qtarget)
- break;
- }
-
- return target_index - start_index;
-}
-
-static void configure_static_seg_features(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
- struct segmentation *seg = &cm->seg;
-
- int high_q = (int)(cpi->avg_q > 48.0);
- int qi_delta;
-
- // Disable and clear down for KF
- if (cm->frame_type == KEY_FRAME) {
- // Clear down the global segmentation map
- vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
- seg->update_map = 0;
- seg->update_data = 0;
- cpi->static_mb_pct = 0;
-
- // Disable segmentation
- vp9_disable_segmentation((VP9_PTR)cpi);
-
- // Clear down the segment features.
- vp9_clearall_segfeatures(seg);
- } else if (cpi->refresh_alt_ref_frame) {
- // If this is an alt ref frame
- // Clear down the global segmentation map
- vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
- seg->update_map = 0;
- seg->update_data = 0;
- cpi->static_mb_pct = 0;
-
- // Disable segmentation and individual segment features by default
- vp9_disable_segmentation((VP9_PTR)cpi);
- vp9_clearall_segfeatures(seg);
-
- // Scan frames from current to arf frame.
- // This function re-enables segmentation if appropriate.
- vp9_update_mbgraph_stats(cpi);
-
- // If segmentation was enabled set those features needed for the
- // arf itself.
- if (seg->enabled) {
- seg->update_map = 1;
- seg->update_data = 1;
-
- qi_delta = vp9_compute_qdelta(cpi, cpi->avg_q, (cpi->avg_q * 0.875));
- vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta - 2));
- vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
-
- vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
- vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
-
- // Where relevant assume segment data is delta data
- seg->abs_delta = SEGMENT_DELTADATA;
- }
- } else if (seg->enabled) {
- // All other frames if segmentation has been enabled
-
- // First normal frame in a valid gf or alt ref group
- if (cpi->frames_since_golden == 0) {
- // Set up segment features for normal frames in an arf group
- if (cpi->source_alt_ref_active) {
- seg->update_map = 0;
- seg->update_data = 1;
- seg->abs_delta = SEGMENT_DELTADATA;
-
- qi_delta = vp9_compute_qdelta(cpi, cpi->avg_q,
- (cpi->avg_q * 1.125));
- vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta + 2));
- vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
-
- vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
- vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
-
- // Segment coding disabled for compred testing
- if (high_q || (cpi->static_mb_pct == 100)) {
- vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
- vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
- vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
- }
- } else {
- // Disable segmentation and clear down features if alt ref
- // is not active for this group
-
- vp9_disable_segmentation((VP9_PTR)cpi);
-
- vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
-
- seg->update_map = 0;
- seg->update_data = 0;
-
- vp9_clearall_segfeatures(seg);
- }
- } else if (cpi->is_src_frame_alt_ref) {
- // Special case where we are coding over the top of a previous
- // alt ref frame.
- // Segment coding disabled for compred testing
-
- // Enable ref frame features for segment 0 as well
- vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
- vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
-
- // All mbs should use ALTREF_FRAME
- vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
- vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
- vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
- vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
-
- // Skip all MBs if high Q (0,0 mv and skip coeffs)
- if (high_q) {
- vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP);
- vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
- }
- // Enable data update
- seg->update_data = 1;
- } else {
- // All other frames.
-
- // No updates.. leave things as they are.
- seg->update_map = 0;
- seg->update_data = 0;
- }
- }
-}
-
-#ifdef ENTROPY_STATS
-void vp9_update_mode_context_stats(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
- int i, j;
- unsigned int (*inter_mode_counts)[INTER_MODES - 1][2] =
- cm->fc.inter_mode_counts;
- int64_t (*mv_ref_stats)[INTER_MODES - 1][2] = cpi->mv_ref_stats;
- FILE *f;
-
- // Read the past stats counters
- f = fopen("mode_context.bin", "rb");
- if (!f) {
- vpx_memset(cpi->mv_ref_stats, 0, sizeof(cpi->mv_ref_stats));
- } else {
- fread(cpi->mv_ref_stats, sizeof(cpi->mv_ref_stats), 1, f);
- fclose(f);
- }
-
- // Add in the values for this frame
- for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
- for (j = 0; j < INTER_MODES - 1; j++) {
- mv_ref_stats[i][j][0] += (int64_t)inter_mode_counts[i][j][0];
- mv_ref_stats[i][j][1] += (int64_t)inter_mode_counts[i][j][1];
- }
- }
-
- // Write back the accumulated stats
- f = fopen("mode_context.bin", "wb");
- fwrite(cpi->mv_ref_stats, sizeof(cpi->mv_ref_stats), 1, f);
- fclose(f);
-}
-
-void print_mode_context(VP9_COMP *cpi) {
- FILE *f = fopen("vp9_modecont.c", "a");
- int i, j;
-
- fprintf(f, "#include \"vp9_entropy.h\"\n");
- fprintf(
- f,
- "const int inter_mode_probs[INTER_MODE_CONTEXTS][INTER_MODES - 1] =");
- fprintf(f, "{\n");
- for (j = 0; j < INTER_MODE_CONTEXTS; j++) {
- fprintf(f, " {/* %d */ ", j);
- fprintf(f, " ");
- for (i = 0; i < INTER_MODES - 1; i++) {
- int this_prob;
- int64_t count = cpi->mv_ref_stats[j][i][0] + cpi->mv_ref_stats[j][i][1];
- if (count)
- this_prob = ((cpi->mv_ref_stats[j][i][0] * 256) + (count >> 1)) / count;
- else
- this_prob = 128;
-
- // context probs
- fprintf(f, "%5d, ", this_prob);
- }
- fprintf(f, " },\n");
- }
-
- fprintf(f, "};\n");
- fclose(f);
-}
-#endif // ENTROPY_STATS
-
-// DEBUG: Print out the segment id of each MB in the current frame.
-static void print_seg_map(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
- int row, col;
- int map_index = 0;
- FILE *statsfile = fopen("segmap.stt", "a");
-
- fprintf(statsfile, "%10d\n", cm->current_video_frame);
-
- for (row = 0; row < cpi->common.mi_rows; row++) {
- for (col = 0; col < cpi->common.mi_cols; col++) {
- fprintf(statsfile, "%10d", cpi->segmentation_map[map_index]);
- map_index++;
- }
- fprintf(statsfile, "\n");
- }
- fprintf(statsfile, "\n");
-
- fclose(statsfile);
-}
-
-static void update_reference_segmentation_map(VP9_COMP *cpi) {
- VP9_COMMON *const cm = &cpi->common;
- int row, col;
- MODE_INFO **mi_8x8, **mi_8x8_ptr = cm->mi_grid_visible;
- uint8_t *cache_ptr = cm->last_frame_seg_map, *cache;
-
- for (row = 0; row < cm->mi_rows; row++) {
- mi_8x8 = mi_8x8_ptr;
- cache = cache_ptr;
- for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
- cache[0] = mi_8x8[0]->mbmi.segment_id;
- mi_8x8_ptr += cm->mode_info_stride;
- cache_ptr += cm->mi_cols;
- }
-}
-
-static void set_default_lf_deltas(struct loopfilter *lf) {
- lf->mode_ref_delta_enabled = 1;
- lf->mode_ref_delta_update = 1;
-
- vp9_zero(lf->ref_deltas);
- vp9_zero(lf->mode_deltas);
-
- // Test of ref frame deltas
- lf->ref_deltas[INTRA_FRAME] = 2;
- lf->ref_deltas[LAST_FRAME] = 0;
- lf->ref_deltas[GOLDEN_FRAME] = -2;
- lf->ref_deltas[ALTREF_FRAME] = -2;
-
- lf->mode_deltas[0] = 0; // Zero
- lf->mode_deltas[1] = 0; // New mv
-}
-
-static void set_rd_speed_thresholds(VP9_COMP *cpi, int mode) {
- SPEED_FEATURES *sf = &cpi->sf;
- int i;
-
- // Set baseline threshold values
- for (i = 0; i < MAX_MODES; ++i)
- sf->thresh_mult[i] = mode == 0 ? -500 : 0;
-
- sf->thresh_mult[THR_NEARESTMV] = 0;
- sf->thresh_mult[THR_NEARESTG] = 0;
- sf->thresh_mult[THR_NEARESTA] = 0;
-
- sf->thresh_mult[THR_DC] += 1000;
-
- sf->thresh_mult[THR_NEWMV] += 1000;
- sf->thresh_mult[THR_NEWA] += 1000;
- sf->thresh_mult[THR_NEWG] += 1000;
-
- sf->thresh_mult[THR_NEARMV] += 1000;
- sf->thresh_mult[THR_NEARA] += 1000;
- sf->thresh_mult[THR_COMP_NEARESTLA] += 1000;
- sf->thresh_mult[THR_COMP_NEARESTGA] += 1000;
-
- sf->thresh_mult[THR_TM] += 1000;
-
- sf->thresh_mult[THR_COMP_NEARLA] += 1500;
- sf->thresh_mult[THR_COMP_NEWLA] += 2000;
- sf->thresh_mult[THR_NEARG] += 1000;
- sf->thresh_mult[THR_COMP_NEARGA] += 1500;
- sf->thresh_mult[THR_COMP_NEWGA] += 2000;
-
- sf->thresh_mult[THR_ZEROMV] += 2000;
- sf->thresh_mult[THR_ZEROG] += 2000;
- sf->thresh_mult[THR_ZEROA] += 2000;
- sf->thresh_mult[THR_COMP_ZEROLA] += 2500;
- sf->thresh_mult[THR_COMP_ZEROGA] += 2500;
-
- sf->thresh_mult[THR_H_PRED] += 2000;
- sf->thresh_mult[THR_V_PRED] += 2000;
- sf->thresh_mult[THR_D45_PRED ] += 2500;
- sf->thresh_mult[THR_D135_PRED] += 2500;
- sf->thresh_mult[THR_D117_PRED] += 2500;
- sf->thresh_mult[THR_D153_PRED] += 2500;
- sf->thresh_mult[THR_D207_PRED] += 2500;
- sf->thresh_mult[THR_D63_PRED] += 2500;
-
- /* disable frame modes if flags not set */
- if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) {
- sf->thresh_mult[THR_NEWMV ] = INT_MAX;
- sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
- sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
- sf->thresh_mult[THR_NEARMV ] = INT_MAX;
- }
- if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
- sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
- sf->thresh_mult[THR_ZEROG ] = INT_MAX;
- sf->thresh_mult[THR_NEARG ] = INT_MAX;
- sf->thresh_mult[THR_NEWG ] = INT_MAX;
- }
- if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) {
- sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
- sf->thresh_mult[THR_ZEROA ] = INT_MAX;
- sf->thresh_mult[THR_NEARA ] = INT_MAX;
- sf->thresh_mult[THR_NEWA ] = INT_MAX;
- }
-
- if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) !=
- (VP9_LAST_FLAG | VP9_ALT_FLAG)) {
- sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX;
- sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX;
- sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX;
- sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX;
- }
- if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) !=
- (VP9_GOLD_FLAG | VP9_ALT_FLAG)) {
- sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX;
- sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX;
- sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX;
- sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX;
- }
-}
-
-static void set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi, int mode) {
- SPEED_FEATURES *sf = &cpi->sf;
- int i;
-
- for (i = 0; i < MAX_REFS; ++i)
- sf->thresh_mult_sub8x8[i] = mode == 0 ? -500 : 0;
-
- sf->thresh_mult_sub8x8[THR_LAST] += 2500;
- sf->thresh_mult_sub8x8[THR_GOLD] += 2500;
- sf->thresh_mult_sub8x8[THR_ALTR] += 2500;
- sf->thresh_mult_sub8x8[THR_INTRA] += 2500;
- sf->thresh_mult_sub8x8[THR_COMP_LA] += 4500;
- sf->thresh_mult_sub8x8[THR_COMP_GA] += 4500;
-
- // Check for masked out split cases.
- for (i = 0; i < MAX_REFS; i++) {
- if (sf->disable_split_mask & (1 << i))
- sf->thresh_mult_sub8x8[i] = INT_MAX;
- }
-
- // disable mode test if frame flag is not set
- if (!(cpi->ref_frame_flags & VP9_LAST_FLAG))
- sf->thresh_mult_sub8x8[THR_LAST] = INT_MAX;
- if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG))
- sf->thresh_mult_sub8x8[THR_GOLD] = INT_MAX;
- if (!(cpi->ref_frame_flags & VP9_ALT_FLAG))
- sf->thresh_mult_sub8x8[THR_ALTR] = INT_MAX;
- if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) !=
- (VP9_LAST_FLAG | VP9_ALT_FLAG))
- sf->thresh_mult_sub8x8[THR_COMP_LA] = INT_MAX;
- if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) !=
- (VP9_GOLD_FLAG | VP9_ALT_FLAG))
- sf->thresh_mult_sub8x8[THR_COMP_GA] = INT_MAX;
-}
-
-void vp9_set_speed_features(VP9_COMP *cpi) {
- SPEED_FEATURES *sf = &cpi->sf;
- int mode = cpi->compressor_speed;
- int speed = cpi->speed;
- int i;
-
- // Only modes 0 and 1 supported for now in experimental code basae
- if (mode > 1)
- mode = 1;
-
- for (i = 0; i < MAX_MODES; ++i)
- cpi->mode_chosen_counts[i] = 0;
-
- // best quality defaults
- sf->RD = 1;
- sf->search_method = NSTEP;
- sf->auto_filter = 1;
- sf->recode_loop = 1;
- sf->subpel_search_method = SUBPEL_TREE;
- sf->subpel_iters_per_step = 2;
- sf->optimize_coefficients = !cpi->oxcf.lossless;
- sf->reduce_first_step_size = 0;
- sf->auto_mv_step_size = 0;
- sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
- sf->comp_inter_joint_search_thresh = BLOCK_4X4;
- sf->adaptive_rd_thresh = 0;
- sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_OFF;
- sf->tx_size_search_method = USE_FULL_RD;
- sf->use_lp32x32fdct = 0;
- sf->adaptive_motion_search = 0;
- sf->use_avoid_tested_higherror = 0;
- sf->reference_masking = 0;
- sf->use_one_partition_size_always = 0;
- sf->less_rectangular_check = 0;
- sf->use_square_partition_only = 0;
- sf->auto_min_max_partition_size = 0;
- sf->max_partition_size = BLOCK_64X64;
- sf->min_partition_size = BLOCK_4X4;
- sf->adjust_partitioning_from_last_frame = 0;
- sf->last_partitioning_redo_frequency = 4;
- sf->disable_split_mask = 0;
- sf->mode_search_skip_flags = 0;
- sf->disable_split_var_thresh = 0;
- sf->disable_filter_search_var_thresh = 0;
- for (i = 0; i < TX_SIZES; i++) {
- sf->intra_y_mode_mask[i] = ALL_INTRA_MODES;
- sf->intra_uv_mode_mask[i] = ALL_INTRA_MODES;
- }
- sf->use_rd_breakout = 0;
- sf->skip_encode_sb = 0;
- sf->use_uv_intra_rd_estimate = 0;
- sf->use_fast_lpf_pick = 0;
- sf->use_fast_coef_updates = 0;
- sf->using_small_partition_info = 0;
- sf->mode_skip_start = MAX_MODES; // Mode index at which mode skip mask set
-
-#if CONFIG_MULTIPLE_ARF
- // Switch segmentation off.
- sf->static_segmentation = 0;
-#else
- sf->static_segmentation = 0;
-#endif
-
- sf->variance_adaptive_quantization = 0;
-
- switch (mode) {
- case 0: // This is the best quality mode.
- break;
-
- case 1:
-#if CONFIG_MULTIPLE_ARF
- // Switch segmentation off.
- sf->static_segmentation = 0;
-#else
- sf->static_segmentation = 0;
-#endif
- sf->use_avoid_tested_higherror = 1;
- sf->adaptive_rd_thresh = 1;
- sf->recode_loop = (speed < 1);
-
- if (speed == 1) {
- sf->use_square_partition_only = !frame_is_intra_only(&cpi->common);
- sf->less_rectangular_check = 1;
- sf->tx_size_search_method = frame_is_intra_only(&cpi->common)
- ? USE_FULL_RD : USE_LARGESTALL;
-
- if (MIN(cpi->common.width, cpi->common.height) >= 720)
- sf->disable_split_mask = cpi->common.show_frame ?
- DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT;
- else
- sf->disable_split_mask = DISABLE_COMPOUND_SPLIT;
-
- sf->use_rd_breakout = 1;
- sf->adaptive_motion_search = 1;
- sf->auto_mv_step_size = 1;
- sf->adaptive_rd_thresh = 2;
- sf->recode_loop = 2;
- sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
- sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
- sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
- }
- if (speed == 2) {
- sf->use_square_partition_only = !frame_is_intra_only(&cpi->common);
- sf->less_rectangular_check = 1;
- sf->tx_size_search_method = frame_is_intra_only(&cpi->common)
- ? USE_FULL_RD : USE_LARGESTALL;
-
- if (MIN(cpi->common.width, cpi->common.height) >= 720)
- sf->disable_split_mask = cpi->common.show_frame ?
- DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT;
- else
- sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY;
-
-
- sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
- FLAG_SKIP_INTRA_BESTINTER |
- FLAG_SKIP_COMP_BESTINTRA |
- FLAG_SKIP_INTRA_LOWVAR;
-
- sf->use_rd_breakout = 1;
- sf->adaptive_motion_search = 1;
- sf->auto_mv_step_size = 1;
-
- sf->disable_filter_search_var_thresh = 16;
- sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
-
- sf->auto_min_max_partition_size = 1;
- sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_LOW_MOTION;
- sf->adjust_partitioning_from_last_frame = 1;
- sf->last_partitioning_redo_frequency = 3;
-
- sf->adaptive_rd_thresh = 2;
- sf->recode_loop = 2;
- sf->mode_skip_start = 11;
- sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
- sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V;
- sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
- sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
- }
- if (speed == 3) {
- sf->use_square_partition_only = 1;
- sf->tx_size_search_method = USE_LARGESTALL;
-
- if (MIN(cpi->common.width, cpi->common.height) >= 720)
- sf->disable_split_mask = DISABLE_ALL_SPLIT;
- else
- sf->disable_split_mask = DISABLE_ALL_INTER_SPLIT;
-
- sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
- FLAG_SKIP_INTRA_BESTINTER |
- FLAG_SKIP_COMP_BESTINTRA |
- FLAG_SKIP_INTRA_LOWVAR;
-
- sf->use_rd_breakout = 1;
- sf->adaptive_motion_search = 1;
- sf->auto_mv_step_size = 1;
-
- sf->disable_filter_search_var_thresh = 16;
- sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
-
- sf->auto_min_max_partition_size = 1;
- sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_ALL;
- sf->adjust_partitioning_from_last_frame = 1;
- sf->last_partitioning_redo_frequency = 3;
-
- sf->use_uv_intra_rd_estimate = 1;
- sf->skip_encode_sb = 1;
- sf->use_lp32x32fdct = 1;
- sf->subpel_iters_per_step = 1;
- sf->use_fast_coef_updates = 2;
-
- sf->adaptive_rd_thresh = 4;
- sf->mode_skip_start = 6;
- }
- if (speed == 4) {
- sf->use_square_partition_only = 1;
- sf->tx_size_search_method = USE_LARGESTALL;
- sf->disable_split_mask = DISABLE_ALL_SPLIT;
-
- sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
- FLAG_SKIP_INTRA_BESTINTER |
- FLAG_SKIP_COMP_BESTINTRA |
- FLAG_SKIP_COMP_REFMISMATCH |
- FLAG_SKIP_INTRA_LOWVAR |
- FLAG_EARLY_TERMINATE;
-
- sf->use_rd_breakout = 1;
- sf->adaptive_motion_search = 1;
- sf->auto_mv_step_size = 1;
-
- sf->disable_filter_search_var_thresh = 16;
- sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
-
- sf->auto_min_max_partition_size = 1;
- sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_ALL;
- sf->adjust_partitioning_from_last_frame = 1;
- sf->last_partitioning_redo_frequency = 3;
-
- sf->use_uv_intra_rd_estimate = 1;
- sf->skip_encode_sb = 1;
- sf->use_lp32x32fdct = 1;
- sf->subpel_iters_per_step = 1;
- sf->use_fast_coef_updates = 2;
-
- sf->adaptive_rd_thresh = 4;
- sf->mode_skip_start = 6;
-
- /* sf->intra_y_mode_mask = INTRA_DC_ONLY;
- sf->intra_uv_mode_mask = INTRA_DC_ONLY;
- sf->search_method = BIGDIA;
- sf->disable_split_var_thresh = 64;
- sf->disable_filter_search_var_thresh = 64; */
- }
- if (speed == 5) {
- sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
- sf->use_one_partition_size_always = 1;
- sf->always_this_block_size = BLOCK_16X16;
- sf->tx_size_search_method = frame_is_intra_only(&cpi->common) ?
- USE_FULL_RD : USE_LARGESTALL;
- sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
- FLAG_SKIP_INTRA_BESTINTER |
- FLAG_SKIP_COMP_BESTINTRA |
- FLAG_SKIP_COMP_REFMISMATCH |
- FLAG_SKIP_INTRA_LOWVAR |
- FLAG_EARLY_TERMINATE;
- sf->use_rd_breakout = 1;
- sf->use_lp32x32fdct = 1;
- sf->optimize_coefficients = 0;
- sf->auto_mv_step_size = 1;
- // sf->reduce_first_step_size = 1;
- // sf->reference_masking = 1;
-
- sf->disable_split_mask = DISABLE_ALL_SPLIT;
- sf->search_method = HEX;
- sf->subpel_iters_per_step = 1;
- sf->disable_split_var_thresh = 64;
- sf->disable_filter_search_var_thresh = 96;
- for (i = 0; i < TX_SIZES; i++) {
- sf->intra_y_mode_mask[i] = INTRA_DC_ONLY;
- sf->intra_uv_mode_mask[i] = INTRA_DC_ONLY;
- }
- sf->use_fast_coef_updates = 2;
- sf->adaptive_rd_thresh = 4;
- sf->mode_skip_start = 6;
- }
- break;
- }; /* switch */
-
- // Set rd thresholds based on mode and speed setting
- set_rd_speed_thresholds(cpi, mode);
- set_rd_speed_thresholds_sub8x8(cpi, mode);
-
- // Slow quant, dct and trellis not worthwhile for first pass
- // so make sure they are always turned off.
- if (cpi->pass == 1) {
- sf->optimize_coefficients = 0;
- }
-
- // No recode for 1 pass.
- if (cpi->pass == 0) {
- sf->recode_loop = 0;
- sf->optimize_coefficients = 0;
- }
-
- cpi->mb.fwd_txm4x4 = vp9_fdct4x4;
- if (cpi->oxcf.lossless || cpi->mb.e_mbd.lossless) {
- cpi->mb.fwd_txm4x4 = vp9_fwht4x4;
- }
-
- if (cpi->sf.subpel_search_method == SUBPEL_ITERATIVE) {
- cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_iterative;
- cpi->find_fractional_mv_step_comp = vp9_find_best_sub_pixel_comp_iterative;
- } else if (cpi->sf.subpel_search_method == SUBPEL_TREE) {
- cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree;
- cpi->find_fractional_mv_step_comp = vp9_find_best_sub_pixel_comp_tree;
- }
-
- cpi->mb.optimize = cpi->sf.optimize_coefficients == 1 && cpi->pass != 1;
-
-#ifdef SPEEDSTATS
- frames_at_speed[cpi->speed]++;
-#endif
-}
-
-static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
-
- cpi->lookahead = vp9_lookahead_init(cpi->oxcf.width, cpi->oxcf.height,
- cm->subsampling_x, cm->subsampling_y,
- cpi->oxcf.lag_in_frames);
- if (!cpi->lookahead)
- vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
- "Failed to allocate lag buffers");
-
- if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer,
- cpi->oxcf.width, cpi->oxcf.height,
- cm->subsampling_x, cm->subsampling_y,
- VP9BORDERINPIXELS))
- vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
- "Failed to allocate altref buffer");
-}
-
-void vp9_alloc_compressor_data(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
-
- if (vp9_alloc_frame_buffers(cm, cm->width, cm->height))
- vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
- "Failed to allocate frame buffers");
-
- if (vp9_alloc_frame_buffer(&cpi->last_frame_uf,
- cm->width, cm->height,
- cm->subsampling_x, cm->subsampling_y,
- VP9BORDERINPIXELS))
- vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
- "Failed to allocate last frame buffer");
-
- if (vp9_alloc_frame_buffer(&cpi->scaled_source,
- cm->width, cm->height,
- cm->subsampling_x, cm->subsampling_y,
- VP9BORDERINPIXELS))
- vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
- "Failed to allocate scaled source buffer");
-
- vpx_free(cpi->tok);
-
- {
- unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
-
- CHECK_MEM_ERROR(cm, cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
- }
-
- // Data used for real time vc mode to see if gf needs refreshing
- cpi->inter_zz_count = 0;
- cpi->gf_bad_count = 0;
- cpi->gf_update_recommended = 0;
-
- vpx_free(cpi->mb_activity_map);
- CHECK_MEM_ERROR(cm, cpi->mb_activity_map,
- vpx_calloc(sizeof(unsigned int),
- cm->mb_rows * cm->mb_cols));
-
- vpx_free(cpi->mb_norm_activity_map);
- CHECK_MEM_ERROR(cm, cpi->mb_norm_activity_map,
- vpx_calloc(sizeof(unsigned int),
- cm->mb_rows * cm->mb_cols));
-
- // 2 contexts per 'mi unit', so that we have one context per 4x4 txfm
- // block where mi unit size is 8x8.
- vpx_free(cpi->above_context[0]);
- CHECK_MEM_ERROR(cm, cpi->above_context[0],
- vpx_calloc(2 * mi_cols_aligned_to_sb(cm->mi_cols) *
- MAX_MB_PLANE,
- sizeof(*cpi->above_context[0])));
-
- vpx_free(cpi->above_seg_context);
- CHECK_MEM_ERROR(cm, cpi->above_seg_context,
- vpx_calloc(mi_cols_aligned_to_sb(cm->mi_cols),
- sizeof(*cpi->above_seg_context)));
-}
-
-
-static void update_frame_size(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
-
- vp9_update_frame_size(cm);
-
- // Update size of buffers local to this frame
- if (vp9_realloc_frame_buffer(&cpi->last_frame_uf,
- cm->width, cm->height,
- cm->subsampling_x, cm->subsampling_y,
- VP9BORDERINPIXELS))
- vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
- "Failed to reallocate last frame buffer");
-
- if (vp9_realloc_frame_buffer(&cpi->scaled_source,
- cm->width, cm->height,
- cm->subsampling_x, cm->subsampling_y,
- VP9BORDERINPIXELS))
- vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
- "Failed to reallocate scaled source buffer");
-
- {
- int y_stride = cpi->scaled_source.y_stride;
-
- if (cpi->sf.search_method == NSTEP) {
- vp9_init3smotion_compensation(&cpi->mb, y_stride);
- } else if (cpi->sf.search_method == DIAMOND) {
- vp9_init_dsmotion_compensation(&cpi->mb, y_stride);
- }
- }
-
- {
- int i;
- for (i = 1; i < MAX_MB_PLANE; ++i) {
- cpi->above_context[i] = cpi->above_context[0] +
- i * sizeof(*cpi->above_context[0]) * 2 *
- mi_cols_aligned_to_sb(cm->mi_cols);
- }
- }
-}
-
-
-// Table that converts 0-63 Q range values passed in outside to the Qindex
-// range used internally.
-static const int q_trans[] = {
- 0, 4, 8, 12, 16, 20, 24, 28,
- 32, 36, 40, 44, 48, 52, 56, 60,
- 64, 68, 72, 76, 80, 84, 88, 92,
- 96, 100, 104, 108, 112, 116, 120, 124,
- 128, 132, 136, 140, 144, 148, 152, 156,
- 160, 164, 168, 172, 176, 180, 184, 188,
- 192, 196, 200, 204, 208, 212, 216, 220,
- 224, 228, 232, 236, 240, 244, 249, 255,
-};
-
-int vp9_reverse_trans(int x) {
- int i;
-
- for (i = 0; i < 64; i++)
- if (q_trans[i] >= x)
- return i;
-
- return 63;
-};
-void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
- if (framerate < 0.1)
- framerate = 30;
-
- cpi->oxcf.framerate = framerate;
- cpi->output_framerate = cpi->oxcf.framerate;
- cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth
- / cpi->output_framerate);
- cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth
- / cpi->output_framerate);
- cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth *
- cpi->oxcf.two_pass_vbrmin_section / 100);
-
-
- cpi->min_frame_bandwidth = MAX(cpi->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
-
- // Set Maximum gf/arf interval
- cpi->max_gf_interval = 16;
-
- // Extended interval for genuinely static scenes
- cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
-
- // Special conditions when alt ref frame enabled in lagged compress mode
- if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) {
- if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
- cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
-
- if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
- cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
- }
-
- if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval)
- cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
-}
-
-static int64_t rescale(int val, int64_t num, int denom) {
- int64_t llnum = num;
- int64_t llden = denom;
- int64_t llval = val;
-
- return (llval * llnum / llden);
-}
-
-static void set_tile_limits(VP9_COMP *cpi) {
- VP9_COMMON *const cm = &cpi->common;
-
- int min_log2_tile_cols, max_log2_tile_cols;
- vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
-
- cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
- min_log2_tile_cols, max_log2_tile_cols);
- cm->log2_tile_rows = cpi->oxcf.tile_rows;
-}
-
-static void init_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
- VP9_COMP *cpi = (VP9_COMP *)(ptr);
- VP9_COMMON *const cm = &cpi->common;
- int i;
-
- cpi->oxcf = *oxcf;
- cpi->goldfreq = 7;
-
- cm->version = oxcf->version;
-
- cm->width = oxcf->width;
- cm->height = oxcf->height;
- cm->subsampling_x = 0;
- cm->subsampling_y = 0;
- vp9_alloc_compressor_data(cpi);
-
- // change includes all joint functionality
- vp9_change_config(ptr, oxcf);
-
- // Initialize active best and worst q and average q values.
- cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
- cpi->active_best_quality = cpi->oxcf.best_allowed_q;
- cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
-
- // Initialise the starting buffer levels
- cpi->buffer_level = cpi->oxcf.starting_buffer_level;
- cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
-
- cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
- cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
- cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
- cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
-
- cpi->total_actual_bits = 0;
- cpi->total_target_vs_actual = 0;
-
- cpi->static_mb_pct = 0;
-
- cpi->lst_fb_idx = 0;
- cpi->gld_fb_idx = 1;
- cpi->alt_fb_idx = 2;
-
- cpi->current_layer = 0;
- cpi->use_svc = 0;
-
- set_tile_limits(cpi);
-
- cpi->fixed_divide[0] = 0;
- for (i = 1; i < 512; i++)
- cpi->fixed_divide[i] = 0x80000 / i;
-}
-
-
-void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
- VP9_COMP *cpi = (VP9_COMP *)(ptr);
- VP9_COMMON *const cm = &cpi->common;
-
- if (!cpi || !oxcf)
- return;
-
- if (cm->version != oxcf->version) {
- cm->version = oxcf->version;
- }
-
- cpi->oxcf = *oxcf;
-
- switch (cpi->oxcf.Mode) {
- // Real time and one pass deprecated in test code base
- case MODE_GOODQUALITY:
- cpi->pass = 0;
- cpi->compressor_speed = 2;
- cpi->oxcf.cpu_used = clamp(cpi->oxcf.cpu_used, -5, 5);
- break;
-
- case MODE_FIRSTPASS:
- cpi->pass = 1;
- cpi->compressor_speed = 1;
- break;
-
- case MODE_SECONDPASS:
- cpi->pass = 2;
- cpi->compressor_speed = 1;
- cpi->oxcf.cpu_used = clamp(cpi->oxcf.cpu_used, -5, 5);
- break;
-
- case MODE_SECONDPASS_BEST:
- cpi->pass = 2;
- cpi->compressor_speed = 0;
- break;
- }
-
- cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
- cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
- cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
-
- cpi->oxcf.lossless = oxcf->lossless;
- cpi->mb.e_mbd.itxm_add = cpi->oxcf.lossless ? vp9_iwht4x4_add
- : vp9_idct4x4_add;
- cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
-
- cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
-
- // cpi->use_golden_frame_only = 0;
- // cpi->use_last_frame_only = 0;
- cpi->refresh_golden_frame = 0;
- cpi->refresh_last_frame = 1;
- cm->refresh_frame_context = 1;
- cm->reset_frame_context = 0;
-
- setup_features(cm);
- cpi->common.allow_high_precision_mv = 0; // Default mv precision
- set_mvcost(cpi);
-
- {
- int i;
-
- for (i = 0; i < MAX_SEGMENTS; i++)
- cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
- }
-
- // At the moment the first order values may not be > MAXQ
- cpi->oxcf.fixed_q = MIN(cpi->oxcf.fixed_q, MAXQ);
-
- // local file playback mode == really big buffer
- if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) {
- cpi->oxcf.starting_buffer_level = 60000;
- cpi->oxcf.optimal_buffer_level = 60000;
- cpi->oxcf.maximum_buffer_size = 240000;
- }
-
- // Convert target bandwidth from Kbit/s to Bit/s
- cpi->oxcf.target_bandwidth *= 1000;
-
- cpi->oxcf.starting_buffer_level = rescale(cpi->oxcf.starting_buffer_level,
- cpi->oxcf.target_bandwidth, 1000);
-
- // Set or reset optimal and maximum buffer levels.
- if (cpi->oxcf.optimal_buffer_level == 0)
- cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
- else
- cpi->oxcf.optimal_buffer_level = rescale(cpi->oxcf.optimal_buffer_level,
- cpi->oxcf.target_bandwidth, 1000);
-
- if (cpi->oxcf.maximum_buffer_size == 0)
- cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
- else
- cpi->oxcf.maximum_buffer_size = rescale(cpi->oxcf.maximum_buffer_size,
- cpi->oxcf.target_bandwidth, 1000);
-
- // Set up frame rate and related parameters rate control values.
- vp9_new_framerate(cpi, cpi->oxcf.framerate);
-
- // Set absolute upper and lower quality limits
- cpi->worst_quality = cpi->oxcf.worst_allowed_q;
- cpi->best_quality = cpi->oxcf.best_allowed_q;
-
- // active values should only be modified if out of new range
- cpi->active_worst_quality = clamp(cpi->active_worst_quality,
- cpi->oxcf.best_allowed_q,
- cpi->oxcf.worst_allowed_q);
-
- cpi->active_best_quality = clamp(cpi->active_best_quality,
- cpi->oxcf.best_allowed_q,
- cpi->oxcf.worst_allowed_q);
-
- cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0;
-
- cpi->cq_target_quality = cpi->oxcf.cq_level;
-
- cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
-
- cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
-
- cm->display_width = cpi->oxcf.width;
- cm->display_height = cpi->oxcf.height;
-
- // VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
- cpi->oxcf.Sharpness = MIN(7, cpi->oxcf.Sharpness);
-
- cpi->common.lf.sharpness_level = cpi->oxcf.Sharpness;
-
- if (cpi->initial_width) {
- // Increasing the size of the frame beyond the first seen frame, or some
- // otherwise signalled maximum size, is not supported.
- // TODO(jkoleszar): exit gracefully.
- assert(cm->width <= cpi->initial_width);
- assert(cm->height <= cpi->initial_height);
- }
- update_frame_size(cpi);
-
- if (cpi->oxcf.fixed_q >= 0) {
- cpi->last_q[0] = cpi->oxcf.fixed_q;
- cpi->last_q[1] = cpi->oxcf.fixed_q;
- cpi->last_boosted_qindex = cpi->oxcf.fixed_q;
- }
-
- cpi->speed = cpi->oxcf.cpu_used;
-
- if (cpi->oxcf.lag_in_frames == 0) {
- // force to allowlag to 0 if lag_in_frames is 0;
- cpi->oxcf.allow_lag = 0;
- } else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) {
- // Limit on lag buffers as these are not currently dynamically allocated
- cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
- }
-
- // YX Temp
-#if CONFIG_MULTIPLE_ARF
- vp9_zero(cpi->alt_ref_source);
-#else
- cpi->alt_ref_source = NULL;
-#endif
- cpi->is_src_frame_alt_ref = 0;
-
-#if 0
- // Experimental RD Code
- cpi->frame_distortion = 0;
- cpi->last_frame_distortion = 0;
-#endif
-
- set_tile_limits(cpi);
-}
-
-#define M_LOG2_E 0.693147180559945309417
-#define log2f(x) (log (x) / (float) M_LOG2_E)
-
-static void cal_nmvjointsadcost(int *mvjointsadcost) {
- mvjointsadcost[0] = 600;
- mvjointsadcost[1] = 300;
- mvjointsadcost[2] = 300;
- mvjointsadcost[0] = 300;
-}
-
-static void cal_nmvsadcosts(int *mvsadcost[2]) {
- int i = 1;
-
- mvsadcost[0][0] = 0;
- mvsadcost[1][0] = 0;
-
- do {
- double z = 256 * (2 * (log2f(8 * i) + .6));
- mvsadcost[0][i] = (int)z;
- mvsadcost[1][i] = (int)z;
- mvsadcost[0][-i] = (int)z;
- mvsadcost[1][-i] = (int)z;
- } while (++i <= MV_MAX);
-}
-
-static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
- int i = 1;
-
- mvsadcost[0][0] = 0;
- mvsadcost[1][0] = 0;
-
- do {
- double z = 256 * (2 * (log2f(8 * i) + .6));
- mvsadcost[0][i] = (int)z;
- mvsadcost[1][i] = (int)z;
- mvsadcost[0][-i] = (int)z;
- mvsadcost[1][-i] = (int)z;
- } while (++i <= MV_MAX);
-}
-
-static void init_pick_mode_context(VP9_COMP *cpi) {
- int i;
- MACROBLOCK *x = &cpi->mb;
- MACROBLOCKD *xd = &x->e_mbd;
- VP9_COMMON *cm = &cpi->common;
-
- for (i = 0; i < BLOCK_SIZES; ++i) {
- const int num_4x4_w = num_4x4_blocks_wide_lookup[i];
- const int num_4x4_h = num_4x4_blocks_high_lookup[i];
- const int num_4x4_blk = MAX(4, num_4x4_w * num_4x4_h);
- if (i < BLOCK_16X16) {
- for (xd->sb_index = 0; xd->sb_index < 4; ++xd->sb_index) {
- for (xd->mb_index = 0; xd->mb_index < 4; ++xd->mb_index) {
- for (xd->b_index = 0; xd->b_index < 16 / num_4x4_blk; ++xd->b_index) {
- PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
- ctx->num_4x4_blk = num_4x4_blk;
- CHECK_MEM_ERROR(cm, ctx->zcoeff_blk,
- vpx_calloc(num_4x4_blk, sizeof(uint8_t)));
- }
- }
- }
- } else if (i < BLOCK_32X32) {
- for (xd->sb_index = 0; xd->sb_index < 4; ++xd->sb_index) {
- for (xd->mb_index = 0; xd->mb_index < 64 / num_4x4_blk;
- ++xd->mb_index) {
- PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
- ctx->num_4x4_blk = num_4x4_blk;
- CHECK_MEM_ERROR(cm, ctx->zcoeff_blk,
- vpx_calloc(num_4x4_blk, sizeof(uint8_t)));
- }
- }
- } else if (i < BLOCK_64X64) {
- for (xd->sb_index = 0; xd->sb_index < 256 / num_4x4_blk; ++xd->sb_index) {
- PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
- ctx->num_4x4_blk = num_4x4_blk;
- CHECK_MEM_ERROR(cm, ctx->zcoeff_blk,
- vpx_calloc(num_4x4_blk, sizeof(uint8_t)));
- }
- } else {
- PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
- ctx->num_4x4_blk = num_4x4_blk;
- CHECK_MEM_ERROR(cm, ctx->zcoeff_blk,
- vpx_calloc(num_4x4_blk, sizeof(uint8_t)));
- }
- }
-}
-
-static void free_pick_mode_context(MACROBLOCK *x) {
- int i;
- MACROBLOCKD *xd = &x->e_mbd;
-
- for (i = 0; i < BLOCK_SIZES; ++i) {
- const int num_4x4_w = num_4x4_blocks_wide_lookup[i];
- const int num_4x4_h = num_4x4_blocks_high_lookup[i];
- const int num_4x4_blk = MAX(4, num_4x4_w * num_4x4_h);
- if (i < BLOCK_16X16) {
- for (xd->sb_index = 0; xd->sb_index < 4; ++xd->sb_index) {
- for (xd->mb_index = 0; xd->mb_index < 4; ++xd->mb_index) {
- for (xd->b_index = 0; xd->b_index < 16 / num_4x4_blk; ++xd->b_index) {
- PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
- vpx_free(ctx->zcoeff_blk);
- ctx->zcoeff_blk = 0;
- }
- }
- }
- } else if (i < BLOCK_32X32) {
- for (xd->sb_index = 0; xd->sb_index < 4; ++xd->sb_index) {
- for (xd->mb_index = 0; xd->mb_index < 64 / num_4x4_blk;
- ++xd->mb_index) {
- PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
- vpx_free(ctx->zcoeff_blk);
- ctx->zcoeff_blk = 0;
- }
- }
- } else if (i < BLOCK_64X64) {
- for (xd->sb_index = 0; xd->sb_index < 256 / num_4x4_blk; ++xd->sb_index) {
- PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
- vpx_free(ctx->zcoeff_blk);
- ctx->zcoeff_blk = 0;
- }
- } else {
- PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
- vpx_free(ctx->zcoeff_blk);
- ctx->zcoeff_blk = 0;
- }
- }
-}
-
-VP9_PTR vp9_create_compressor(VP9_CONFIG *oxcf) {
- int i, j;
- volatile union {
- VP9_COMP *cpi;
- VP9_PTR ptr;
- } ctx;
-
- VP9_COMP *cpi;
- VP9_COMMON *cm;
-
- cpi = ctx.cpi = vpx_memalign(32, sizeof(VP9_COMP));
- // Check that the CPI instance is valid
- if (!cpi)
- return 0;
-
- cm = &cpi->common;
-
- vp9_zero(*cpi);
-
- if (setjmp(cm->error.jmp)) {
- VP9_PTR ptr = ctx.ptr;
-
- ctx.cpi->common.error.setjmp = 0;
- vp9_remove_compressor(&ptr);
- return 0;
- }
-
- cm->error.setjmp = 1;
-
- CHECK_MEM_ERROR(cm, cpi->mb.ss, vpx_calloc(sizeof(search_site),
- (MAX_MVSEARCH_STEPS * 8) + 1));
-
- vp9_create_common(cm);
-
- init_config((VP9_PTR)cpi, oxcf);
-
- init_pick_mode_context(cpi);
-
- cm->current_video_frame = 0;
- cpi->kf_overspend_bits = 0;
- cpi->kf_bitrate_adjustment = 0;
- cpi->frames_till_gf_update_due = 0;
- cpi->gf_overspend_bits = 0;
- cpi->non_gf_bitrate_adjustment = 0;
-
- // Set reference frame sign bias for ALTREF frame to 1 (for now)
- cm->ref_frame_sign_bias[ALTREF_FRAME] = 1;
-
- cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
-
- cpi->gold_is_last = 0;
- cpi->alt_is_last = 0;
- cpi->gold_is_alt = 0;
-
- // Spatial scalability
- cpi->number_spatial_layers = oxcf->ss_number_layers;
-
- // Create the encoder segmentation map and set all entries to 0
- CHECK_MEM_ERROR(cm, cpi->segmentation_map,
- vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
-
- // And a place holder structure is the coding context
- // for use if we want to save and restore it
- CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
- vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
-
- CHECK_MEM_ERROR(cm, cpi->active_map, vpx_calloc(cm->MBs, 1));
- vpx_memset(cpi->active_map, 1, cm->MBs);
- cpi->active_map_enabled = 0;
-
- for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
- sizeof(cpi->mbgraph_stats[0])); i++) {
- CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
- vpx_calloc(cm->MBs *
- sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
- }
-
-#ifdef ENTROPY_STATS
- if (cpi->pass != 1)
- init_context_counters();
-#endif
-
-#ifdef MODE_STATS
- init_tx_count_stats();
- init_switchable_interp_stats();
-#endif
-
- /*Initialize the feed-forward activity masking.*/
- cpi->activity_avg = 90 << 12;
-
- cpi->frames_since_key = 8; // Sensible default for first frame.
- cpi->key_frame_frequency = cpi->oxcf.key_freq;
- cpi->this_key_frame_forced = 0;
- cpi->next_key_frame_forced = 0;
-
- cpi->source_alt_ref_pending = 0;
- cpi->source_alt_ref_active = 0;
- cpi->refresh_alt_ref_frame = 0;
-
-#if CONFIG_MULTIPLE_ARF
- // Turn multiple ARF usage on/off. This is a quick hack for the initial test
- // version. It should eventually be set via the codec API.
- cpi->multi_arf_enabled = 1;
-
- if (cpi->multi_arf_enabled) {
- cpi->sequence_number = 0;
- cpi->frame_coding_order_period = 0;
- vp9_zero(cpi->frame_coding_order);
- vp9_zero(cpi->arf_buffer_idx);
- }
-#endif
-
- cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
-#if CONFIG_INTERNAL_STATS
- cpi->b_calculate_ssimg = 0;
-
- cpi->count = 0;
- cpi->bytes = 0;
-
- if (cpi->b_calculate_psnr) {
- cpi->total_sq_error = 0.0;
- cpi->total_sq_error2 = 0.0;
- cpi->total_y = 0.0;
- cpi->total_u = 0.0;
- cpi->total_v = 0.0;
- cpi->total = 0.0;
- cpi->totalp_y = 0.0;
- cpi->totalp_u = 0.0;
- cpi->totalp_v = 0.0;
- cpi->totalp = 0.0;
- cpi->tot_recode_hits = 0;
- cpi->summed_quality = 0;
- cpi->summed_weights = 0;
- cpi->summedp_quality = 0;
- cpi->summedp_weights = 0;
- }
-
- if (cpi->b_calculate_ssimg) {
- cpi->total_ssimg_y = 0;
- cpi->total_ssimg_u = 0;
- cpi->total_ssimg_v = 0;
- cpi->total_ssimg_all = 0;
- }
-
-#endif
-
- cpi->first_time_stamp_ever = INT64_MAX;
-
- cpi->frames_till_gf_update_due = 0;
- cpi->key_frame_count = 1;
-
- cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
- cpi->ni_tot_qi = 0;
- cpi->ni_frames = 0;
- cpi->tot_q = 0.0;
- cpi->avg_q = vp9_convert_qindex_to_q(cpi->oxcf.worst_allowed_q);
- cpi->total_byte_count = 0;
-
- cpi->rate_correction_factor = 1.0;
- cpi->key_frame_rate_correction_factor = 1.0;
- cpi->gf_rate_correction_factor = 1.0;
- cpi->twopass.est_max_qcorrection_factor = 1.0;
-
- cal_nmvjointsadcost(cpi->mb.nmvjointsadcost);
- cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX];
- cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX];
- cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX];
- cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX];
- cal_nmvsadcosts(cpi->mb.nmvsadcost);
-
- cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX];
- cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX];
- cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX];
- cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX];
- cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp);
-
- for (i = 0; i < KEY_FRAME_CONTEXT; i++)
- cpi->prior_key_frame_distance[i] = (int)cpi->output_framerate;
-
-#ifdef OUTPUT_YUV_SRC
- yuv_file = fopen("bd.yuv", "ab");
-#endif
-#ifdef OUTPUT_YUV_REC
- yuv_rec_file = fopen("rec.yuv", "wb");
-#endif
-
-#if 0
- framepsnr = fopen("framepsnr.stt", "a");
- kf_list = fopen("kf_list.stt", "w");
-#endif
-
- cpi->output_pkt_list = oxcf->output_pkt_list;
-
- cpi->enable_encode_breakout = 1;
-
- if (cpi->pass == 1) {
- vp9_init_first_pass(cpi);
- } else if (cpi->pass == 2) {
- size_t packet_sz = sizeof(FIRSTPASS_STATS);
- int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
-
- cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
- cpi->twopass.stats_in = cpi->twopass.stats_in_start;
- cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in
- + (packets - 1) * packet_sz);
- vp9_init_second_pass(cpi);
- }
-
- vp9_set_speed_features(cpi);
-
- // Default rd threshold factors for mode selection
- for (i = 0; i < BLOCK_SIZES; ++i) {
- for (j = 0; j < MAX_MODES; ++j)
- cpi->rd_thresh_freq_fact[i][j] = 32;
- for (j = 0; j < MAX_REFS; ++j)
- cpi->rd_thresh_freq_sub8x8[i][j] = 32;
- }
-
-#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SVFHH, SVFHV, SVFHHV, \
- SDX3F, SDX8F, SDX4DF)\
- cpi->fn_ptr[BT].sdf = SDF; \
- cpi->fn_ptr[BT].sdaf = SDAF; \
- cpi->fn_ptr[BT].vf = VF; \
- cpi->fn_ptr[BT].svf = SVF; \
- cpi->fn_ptr[BT].svaf = SVAF; \
- cpi->fn_ptr[BT].svf_halfpix_h = SVFHH; \
- cpi->fn_ptr[BT].svf_halfpix_v = SVFHV; \
- cpi->fn_ptr[BT].svf_halfpix_hv = SVFHHV; \
- cpi->fn_ptr[BT].sdx3f = SDX3F; \
- cpi->fn_ptr[BT].sdx8f = SDX8F; \
- cpi->fn_ptr[BT].sdx4df = SDX4DF;
-
- BFP(BLOCK_32X16, vp9_sad32x16, vp9_sad32x16_avg,
- vp9_variance32x16, vp9_sub_pixel_variance32x16,
- vp9_sub_pixel_avg_variance32x16, NULL, NULL,
- NULL, NULL, NULL,
- vp9_sad32x16x4d)
-
- BFP(BLOCK_16X32, vp9_sad16x32, vp9_sad16x32_avg,
- vp9_variance16x32, vp9_sub_pixel_variance16x32,
- vp9_sub_pixel_avg_variance16x32, NULL, NULL,
- NULL, NULL, NULL,
- vp9_sad16x32x4d)
-
- BFP(BLOCK_64X32, vp9_sad64x32, vp9_sad64x32_avg,
- vp9_variance64x32, vp9_sub_pixel_variance64x32,
- vp9_sub_pixel_avg_variance64x32, NULL, NULL,
- NULL, NULL, NULL,
- vp9_sad64x32x4d)
-
- BFP(BLOCK_32X64, vp9_sad32x64, vp9_sad32x64_avg,
- vp9_variance32x64, vp9_sub_pixel_variance32x64,
- vp9_sub_pixel_avg_variance32x64, NULL, NULL,
- NULL, NULL, NULL,
- vp9_sad32x64x4d)
-
- BFP(BLOCK_32X32, vp9_sad32x32, vp9_sad32x32_avg,
- vp9_variance32x32, vp9_sub_pixel_variance32x32,
- vp9_sub_pixel_avg_variance32x32, vp9_variance_halfpixvar32x32_h,
- vp9_variance_halfpixvar32x32_v,
- vp9_variance_halfpixvar32x32_hv, vp9_sad32x32x3, vp9_sad32x32x8,
- vp9_sad32x32x4d)
-
- BFP(BLOCK_64X64, vp9_sad64x64, vp9_sad64x64_avg,
- vp9_variance64x64, vp9_sub_pixel_variance64x64,
- vp9_sub_pixel_avg_variance64x64, vp9_variance_halfpixvar64x64_h,
- vp9_variance_halfpixvar64x64_v,
- vp9_variance_halfpixvar64x64_hv, vp9_sad64x64x3, vp9_sad64x64x8,
- vp9_sad64x64x4d)
-
- BFP(BLOCK_16X16, vp9_sad16x16, vp9_sad16x16_avg,
- vp9_variance16x16, vp9_sub_pixel_variance16x16,
- vp9_sub_pixel_avg_variance16x16, vp9_variance_halfpixvar16x16_h,
- vp9_variance_halfpixvar16x16_v,
- vp9_variance_halfpixvar16x16_hv, vp9_sad16x16x3, vp9_sad16x16x8,
- vp9_sad16x16x4d)
-
- BFP(BLOCK_16X8, vp9_sad16x8, vp9_sad16x8_avg,
- vp9_variance16x8, vp9_sub_pixel_variance16x8,
- vp9_sub_pixel_avg_variance16x8, NULL, NULL, NULL,
- vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d)
-
- BFP(BLOCK_8X16, vp9_sad8x16, vp9_sad8x16_avg,
- vp9_variance8x16, vp9_sub_pixel_variance8x16,
- vp9_sub_pixel_avg_variance8x16, NULL, NULL, NULL,
- vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d)
-
- BFP(BLOCK_8X8, vp9_sad8x8, vp9_sad8x8_avg,
- vp9_variance8x8, vp9_sub_pixel_variance8x8,
- vp9_sub_pixel_avg_variance8x8, NULL, NULL, NULL,
- vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d)
-
- BFP(BLOCK_8X4, vp9_sad8x4, vp9_sad8x4_avg,
- vp9_variance8x4, vp9_sub_pixel_variance8x4,
- vp9_sub_pixel_avg_variance8x4, NULL, NULL,
- NULL, NULL, vp9_sad8x4x8,
- vp9_sad8x4x4d)
-
- BFP(BLOCK_4X8, vp9_sad4x8, vp9_sad4x8_avg,
- vp9_variance4x8, vp9_sub_pixel_variance4x8,
- vp9_sub_pixel_avg_variance4x8, NULL, NULL,
- NULL, NULL, vp9_sad4x8x8,
- vp9_sad4x8x4d)
-
- BFP(BLOCK_4X4, vp9_sad4x4, vp9_sad4x4_avg,
- vp9_variance4x4, vp9_sub_pixel_variance4x4,
- vp9_sub_pixel_avg_variance4x4, NULL, NULL, NULL,
- vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d)
-
- cpi->full_search_sad = vp9_full_search_sad;
- cpi->diamond_search_sad = vp9_diamond_search_sad;
- cpi->refining_search_sad = vp9_refining_search_sad;
-
- // make sure frame 1 is okay
- cpi->error_bins[0] = cpi->common.MBs;
-
- /* vp9_init_quantizer() is first called here. Add check in
- * vp9_frame_init_quantizer() so that vp9_init_quantizer is only
- * called later when needed. This will avoid unnecessary calls of
- * vp9_init_quantizer() for every frame.
- */
- vp9_init_quantizer(cpi);
-
- vp9_loop_filter_init(cm);
-
- cpi->common.error.setjmp = 0;
-
- vp9_zero(cpi->y_uv_mode_count);
-
-#ifdef MODE_TEST_HIT_STATS
- vp9_zero(cpi->mode_test_hits);
-#endif
-
- return (VP9_PTR) cpi;
-}
-
-void vp9_remove_compressor(VP9_PTR *ptr) {
- VP9_COMP *cpi = (VP9_COMP *)(*ptr);
- int i;
-
- if (!cpi)
- return;
-
- if (cpi && (cpi->common.current_video_frame > 0)) {
- if (cpi->pass == 2) {
- vp9_end_second_pass(cpi);
- }
-
-#ifdef ENTROPY_STATS
- if (cpi->pass != 1) {
- print_context_counters();
- print_tree_update_probs();
- print_mode_context(cpi);
- }
-#endif
-
-#ifdef MODE_STATS
- if (cpi->pass != 1) {
- write_tx_count_stats();
- write_switchable_interp_stats();
- }
-#endif
-
-#if CONFIG_INTERNAL_STATS
-
- vp9_clear_system_state();
-
- // printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
- if (cpi->pass != 1) {
- FILE *f = fopen("opsnr.stt", "a");
- double time_encoded = (cpi->last_end_time_stamp_seen
- - cpi->first_time_stamp_ever) / 10000000.000;
- double total_encode_time = (cpi->time_receive_data +
- cpi->time_compress_data) / 1000.000;
- double dr = (double)cpi->bytes * (double) 8 / (double)1000
- / time_encoded;
-
- if (cpi->b_calculate_psnr) {
- YV12_BUFFER_CONFIG *lst_yv12 =
- &cpi->common.yv12_fb[cpi->common.ref_frame_map[cpi->lst_fb_idx]];
- double samples = 3.0 / 2 * cpi->count *
- lst_yv12->y_width * lst_yv12->y_height;
- double total_psnr = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error);
- double total_psnr2 = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error2);
- double total_ssim = 100 * pow(cpi->summed_quality /
- cpi->summed_weights, 8.0);
- double total_ssimp = 100 * pow(cpi->summedp_quality /
- cpi->summedp_weights, 8.0);
-
- fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
- "VPXSSIM\tVPSSIMP\t Time(ms)\n");
- fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
- dr, cpi->total / cpi->count, total_psnr,
- cpi->totalp / cpi->count, total_psnr2, total_ssim, total_ssimp,
- total_encode_time);
- }
-
- if (cpi->b_calculate_ssimg) {
- fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n");
- fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
- cpi->total_ssimg_y / cpi->count,
- cpi->total_ssimg_u / cpi->count,
- cpi->total_ssimg_v / cpi->count,
- cpi->total_ssimg_all / cpi->count, total_encode_time);
- }
-
- fclose(f);
- }
-
-#endif
-
-#ifdef MODE_TEST_HIT_STATS
- if (cpi->pass != 1) {
- double norm_per_pixel_mode_tests = 0;
- double norm_counts[BLOCK_SIZES];
- int i;
- int sb64_per_frame;
- int norm_factors[BLOCK_SIZES] =
- {256, 128, 128, 64, 32, 32, 16, 8, 8, 4, 2, 2, 1};
- FILE *f = fopen("mode_hit_stats.stt", "a");
-
- // On average, how many mode tests do we do
- for (i = 0; i < BLOCK_SIZES; ++i) {
- norm_counts[i] = (double)cpi->mode_test_hits[i] /
- (double)norm_factors[i];
- norm_per_pixel_mode_tests += norm_counts[i];
- }
- // Convert to a number per 64x64 and per frame
- sb64_per_frame = ((cpi->common.height + 63) / 64) *
- ((cpi->common.width + 63) / 64);
- norm_per_pixel_mode_tests =
- norm_per_pixel_mode_tests /
- (double)(cpi->common.current_video_frame * sb64_per_frame);
-
- fprintf(f, "%6.4f\n", norm_per_pixel_mode_tests);
- fclose(f);
- }
-#endif
-
-#ifdef ENTROPY_STATS
- {
- int i, j, k;
- FILE *fmode = fopen("vp9_modecontext.c", "w");
-
- fprintf(fmode, "\n#include \"vp9_entropymode.h\"\n\n");
- fprintf(fmode, "const unsigned int vp9_kf_default_bmode_counts ");
- fprintf(fmode, "[INTRA_MODES][INTRA_MODES]"
- "[INTRA_MODES] =\n{\n");
-
- for (i = 0; i < INTRA_MODES; i++) {
- fprintf(fmode, " { // Above Mode : %d\n", i);
-
- for (j = 0; j < INTRA_MODES; j++) {
- fprintf(fmode, " {");
-
- for (k = 0; k < INTRA_MODES; k++) {
- if (!intra_mode_stats[i][j][k])
- fprintf(fmode, " %5d, ", 1);
- else
- fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
- }
-
- fprintf(fmode, "}, // left_mode %d\n", j);
- }
-
- fprintf(fmode, " },\n");
- }
-
- fprintf(fmode, "};\n");
- fclose(fmode);
- }
-#endif
-
-
-#if defined(SECTIONBITS_OUTPUT)
-
- if (0) {
- int i;
- FILE *f = fopen("tokenbits.stt", "a");
-
- for (i = 0; i < 28; i++)
- fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
-
- fprintf(f, "\n");
- fclose(f);
- }
-
-#endif
-
-#if 0
- {
- printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
- printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
- printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
- cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
- cpi->time_compress_data / 1000,
- (cpi->time_receive_data + cpi->time_compress_data) / 1000);
- }
-#endif
- }
-
- free_pick_mode_context(&cpi->mb);
- dealloc_compressor_data(cpi);
- vpx_free(cpi->mb.ss);
- vpx_free(cpi->tok);
-
- for (i = 0; i < sizeof(cpi->mbgraph_stats) /
- sizeof(cpi->mbgraph_stats[0]); ++i) {
- vpx_free(cpi->mbgraph_stats[i].mb_stats);
- }
-
- vp9_remove_common(&cpi->common);
- vpx_free(cpi);
- *ptr = 0;
-
-#ifdef OUTPUT_YUV_SRC
- fclose(yuv_file);
-#endif
-#ifdef OUTPUT_YUV_REC
- fclose(yuv_rec_file);
-#endif
-
-#if 0
-
- if (keyfile)
- fclose(keyfile);
-
- if (framepsnr)
- fclose(framepsnr);
-
- if (kf_list)
- fclose(kf_list);
-
-#endif
-}
-
-
-static uint64_t calc_plane_error(uint8_t *orig, int orig_stride,
- uint8_t *recon, int recon_stride,
- unsigned int cols, unsigned int rows) {
- unsigned int row, col;
- uint64_t total_sse = 0;
- int diff;
-
- for (row = 0; row + 16 <= rows; row += 16) {
- for (col = 0; col + 16 <= cols; col += 16) {
- unsigned int sse;
-
- vp9_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse);
- total_sse += sse;
- }
-
- /* Handle odd-sized width */
- if (col < cols) {
- unsigned int border_row, border_col;
- uint8_t *border_orig = orig;
- uint8_t *border_recon = recon;
-
- for (border_row = 0; border_row < 16; border_row++) {
- for (border_col = col; border_col < cols; border_col++) {
- diff = border_orig[border_col] - border_recon[border_col];
- total_sse += diff * diff;
- }
-
- border_orig += orig_stride;
- border_recon += recon_stride;
- }
- }
-
- orig += orig_stride * 16;
- recon += recon_stride * 16;
- }
-
- /* Handle odd-sized height */
- for (; row < rows; row++) {
- for (col = 0; col < cols; col++) {
- diff = orig[col] - recon[col];
- total_sse += diff * diff;
- }
-
- orig += orig_stride;
- recon += recon_stride;
- }
-
- return total_sse;
-}
-
-
-static void generate_psnr_packet(VP9_COMP *cpi) {
- YV12_BUFFER_CONFIG *orig = cpi->Source;
- YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
- struct vpx_codec_cx_pkt pkt;
- uint64_t sse;
- int i;
- unsigned int width = orig->y_crop_width;
- unsigned int height = orig->y_crop_height;
-
- pkt.kind = VPX_CODEC_PSNR_PKT;
- sse = calc_plane_error(orig->y_buffer, orig->y_stride,
- recon->y_buffer, recon->y_stride,
- width, height);
- pkt.data.psnr.sse[0] = sse;
- pkt.data.psnr.sse[1] = sse;
- pkt.data.psnr.samples[0] = width * height;
- pkt.data.psnr.samples[1] = width * height;
-
- width = orig->uv_crop_width;
- height = orig->uv_crop_height;
-
- sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
- recon->u_buffer, recon->uv_stride,
- width, height);
- pkt.data.psnr.sse[0] += sse;
- pkt.data.psnr.sse[2] = sse;
- pkt.data.psnr.samples[0] += width * height;
- pkt.data.psnr.samples[2] = width * height;
-
- sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
- recon->v_buffer, recon->uv_stride,
- width, height);
- pkt.data.psnr.sse[0] += sse;
- pkt.data.psnr.sse[3] = sse;
- pkt.data.psnr.samples[0] += width * height;
- pkt.data.psnr.samples[3] = width * height;
-
- for (i = 0; i < 4; i++)
- pkt.data.psnr.psnr[i] = vp9_mse2psnr(pkt.data.psnr.samples[i], 255.0,
- (double)pkt.data.psnr.sse[i]);
-
- vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
-}
-
-
-int vp9_use_as_reference(VP9_PTR ptr, int ref_frame_flags) {
- VP9_COMP *cpi = (VP9_COMP *)(ptr);
-
- if (ref_frame_flags > 7)
- return -1;
-
- cpi->ref_frame_flags = ref_frame_flags;
- return 0;
-}
-int vp9_update_reference(VP9_PTR ptr, int ref_frame_flags) {
- VP9_COMP *cpi = (VP9_COMP *)(ptr);
-
- if (ref_frame_flags > 7)
- return -1;
-
- cpi->refresh_golden_frame = 0;
- cpi->refresh_alt_ref_frame = 0;
- cpi->refresh_last_frame = 0;
-
- if (ref_frame_flags & VP9_LAST_FLAG)
- cpi->refresh_last_frame = 1;
-
- if (ref_frame_flags & VP9_GOLD_FLAG)
- cpi->refresh_golden_frame = 1;
-
- if (ref_frame_flags & VP9_ALT_FLAG)
- cpi->refresh_alt_ref_frame = 1;
-
- return 0;
-}
-
-int vp9_copy_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
- YV12_BUFFER_CONFIG *sd) {
- VP9_COMP *cpi = (VP9_COMP *)(ptr);
- VP9_COMMON *cm = &cpi->common;
- int ref_fb_idx;
-
- if (ref_frame_flag == VP9_LAST_FLAG)
- ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx];
- else if (ref_frame_flag == VP9_GOLD_FLAG)
- ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx];
- else if (ref_frame_flag == VP9_ALT_FLAG)
- ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx];
- else
- return -1;
-
- vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd);
-
- return 0;
-}
-
-int vp9_get_reference_enc(VP9_PTR ptr, int index, YV12_BUFFER_CONFIG **fb) {
- VP9_COMP *cpi = (VP9_COMP *)(ptr);
- VP9_COMMON *cm = &cpi->common;
-
- if (index < 0 || index >= NUM_REF_FRAMES)
- return -1;
-
- *fb = &cm->yv12_fb[cm->ref_frame_map[index]];
- return 0;
-}
-
-int vp9_set_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
- YV12_BUFFER_CONFIG *sd) {
- VP9_COMP *cpi = (VP9_COMP *)(ptr);
- VP9_COMMON *cm = &cpi->common;
-
- int ref_fb_idx;
-
- if (ref_frame_flag == VP9_LAST_FLAG)
- ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx];
- else if (ref_frame_flag == VP9_GOLD_FLAG)
- ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx];
- else if (ref_frame_flag == VP9_ALT_FLAG)
- ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx];
- else
- return -1;
-
- vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]);
-
- return 0;
-}
-int vp9_update_entropy(VP9_PTR comp, int update) {
- ((VP9_COMP *)comp)->common.refresh_frame_context = update;
- return 0;
-}
-
-
-#ifdef OUTPUT_YUV_SRC
-void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) {
- uint8_t *src = s->y_buffer;
- int h = s->y_height;
-
- do {
- fwrite(src, s->y_width, 1, yuv_file);
- src += s->y_stride;
- } while (--h);
-
- src = s->u_buffer;
- h = s->uv_height;
-
- do {
- fwrite(src, s->uv_width, 1, yuv_file);
- src += s->uv_stride;
- } while (--h);
-
- src = s->v_buffer;
- h = s->uv_height;
-
- do {
- fwrite(src, s->uv_width, 1, yuv_file);
- src += s->uv_stride;
- } while (--h);
-}
-#endif
-
-#ifdef OUTPUT_YUV_REC
-void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
- YV12_BUFFER_CONFIG *s = cm->frame_to_show;
- uint8_t *src = s->y_buffer;
- int h = cm->height;
-
- do {
- fwrite(src, s->y_width, 1, yuv_rec_file);
- src += s->y_stride;
- } while (--h);
-
- src = s->u_buffer;
- h = s->uv_height;
-
- do {
- fwrite(src, s->uv_width, 1, yuv_rec_file);
- src += s->uv_stride;
- } while (--h);
-
- src = s->v_buffer;
- h = s->uv_height;
-
- do {
- fwrite(src, s->uv_width, 1, yuv_rec_file);
- src += s->uv_stride;
- } while (--h);
-
-#if CONFIG_ALPHA
- if (s->alpha_buffer) {
- src = s->alpha_buffer;
- h = s->alpha_height;
- do {
- fwrite(src, s->alpha_width, 1, yuv_rec_file);
- src += s->alpha_stride;
- } while (--h);
- }
-#endif
-
- fflush(yuv_rec_file);
-}
-#endif
-
-static void scale_and_extend_frame(YV12_BUFFER_CONFIG *src_fb,
- YV12_BUFFER_CONFIG *dst_fb) {
- const int in_w = src_fb->y_crop_width;
- const int in_h = src_fb->y_crop_height;
- const int out_w = dst_fb->y_crop_width;
- const int out_h = dst_fb->y_crop_height;
- int x, y, i;
-
- uint8_t *srcs[4] = {src_fb->y_buffer, src_fb->u_buffer, src_fb->v_buffer,
- src_fb->alpha_buffer};
- int src_strides[4] = {src_fb->y_stride, src_fb->uv_stride, src_fb->uv_stride,
- src_fb->alpha_stride};
-
- uint8_t *dsts[4] = {dst_fb->y_buffer, dst_fb->u_buffer, dst_fb->v_buffer,
- dst_fb->alpha_buffer};
- int dst_strides[4] = {dst_fb->y_stride, dst_fb->uv_stride, dst_fb->uv_stride,
- dst_fb->alpha_stride};
-
- for (y = 0; y < out_h; y += 16) {
- for (x = 0; x < out_w; x += 16) {
- for (i = 0; i < MAX_MB_PLANE; ++i) {
- const int factor = i == 0 ? 1 : 2;
- const int x_q4 = x * (16 / factor) * in_w / out_w;
- const int y_q4 = y * (16 / factor) * in_h / out_h;
- const int src_stride = src_strides[i];
- const int dst_stride = dst_strides[i];
- uint8_t *src = srcs[i] + y / factor * in_h / out_h * src_stride +
- x / factor * in_w / out_w;
- uint8_t *dst = dsts[i] + y / factor * dst_stride + x / factor;
-
- vp9_convolve8(src, src_stride, dst, dst_stride,
- vp9_sub_pel_filters_8[x_q4 & 0xf], 16 * in_w / out_w,
- vp9_sub_pel_filters_8[y_q4 & 0xf], 16 * in_h / out_h,
- 16 / factor, 16 / factor);
- }
- }
- }
-
- vp8_yv12_extend_frame_borders(dst_fb);
-}
-
-
-static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
- // this frame refreshes means next frames don't unless specified by user
- cpi->frames_since_golden = 0;
-
-#if CONFIG_MULTIPLE_ARF
- if (!cpi->multi_arf_enabled)
-#endif
- // Clear the alternate reference update pending flag.
- cpi->source_alt_ref_pending = 0;
-
- // Set the alternate reference frame active flag
- cpi->source_alt_ref_active = 1;
-}
-static void update_golden_frame_stats(VP9_COMP *cpi) {
- // Update the Golden frame usage counts.
- if (cpi->refresh_golden_frame) {
- // this frame refreshes means next frames don't unless specified by user
- cpi->refresh_golden_frame = 0;
- cpi->frames_since_golden = 0;
-
- // ******** Fixed Q test code only ************
- // If we are going to use the ALT reference for the next group of frames
- // set a flag to say so.
- if (cpi->oxcf.fixed_q >= 0 &&
- cpi->oxcf.play_alternate && !cpi->refresh_alt_ref_frame) {
- cpi->source_alt_ref_pending = 1;
- cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
-
- // TODO(ivan): For SVC encoder, GF automatic update is disabled by using
- // a large GF_interval.
- if (cpi->use_svc) {
- cpi->frames_till_gf_update_due = INT_MAX;
- }
- }
-
- if (!cpi->source_alt_ref_pending)
- cpi->source_alt_ref_active = 0;
-
- // Decrement count down till next gf
- if (cpi->frames_till_gf_update_due > 0)
- cpi->frames_till_gf_update_due--;
-
- } else if (!cpi->refresh_alt_ref_frame) {
- // Decrement count down till next gf
- if (cpi->frames_till_gf_update_due > 0)
- cpi->frames_till_gf_update_due--;
-
- if (cpi->frames_till_alt_ref_frame)
- cpi->frames_till_alt_ref_frame--;
-
- cpi->frames_since_golden++;
- }
-}
-
-static int find_fp_qindex() {
- int i;
-
- for (i = 0; i < QINDEX_RANGE; i++) {
- if (vp9_convert_qindex_to_q(i) >= 30.0) {
- break;
- }
- }
-
- if (i == QINDEX_RANGE)
- i--;
-
- return i;
-}
-
-static void Pass1Encode(VP9_COMP *cpi, unsigned long *size, unsigned char *dest,
- unsigned int *frame_flags) {
- (void) size;
- (void) dest;
- (void) frame_flags;
-
- vp9_set_quantizer(cpi, find_fp_qindex());
- vp9_first_pass(cpi);
-}
-
-#define WRITE_RECON_BUFFER 0
-#if WRITE_RECON_BUFFER
-void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) {
- FILE *yframe;
- int i;
- char filename[255];
-
- snprintf(filename, sizeof(filename), "cx\\y%04d.raw", this_frame);
- yframe = fopen(filename, "wb");
-
- for (i = 0; i < frame->y_height; i++)
- fwrite(frame->y_buffer + i * frame->y_stride,
- frame->y_width, 1, yframe);
-
- fclose(yframe);
- snprintf(filename, sizeof(filename), "cx\\u%04d.raw", this_frame);
- yframe = fopen(filename, "wb");
-
- for (i = 0; i < frame->uv_height; i++)
- fwrite(frame->u_buffer + i * frame->uv_stride,
- frame->uv_width, 1, yframe);
-
- fclose(yframe);
- snprintf(filename, sizeof(filename), "cx\\v%04d.raw", this_frame);
- yframe = fopen(filename, "wb");
-
- for (i = 0; i < frame->uv_height; i++)
- fwrite(frame->v_buffer + i * frame->uv_stride,
- frame->uv_width, 1, yframe);
-
- fclose(yframe);
-}
-#endif
-
-static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame) {
-#define EDGE_THRESH 128
- int i, j;
- int num_edge_pels = 0;
- int num_pels = (frame->y_height - 2) * (frame->y_width - 2);
- uint8_t *prev = frame->y_buffer + 1;
- uint8_t *curr = frame->y_buffer + 1 + frame->y_stride;
- uint8_t *next = frame->y_buffer + 1 + 2 * frame->y_stride;
- for (i = 1; i < frame->y_height - 1; i++) {
- for (j = 1; j < frame->y_width - 1; j++) {
- /* Sobel hor and ver gradients */
- int v = 2 * (curr[1] - curr[-1]) + (prev[1] - prev[-1]) +
- (next[1] - next[-1]);
- int h = 2 * (prev[0] - next[0]) + (prev[1] - next[1]) +
- (prev[-1] - next[-1]);
- h = (h < 0 ? -h : h);
- v = (v < 0 ? -v : v);
- if (h > EDGE_THRESH || v > EDGE_THRESH)
- num_edge_pels++;
- curr++;
- prev++;
- next++;
- }
- curr += frame->y_stride - frame->y_width + 2;
- prev += frame->y_stride - frame->y_width + 2;
- next += frame->y_stride - frame->y_width + 2;
- }
- return (double)num_edge_pels / num_pels;
-}
-
-// Function to test for conditions that indicate we should loop
-// back and recode a frame.
-static int recode_loop_test(VP9_COMP *cpi,
- int high_limit, int low_limit,
- int q, int maxq, int minq) {
- int force_recode = 0;
- VP9_COMMON *cm = &cpi->common;
-
- // Is frame recode allowed at all
- // Yes if either recode mode 1 is selected or mode two is selected
- // and the frame is a key frame. golden frame or alt_ref_frame
- if ((cpi->sf.recode_loop == 1) ||
- ((cpi->sf.recode_loop == 2) &&
- ((cm->frame_type == KEY_FRAME) ||
- cpi->refresh_golden_frame ||
- cpi->refresh_alt_ref_frame))) {
- // General over and under shoot tests
- if (((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
- ((cpi->projected_frame_size < low_limit) && (q > minq))) {
- force_recode = 1;
- } else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
- // Deal with frame undershoot and whether or not we are
- // below the automatically set cq level.
- if (q > cpi->cq_target_quality &&
- cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3)) {
- force_recode = 1;
- } else if (q > cpi->oxcf.cq_level &&
- cpi->projected_frame_size < cpi->min_frame_bandwidth &&
- cpi->active_best_quality > cpi->oxcf.cq_level) {
- // Severe undershoot and between auto and user cq level
- force_recode = 1;
- cpi->active_best_quality = cpi->oxcf.cq_level;
- }
- }
- }
-
- return force_recode;
-}
-
-static void update_reference_frames(VP9_COMP * const cpi) {
- VP9_COMMON * const cm = &cpi->common;
-
- // At this point the new frame has been encoded.
- // If any buffer copy / swapping is signaled it should be done here.
- if (cm->frame_type == KEY_FRAME) {
- ref_cnt_fb(cm->fb_idx_ref_cnt,
- &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
- ref_cnt_fb(cm->fb_idx_ref_cnt,
- &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
- }
-#if CONFIG_MULTIPLE_ARF
- else if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
- !cpi->refresh_alt_ref_frame) {
-#else
- else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
- !cpi->use_svc) {
-#endif
- /* Preserve the previously existing golden frame and update the frame in
- * the alt ref slot instead. This is highly specific to the current use of
- * alt-ref as a forward reference, and this needs to be generalized as
- * other uses are implemented (like RTC/temporal scaling)
- *
- * The update to the buffer in the alt ref slot was signaled in
- * vp9_pack_bitstream(), now swap the buffer pointers so that it's treated
- * as the golden frame next time.
- */
- int tmp;
-
- ref_cnt_fb(cm->fb_idx_ref_cnt,
- &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
-
- tmp = cpi->alt_fb_idx;
- cpi->alt_fb_idx = cpi->gld_fb_idx;
- cpi->gld_fb_idx = tmp;
- } else { /* For non key/golden frames */
- if (cpi->refresh_alt_ref_frame) {
- int arf_idx = cpi->alt_fb_idx;
-#if CONFIG_MULTIPLE_ARF
- if (cpi->multi_arf_enabled) {
- arf_idx = cpi->arf_buffer_idx[cpi->sequence_number + 1];
- }
-#endif
- ref_cnt_fb(cm->fb_idx_ref_cnt,
- &cm->ref_frame_map[arf_idx], cm->new_fb_idx);
- }
-
- if (cpi->refresh_golden_frame) {
- ref_cnt_fb(cm->fb_idx_ref_cnt,
- &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
- }
- }
-
- if (cpi->refresh_last_frame) {
- ref_cnt_fb(cm->fb_idx_ref_cnt,
- &cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
- }
-}
-
-static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
- MACROBLOCKD *xd = &cpi->mb.e_mbd;
- struct loopfilter *lf = &cm->lf;
- if (xd->lossless) {
- lf->filter_level = 0;
- } else {
- struct vpx_usec_timer timer;
-
- vp9_clear_system_state();
-
- vpx_usec_timer_start(&timer);
-
- vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.use_fast_lpf_pick);
-
- vpx_usec_timer_mark(&timer);
- cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
- }
-
- if (lf->filter_level > 0) {
- vp9_set_alt_lf_level(cpi, lf->filter_level);
- vp9_loop_filter_frame(cm, xd, lf->filter_level, 0, 0);
- }
-
- vp9_extend_frame_inner_borders(cm->frame_to_show,
- cm->subsampling_x, cm->subsampling_y);
-}
-
-static void scale_references(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
- int i;
- int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
- cpi->alt_fb_idx};
-
- for (i = 0; i < 3; i++) {
- YV12_BUFFER_CONFIG *ref = &cm->yv12_fb[cm->ref_frame_map[refs[i]]];
-
- if (ref->y_crop_width != cm->width ||
- ref->y_crop_height != cm->height) {
- int new_fb = get_free_fb(cm);
-
- vp9_realloc_frame_buffer(&cm->yv12_fb[new_fb],
- cm->width, cm->height,
- cm->subsampling_x, cm->subsampling_y,
- VP9BORDERINPIXELS);
- scale_and_extend_frame(ref, &cm->yv12_fb[new_fb]);
- cpi->scaled_ref_idx[i] = new_fb;
- } else {
- cpi->scaled_ref_idx[i] = cm->ref_frame_map[refs[i]];
- cm->fb_idx_ref_cnt[cm->ref_frame_map[refs[i]]]++;
- }
- }
-}
-
-static void release_scaled_references(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
- int i;
-
- for (i = 0; i < 3; i++)
- cm->fb_idx_ref_cnt[cpi->scaled_ref_idx[i]]--;
-}
-
-static void full_to_model_count(unsigned int *model_count,
- unsigned int *full_count) {
- int n;
- model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
- model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
- model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
- for (n = THREE_TOKEN; n < DCT_EOB_TOKEN; ++n)
- model_count[TWO_TOKEN] += full_count[n];
- model_count[DCT_EOB_MODEL_TOKEN] = full_count[DCT_EOB_TOKEN];
-}
-
-static void full_to_model_counts(
- vp9_coeff_count_model *model_count, vp9_coeff_count *full_count) {
- int i, j, k, l;
- for (i = 0; i < BLOCK_TYPES; ++i)
- for (j = 0; j < REF_TYPES; ++j)
- for (k = 0; k < COEF_BANDS; ++k)
- for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
- if (l >= 3 && k == 0)
- continue;
- full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
- }
-}
-
-#if 0 && CONFIG_INTERNAL_STATS
-static void output_frame_level_debug_stats(VP9_COMP *cpi) {
- VP9_COMMON *const cm = &cpi->common;
- FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
- int recon_err;
-
- vp9_clear_system_state(); // __asm emms;
-
- recon_err = vp9_calc_ss_err(cpi->Source, get_frame_new_buffer(cm));
-
- if (cpi->twopass.total_left_stats.coded_error != 0.0)
- fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %10d"
- "%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
- "%6d %6d %5d %5d %5d %8.2f %10d %10.3f"
- "%10.3f %8d %10d %10d %10d\n",
- cpi->common.current_video_frame, cpi->this_frame_target,
- cpi->projected_frame_size, 0,
- (cpi->projected_frame_size - cpi->this_frame_target),
- (int)cpi->total_target_vs_actual,
- (int)(cpi->oxcf.starting_buffer_level - cpi->bits_off_target),
- (int)cpi->total_actual_bits, cm->base_qindex,
- vp9_convert_qindex_to_q(cm->base_qindex),
- (double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
- vp9_convert_qindex_to_q(cpi->active_best_quality),
- vp9_convert_qindex_to_q(cpi->active_worst_quality), cpi->avg_q,
- vp9_convert_qindex_to_q(cpi->ni_av_qi),
- vp9_convert_qindex_to_q(cpi->cq_target_quality),
- cpi->refresh_last_frame, cpi->refresh_golden_frame,
- cpi->refresh_alt_ref_frame, cm->frame_type, cpi->gfu_boost,
- cpi->twopass.est_max_qcorrection_factor, (int)cpi->twopass.bits_left,
- cpi->twopass.total_left_stats.coded_error,
- (double)cpi->twopass.bits_left /
- (1 + cpi->twopass.total_left_stats.coded_error),
- cpi->tot_recode_hits, recon_err, cpi->kf_boost, cpi->kf_zeromotion_pct);
-
- fclose(f);
-
- if (0) {
- FILE *const fmodes = fopen("Modes.stt", "a");
- int i;
-
- fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
- cm->frame_type, cpi->refresh_golden_frame,
- cpi->refresh_alt_ref_frame);
-
- for (i = 0; i < MAX_MODES; ++i)
- fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
- for (i = 0; i < MAX_REFS; ++i)
- fprintf(fmodes, "%5d ", cpi->sub8x8_mode_chosen_counts[i]);
-
- fprintf(fmodes, "\n");
-
- fclose(fmodes);
- }
-}
-#endif
-
-static int pick_q_and_adjust_q_bounds(VP9_COMP *cpi,
- int * bottom_index, int * top_index) {
- // Set an active best quality and if necessary active worst quality
- int q = cpi->active_worst_quality;
- VP9_COMMON *const cm = &cpi->common;
-
- if (frame_is_intra_only(cm)) {
-#if !CONFIG_MULTIPLE_ARF
- // Handle the special case for key frames forced when we have75 reached
- // the maximum key frame interval. Here force the Q to a range
- // based on the ambient Q to reduce the risk of popping.
- if (cpi->this_key_frame_forced) {
- int delta_qindex;
- int qindex = cpi->last_boosted_qindex;
- double last_boosted_q = vp9_convert_qindex_to_q(qindex);
-
- delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q,
- (last_boosted_q * 0.75));
-
- cpi->active_best_quality = MAX(qindex + delta_qindex,
- cpi->best_quality);
- } else {
- int high = 5000;
- int low = 400;
- double q_adj_factor = 1.0;
- double q_val;
-
- // Baseline value derived from cpi->active_worst_quality and kf boost
- cpi->active_best_quality = get_active_quality(q, cpi->kf_boost,
- low, high,
- kf_low_motion_minq,
- kf_high_motion_minq);
-
- // Allow somewhat lower kf minq with small image formats.
- if ((cm->width * cm->height) <= (352 * 288)) {
- q_adj_factor -= 0.25;
- }
-
- // Make a further adjustment based on the kf zero motion measure.
- q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct);
-
- // Convert the adjustment factor to a qindex delta
- // on active_best_quality.
- q_val = vp9_convert_qindex_to_q(cpi->active_best_quality);
- cpi->active_best_quality +=
- vp9_compute_qdelta(cpi, q_val, (q_val * q_adj_factor));
- }
-#else
- double current_q;
- // Force the KF quantizer to be 30% of the active_worst_quality.
- current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality);
- cpi->active_best_quality = cpi->active_worst_quality
- + vp9_compute_qdelta(cpi, current_q, current_q * 0.3);
-#endif
- } else if (!cpi->is_src_frame_alt_ref &&
- (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
- int high = 2000;
- int low = 400;
-
- // Use the lower of cpi->active_worst_quality and recent
- // average Q as basis for GF/ARF best Q limit unless last frame was
- // a key frame.
- if (cpi->frames_since_key > 1 &&
- cpi->avg_frame_qindex < cpi->active_worst_quality) {
- q = cpi->avg_frame_qindex;
- }
- // For constrained quality dont allow Q less than the cq level
- if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
- if (q < cpi->cq_target_quality)
- q = cpi->cq_target_quality;
- if (cpi->frames_since_key > 1) {
- cpi->active_best_quality = get_active_quality(q, cpi->gfu_boost,
- low, high,
- afq_low_motion_minq,
- afq_high_motion_minq);
- } else {
- cpi->active_best_quality = get_active_quality(q, cpi->gfu_boost,
- low, high,
- gf_low_motion_minq,
- gf_high_motion_minq);
- }
- // Constrained quality use slightly lower active best.
- cpi->active_best_quality = cpi->active_best_quality * 15 / 16;
-
- } else if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
- if (!cpi->refresh_alt_ref_frame) {
- cpi->active_best_quality = cpi->cq_target_quality;
- } else {
- if (cpi->frames_since_key > 1) {
- cpi->active_best_quality = get_active_quality(q, cpi->gfu_boost,
- low, high,
- afq_low_motion_minq,
- afq_high_motion_minq);
- } else {
- cpi->active_best_quality = get_active_quality(q, cpi->gfu_boost,
- low, high,
- gf_low_motion_minq,
- gf_high_motion_minq);
- }
- }
- } else {
- cpi->active_best_quality = get_active_quality(q, cpi->gfu_boost,
- low, high,
- gf_low_motion_minq,
- gf_high_motion_minq);
- }
- } else {
- if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
- cpi->active_best_quality = cpi->cq_target_quality;
- } else {
-#ifdef ONE_SHOT_Q_ESTIMATE
-#ifdef STRICT_ONE_SHOT_Q
- cpi->active_best_quality = q;
-#else
- cpi->active_best_quality = inter_minq[q];
-#endif
-#else
- cpi->active_best_quality = inter_minq[q];
- // 1-pass: for now, use the average Q for the active_best, if its lower
- // than active_worst.
- if (cpi->pass == 0 && (cpi->avg_frame_qindex < q))
- cpi->active_best_quality = inter_minq[cpi->avg_frame_qindex];
-#endif
-
- // For the constrained quality mode we don't want
- // q to fall below the cq level.
- if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
- (cpi->active_best_quality < cpi->cq_target_quality)) {
- // If we are strongly undershooting the target rate in the last
- // frames then use the user passed in cq value not the auto
- // cq value.
- if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth)
- cpi->active_best_quality = cpi->oxcf.cq_level;
- else
- cpi->active_best_quality = cpi->cq_target_quality;
- }
- }
- }
-
- // Clip the active best and worst quality values to limits
- if (cpi->active_worst_quality > cpi->worst_quality)
- cpi->active_worst_quality = cpi->worst_quality;
-
- if (cpi->active_best_quality < cpi->best_quality)
- cpi->active_best_quality = cpi->best_quality;
-
- if (cpi->active_best_quality > cpi->worst_quality)
- cpi->active_best_quality = cpi->worst_quality;
-
- if (cpi->active_worst_quality < cpi->active_best_quality)
- cpi->active_worst_quality = cpi->active_best_quality;
-
- // Limit Q range for the adaptive loop.
- if (cm->frame_type == KEY_FRAME && !cpi->this_key_frame_forced) {
- *top_index =
- (cpi->active_worst_quality + cpi->active_best_quality * 3) / 4;
- // If this is the first (key) frame in 1-pass, active best is the user
- // best-allowed, and leave the top_index to active_worst.
- if (cpi->pass == 0 && cpi->common.current_video_frame == 0) {
- cpi->active_best_quality = cpi->oxcf.best_allowed_q;
- *top_index = cpi->oxcf.worst_allowed_q;
- }
- } else if (!cpi->is_src_frame_alt_ref &&
- (cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER) &&
- (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
- *top_index =
- (cpi->active_worst_quality + cpi->active_best_quality) / 2;
- } else {
- *top_index = cpi->active_worst_quality;
- }
- *bottom_index = cpi->active_best_quality;
-
- if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
- q = cpi->active_best_quality;
- // Special case code to try and match quality with forced key frames
- } else if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
- q = cpi->last_boosted_qindex;
- } else {
- // Determine initial Q to try.
- if (cpi->pass == 0) {
- // 1-pass: for now, use per-frame-bw for target size of frame, scaled
- // by |x| for key frame.
- int scale = (cm->frame_type == KEY_FRAME) ? 5 : 1;
- q = vp9_regulate_q(cpi, scale * cpi->av_per_frame_bandwidth);
- } else {
- q = vp9_regulate_q(cpi, cpi->this_frame_target);
- }
- if (q > *top_index)
- q = *top_index;
- }
-
- return q;
-}
-static void encode_frame_to_data_rate(VP9_COMP *cpi,
- unsigned long *size,
- unsigned char *dest,
- unsigned int *frame_flags) {
- VP9_COMMON *const cm = &cpi->common;
- TX_SIZE t;
- int q;
- int frame_over_shoot_limit;
- int frame_under_shoot_limit;
-
- int loop = 0;
- int loop_count;
-
- int q_low;
- int q_high;
-
- int top_index;
- int bottom_index;
- int active_worst_qchanged = 0;
-
- int overshoot_seen = 0;
- int undershoot_seen = 0;
-
- SPEED_FEATURES *const sf = &cpi->sf;
- unsigned int max_mv_def = MIN(cpi->common.width, cpi->common.height);
- struct segmentation *const seg = &cm->seg;
-
- /* Scale the source buffer, if required. */
- if (cm->mi_cols * 8 != cpi->un_scaled_source->y_width ||
- cm->mi_rows * 8 != cpi->un_scaled_source->y_height) {
- scale_and_extend_frame(cpi->un_scaled_source, &cpi->scaled_source);
- cpi->Source = &cpi->scaled_source;
- } else {
- cpi->Source = cpi->un_scaled_source;
- }
- scale_references(cpi);
-
- // Clear down mmx registers to allow floating point in what follows.
- vp9_clear_system_state();
-
- // For an alt ref frame in 2 pass we skip the call to the second
- // pass function that sets the target bandwidth so we must set it here.
- if (cpi->refresh_alt_ref_frame) {
- // Set a per frame bit target for the alt ref frame.
- cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
- // Set a per second target bitrate.
- cpi->target_bandwidth = (int)(cpi->twopass.gf_bits * cpi->output_framerate);
- }
-
- // Clear zbin over-quant value and mode boost values.
- cpi->zbin_mode_boost = 0;
-
- // Enable or disable mode based tweaking of the zbin.
- // For 2 pass only used where GF/ARF prediction quality
- // is above a threshold.
- cpi->zbin_mode_boost = 0;
- cpi->zbin_mode_boost_enabled = 0;
-
- // Current default encoder behavior for the altref sign bias.
- cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = cpi->source_alt_ref_active;
-
- // Check to see if a key frame is signaled.
- // For two pass with auto key frame enabled cm->frame_type may already be
- // set, but not for one pass.
- if ((cm->current_video_frame == 0) ||
- (cm->frame_flags & FRAMEFLAGS_KEY) ||
- (cpi->oxcf.auto_key && (cpi->frames_since_key %
- cpi->key_frame_frequency == 0))) {
- // Set frame type to key frame for the force key frame, if we exceed the
- // maximum distance in an automatic keyframe selection or for the first
- // frame.
- cm->frame_type = KEY_FRAME;
- }
-
- // Set default state for segment based loop filter update flags.
- cm->lf.mode_ref_delta_update = 0;
-
- // Initialize cpi->mv_step_param to default based on max resolution.
- cpi->mv_step_param = vp9_init_search_range(cpi, max_mv_def);
- // Initialize cpi->max_mv_magnitude and cpi->mv_step_param if appropriate.
- if (sf->auto_mv_step_size) {
- if (frame_is_intra_only(&cpi->common)) {
- // Initialize max_mv_magnitude for use in the first INTER frame
- // after a key/intra-only frame.
- cpi->max_mv_magnitude = max_mv_def;
- } else {
- if (cm->show_frame)
- // Allow mv_steps to correspond to twice the max mv magnitude found
- // in the previous frame, capped by the default max_mv_magnitude based
- // on resolution.
- cpi->mv_step_param = vp9_init_search_range(
- cpi, MIN(max_mv_def, 2 * cpi->max_mv_magnitude));
- cpi->max_mv_magnitude = 0;
- }
- }
-
- // Set various flags etc to special state if it is a key frame.
- if (frame_is_intra_only(cm)) {
- vp9_setup_key_frame(cpi);
- // Reset the loop filter deltas and segmentation map.
- setup_features(cm);
-
- // If segmentation is enabled force a map update for key frames.
- if (seg->enabled) {
- seg->update_map = 1;
- seg->update_data = 1;
- }
-
- // The alternate reference frame cannot be active for a key frame.
- cpi->source_alt_ref_active = 0;
-
- cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0);
- cm->frame_parallel_decoding_mode =
- (cpi->oxcf.frame_parallel_decoding_mode != 0);
- if (cm->error_resilient_mode) {
- cm->frame_parallel_decoding_mode = 1;
- cm->reset_frame_context = 0;
- cm->refresh_frame_context = 0;
- } else if (cm->intra_only) {
- // Only reset the current context.
- cm->reset_frame_context = 2;
- }
- }
-
- // Configure experimental use of segmentation for enhanced coding of
- // static regions if indicated.
- // Only allowed in second pass of two pass (as requires lagged coding)
- // and if the relevant speed feature flag is set.
- if ((cpi->pass == 2) && (cpi->sf.static_segmentation)) {
- configure_static_seg_features(cpi);
- }
-
- // Decide how big to make the frame.
- vp9_pick_frame_size(cpi);
-
- vp9_clear_system_state();
-
- q = pick_q_and_adjust_q_bounds(cpi, &bottom_index, &top_index);
-
- q_high = top_index;
- q_low = bottom_index;
-
- vp9_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
- &frame_over_shoot_limit);
-
-#if CONFIG_MULTIPLE_ARF
- // Force the quantizer determined by the coding order pattern.
- if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
- cpi->oxcf.end_usage != USAGE_CONSTANT_QUALITY) {
- double new_q;
- double current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality);
- int level = cpi->this_frame_weight;
- assert(level >= 0);
-
- // Set quantizer steps at 10% increments.
- new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
- q = cpi->active_worst_quality + vp9_compute_qdelta(cpi, current_q, new_q);
-
- bottom_index = q;
- top_index = q;
- q_low = q;
- q_high = q;
-
- printf("frame:%d q:%d\n", cm->current_video_frame, q);
- }
-#endif
-
- loop_count = 0;
- vp9_zero(cpi->rd_tx_select_threshes);
-
- if (!frame_is_intra_only(cm)) {
- cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
- /* TODO: Decide this more intelligently */
- cm->allow_high_precision_mv = q < HIGH_PRECISION_MV_QTHRESH;
- set_mvcost(cpi);
- }
-
-#if CONFIG_VP9_POSTPROC
-
- if (cpi->oxcf.noise_sensitivity > 0) {
- int l = 0;
-
- switch (cpi->oxcf.noise_sensitivity) {
- case 1:
- l = 20;
- break;
- case 2:
- l = 40;
- break;
- case 3:
- l = 60;
- break;
- case 4:
- case 5:
- l = 100;
- break;
- case 6:
- l = 150;
- break;
- }
-
- vp9_denoise(cpi->Source, cpi->Source, l);
- }
-
-#endif
-
-#ifdef OUTPUT_YUV_SRC
- vp9_write_yuv_frame(cpi->Source);
-#endif
-
- do {
- vp9_clear_system_state(); // __asm emms;
-
- vp9_set_quantizer(cpi, q);
-
- if (loop_count == 0) {
- // Set up entropy context depending on frame type. The decoder mandates
- // the use of the default context, index 0, for keyframes and inter
- // frames where the error_resilient_mode or intra_only flag is set. For
- // other inter-frames the encoder currently uses only two contexts;
- // context 1 for ALTREF frames and context 0 for the others.
- if (cm->frame_type == KEY_FRAME) {
- vp9_setup_key_frame(cpi);
- } else {
- if (!cm->intra_only && !cm->error_resilient_mode) {
- cpi->common.frame_context_idx = cpi->refresh_alt_ref_frame;
- }
- vp9_setup_inter_frame(cpi);
- }
- }
-
- if (cpi->sf.variance_adaptive_quantization) {
- vp9_vaq_frame_setup(cpi);
- }
-
- // transform / motion compensation build reconstruction frame
-
- vp9_encode_frame(cpi);
-
- // Update the skip mb flag probabilities based on the distribution
- // seen in the last encoder iteration.
- // update_base_skip_probs(cpi);
-
- vp9_clear_system_state(); // __asm emms;
-
- // Dummy pack of the bitstream using up to date stats to get an
- // accurate estimate of output frame size to determine if we need
- // to recode.
- vp9_save_coding_context(cpi);
- cpi->dummy_packing = 1;
- vp9_pack_bitstream(cpi, dest, size);
- cpi->projected_frame_size = (*size) << 3;
- vp9_restore_coding_context(cpi);
-
- if (frame_over_shoot_limit == 0)
- frame_over_shoot_limit = 1;
- active_worst_qchanged = 0;
-
- if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
- loop = 0;
- } else {
- // Special case handling for forced key frames
- if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
- int last_q = q;
- int kf_err = vp9_calc_ss_err(cpi->Source, get_frame_new_buffer(cm));
-
- int high_err_target = cpi->ambient_err;
- int low_err_target = cpi->ambient_err >> 1;
-
- // Prevent possible divide by zero error below for perfect KF
- kf_err += !kf_err;
-
- // The key frame is not good enough or we can afford
- // to make it better without undue risk of popping.
- if ((kf_err > high_err_target &&
- cpi->projected_frame_size <= frame_over_shoot_limit) ||
- (kf_err > low_err_target &&
- cpi->projected_frame_size <= frame_under_shoot_limit)) {
- // Lower q_high
- q_high = q > q_low ? q - 1 : q_low;
-
- // Adjust Q
- q = (q * high_err_target) / kf_err;
- q = MIN(q, (q_high + q_low) >> 1);
- } else if (kf_err < low_err_target &&
- cpi->projected_frame_size >= frame_under_shoot_limit) {
- // The key frame is much better than the previous frame
- // Raise q_low
- q_low = q < q_high ? q + 1 : q_high;
-
- // Adjust Q
- q = (q * low_err_target) / kf_err;
- q = MIN(q, (q_high + q_low + 1) >> 1);
- }
-
- // Clamp Q to upper and lower limits:
- q = clamp(q, q_low, q_high);
-
- loop = q != last_q;
- } else if (recode_loop_test(
- cpi, frame_over_shoot_limit, frame_under_shoot_limit,
- q, top_index, bottom_index)) {
- // Is the projected frame size out of range and are we allowed
- // to attempt to recode.
- int last_q = q;
- int retries = 0;
-
- // Frame size out of permitted range:
- // Update correction factor & compute new Q to try...
-
- // Frame is too large
- if (cpi->projected_frame_size > cpi->this_frame_target) {
- // Raise Qlow as to at least the current value
- q_low = q < q_high ? q + 1 : q_high;
-
- if (undershoot_seen || loop_count > 1) {
- // Update rate_correction_factor unless
- // cpi->active_worst_quality has changed.
- if (!active_worst_qchanged)
- vp9_update_rate_correction_factors(cpi, 1);
-
- q = (q_high + q_low + 1) / 2;
- } else {
- // Update rate_correction_factor unless
- // cpi->active_worst_quality has changed.
- if (!active_worst_qchanged)
- vp9_update_rate_correction_factors(cpi, 0);
-
- q = vp9_regulate_q(cpi, cpi->this_frame_target);
-
- while (q < q_low && retries < 10) {
- vp9_update_rate_correction_factors(cpi, 0);
- q = vp9_regulate_q(cpi, cpi->this_frame_target);
- retries++;
- }
- }
-
- overshoot_seen = 1;
- } else {
- // Frame is too small
- q_high = q > q_low ? q - 1 : q_low;
-
- if (overshoot_seen || loop_count > 1) {
- // Update rate_correction_factor unless
- // cpi->active_worst_quality has changed.
- if (!active_worst_qchanged)
- vp9_update_rate_correction_factors(cpi, 1);
-
- q = (q_high + q_low) / 2;
- } else {
- // Update rate_correction_factor unless
- // cpi->active_worst_quality has changed.
- if (!active_worst_qchanged)
- vp9_update_rate_correction_factors(cpi, 0);
-
- q = vp9_regulate_q(cpi, cpi->this_frame_target);
-
- // Special case reset for qlow for constrained quality.
- // This should only trigger where there is very substantial
- // undershoot on a frame and the auto cq level is above
- // the user passsed in value.
- if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && q < q_low) {
- q_low = q;
- }
-
- while (q > q_high && retries < 10) {
- vp9_update_rate_correction_factors(cpi, 0);
- q = vp9_regulate_q(cpi, cpi->this_frame_target);
- retries++;
- }
- }
-
- undershoot_seen = 1;
- }
-
- // Clamp Q to upper and lower limits:
- q = clamp(q, q_low, q_high);
-
- loop = q != last_q;
- } else {
- loop = 0;
- }
- }
-
- if (cpi->is_src_frame_alt_ref)
- loop = 0;
-
- if (loop) {
- loop_count++;
-
-#if CONFIG_INTERNAL_STATS
- cpi->tot_recode_hits++;
-#endif
- }
- } while (loop);
-
- // Special case code to reduce pulsing when key frames are forced at a
- // fixed interval. Note the reconstruction error if it is the frame before
- // the force key frame
- if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) {
- cpi->ambient_err = vp9_calc_ss_err(cpi->Source, get_frame_new_buffer(cm));
- }
-
- if (cm->frame_type == KEY_FRAME)
- cpi->refresh_last_frame = 1;
-
- cm->frame_to_show = get_frame_new_buffer(cm);
-
-#if WRITE_RECON_BUFFER
- if (cm->show_frame)
- write_cx_frame_to_file(cm->frame_to_show,
- cm->current_video_frame);
- else
- write_cx_frame_to_file(cm->frame_to_show,
- cm->current_video_frame + 1000);
-#endif
-
- // Pick the loop filter level for the frame.
- loopfilter_frame(cpi, cm);
-
-#if WRITE_RECON_BUFFER
- if (cm->show_frame)
- write_cx_frame_to_file(cm->frame_to_show,
- cm->current_video_frame + 2000);
- else
- write_cx_frame_to_file(cm->frame_to_show,
- cm->current_video_frame + 3000);
-#endif
-
- // build the bitstream
- cpi->dummy_packing = 0;
- vp9_pack_bitstream(cpi, dest, size);
-
- if (cm->seg.update_map)
- update_reference_segmentation_map(cpi);
-
- release_scaled_references(cpi);
- update_reference_frames(cpi);
-
- for (t = TX_4X4; t <= TX_32X32; t++)
- full_to_model_counts(cpi->common.counts.coef[t],
- cpi->coef_counts[t]);
- if (!cpi->common.error_resilient_mode &&
- !cpi->common.frame_parallel_decoding_mode) {
- vp9_adapt_coef_probs(&cpi->common);
- }
-
- if (!frame_is_intra_only(&cpi->common)) {
- FRAME_COUNTS *counts = &cpi->common.counts;
-
- vp9_copy(counts->y_mode, cpi->y_mode_count);
- vp9_copy(counts->uv_mode, cpi->y_uv_mode_count);
- vp9_copy(counts->partition, cpi->partition_count);
- vp9_copy(counts->intra_inter, cpi->intra_inter_count);
- vp9_copy(counts->comp_inter, cpi->comp_inter_count);
- vp9_copy(counts->single_ref, cpi->single_ref_count);
- vp9_copy(counts->comp_ref, cpi->comp_ref_count);
- counts->mv = cpi->NMVcount;
- if (!cpi->common.error_resilient_mode &&
- !cpi->common.frame_parallel_decoding_mode) {
- vp9_adapt_mode_probs(&cpi->common);
- vp9_adapt_mv_probs(&cpi->common, cpi->common.allow_high_precision_mv);
- }
- }
-
-#ifdef ENTROPY_STATS
- vp9_update_mode_context_stats(cpi);
-#endif
-
- /* Move storing frame_type out of the above loop since it is also
- * needed in motion search besides loopfilter */
- cm->last_frame_type = cm->frame_type;
-
- // Update rate control heuristics
- cpi->total_byte_count += (*size);
- cpi->projected_frame_size = (*size) << 3;
-
- // Post encode loop adjustment of Q prediction.
- if (!active_worst_qchanged)
- vp9_update_rate_correction_factors(cpi, (cpi->sf.recode_loop) ? 2 : 0);
-
- cpi->last_q[cm->frame_type] = cm->base_qindex;
-
- // Keep record of last boosted (KF/KF/ARF) Q value.
- // If the current frame is coded at a lower Q then we also update it.
- // If all mbs in this group are skipped only update if the Q value is
- // better than that already stored.
- // This is used to help set quality in forced key frames to reduce popping
- if ((cm->base_qindex < cpi->last_boosted_qindex) ||
- ((cpi->static_mb_pct < 100) &&
- ((cm->frame_type == KEY_FRAME) ||
- cpi->refresh_alt_ref_frame ||
- (cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
- cpi->last_boosted_qindex = cm->base_qindex;
- }
-
- if (cm->frame_type == KEY_FRAME) {
- vp9_adjust_key_frame_context(cpi);
- }
-
- // Keep a record of ambient average Q.
- if (cm->frame_type != KEY_FRAME)
- cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex +
- cm->base_qindex) >> 2;
-
- // Keep a record from which we can calculate the average Q excluding GF
- // updates and key frames.
- if (cm->frame_type != KEY_FRAME &&
- !cpi->refresh_golden_frame &&
- !cpi->refresh_alt_ref_frame) {
- cpi->ni_frames++;
- cpi->tot_q += vp9_convert_qindex_to_q(q);
- cpi->avg_q = cpi->tot_q / (double)cpi->ni_frames;
-
- // Calculate the average Q for normal inter frames (not key or GFU frames).
- cpi->ni_tot_qi += q;
- cpi->ni_av_qi = cpi->ni_tot_qi / cpi->ni_frames;
- }
-
- // Update the buffer level variable.
- // Non-viewable frames are a special case and are treated as pure overhead.
- if (!cm->show_frame)
- cpi->bits_off_target -= cpi->projected_frame_size;
- else
- cpi->bits_off_target += cpi->av_per_frame_bandwidth -
- cpi->projected_frame_size;
-
- // Clip the buffer level at the maximum buffer size
- if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
- cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
-
- // Rolling monitors of whether we are over or underspending used to help
- // regulate min and Max Q in two pass.
- if (cm->frame_type != KEY_FRAME) {
- cpi->rolling_target_bits =
- ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
- cpi->rolling_actual_bits =
- ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
- cpi->long_rolling_target_bits =
- ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
- cpi->long_rolling_actual_bits =
- ((cpi->long_rolling_actual_bits * 31) +
- cpi->projected_frame_size + 16) / 32;
- }
-
- // Actual bits spent
- cpi->total_actual_bits += cpi->projected_frame_size;
-
- // Debug stats
- cpi->total_target_vs_actual += (cpi->this_frame_target -
- cpi->projected_frame_size);
-
- cpi->buffer_level = cpi->bits_off_target;
-
-#ifndef DISABLE_RC_LONG_TERM_MEM
- // Update bits left to the kf and gf groups to account for overshoot or
- // undershoot on these frames
- if (cm->frame_type == KEY_FRAME) {
- cpi->twopass.kf_group_bits += cpi->this_frame_target -
- cpi->projected_frame_size;
-
- cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
- } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
- cpi->twopass.gf_group_bits += cpi->this_frame_target -
- cpi->projected_frame_size;
-
- cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
- }
-#endif
-
-#if 0
- output_frame_level_debug_stats(cpi);
-#endif
- if (cpi->refresh_golden_frame == 1)
- cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
- else
- cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
-
- if (cpi->refresh_alt_ref_frame == 1)
- cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
- else
- cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
-
-
- if (cpi->refresh_last_frame & cpi->refresh_golden_frame)
- cpi->gold_is_last = 1;
- else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame)
- cpi->gold_is_last = 0;
-
- if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame)
- cpi->alt_is_last = 1;
- else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame)
- cpi->alt_is_last = 0;
-
- if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame)
- cpi->gold_is_alt = 1;
- else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame)
- cpi->gold_is_alt = 0;
-
- cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
-
- if (cpi->gold_is_last)
- cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
-
- if (cpi->alt_is_last)
- cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
-
- if (cpi->gold_is_alt)
- cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
-
- if (cpi->oxcf.play_alternate && cpi->refresh_alt_ref_frame
- && (cm->frame_type != KEY_FRAME))
- // Update the alternate reference frame stats as appropriate.
- update_alt_ref_frame_stats(cpi);
- else
- // Update the Golden frame stats as appropriate.
- update_golden_frame_stats(cpi);
-
- if (cm->frame_type == KEY_FRAME) {
- // Tell the caller that the frame was coded as a key frame
- *frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
-
-#if CONFIG_MULTIPLE_ARF
- // Reset the sequence number.
- if (cpi->multi_arf_enabled) {
- cpi->sequence_number = 0;
- cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
- cpi->new_frame_coding_order_period = -1;
- }
-#endif
-
- // As this frame is a key frame the next defaults to an inter frame.
- cm->frame_type = INTER_FRAME;
- } else {
- *frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
-
-#if CONFIG_MULTIPLE_ARF
- /* Increment position in the coded frame sequence. */
- if (cpi->multi_arf_enabled) {
- ++cpi->sequence_number;
- if (cpi->sequence_number >= cpi->frame_coding_order_period) {
- cpi->sequence_number = 0;
- cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
- cpi->new_frame_coding_order_period = -1;
- }
- cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number];
- assert(cpi->this_frame_weight >= 0);
- }
-#endif
- }
-
- // Clear the one shot update flags for segmentation map and mode/ref loop
- // filter deltas.
- cm->seg.update_map = 0;
- cm->seg.update_data = 0;
- cm->lf.mode_ref_delta_update = 0;
-
- // keep track of the last coded dimensions
- cm->last_width = cm->width;
- cm->last_height = cm->height;
-
- // reset to normal state now that we are done.
- cm->last_show_frame = cm->show_frame;
- if (cm->show_frame) {
- // current mip will be the prev_mip for the next frame
- MODE_INFO *temp = cm->prev_mip;
- MODE_INFO **temp2 = cm->prev_mi_grid_base;
- cm->prev_mip = cm->mip;
- cm->mip = temp;
- cm->prev_mi_grid_base = cm->mi_grid_base;
- cm->mi_grid_base = temp2;
-
- // update the upper left visible macroblock ptrs
- cm->mi = cm->mip + cm->mode_info_stride + 1;
- cm->mi_grid_visible = cm->mi_grid_base + cm->mode_info_stride + 1;
-
- cpi->mb.e_mbd.mi_8x8 = cm->mi_grid_visible;
- cpi->mb.e_mbd.mi_8x8[0] = cm->mi;
-
- // Don't increment frame counters if this was an altref buffer
- // update not a real frame
- ++cm->current_video_frame;
- ++cpi->frames_since_key;
- }
- // restore prev_mi
- cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
- cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mode_info_stride + 1;
-}
-
-static void Pass2Encode(VP9_COMP *cpi, unsigned long *size,
- unsigned char *dest, unsigned int *frame_flags) {
- cpi->enable_encode_breakout = 1;
-
- if (!cpi->refresh_alt_ref_frame)
- vp9_second_pass(cpi);
-
- encode_frame_to_data_rate(cpi, size, dest, frame_flags);
- // vp9_print_modes_and_motion_vectors(&cpi->common, "encode.stt");
-#ifdef DISABLE_RC_LONG_TERM_MEM
- cpi->twopass.bits_left -= cpi->this_frame_target;
-#else
- cpi->twopass.bits_left -= 8 * *size;
-#endif
-
- if (!cpi->refresh_alt_ref_frame) {
- double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.framerate;
- double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
- * cpi->oxcf.two_pass_vbrmin_section
- / 100);
-
- if (two_pass_min_rate < lower_bounds_min_rate)
- two_pass_min_rate = lower_bounds_min_rate;
-
- cpi->twopass.bits_left += (int64_t)(two_pass_min_rate
- / cpi->oxcf.framerate);
- }
-}
-
-static void check_initial_width(VP9_COMP *cpi, YV12_BUFFER_CONFIG *sd) {
- VP9_COMMON *cm = &cpi->common;
- if (!cpi->initial_width) {
- // TODO(jkoleszar): Support 1/4 subsampling?
- cm->subsampling_x = (sd != NULL) && sd->uv_width < sd->y_width;
- cm->subsampling_y = (sd != NULL) && sd->uv_height < sd->y_height;
- alloc_raw_frame_buffers(cpi);
-
- cpi->initial_width = cm->width;
- cpi->initial_height = cm->height;
- }
-}
-
-
-int vp9_receive_raw_frame(VP9_PTR ptr, unsigned int frame_flags,
- YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
- int64_t end_time) {
- VP9_COMP *cpi = (VP9_COMP *) ptr;
- struct vpx_usec_timer timer;
- int res = 0;
-
- check_initial_width(cpi, sd);
- vpx_usec_timer_start(&timer);
- if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags,
- cpi->active_map_enabled ? cpi->active_map : NULL))
- res = -1;
- vpx_usec_timer_mark(&timer);
- cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
-
- return res;
-}
-
-
-static int frame_is_reference(const VP9_COMP *cpi) {
- const VP9_COMMON *cm = &cpi->common;
-
- return cm->frame_type == KEY_FRAME ||
- cpi->refresh_last_frame ||
- cpi->refresh_golden_frame ||
- cpi->refresh_alt_ref_frame ||
- cm->refresh_frame_context ||
- cm->lf.mode_ref_delta_update ||
- cm->seg.update_map ||
- cm->seg.update_data;
-}
-
-#if CONFIG_MULTIPLE_ARF
-int is_next_frame_arf(VP9_COMP *cpi) {
- // Negative entry in frame_coding_order indicates an ARF at this position.
- return cpi->frame_coding_order[cpi->sequence_number + 1] < 0 ? 1 : 0;
-}
-#endif
-
-int vp9_get_compressed_data(VP9_PTR ptr, unsigned int *frame_flags,
- unsigned long *size, unsigned char *dest,
- int64_t *time_stamp, int64_t *time_end, int flush) {
- VP9_COMP *cpi = (VP9_COMP *) ptr;
- VP9_COMMON *cm = &cpi->common;
- struct vpx_usec_timer cmptimer;
- YV12_BUFFER_CONFIG *force_src_buffer = NULL;
- int i;
- // FILE *fp_out = fopen("enc_frame_type.txt", "a");
-
- if (!cpi)
- return -1;
-
- vpx_usec_timer_start(&cmptimer);
-
- cpi->source = NULL;
-
- cpi->common.allow_high_precision_mv = ALTREF_HIGH_PRECISION_MV;
- set_mvcost(cpi);
-
- // Should we code an alternate reference frame.
- if (cpi->oxcf.play_alternate && cpi->source_alt_ref_pending) {
- int frames_to_arf;
-
-#if CONFIG_MULTIPLE_ARF
- assert(!cpi->multi_arf_enabled ||
- cpi->frame_coding_order[cpi->sequence_number] < 0);
-
- if (cpi->multi_arf_enabled && (cpi->pass == 2))
- frames_to_arf = (-cpi->frame_coding_order[cpi->sequence_number])
- - cpi->next_frame_in_order;
- else
-#endif
- frames_to_arf = cpi->frames_till_gf_update_due;
-
- assert(frames_to_arf < cpi->twopass.frames_to_key);
-
- if ((cpi->source = vp9_lookahead_peek(cpi->lookahead, frames_to_arf))) {
-#if CONFIG_MULTIPLE_ARF
- cpi->alt_ref_source[cpi->arf_buffered] = cpi->source;
-#else
- cpi->alt_ref_source = cpi->source;
-#endif
-
- if (cpi->oxcf.arnr_max_frames > 0) {
- // Produce the filtered ARF frame.
- // TODO(agrange) merge these two functions.
- configure_arnr_filter(cpi, cm->current_video_frame + frames_to_arf,
- cpi->gfu_boost);
- vp9_temporal_filter_prepare(cpi, frames_to_arf);
- vp9_extend_frame_borders(&cpi->alt_ref_buffer,
- cm->subsampling_x, cm->subsampling_y);
- force_src_buffer = &cpi->alt_ref_buffer;
- }
-
- cm->show_frame = 0;
- cpi->refresh_alt_ref_frame = 1;
- cpi->refresh_golden_frame = 0;
- cpi->refresh_last_frame = 0;
- cpi->is_src_frame_alt_ref = 0;
-
- // TODO(agrange) This needs to vary depending on where the next ARF is.
- cpi->frames_till_alt_ref_frame = frames_to_arf;
-
-#if CONFIG_MULTIPLE_ARF
- if (!cpi->multi_arf_enabled)
-#endif
- cpi->source_alt_ref_pending = 0; // Clear Pending altf Ref flag.
- }
- }
-
- if (!cpi->source) {
-#if CONFIG_MULTIPLE_ARF
- int i;
-#endif
- if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) {
- cm->show_frame = 1;
- cm->intra_only = 0;
-
-#if CONFIG_MULTIPLE_ARF
- // Is this frame the ARF overlay.
- cpi->is_src_frame_alt_ref = 0;
- for (i = 0; i < cpi->arf_buffered; ++i) {
- if (cpi->source == cpi->alt_ref_source[i]) {
- cpi->is_src_frame_alt_ref = 1;
- cpi->refresh_golden_frame = 1;
- break;
- }
- }
-#else
- cpi->is_src_frame_alt_ref = cpi->alt_ref_source
- && (cpi->source == cpi->alt_ref_source);
-#endif
- if (cpi->is_src_frame_alt_ref) {
- // Current frame is an ARF overlay frame.
-#if CONFIG_MULTIPLE_ARF
- cpi->alt_ref_source[i] = NULL;
-#else
- cpi->alt_ref_source = NULL;
-#endif
- // Don't refresh the last buffer for an ARF overlay frame. It will
- // become the GF so preserve last as an alternative prediction option.
- cpi->refresh_last_frame = 0;
- }
-#if CONFIG_MULTIPLE_ARF
- ++cpi->next_frame_in_order;
-#endif
- }
- }
-
- if (cpi->source) {
- cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
- : &cpi->source->img;
- *time_stamp = cpi->source->ts_start;
- *time_end = cpi->source->ts_end;
- *frame_flags = cpi->source->flags;
-
- // fprintf(fp_out, " Frame:%d", cm->current_video_frame);
-#if CONFIG_MULTIPLE_ARF
- if (cpi->multi_arf_enabled) {
- // fprintf(fp_out, " seq_no:%d this_frame_weight:%d",
- // cpi->sequence_number, cpi->this_frame_weight);
- } else {
- // fprintf(fp_out, "\n");
- }
-#else
- // fprintf(fp_out, "\n");
-#endif
-
-#if CONFIG_MULTIPLE_ARF
- if ((cm->frame_type != KEY_FRAME) && (cpi->pass == 2))
- cpi->source_alt_ref_pending = is_next_frame_arf(cpi);
-#endif
- } else {
- *size = 0;
- if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
- vp9_end_first_pass(cpi); /* get last stats packet */
- cpi->twopass.first_pass_done = 1;
- }
-
- // fclose(fp_out);
- return -1;
- }
-
- if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
- cpi->first_time_stamp_ever = cpi->source->ts_start;
- cpi->last_end_time_stamp_seen = cpi->source->ts_start;
- }
-
- // adjust frame rates based on timestamps given
- if (!cpi->refresh_alt_ref_frame) {
- int64_t this_duration;
- int step = 0;
-
- if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
- this_duration = cpi->source->ts_end - cpi->source->ts_start;
- step = 1;
- } else {
- int64_t last_duration = cpi->last_end_time_stamp_seen
- - cpi->last_time_stamp_seen;
-
- this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
-
- // do a step update if the duration changes by 10%
- if (last_duration)
- step = (int)((this_duration - last_duration) * 10 / last_duration);
- }
-
- if (this_duration) {
- if (step) {
- vp9_new_framerate(cpi, 10000000.0 / this_duration);
- } else {
- // Average this frame's rate into the last second's average
- // frame rate. If we haven't seen 1 second yet, then average
- // over the whole interval seen.
- const double interval = MIN((double)(cpi->source->ts_end
- - cpi->first_time_stamp_ever), 10000000.0);
- double avg_duration = 10000000.0 / cpi->oxcf.framerate;
- avg_duration *= (interval - avg_duration + this_duration);
- avg_duration /= interval;
-
- vp9_new_framerate(cpi, 10000000.0 / avg_duration);
- }
- }
-
- cpi->last_time_stamp_seen = cpi->source->ts_start;
- cpi->last_end_time_stamp_seen = cpi->source->ts_end;
- }
-
- // start with a 0 size frame
- *size = 0;
-
- // Clear down mmx registers
- vp9_clear_system_state(); // __asm emms;
-
- /* find a free buffer for the new frame, releasing the reference previously
- * held.
- */
- cm->fb_idx_ref_cnt[cm->new_fb_idx]--;
- cm->new_fb_idx = get_free_fb(cm);
-
-#if CONFIG_MULTIPLE_ARF
- /* Set up the correct ARF frame. */
- if (cpi->refresh_alt_ref_frame) {
- ++cpi->arf_buffered;
- }
- if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
- (cpi->pass == 2)) {
- cpi->alt_fb_idx = cpi->arf_buffer_idx[cpi->sequence_number];
- }
-#endif
-
- /* Get the mapping of L/G/A to the reference buffer pool */
- cm->active_ref_idx[0] = cm->ref_frame_map[cpi->lst_fb_idx];
- cm->active_ref_idx[1] = cm->ref_frame_map[cpi->gld_fb_idx];
- cm->active_ref_idx[2] = cm->ref_frame_map[cpi->alt_fb_idx];
-
-#if 0 // CONFIG_MULTIPLE_ARF
- if (cpi->multi_arf_enabled) {
- fprintf(fp_out, " idx(%d, %d, %d, %d) active(%d, %d, %d)",
- cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->alt_fb_idx, cm->new_fb_idx,
- cm->active_ref_idx[0], cm->active_ref_idx[1], cm->active_ref_idx[2]);
- if (cpi->refresh_alt_ref_frame)
- fprintf(fp_out, " type:ARF");
- if (cpi->is_src_frame_alt_ref)
- fprintf(fp_out, " type:OVERLAY[%d]", cpi->alt_fb_idx);
- fprintf(fp_out, "\n");
- }
-#endif
-
- cm->frame_type = INTER_FRAME;
- cm->frame_flags = *frame_flags;
-
- // Reset the frame pointers to the current frame size
- vp9_realloc_frame_buffer(get_frame_new_buffer(cm),
- cm->width, cm->height,
- cm->subsampling_x, cm->subsampling_y,
- VP9BORDERINPIXELS);
-
- // Calculate scaling factors for each of the 3 available references
- for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
- vp9_setup_scale_factors(cm, i);
-
- vp9_setup_interp_filters(&cpi->mb.e_mbd, DEFAULT_INTERP_FILTER, cm);
-
- if (cpi->sf.variance_adaptive_quantization) {
- vp9_vaq_init();
- }
-
- if (cpi->pass == 1) {
- Pass1Encode(cpi, size, dest, frame_flags);
- } else if (cpi->pass == 2) {
- Pass2Encode(cpi, size, dest, frame_flags);
- } else {
- encode_frame_to_data_rate(cpi, size, dest, frame_flags);
- }
-
- if (cm->refresh_frame_context)
- cm->frame_contexts[cm->frame_context_idx] = cm->fc;
-
- if (*size > 0) {
- // if its a dropped frame honor the requests on subsequent frames
- cpi->droppable = !frame_is_reference(cpi);
-
- // return to normal state
- cm->reset_frame_context = 0;
- cm->refresh_frame_context = 1;
- cpi->refresh_alt_ref_frame = 0;
- cpi->refresh_golden_frame = 0;
- cpi->refresh_last_frame = 1;
- cm->frame_type = INTER_FRAME;
- }
-
- vpx_usec_timer_mark(&cmptimer);
- cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
-
- if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
- generate_psnr_packet(cpi);
-
-#if CONFIG_INTERNAL_STATS
-
- if (cpi->pass != 1) {
- cpi->bytes += *size;
-
- if (cm->show_frame) {
- cpi->count++;
-
- if (cpi->b_calculate_psnr) {
- double ye, ue, ve;
- double frame_psnr;
- YV12_BUFFER_CONFIG *orig = cpi->Source;
- YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
- YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
- int y_samples = orig->y_height * orig->y_width;
- int uv_samples = orig->uv_height * orig->uv_width;
- int t_samples = y_samples + 2 * uv_samples;
- double sq_error;
-
- ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
- recon->y_buffer, recon->y_stride,
- orig->y_crop_width, orig->y_crop_height);
-
- ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
- recon->u_buffer, recon->uv_stride,
- orig->uv_crop_width, orig->uv_crop_height);
-
- ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
- recon->v_buffer, recon->uv_stride,
- orig->uv_crop_width, orig->uv_crop_height);
-
- sq_error = ye + ue + ve;
-
- frame_psnr = vp9_mse2psnr(t_samples, 255.0, sq_error);
-
- cpi->total_y += vp9_mse2psnr(y_samples, 255.0, ye);
- cpi->total_u += vp9_mse2psnr(uv_samples, 255.0, ue);
- cpi->total_v += vp9_mse2psnr(uv_samples, 255.0, ve);
- cpi->total_sq_error += sq_error;
- cpi->total += frame_psnr;
- {
- double frame_psnr2, frame_ssim2 = 0;
- double weight = 0;
-#if CONFIG_VP9_POSTPROC
- vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
- cm->lf.filter_level * 10 / 6);
-#endif
- vp9_clear_system_state();
-
- ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
- pp->y_buffer, pp->y_stride,
- orig->y_crop_width, orig->y_crop_height);
-
- ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
- pp->u_buffer, pp->uv_stride,
- orig->uv_crop_width, orig->uv_crop_height);
-
- ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
- pp->v_buffer, pp->uv_stride,
- orig->uv_crop_width, orig->uv_crop_height);
-
- sq_error = ye + ue + ve;
-
- frame_psnr2 = vp9_mse2psnr(t_samples, 255.0, sq_error);
-
- cpi->totalp_y += vp9_mse2psnr(y_samples, 255.0, ye);
- cpi->totalp_u += vp9_mse2psnr(uv_samples, 255.0, ue);
- cpi->totalp_v += vp9_mse2psnr(uv_samples, 255.0, ve);
- cpi->total_sq_error2 += sq_error;
- cpi->totalp += frame_psnr2;
-
- frame_ssim2 = vp9_calc_ssim(cpi->Source,
- recon, 1, &weight);
-
- cpi->summed_quality += frame_ssim2 * weight;
- cpi->summed_weights += weight;
-
- frame_ssim2 = vp9_calc_ssim(cpi->Source,
- &cm->post_proc_buffer, 1, &weight);
-
- cpi->summedp_quality += frame_ssim2 * weight;
- cpi->summedp_weights += weight;
-#if 0
- {
- FILE *f = fopen("q_used.stt", "a");
- fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
- cpi->common.current_video_frame, y2, u2, v2,
- frame_psnr2, frame_ssim2);
- fclose(f);
- }
-#endif
- }
- }
-
- if (cpi->b_calculate_ssimg) {
- double y, u, v, frame_all;
- frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show,
- &y, &u, &v);
- cpi->total_ssimg_y += y;
- cpi->total_ssimg_u += u;
- cpi->total_ssimg_v += v;
- cpi->total_ssimg_all += frame_all;
- }
- }
- }
-
-#endif
- // fclose(fp_out);
- return 0;
-}
-
-int vp9_get_preview_raw_frame(VP9_PTR comp, YV12_BUFFER_CONFIG *dest,
- vp9_ppflags_t *flags) {
- VP9_COMP *cpi = (VP9_COMP *) comp;
-
- if (!cpi->common.show_frame) {
- return -1;
- } else {
- int ret;
-#if CONFIG_VP9_POSTPROC
- ret = vp9_post_proc_frame(&cpi->common, dest, flags);
-#else
-
- if (cpi->common.frame_to_show) {
- *dest = *cpi->common.frame_to_show;
- dest->y_width = cpi->common.width;
- dest->y_height = cpi->common.height;
- dest->uv_height = cpi->common.height / 2;
- ret = 0;
- } else {
- ret = -1;
- }
-
-#endif // !CONFIG_VP9_POSTPROC
- vp9_clear_system_state();
- return ret;
- }
-}
-
-int vp9_set_roimap(VP9_PTR comp, unsigned char *map, unsigned int rows,
- unsigned int cols, int delta_q[MAX_SEGMENTS],
- int delta_lf[MAX_SEGMENTS],
- unsigned int threshold[MAX_SEGMENTS]) {
- VP9_COMP *cpi = (VP9_COMP *) comp;
- signed char feature_data[SEG_LVL_MAX][MAX_SEGMENTS];
- struct segmentation *seg = &cpi->common.seg;
- int i;
-
- if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
- return -1;
-
- if (!map) {
- vp9_disable_segmentation((VP9_PTR)cpi);
- return 0;
- }
-
- // Set the segmentation Map
- vp9_set_segmentation_map((VP9_PTR)cpi, map);
-
- // Activate segmentation.
- vp9_enable_segmentation((VP9_PTR)cpi);
-
- // Set up the quant, LF and breakout threshold segment data
- for (i = 0; i < MAX_SEGMENTS; i++) {
- feature_data[SEG_LVL_ALT_Q][i] = delta_q[i];
- feature_data[SEG_LVL_ALT_LF][i] = delta_lf[i];
- cpi->segment_encode_breakout[i] = threshold[i];
- }
-
- // Enable the loop and quant changes in the feature mask
- for (i = 0; i < MAX_SEGMENTS; i++) {
- if (delta_q[i])
- vp9_enable_segfeature(seg, i, SEG_LVL_ALT_Q);
- else
- vp9_disable_segfeature(seg, i, SEG_LVL_ALT_Q);
-
- if (delta_lf[i])
- vp9_enable_segfeature(seg, i, SEG_LVL_ALT_LF);
- else
- vp9_disable_segfeature(seg, i, SEG_LVL_ALT_LF);
- }
-
- // Initialize the feature data structure
- // SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
- vp9_set_segment_data((VP9_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
-
- return 0;
-}
-
-int vp9_set_active_map(VP9_PTR comp, unsigned char *map,
- unsigned int rows, unsigned int cols) {
- VP9_COMP *cpi = (VP9_COMP *) comp;
-
- if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
- if (map) {
- vpx_memcpy(cpi->active_map, map, rows * cols);
- cpi->active_map_enabled = 1;
- } else {
- cpi->active_map_enabled = 0;
- }
-
- return 0;
- } else {
- // cpi->active_map_enabled = 0;
- return -1;
- }
-}
-
-int vp9_set_internal_size(VP9_PTR comp,
- VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
- VP9_COMP *cpi = (VP9_COMP *) comp;
- VP9_COMMON *cm = &cpi->common;
- int hr = 0, hs = 0, vr = 0, vs = 0;
-
- if (horiz_mode > ONETWO || vert_mode > ONETWO)
- return -1;
-
- Scale2Ratio(horiz_mode, &hr, &hs);
- Scale2Ratio(vert_mode, &vr, &vs);
-
- // always go to the next whole number
- cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
- cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
-
- assert(cm->width <= cpi->initial_width);
- assert(cm->height <= cpi->initial_height);
- update_frame_size(cpi);
- return 0;
-}
-
-int vp9_set_size_literal(VP9_PTR comp, unsigned int width,
- unsigned int height) {
- VP9_COMP *cpi = (VP9_COMP *)comp;
- VP9_COMMON *cm = &cpi->common;
-
- check_initial_width(cpi, NULL);
-
- if (width) {
- cm->width = width;
- if (cm->width * 5 < cpi->initial_width) {
- cm->width = cpi->initial_width / 5 + 1;
- printf("Warning: Desired width too small, changed to %d \n", cm->width);
- }
- if (cm->width > cpi->initial_width) {
- cm->width = cpi->initial_width;
- printf("Warning: Desired width too large, changed to %d \n", cm->width);
- }
- }
-
- if (height) {
- cm->height = height;
- if (cm->height * 5 < cpi->initial_height) {
- cm->height = cpi->initial_height / 5 + 1;
- printf("Warning: Desired height too small, changed to %d \n", cm->height);
- }
- if (cm->height > cpi->initial_height) {
- cm->height = cpi->initial_height;
- printf("Warning: Desired height too large, changed to %d \n", cm->height);
- }
- }
-
- assert(cm->width <= cpi->initial_width);
- assert(cm->height <= cpi->initial_height);
- update_frame_size(cpi);
- return 0;
-}
-
-int vp9_switch_layer(VP9_PTR comp, int layer) {
- VP9_COMP *cpi = (VP9_COMP *)comp;
-
- if (cpi->use_svc) {
- cpi->current_layer = layer;
-
- // Use buffer i for layer i LST
- cpi->lst_fb_idx = layer;
-
- // Use buffer i-1 for layer i Alt (Inter-layer prediction)
- if (layer != 0) cpi->alt_fb_idx = layer - 1;
-
- // Use the rest for Golden
- if (layer < 2 * cpi->number_spatial_layers - NUM_REF_FRAMES)
- cpi->gld_fb_idx = cpi->lst_fb_idx;
- else
- cpi->gld_fb_idx = 2 * cpi->number_spatial_layers - 1 - layer;
-
- printf("Switching to layer %d:\n", layer);
- printf("Using references: LST/GLD/ALT [%d|%d|%d]\n", cpi->lst_fb_idx,
- cpi->gld_fb_idx, cpi->alt_fb_idx);
- } else {
- printf("Switching layer not supported. Enable SVC first \n");
- }
- return 0;
-}
-
-void vp9_set_svc(VP9_PTR comp, int use_svc) {
- VP9_COMP *cpi = (VP9_COMP *)comp;
- cpi->use_svc = use_svc;
- if (cpi->use_svc) printf("Enabled SVC encoder \n");
- return;
-}
-
-int vp9_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) {
- int i, j;
- int total = 0;
-
- uint8_t *src = source->y_buffer;
- uint8_t *dst = dest->y_buffer;
-
- // Loop through the Y plane raw and reconstruction data summing
- // (square differences)
- for (i = 0; i < source->y_height; i += 16) {
- for (j = 0; j < source->y_width; j += 16) {
- unsigned int sse;
- total += vp9_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride,
- &sse);
- }
-
- src += 16 * source->y_stride;
- dst += 16 * dest->y_stride;
- }
-
- return total;
-}
-
-
-int vp9_get_quantizer(VP9_PTR c) {
- return ((VP9_COMP *)c)->common.base_qindex;
-}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_onyx_int.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_onyx_int.h
deleted file mode 100644
index 0498043fc72..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_onyx_int.h
+++ /dev/null
@@ -1,727 +0,0 @@
-/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-
-#ifndef VP9_ENCODER_VP9_ONYX_INT_H_
-#define VP9_ENCODER_VP9_ONYX_INT_H_
-
-#include <stdio.h>
-#include "./vpx_config.h"
-#include "vp9/common/vp9_onyx.h"
-#include "vp9/encoder/vp9_treewriter.h"
-#include "vp9/encoder/vp9_tokenize.h"
-#include "vp9/common/vp9_onyxc_int.h"
-#include "vp9/encoder/vp9_variance.h"
-#include "vp9/encoder/vp9_encodemb.h"
-#include "vp9/encoder/vp9_quantize.h"
-#include "vp9/common/vp9_entropy.h"
-#include "vp9/common/vp9_entropymode.h"
-#include "vpx_ports/mem.h"
-#include "vpx/internal/vpx_codec_internal.h"
-#include "vp9/encoder/vp9_mcomp.h"
-#include "vp9/common/vp9_findnearmv.h"
-#include "vp9/encoder/vp9_lookahead.h"
-
-// Experimental rate control switches
-#if CONFIG_ONESHOTQ
-#define ONE_SHOT_Q_ESTIMATE 0
-#define STRICT_ONE_SHOT_Q 0
-#endif
-#define DISABLE_RC_LONG_TERM_MEM 0
-
-// #define MODE_TEST_HIT_STATS
-
-// #define SPEEDSTATS 1
-#if CONFIG_MULTIPLE_ARF
-// Set MIN_GF_INTERVAL to 1 for the full decomposition.
-#define MIN_GF_INTERVAL 2
-#else
-#define MIN_GF_INTERVAL 4
-#endif
-#define DEFAULT_GF_INTERVAL 7
-
-#define KEY_FRAME_CONTEXT 5
-
-#define MAX_MODES 30
-#define MAX_REFS 6
-
-#define MIN_THRESHMULT 32
-#define MAX_THRESHMULT 512
-
-#define GF_ZEROMV_ZBIN_BOOST 0
-#define LF_ZEROMV_ZBIN_BOOST 0
-#define MV_ZBIN_BOOST 0
-#define SPLIT_MV_ZBIN_BOOST 0
-#define INTRA_ZBIN_BOOST 0
-
-typedef struct {
- int nmvjointcost[MV_JOINTS];
- int nmvcosts[2][MV_VALS];
- int nmvcosts_hp[2][MV_VALS];
-
- vp9_prob segment_pred_probs[PREDICTION_PROBS];
-
- unsigned char *last_frame_seg_map_copy;
-
- // 0 = Intra, Last, GF, ARF
- signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS];
- // 0 = ZERO_MV, MV
- signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];
-
- int inter_mode_counts[INTER_MODE_CONTEXTS][INTER_MODES - 1][2];
- FRAME_CONTEXT fc;
-} CODING_CONTEXT;
-
-typedef struct {
- double frame;
- double intra_error;
- double coded_error;
- double sr_coded_error;
- double ssim_weighted_pred_err;
- double pcnt_inter;
- double pcnt_motion;
- double pcnt_second_ref;
- double pcnt_neutral;
- double MVr;
- double mvr_abs;
- double MVc;
- double mvc_abs;
- double MVrv;
- double MVcv;
- double mv_in_out_count;
- double new_mv_count;
- double duration;
- double count;
-} FIRSTPASS_STATS;
-
-typedef struct {
- int frames_so_far;
- double frame_intra_error;
- double frame_coded_error;
- double frame_pcnt_inter;
- double frame_pcnt_motion;
- double frame_mvr;
- double frame_mvr_abs;
- double frame_mvc;
- double frame_mvc_abs;
-} ONEPASS_FRAMESTATS;
-
-typedef struct {
- struct {
- int err;
- union {
- int_mv mv;
- MB_PREDICTION_MODE mode;
- } m;
- } ref[MAX_REF_FRAMES];
-} MBGRAPH_MB_STATS;
-
-typedef struct {
- MBGRAPH_MB_STATS *mb_stats;
-} MBGRAPH_FRAME_STATS;
-
-// This enumerator type needs to be kept aligned with the mode order in
-// const MODE_DEFINITION vp9_mode_order[MAX_MODES] used in the rd code.
-typedef enum {
- THR_NEARESTMV,
- THR_NEARESTA,
- THR_NEARESTG,
-
- THR_DC,
-
- THR_NEWMV,
- THR_NEWA,
- THR_NEWG,
-
- THR_NEARMV,
- THR_NEARA,
- THR_COMP_NEARESTLA,
- THR_COMP_NEARESTGA,
-
- THR_TM,
-
- THR_COMP_NEARLA,
- THR_COMP_NEWLA,
- THR_NEARG,
- THR_COMP_NEARGA,
- THR_COMP_NEWGA,
-
- THR_ZEROMV,
- THR_ZEROG,
- THR_ZEROA,
- THR_COMP_ZEROLA,
- THR_COMP_ZEROGA,
-
- THR_H_PRED,
- THR_V_PRED,
- THR_D135_PRED,
- THR_D207_PRED,
- THR_D153_PRED,
- THR_D63_PRED,
- THR_D117_PRED,
- THR_D45_PRED,
-} THR_MODES;
-
-typedef enum {
- THR_LAST,
- THR_GOLD,
- THR_ALTR,
- THR_COMP_LA,
- THR_COMP_GA,
- THR_INTRA,
-} THR_MODES_SUB8X8;
-
-typedef enum {
- DIAMOND = 0,
- NSTEP = 1,
- HEX = 2,
- BIGDIA = 3,
- SQUARE = 4
-} SEARCH_METHODS;
-
-typedef enum {
- USE_FULL_RD = 0,
- USE_LARGESTINTRA,
- USE_LARGESTINTRA_MODELINTER,
- USE_LARGESTALL
-} TX_SIZE_SEARCH_METHOD;
-
-typedef enum {
- // Values should be powers of 2 so that they can be selected as bits of
- // an integer flags field
-
- // terminate search early based on distortion so far compared to
- // qp step, distortion in the neighborhood of the frame, etc.
- FLAG_EARLY_TERMINATE = 1,
-
- // skips comp inter modes if the best so far is an intra mode
- FLAG_SKIP_COMP_BESTINTRA = 2,
-
- // skips comp inter modes if the best single intermode so far does
- // not have the same reference as one of the two references being
- // tested
- FLAG_SKIP_COMP_REFMISMATCH = 4,
-
- // skips oblique intra modes if the best so far is an inter mode
- FLAG_SKIP_INTRA_BESTINTER = 8,
-
- // skips oblique intra modes at angles 27, 63, 117, 153 if the best
- // intra so far is not one of the neighboring directions
- FLAG_SKIP_INTRA_DIRMISMATCH = 16,
-
- // skips intra modes other than DC_PRED if the source variance
- // is small
- FLAG_SKIP_INTRA_LOWVAR = 32,
-} MODE_SEARCH_SKIP_LOGIC;
-
-typedef enum {
- SUBPEL_ITERATIVE = 0,
- SUBPEL_TREE = 1,
- // Other methods to come
-} SUBPEL_SEARCH_METHODS;
-
-#define ALL_INTRA_MODES 0x3FF
-#define INTRA_DC_ONLY 0x01
-#define INTRA_DC_TM ((1 << TM_PRED) | (1 << DC_PRED))
-#define INTRA_DC_H_V ((1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED))
-#define INTRA_DC_TM_H_V (INTRA_DC_TM | (1 << V_PRED) | (1 << H_PRED))
-
-typedef enum {
- LAST_FRAME_PARTITION_OFF = 0,
- LAST_FRAME_PARTITION_LOW_MOTION = 1,
- LAST_FRAME_PARTITION_ALL = 2
-} LAST_FRAME_PARTITION_METHOD;
-
-typedef struct {
- int RD;
- SEARCH_METHODS search_method;
- int auto_filter;
- int recode_loop;
- SUBPEL_SEARCH_METHODS subpel_search_method;
- int subpel_iters_per_step;
- int thresh_mult[MAX_MODES];
- int thresh_mult_sub8x8[MAX_REFS];
- int max_step_search_steps;
- int reduce_first_step_size;
- int auto_mv_step_size;
- int optimize_coefficients;
- int static_segmentation;
- int variance_adaptive_quantization;
- int comp_inter_joint_search_thresh;
- int adaptive_rd_thresh;
- int skip_encode_sb;
- int skip_encode_frame;
- LAST_FRAME_PARTITION_METHOD use_lastframe_partitioning;
- TX_SIZE_SEARCH_METHOD tx_size_search_method;
- int use_lp32x32fdct;
- int use_avoid_tested_higherror;
- int use_one_partition_size_always;
- int less_rectangular_check;
- int use_square_partition_only;
- int mode_skip_start;
- int reference_masking;
- BLOCK_SIZE always_this_block_size;
- int auto_min_max_partition_size;
- BLOCK_SIZE min_partition_size;
- BLOCK_SIZE max_partition_size;
- int adjust_partitioning_from_last_frame;
- int last_partitioning_redo_frequency;
- int disable_split_mask;
- int using_small_partition_info;
- // TODO(jingning): combine the related motion search speed features
- int adaptive_motion_search;
-
- // Implements various heuristics to skip searching modes
- // The heuristics selected are based on flags
- // defined in the MODE_SEARCH_SKIP_HEURISTICS enum
- unsigned int mode_search_skip_flags;
- // A source variance threshold below which the split mode is disabled
- unsigned int disable_split_var_thresh;
- // A source variance threshold below which filter search is disabled
- // Choose a very large value (UINT_MAX) to use 8-tap always
- unsigned int disable_filter_search_var_thresh;
- int intra_y_mode_mask[TX_SIZES];
- int intra_uv_mode_mask[TX_SIZES];
- int use_rd_breakout;
- int use_uv_intra_rd_estimate;
- int use_fast_lpf_pick;
- int use_fast_coef_updates; // 0: 2-loop, 1: 1-loop, 2: 1-loop reduced
-} SPEED_FEATURES;
-
-typedef struct VP9_COMP {
- DECLARE_ALIGNED(16, int16_t, y_quant[QINDEX_RANGE][8]);
- DECLARE_ALIGNED(16, int16_t, y_quant_shift[QINDEX_RANGE][8]);
- DECLARE_ALIGNED(16, int16_t, y_zbin[QINDEX_RANGE][8]);
- DECLARE_ALIGNED(16, int16_t, y_round[QINDEX_RANGE][8]);
-
- DECLARE_ALIGNED(16, int16_t, uv_quant[QINDEX_RANGE][8]);
- DECLARE_ALIGNED(16, int16_t, uv_quant_shift[QINDEX_RANGE][8]);
- DECLARE_ALIGNED(16, int16_t, uv_zbin[QINDEX_RANGE][8]);
- DECLARE_ALIGNED(16, int16_t, uv_round[QINDEX_RANGE][8]);
-
-#if CONFIG_ALPHA
- DECLARE_ALIGNED(16, int16_t, a_quant[QINDEX_RANGE][8]);
- DECLARE_ALIGNED(16, int16_t, a_quant_shift[QINDEX_RANGE][8]);
- DECLARE_ALIGNED(16, int16_t, a_zbin[QINDEX_RANGE][8]);
- DECLARE_ALIGNED(16, int16_t, a_round[QINDEX_RANGE][8]);
-#endif
-
- MACROBLOCK mb;
- VP9_COMMON common;
- VP9_CONFIG oxcf;
- struct rdcost_block_args rdcost_stack;
-
- struct lookahead_ctx *lookahead;
- struct lookahead_entry *source;
-#if CONFIG_MULTIPLE_ARF
- struct lookahead_entry *alt_ref_source[NUM_REF_FRAMES];
-#else
- struct lookahead_entry *alt_ref_source;
-#endif
-
- YV12_BUFFER_CONFIG *Source;
- YV12_BUFFER_CONFIG *un_scaled_source;
- YV12_BUFFER_CONFIG scaled_source;
-
- unsigned int frames_till_alt_ref_frame;
- int source_alt_ref_pending;
- int source_alt_ref_active;
-
- int is_src_frame_alt_ref;
-
- int gold_is_last; // gold same as last frame ( short circuit gold searches)
- int alt_is_last; // Alt same as last ( short circuit altref search)
- int gold_is_alt; // don't do both alt and gold search ( just do gold).
-
- int scaled_ref_idx[3];
- int lst_fb_idx;
- int gld_fb_idx;
- int alt_fb_idx;
-
- int current_layer;
- int use_svc;
-
-#if CONFIG_MULTIPLE_ARF
- int alt_ref_fb_idx[NUM_REF_FRAMES - 3];
-#endif
- int refresh_last_frame;
- int refresh_golden_frame;
- int refresh_alt_ref_frame;
- YV12_BUFFER_CONFIG last_frame_uf;
-
- TOKENEXTRA *tok;
- unsigned int tok_count[4][1 << 6];
-
-
- unsigned int frames_since_key;
- unsigned int key_frame_frequency;
- unsigned int this_key_frame_forced;
- unsigned int next_key_frame_forced;
-#if CONFIG_MULTIPLE_ARF
- // Position within a frame coding order (including any additional ARF frames).
- unsigned int sequence_number;
- // Next frame in naturally occurring order that has not yet been coded.
- int next_frame_in_order;
-#endif
-
- // Ambient reconstruction err target for force key frames
- int ambient_err;
-
- unsigned int mode_chosen_counts[MAX_MODES];
- unsigned int sub8x8_mode_chosen_counts[MAX_REFS];
- int64_t mode_skip_mask;
- int ref_frame_mask;
- int set_ref_frame_mask;
-
- int rd_threshes[MAX_SEGMENTS][BLOCK_SIZES][MAX_MODES];
- int rd_thresh_freq_fact[BLOCK_SIZES][MAX_MODES];
- int rd_thresh_sub8x8[MAX_SEGMENTS][BLOCK_SIZES][MAX_REFS];
- int rd_thresh_freq_sub8x8[BLOCK_SIZES][MAX_REFS];
-
- int64_t rd_comp_pred_diff[NB_PREDICTION_TYPES];
- int64_t rd_prediction_type_threshes[4][NB_PREDICTION_TYPES];
- unsigned int intra_inter_count[INTRA_INTER_CONTEXTS][2];
- unsigned int comp_inter_count[COMP_INTER_CONTEXTS][2];
- unsigned int single_ref_count[REF_CONTEXTS][2][2];
- unsigned int comp_ref_count[REF_CONTEXTS][2];
-
- int64_t rd_tx_select_diff[TX_MODES];
- // FIXME(rbultje) can this overflow?
- int rd_tx_select_threshes[4][TX_MODES];
-
- int64_t rd_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
- int64_t rd_filter_threshes[4][SWITCHABLE_FILTER_CONTEXTS];
- int64_t rd_filter_cache[SWITCHABLE_FILTER_CONTEXTS];
-
- int RDMULT;
- int RDDIV;
-
- CODING_CONTEXT coding_context;
-
- // Rate targetting variables
- int this_frame_target;
- int projected_frame_size;
- int last_q[2]; // Separate values for Intra/Inter
- int last_boosted_qindex; // Last boosted GF/KF/ARF q
-
- double rate_correction_factor;
- double key_frame_rate_correction_factor;
- double gf_rate_correction_factor;
-
- unsigned int frames_since_golden;
- int frames_till_gf_update_due; // Count down till next GF
-
- int gf_overspend_bits; // cumulative bits overspent because of GF boost
-
- int non_gf_bitrate_adjustment; // Following GF to recover extra bits spent
-
- int kf_overspend_bits; // Bits spent on key frames to be recovered on inters
- int kf_bitrate_adjustment; // number of bits to recover on each inter frame.
- int max_gf_interval;
- int baseline_gf_interval;
- int active_arnr_frames; // <= cpi->oxcf.arnr_max_frames
- int active_arnr_strength; // <= cpi->oxcf.arnr_max_strength
-
- int64_t key_frame_count;
- int prior_key_frame_distance[KEY_FRAME_CONTEXT];
- int per_frame_bandwidth; // Current section per frame bandwidth target
- int av_per_frame_bandwidth; // Average frame size target for clip
- int min_frame_bandwidth; // Minimum allocation used for any frame
- int inter_frame_target;
- double output_framerate;
- int64_t last_time_stamp_seen;
- int64_t last_end_time_stamp_seen;
- int64_t first_time_stamp_ever;
-
- int ni_av_qi;
- int ni_tot_qi;
- int ni_frames;
- int avg_frame_qindex;
- double tot_q;
- double avg_q;
-
- int zbin_mode_boost;
- int zbin_mode_boost_enabled;
-
- int64_t total_byte_count;
-
- int buffered_mode;
-
- int buffer_level;
- int bits_off_target;
-
- int rolling_target_bits;
- int rolling_actual_bits;
-
- int long_rolling_target_bits;
- int long_rolling_actual_bits;
-
- int64_t total_actual_bits;
- int total_target_vs_actual; // debug stats
-
- int worst_quality;
- int active_worst_quality;
- int best_quality;
- int active_best_quality;
-
- int cq_target_quality;
-
- int y_mode_count[4][INTRA_MODES];
- int y_uv_mode_count[INTRA_MODES][INTRA_MODES];
- unsigned int partition_count[PARTITION_CONTEXTS][PARTITION_TYPES];
-
- nmv_context_counts NMVcount;
-
- vp9_coeff_count coef_counts[TX_SIZES][BLOCK_TYPES];
- vp9_coeff_probs_model frame_coef_probs[TX_SIZES][BLOCK_TYPES];
- vp9_coeff_stats frame_branch_ct[TX_SIZES][BLOCK_TYPES];
-
- int gfu_boost;
- int last_boost;
- int kf_boost;
- int kf_zeromotion_pct;
- int gf_zeromotion_pct;
-
- int64_t target_bandwidth;
- struct vpx_codec_pkt_list *output_pkt_list;
-
-#if 0
- // Experimental code for lagged and one pass
- ONEPASS_FRAMESTATS one_pass_frame_stats[MAX_LAG_BUFFERS];
- int one_pass_frame_index;
-#endif
- MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS];
- int mbgraph_n_frames; // number of frames filled in the above
- int static_mb_pct; // % forced skip mbs by segmentation
- int seg0_progress, seg0_idx, seg0_cnt;
-
- int decimation_factor;
- int decimation_count;
-
- // for real time encoding
- int avg_encode_time; // microsecond
- int avg_pick_mode_time; // microsecond
- int speed;
- unsigned int cpu_freq; // Mhz
- int compressor_speed;
-
- int interquantizer;
- int goldfreq;
- int auto_worst_q;
- int cpu_used;
- int pass;
-
- vp9_prob last_skip_false_probs[3][MBSKIP_CONTEXTS];
- int last_skip_probs_q[3];
-
- int ref_frame_flags;
-
- SPEED_FEATURES sf;
- int error_bins[1024];
-
- unsigned int max_mv_magnitude;
- int mv_step_param;
-
- // Data used for real time conferencing mode to help determine if it
- // would be good to update the gf
- int inter_zz_count;
- int gf_bad_count;
- int gf_update_recommended;
-
- unsigned char *segmentation_map;
-
- // segment threashold for encode breakout
- int segment_encode_breakout[MAX_SEGMENTS];
-
- unsigned char *active_map;
- unsigned int active_map_enabled;
-
- fractional_mv_step_fp *find_fractional_mv_step;
- fractional_mv_step_comp_fp *find_fractional_mv_step_comp;
- vp9_full_search_fn_t full_search_sad;
- vp9_refining_search_fn_t refining_search_sad;
- vp9_diamond_search_fn_t diamond_search_sad;
- vp9_variance_fn_ptr_t fn_ptr[BLOCK_SIZES];
- uint64_t time_receive_data;
- uint64_t time_compress_data;
- uint64_t time_pick_lpf;
- uint64_t time_encode_sb_row;
-
- struct twopass_rc {
- unsigned int section_intra_rating;
- unsigned int next_iiratio;
- unsigned int this_iiratio;
- FIRSTPASS_STATS total_stats;
- FIRSTPASS_STATS this_frame_stats;
- FIRSTPASS_STATS *stats_in, *stats_in_end, *stats_in_start;
- FIRSTPASS_STATS total_left_stats;
- int first_pass_done;
- int64_t bits_left;
- int64_t clip_bits_total;
- double avg_iiratio;
- double modified_error_total;
- double modified_error_used;
- double modified_error_left;
- double kf_intra_err_min;
- double gf_intra_err_min;
- int frames_to_key;
- int maxq_max_limit;
- int maxq_min_limit;
- int static_scene_max_gf_interval;
- int kf_bits;
- // Remaining error from uncoded frames in a gf group. Two pass use only
- int64_t gf_group_error_left;
-
- // Projected total bits available for a key frame group of frames
- int64_t kf_group_bits;
-
- // Error score of frames still to be coded in kf group
- int64_t kf_group_error_left;
-
- // Projected Bits available for a group of frames including 1 GF or ARF
- int64_t gf_group_bits;
- // Bits for the golden frame or ARF - 2 pass only
- int gf_bits;
- int alt_extra_bits;
-
- int sr_update_lag;
- double est_max_qcorrection_factor;
- } twopass;
-
- YV12_BUFFER_CONFIG alt_ref_buffer;
- YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS];
- int fixed_divide[512];
-
-#if CONFIG_INTERNAL_STATS
- int count;
- double total_y;
- double total_u;
- double total_v;
- double total;
- double total_sq_error;
- double totalp_y;
- double totalp_u;
- double totalp_v;
- double totalp;
- double total_sq_error2;
- int bytes;
- double summed_quality;
- double summed_weights;
- double summedp_quality;
- double summedp_weights;
- unsigned int tot_recode_hits;
-
-
- double total_ssimg_y;
- double total_ssimg_u;
- double total_ssimg_v;
- double total_ssimg_all;
-
- int b_calculate_ssimg;
-#endif
- int b_calculate_psnr;
-
- // Per MB activity measurement
- unsigned int activity_avg;
- unsigned int *mb_activity_map;
- int *mb_norm_activity_map;
- int output_partition;
-
- /* force next frame to intra when kf_auto says so */
- int force_next_frame_intra;
-
- int droppable;
-
- int dummy_packing; /* flag to indicate if packing is dummy */
-
- unsigned int switchable_interp_count[SWITCHABLE_FILTER_CONTEXTS]
- [SWITCHABLE_FILTERS];
-
- unsigned int tx_stepdown_count[TX_SIZES];
-
- int initial_width;
- int initial_height;
-
- int number_spatial_layers;
- int enable_encode_breakout; // Default value is 1. From first pass stats,
- // encode_breakout may be disabled.
-
-#if CONFIG_MULTIPLE_ARF
- // ARF tracking variables.
- int multi_arf_enabled;
- unsigned int frame_coding_order_period;
- unsigned int new_frame_coding_order_period;
- int frame_coding_order[MAX_LAG_BUFFERS * 2];
- int arf_buffer_idx[MAX_LAG_BUFFERS * 3 / 2];
- int arf_weight[MAX_LAG_BUFFERS];
- int arf_buffered;
- int this_frame_weight;
- int max_arf_level;
-#endif
-
-#ifdef ENTROPY_STATS
- int64_t mv_ref_stats[INTER_MODE_CONTEXTS][INTER_MODES - 1][2];
-#endif
-
-
-#ifdef MODE_TEST_HIT_STATS
- // Debug / test stats
- int64_t mode_test_hits[BLOCK_SIZES];
-#endif
-
- /* Y,U,V,(A) */
- ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
- ENTROPY_CONTEXT left_context[MAX_MB_PLANE][16];
-
- PARTITION_CONTEXT *above_seg_context;
- PARTITION_CONTEXT left_seg_context[8];
-} VP9_COMP;
-
-static int get_ref_frame_idx(VP9_COMP *cpi, MV_REFERENCE_FRAME ref_frame) {
- if (ref_frame == LAST_FRAME) {
- return cpi->lst_fb_idx;
- } else if (ref_frame == GOLDEN_FRAME) {
- return cpi->gld_fb_idx;
- } else {
- return cpi->alt_fb_idx;
- }
-}
-
-static int get_scale_ref_frame_idx(VP9_COMP *cpi,
- MV_REFERENCE_FRAME ref_frame) {
- if (ref_frame == LAST_FRAME) {
- return 0;
- } else if (ref_frame == GOLDEN_FRAME) {
- return 1;
- } else {
- return 2;
- }
-}
-
-void vp9_encode_frame(VP9_COMP *cpi);
-
-void vp9_pack_bitstream(VP9_COMP *cpi, unsigned char *dest,
- unsigned long *size);
-
-void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x);
-
-void vp9_set_speed_features(VP9_COMP *cpi);
-
-int vp9_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest);
-
-void vp9_alloc_compressor_data(VP9_COMP *cpi);
-
-int vp9_compute_qdelta(VP9_COMP *cpi, double qstart, double qtarget);
-
-static int get_token_alloc(int mb_rows, int mb_cols) {
- return mb_rows * mb_cols * (48 * 16 + 4);
-}
-
-#endif // VP9_ENCODER_VP9_ONYX_INT_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_picklpf.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_picklpf.c
index 476ecaaa254..53284656e3b 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_picklpf.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_picklpf.c
@@ -10,162 +10,96 @@
#include <assert.h>
#include <limits.h>
-#include "vp9/common/vp9_onyxc_int.h"
-#include "vp9/encoder/vp9_onyx_int.h"
-#include "vp9/encoder/vp9_picklpf.h"
-#include "vp9/encoder/vp9_quantize.h"
-#include "vpx_mem/vpx_mem.h"
-#include "vpx_scale/vpx_scale.h"
-#include "vp9/common/vp9_alloccommon.h"
-#include "vp9/common/vp9_loopfilter.h"
-#include "./vpx_scale_rtcd.h"
-
-void vp9_yv12_copy_partial_frame_c(YV12_BUFFER_CONFIG *src_ybc,
- YV12_BUFFER_CONFIG *dst_ybc, int fraction) {
- const int height = src_ybc->y_height;
- const int stride = src_ybc->y_stride;
- const int offset = stride * ((height >> 5) * 16 - 8);
- const int lines_to_copy = MAX(height >> (fraction + 4), 1) << 4;
-
- assert(src_ybc->y_stride == dst_ybc->y_stride);
- vpx_memcpy(dst_ybc->y_buffer + offset, src_ybc->y_buffer + offset,
- stride * (lines_to_copy + 16));
-}
-
-static int calc_partial_ssl_err(YV12_BUFFER_CONFIG *source,
- YV12_BUFFER_CONFIG *dest, int Fraction) {
- int i, j;
- int Total = 0;
- int srcoffset, dstoffset;
- uint8_t *src = source->y_buffer;
- uint8_t *dst = dest->y_buffer;
-
- int linestocopy = (source->y_height >> (Fraction + 4));
-
- if (linestocopy < 1)
- linestocopy = 1;
-
- linestocopy <<= 4;
+#include "./vpx_scale_rtcd.h"
- srcoffset = source->y_stride * (dest->y_height >> 5) * 16;
- dstoffset = dest->y_stride * (dest->y_height >> 5) * 16;
+#include "vpx_mem/vpx_mem.h"
- src += srcoffset;
- dst += dstoffset;
+#include "vp9/common/vp9_loopfilter.h"
+#include "vp9/common/vp9_onyxc_int.h"
+#include "vp9/common/vp9_quant_common.h"
- // Loop through the raw Y plane and reconstruction data summing the square
- // differences.
- for (i = 0; i < linestocopy; i += 16) {
- for (j = 0; j < source->y_width; j += 16) {
- unsigned int sse;
- Total += vp9_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride,
- &sse);
- }
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_picklpf.h"
+#include "vp9/encoder/vp9_quantize.h"
- src += 16 * source->y_stride;
- dst += 16 * dest->y_stride;
+static int get_max_filter_level(const VP9_COMP *cpi) {
+ if (cpi->pass == 2) {
+ return cpi->twopass.section_intra_rating > 8 ? MAX_LOOP_FILTER * 3 / 4
+ : MAX_LOOP_FILTER;
+ } else {
+ return MAX_LOOP_FILTER;
}
-
- return Total;
-}
-
-// Enforce a minimum filter level based upon baseline Q
-static int get_min_filter_level(VP9_COMP *cpi, int base_qindex) {
- int min_filter_level;
- min_filter_level = 0;
-
- return min_filter_level;
}
-// Enforce a maximum filter level based upon baseline Q
-static int get_max_filter_level(VP9_COMP *cpi, int base_qindex) {
- int max_filter_level = MAX_LOOP_FILTER;
- (void)base_qindex;
- if (cpi->twopass.section_intra_rating > 8)
- max_filter_level = MAX_LOOP_FILTER * 3 / 4;
+static int try_filter_frame(const YV12_BUFFER_CONFIG *sd, VP9_COMP *const cpi,
+ int filt_level, int partial_frame) {
+ VP9_COMMON *const cm = &cpi->common;
+ int filt_err;
- return max_filter_level;
-}
+ vp9_loop_filter_frame(cm->frame_to_show, cm, &cpi->mb.e_mbd, filt_level, 1,
+ partial_frame);
+ filt_err = vp9_get_y_sse(sd, cm->frame_to_show);
+ // Re-instate the unfiltered frame
+ vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
-// Stub function for now Alt LF not used
-void vp9_set_alt_lf_level(VP9_COMP *cpi, int filt_val) {
+ return filt_err;
}
-void vp9_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi, int partial) {
- VP9_COMMON *const cm = &cpi->common;
- struct loopfilter *const lf = &cm->lf;
-
- int best_err = 0;
- int filt_err = 0;
- const int min_filter_level = get_min_filter_level(cpi, cm->base_qindex);
- const int max_filter_level = get_max_filter_level(cpi, cm->base_qindex);
-
- int filter_step;
- int filt_high = 0;
- // Start search at previous frame filter level
- int filt_mid = lf->filter_level;
- int filt_low = 0;
- int filt_best;
+static int search_filter_level(const YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi,
+ int partial_frame) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const struct loopfilter *const lf = &cm->lf;
+ const int min_filter_level = 0;
+ const int max_filter_level = get_max_filter_level(cpi);
int filt_direction = 0;
-
- int Bias = 0; // Bias against raising loop filter in favor of lowering it.
-
- // Make a copy of the unfiltered / processed recon buffer
- vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
-
- lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0
- : cpi->oxcf.Sharpness;
+ int best_err, filt_best;
// Start the search at the previous frame filter level unless it is now out of
// range.
- filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level);
+ int filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level);
+ int filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
+ // Sum squared error at each filter level
+ int ss_err[MAX_LOOP_FILTER + 1];
- // Define the initial step size
- filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
+ // Set each entry to -1
+ vpx_memset(ss_err, 0xFF, sizeof(ss_err));
- // Get baseline error score
- vp9_set_alt_lf_level(cpi, filt_mid);
- vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, filt_mid, 1, partial);
+ // Make a copy of the unfiltered / processed recon buffer
+ vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
- best_err = vp9_calc_ss_err(sd, cm->frame_to_show);
+ best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame);
filt_best = filt_mid;
-
- // Re-instate the unfiltered frame
- vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
+ ss_err[filt_mid] = best_err;
while (filter_step > 0) {
- Bias = (best_err >> (15 - (filt_mid / 8))) * filter_step;
+ const int filt_high = MIN(filt_mid + filter_step, max_filter_level);
+ const int filt_low = MAX(filt_mid - filter_step, min_filter_level);
+ int filt_err;
- if (cpi->twopass.section_intra_rating < 20)
- Bias = Bias * cpi->twopass.section_intra_rating / 20;
+ // Bias against raising loop filter in favor of lowering it.
+ int bias = (best_err >> (15 - (filt_mid / 8))) * filter_step;
- // yx, bias less for large block size
- if (cpi->common.tx_mode != ONLY_4X4)
- Bias >>= 1;
+ if ((cpi->pass == 2) && (cpi->twopass.section_intra_rating < 20))
+ bias = (bias * cpi->twopass.section_intra_rating) / 20;
- filt_high = ((filt_mid + filter_step) > max_filter_level)
- ? max_filter_level
- : (filt_mid + filter_step);
- filt_low = ((filt_mid - filter_step) < min_filter_level)
- ? min_filter_level
- : (filt_mid - filter_step);
+ // yx, bias less for large block size
+ if (cm->tx_mode != ONLY_4X4)
+ bias >>= 1;
- if ((filt_direction <= 0) && (filt_low != filt_mid)) {
+ if (filt_direction <= 0 && filt_low != filt_mid) {
// Get Low filter error score
- vp9_set_alt_lf_level(cpi, filt_low);
- vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, filt_low, 1, partial);
-
- filt_err = vp9_calc_ss_err(sd, cm->frame_to_show);
-
- // Re-instate the unfiltered frame
- vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
-
+ if (ss_err[filt_low] < 0) {
+ filt_err = try_filter_frame(sd, cpi, filt_low, partial_frame);
+ ss_err[filt_low] = filt_err;
+ } else {
+ filt_err = ss_err[filt_low];
+ }
// If value is close to the best so far then bias towards a lower loop
// filter value.
- if ((filt_err - Bias) < best_err) {
+ if ((filt_err - bias) < best_err) {
// Was it actually better than the previous best?
if (filt_err < best_err)
best_err = filt_err;
@@ -175,17 +109,15 @@ void vp9_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi, int partial) {
}
// Now look at filt_high
- if ((filt_direction >= 0) && (filt_high != filt_mid)) {
- vp9_set_alt_lf_level(cpi, filt_high);
- vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, filt_high, 1, partial);
-
- filt_err = vp9_calc_ss_err(sd, cm->frame_to_show);
-
- // Re-instate the unfiltered frame
- vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
-
+ if (filt_direction >= 0 && filt_high != filt_mid) {
+ if (ss_err[filt_high] < 0) {
+ filt_err = try_filter_frame(sd, cpi, filt_high, partial_frame);
+ ss_err[filt_high] = filt_err;
+ } else {
+ filt_err = ss_err[filt_high];
+ }
// Was it better than the previous best?
- if (filt_err < (best_err - Bias)) {
+ if (filt_err < (best_err - bias)) {
best_err = filt_err;
filt_best = filt_high;
}
@@ -193,7 +125,7 @@ void vp9_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi, int partial) {
// Half the step distance if the best filter value was the same as last time
if (filt_best == filt_mid) {
- filter_step = filter_step / 2;
+ filter_step /= 2;
filt_direction = 0;
} else {
filt_direction = (filt_best < filt_mid) ? -1 : 1;
@@ -201,5 +133,29 @@ void vp9_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi, int partial) {
}
}
- lf->filter_level = filt_best;
+ return filt_best;
+}
+
+void vp9_pick_filter_level(const YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi,
+ LPF_PICK_METHOD method) {
+ VP9_COMMON *const cm = &cpi->common;
+ struct loopfilter *const lf = &cm->lf;
+
+ lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0
+ : cpi->oxcf.sharpness;
+
+ if (method == LPF_PICK_FROM_Q) {
+ const int min_filter_level = 0;
+ const int max_filter_level = get_max_filter_level(cpi);
+ const int q = vp9_ac_quant(cm->base_qindex, 0);
+ // These values were determined by linear fitting the result of the
+ // searched level, filt_guess = q * 0.316206 + 3.87252
+ int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
+ if (cm->frame_type == KEY_FRAME)
+ filt_guess -= 4;
+ lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level);
+ } else {
+ lf->filter_level = search_filter_level(sd, cpi,
+ method == LPF_PICK_FROM_SUBIMAGE);
+ }
}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_picklpf.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_picklpf.h
index 9de4cf849cc..33c490f6935 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_picklpf.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_picklpf.h
@@ -12,11 +12,19 @@
#ifndef VP9_ENCODER_VP9_PICKLPF_H_
#define VP9_ENCODER_VP9_PICKLPF_H_
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "vp9/encoder/vp9_encoder.h"
+
struct yv12_buffer_config;
struct VP9_COMP;
-void vp9_set_alt_lf_level(struct VP9_COMP *cpi, int filt_val);
+void vp9_pick_filter_level(const struct yv12_buffer_config *sd,
+ struct VP9_COMP *cpi, LPF_PICK_METHOD method);
+#ifdef __cplusplus
+} // extern "C"
+#endif
-void vp9_pick_filter_level(struct yv12_buffer_config *sd,
- struct VP9_COMP *cpi, int partial);
#endif // VP9_ENCODER_VP9_PICKLPF_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_pickmode.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_pickmode.c
new file mode 100644
index 00000000000..1e9887c2d44
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_pickmode.c
@@ -0,0 +1,420 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "./vp9_rtcd.h"
+
+#include "vpx_mem/vpx_mem.h"
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_mvref_common.h"
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/common/vp9_reconintra.h"
+
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_rdopt.h"
+
+static void full_pixel_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int mi_row, int mi_col,
+ int_mv *tmp_mv, int *rate_mv) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
+ int step_param;
+ int sadpb = x->sadperbit16;
+ MV mvp_full;
+ int ref = mbmi->ref_frame[0];
+ const MV ref_mv = mbmi->ref_mvs[ref][0].as_mv;
+ int i;
+
+ int tmp_col_min = x->mv_col_min;
+ int tmp_col_max = x->mv_col_max;
+ int tmp_row_min = x->mv_row_min;
+ int tmp_row_max = x->mv_row_max;
+
+ const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
+ ref);
+ if (scaled_ref_frame) {
+ int i;
+ // Swap out the reference frame for a version that's been scaled to
+ // match the resolution of the current frame, allowing the existing
+ // motion search code to be used without additional modifications.
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ backup_yv12[i] = xd->plane[i].pre[0];
+
+ vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
+ }
+
+ vp9_set_mv_search_range(x, &ref_mv);
+
+ // TODO(jingning) exploiting adaptive motion search control in non-RD
+ // mode decision too.
+ step_param = 6;
+
+ for (i = LAST_FRAME; i <= LAST_FRAME && cpi->common.show_frame; ++i) {
+ if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
+ tmp_mv->as_int = INVALID_MV;
+
+ if (scaled_ref_frame) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ xd->plane[i].pre[0] = backup_yv12[i];
+ }
+ return;
+ }
+ }
+ assert(x->mv_best_ref_index[ref] <= 2);
+ if (x->mv_best_ref_index[ref] < 2)
+ mvp_full = mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv;
+ else
+ mvp_full = x->pred_mv[ref].as_mv;
+
+ mvp_full.col >>= 3;
+ mvp_full.row >>= 3;
+
+ full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb, &ref_mv,
+ &tmp_mv->as_mv, INT_MAX, 0);
+
+ x->mv_col_min = tmp_col_min;
+ x->mv_col_max = tmp_col_max;
+ x->mv_row_min = tmp_row_min;
+ x->mv_row_max = tmp_row_max;
+
+ if (scaled_ref_frame) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ xd->plane[i].pre[0] = backup_yv12[i];
+ }
+
+ // calculate the bit cost on motion vector
+ mvp_full.row = tmp_mv->as_mv.row * 8;
+ mvp_full.col = tmp_mv->as_mv.col * 8;
+ *rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+}
+
+static void sub_pixel_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int mi_row, int mi_col,
+ MV *tmp_mv) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
+ int ref = mbmi->ref_frame[0];
+ MV ref_mv = mbmi->ref_mvs[ref][0].as_mv;
+ int dis;
+
+ const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
+ ref);
+ if (scaled_ref_frame) {
+ int i;
+ // Swap out the reference frame for a version that's been scaled to
+ // match the resolution of the current frame, allowing the existing
+ // motion search code to be used without additional modifications.
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ backup_yv12[i] = xd->plane[i].pre[0];
+
+ vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
+ }
+
+ cpi->find_fractional_mv_step(x, tmp_mv, &ref_mv,
+ cpi->common.allow_high_precision_mv,
+ x->errorperbit,
+ &cpi->fn_ptr[bsize],
+ cpi->sf.subpel_force_stop,
+ cpi->sf.subpel_iters_per_step,
+ x->nmvjointcost, x->mvcost,
+ &dis, &x->pred_sse[ref]);
+
+ if (scaled_ref_frame) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ xd->plane[i].pre[0] = backup_yv12[i];
+ }
+
+ x->pred_mv[ref].as_mv = *tmp_mv;
+}
+
+static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
+ MACROBLOCK *x, MACROBLOCKD *xd,
+ int *out_rate_sum, int64_t *out_dist_sum) {
+ // Note our transform coeffs are 8 times an orthogonal transform.
+ // Hence quantizer step is also 8 times. To get effective quantizer
+ // we need to divide by 8 before sending to modeling function.
+ unsigned int sse;
+ int rate;
+ int64_t dist;
+
+ struct macroblock_plane *const p = &x->plane[0];
+ struct macroblockd_plane *const pd = &xd->plane[0];
+
+ unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
+ pd->dst.buf, pd->dst.stride, &sse);
+
+ // TODO(jingning) This is a temporary solution to account for frames with
+ // light changes. Need to customize the rate-distortion modeling for non-RD
+ // mode decision.
+ if ((sse >> 3) > var)
+ sse = var;
+
+ vp9_model_rd_from_var_lapndz(var + sse, 1 << num_pels_log2_lookup[bsize],
+ pd->dequant[1] >> 3, &rate, &dist);
+ *out_rate_sum = rate;
+ *out_dist_sum = dist << 3;
+}
+
+// TODO(jingning) placeholder for inter-frame non-RD mode decision.
+// this needs various further optimizations. to be continued..
+int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
+ const TileInfo *const tile,
+ int mi_row, int mi_col,
+ int *returnrate,
+ int64_t *returndistortion,
+ BLOCK_SIZE bsize) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct macroblock_plane *const p = &x->plane[0];
+ struct macroblockd_plane *const pd = &xd->plane[0];
+ PREDICTION_MODE this_mode, best_mode = ZEROMV;
+ MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME;
+ INTERP_FILTER best_pred_filter = EIGHTTAP;
+ int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
+ struct buf_2d yv12_mb[4][MAX_MB_PLANE];
+ static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
+ VP9_ALT_FLAG };
+ int64_t best_rd = INT64_MAX;
+ int64_t this_rd = INT64_MAX;
+
+ int rate = INT_MAX;
+ int64_t dist = INT64_MAX;
+
+ VP9_COMMON *cm = &cpi->common;
+ int intra_cost_penalty = 20 * vp9_dc_quant(cm->base_qindex, cm->y_dc_delta_q);
+
+ const int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv,
+ intra_cost_penalty, 0);
+ const int64_t intra_mode_cost = 50;
+
+ unsigned char segment_id = mbmi->segment_id;
+ const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
+ const int *const rd_thresh_freq_fact = cpi->rd.thresh_freq_fact[bsize];
+ // Mode index conversion form THR_MODES to PREDICTION_MODE for a ref frame.
+ int mode_idx[MB_MODE_COUNT] = {0};
+ INTERP_FILTER filter_ref = SWITCHABLE;
+ int bsl = mi_width_log2_lookup[bsize];
+ int pred_filter_search = (((mi_row + mi_col) >> bsl) +
+ cpi->sf.chessboard_index) & 0x01;
+
+ x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
+
+ x->skip = 0;
+ if (!x->in_active_map)
+ x->skip = 1;
+ // initialize mode decisions
+ *returnrate = INT_MAX;
+ *returndistortion = INT64_MAX;
+ vpx_memset(mbmi, 0, sizeof(MB_MODE_INFO));
+ mbmi->sb_type = bsize;
+ mbmi->ref_frame[0] = NONE;
+ mbmi->ref_frame[1] = NONE;
+ mbmi->tx_size = MIN(max_txsize_lookup[bsize],
+ tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
+ mbmi->interp_filter = cpi->common.interp_filter == SWITCHABLE ?
+ EIGHTTAP : cpi->common.interp_filter;
+ mbmi->skip = 0;
+ mbmi->segment_id = segment_id;
+
+ for (ref_frame = LAST_FRAME; ref_frame <= LAST_FRAME ; ++ref_frame) {
+ x->pred_mv_sad[ref_frame] = INT_MAX;
+ if (cpi->ref_frame_flags & flag_list[ref_frame]) {
+ vp9_setup_buffer_inter(cpi, x, tile,
+ ref_frame, bsize, mi_row, mi_col,
+ frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
+ }
+ frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
+ frame_mv[ZEROMV][ref_frame].as_int = 0;
+ }
+
+ if (xd->up_available)
+ filter_ref = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
+ else if (xd->left_available)
+ filter_ref = xd->mi[-1]->mbmi.interp_filter;
+
+ for (ref_frame = LAST_FRAME; ref_frame <= LAST_FRAME ; ++ref_frame) {
+ if (!(cpi->ref_frame_flags & flag_list[ref_frame]))
+ continue;
+
+ // Select prediction reference frames.
+ xd->plane[0].pre[0] = yv12_mb[ref_frame][0];
+
+ clamp_mv2(&frame_mv[NEARESTMV][ref_frame].as_mv, xd);
+ clamp_mv2(&frame_mv[NEARMV][ref_frame].as_mv, xd);
+
+ mbmi->ref_frame[0] = ref_frame;
+
+ // Set conversion index for LAST_FRAME.
+ if (ref_frame == LAST_FRAME) {
+ mode_idx[NEARESTMV] = THR_NEARESTMV; // LAST_FRAME, NEARESTMV
+ mode_idx[NEARMV] = THR_NEARMV; // LAST_FRAME, NEARMV
+ mode_idx[ZEROMV] = THR_ZEROMV; // LAST_FRAME, ZEROMV
+ mode_idx[NEWMV] = THR_NEWMV; // LAST_FRAME, NEWMV
+ }
+
+ for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
+ int rate_mv = 0;
+
+ if (cpi->sf.disable_inter_mode_mask[bsize] &
+ (1 << INTER_OFFSET(this_mode)))
+ continue;
+
+ if (best_rd < ((int64_t)rd_threshes[mode_idx[this_mode]] *
+ rd_thresh_freq_fact[this_mode] >> 5) ||
+ rd_threshes[mode_idx[this_mode]] == INT_MAX)
+ continue;
+
+ if (this_mode == NEWMV) {
+ int rate_mode = 0;
+ if (this_rd < (int64_t)(1 << num_pels_log2_lookup[bsize]))
+ continue;
+
+ full_pixel_motion_search(cpi, x, bsize, mi_row, mi_col,
+ &frame_mv[NEWMV][ref_frame], &rate_mv);
+
+ if (frame_mv[NEWMV][ref_frame].as_int == INVALID_MV)
+ continue;
+
+ rate_mode = cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
+ [INTER_OFFSET(this_mode)];
+ if (RDCOST(x->rdmult, x->rddiv, rate_mv + rate_mode, 0) > best_rd)
+ continue;
+
+ sub_pixel_motion_search(cpi, x, bsize, mi_row, mi_col,
+ &frame_mv[NEWMV][ref_frame].as_mv);
+ }
+
+ if (this_mode != NEARESTMV)
+ if (frame_mv[this_mode][ref_frame].as_int ==
+ frame_mv[NEARESTMV][ref_frame].as_int)
+ continue;
+
+ mbmi->mode = this_mode;
+ mbmi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
+
+ // Search for the best prediction filter type, when the resulting
+ // motion vector is at sub-pixel accuracy level for luma component, i.e.,
+ // the last three bits are all zeros.
+ if ((this_mode == NEWMV || filter_ref == SWITCHABLE) &&
+ pred_filter_search &&
+ ((mbmi->mv[0].as_mv.row & 0x07) != 0 ||
+ (mbmi->mv[0].as_mv.col & 0x07) != 0)) {
+ int64_t tmp_rdcost1 = INT64_MAX;
+ int64_t tmp_rdcost2 = INT64_MAX;
+ int64_t tmp_rdcost3 = INT64_MAX;
+ int pf_rate[3];
+ int64_t pf_dist[3];
+
+ mbmi->interp_filter = EIGHTTAP;
+ vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
+ model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[EIGHTTAP],
+ &pf_dist[EIGHTTAP]);
+ tmp_rdcost1 = RDCOST(x->rdmult, x->rddiv,
+ vp9_get_switchable_rate(cpi) + pf_rate[EIGHTTAP],
+ pf_dist[EIGHTTAP]);
+
+ mbmi->interp_filter = EIGHTTAP_SHARP;
+ vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
+ model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[EIGHTTAP_SHARP],
+ &pf_dist[EIGHTTAP_SHARP]);
+ tmp_rdcost2 = RDCOST(x->rdmult, x->rddiv, vp9_get_switchable_rate(cpi) +
+ pf_rate[EIGHTTAP_SHARP],
+ pf_dist[EIGHTTAP_SHARP]);
+
+ mbmi->interp_filter = EIGHTTAP_SMOOTH;
+ vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
+ model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[EIGHTTAP_SMOOTH],
+ &pf_dist[EIGHTTAP_SMOOTH]);
+ tmp_rdcost3 = RDCOST(x->rdmult, x->rddiv, vp9_get_switchable_rate(cpi) +
+ pf_rate[EIGHTTAP_SMOOTH],
+ pf_dist[EIGHTTAP_SMOOTH]);
+
+ if (tmp_rdcost2 < tmp_rdcost1) {
+ if (tmp_rdcost2 < tmp_rdcost3)
+ mbmi->interp_filter = EIGHTTAP_SHARP;
+ else
+ mbmi->interp_filter = EIGHTTAP_SMOOTH;
+ } else {
+ if (tmp_rdcost1 < tmp_rdcost3)
+ mbmi->interp_filter = EIGHTTAP;
+ else
+ mbmi->interp_filter = EIGHTTAP_SMOOTH;
+ }
+
+ rate = pf_rate[mbmi->interp_filter];
+ dist = pf_dist[mbmi->interp_filter];
+ } else {
+ mbmi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP: filter_ref;
+ vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
+ model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist);
+ }
+
+ rate += rate_mv;
+ rate += cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
+ [INTER_OFFSET(this_mode)];
+ this_rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
+
+ if (this_rd < best_rd) {
+ best_rd = this_rd;
+ *returnrate = rate;
+ *returndistortion = dist;
+ best_mode = this_mode;
+ best_pred_filter = mbmi->interp_filter;
+ best_ref_frame = ref_frame;
+ }
+ }
+ }
+
+ mbmi->mode = best_mode;
+ mbmi->interp_filter = best_pred_filter;
+ mbmi->ref_frame[0] = best_ref_frame;
+ mbmi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int;
+ xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
+
+ // Perform intra prediction search, if the best SAD is above a certain
+ // threshold.
+ if (best_rd > inter_mode_thresh && bsize < cpi->sf.max_intra_bsize) {
+ for (this_mode = DC_PRED; this_mode <= DC_PRED; ++this_mode) {
+ vp9_predict_intra_block(xd, 0, b_width_log2(bsize),
+ mbmi->tx_size, this_mode,
+ &p->src.buf[0], p->src.stride,
+ &pd->dst.buf[0], pd->dst.stride, 0, 0, 0);
+
+ model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist);
+ rate += cpi->mbmode_cost[this_mode];
+ rate += intra_cost_penalty;
+ this_rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
+
+ if (this_rd + intra_mode_cost < best_rd) {
+ best_rd = this_rd;
+ *returnrate = rate;
+ *returndistortion = dist;
+ mbmi->mode = this_mode;
+ mbmi->ref_frame[0] = INTRA_FRAME;
+ mbmi->uv_mode = this_mode;
+ mbmi->mv[0].as_int = INVALID_MV;
+ }
+ }
+ }
+
+ return INT64_MAX;
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_pickmode.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_pickmode.h
new file mode 100644
index 00000000000..a9c948d31a5
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_pickmode.h
@@ -0,0 +1,31 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_PICKMODE_H_
+#define VP9_ENCODER_VP9_PICKMODE_H_
+
+#include "vp9/encoder/vp9_encoder.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
+ const struct TileInfo *const tile,
+ int mi_row, int mi_col,
+ int *returnrate,
+ int64_t *returndistortion,
+ BLOCK_SIZE bsize);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_PICKMODE_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_psnr.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_psnr.c
deleted file mode 100644
index 58294e15a38..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_psnr.c
+++ /dev/null
@@ -1,29 +0,0 @@
-/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-#include <math.h>
-
-#include "vpx_scale/yv12config.h"
-
-#define MAX_PSNR 100
-
-double vp9_mse2psnr(double samples, double peak, double mse) {
- double psnr;
-
- if (mse > 0.0)
- psnr = 10.0 * log10(peak * peak * samples / mse);
- else
- psnr = MAX_PSNR; // Limit to prevent / 0
-
- if (psnr > MAX_PSNR)
- psnr = MAX_PSNR;
-
- return psnr;
-}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_psnr.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_psnr.h
deleted file mode 100644
index 15dd8366bd8..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_psnr.h
+++ /dev/null
@@ -1,17 +0,0 @@
-/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-
-#ifndef VP9_ENCODER_VP9_PSNR_H_
-#define VP9_ENCODER_VP9_PSNR_H_
-
-double vp9_mse2psnr(double samples, double peak, double mse);
-
-#endif // VP9_ENCODER_VP9_PSNR_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_quantize.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_quantize.c
index fca75252430..4d3086d6075 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_quantize.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_quantize.c
@@ -9,20 +9,17 @@
*/
#include <math.h>
+
#include "vpx_mem/vpx_mem.h"
-#include "vp9/encoder/vp9_onyx_int.h"
-#include "vp9/encoder/vp9_rdopt.h"
-#include "vp9/encoder/vp9_quantize.h"
#include "vp9/common/vp9_quant_common.h"
-
#include "vp9/common/vp9_seg_common.h"
-#ifdef ENC_DEBUG
-extern int enc_debug;
-#endif
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_quantize.h"
+#include "vp9/encoder/vp9_rdopt.h"
-void vp9_quantize_b_c(const int16_t *coeff_ptr, intptr_t n_coeffs,
+void vp9_quantize_b_c(const int16_t *coeff_ptr, intptr_t count,
int skip_block,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr, const int16_t *quant_shift_ptr,
@@ -30,58 +27,45 @@ void vp9_quantize_b_c(const int16_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *dequant_ptr,
int zbin_oq_value, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
- int i, rc, eob;
- int zbins[2], nzbins[2], zbin;
- int x, y, z, sz;
- int zero_flag = n_coeffs;
-
- vpx_memset(qcoeff_ptr, 0, n_coeffs*sizeof(int16_t));
- vpx_memset(dqcoeff_ptr, 0, n_coeffs*sizeof(int16_t));
-
- eob = -1;
+ int i, non_zero_count = (int)count, eob = -1;
+ const int zbins[2] = { zbin_ptr[0] + zbin_oq_value,
+ zbin_ptr[1] + zbin_oq_value };
+ const int nzbins[2] = { zbins[0] * -1,
+ zbins[1] * -1 };
+ (void)iscan;
- // Base ZBIN
- zbins[0] = zbin_ptr[0] + zbin_oq_value;
- zbins[1] = zbin_ptr[1] + zbin_oq_value;
- nzbins[0] = zbins[0] * -1;
- nzbins[1] = zbins[1] * -1;
+ vpx_memset(qcoeff_ptr, 0, count * sizeof(int16_t));
+ vpx_memset(dqcoeff_ptr, 0, count * sizeof(int16_t));
if (!skip_block) {
// Pre-scan pass
- for (i = n_coeffs - 1; i >= 0; i--) {
- rc = scan[i];
- z = coeff_ptr[rc];
+ for (i = (int)count - 1; i >= 0; i--) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
- if (z < zbins[rc != 0] && z > nzbins[rc != 0]) {
- zero_flag--;
- } else {
+ if (coeff < zbins[rc != 0] && coeff > nzbins[rc != 0])
+ non_zero_count--;
+ else
break;
- }
}
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
- for (i = 0; i < zero_flag; i++) {
- rc = scan[i];
- z = coeff_ptr[rc];
-
- zbin = (zbins[rc != 0]);
-
- sz = (z >> 31); // sign of z
- x = (z ^ sz) - sz;
-
- if (x >= zbin) {
- x += (round_ptr[rc != 0]);
- x = clamp(x, INT16_MIN, INT16_MAX);
- y = (((int)(((int)(x * quant_ptr[rc != 0]) >> 16) + x)) *
- quant_shift_ptr[rc != 0]) >> 16; // quantize (x)
- x = (y ^ sz) - sz; // get the sign back
- qcoeff_ptr[rc] = x; // write to destination
- dqcoeff_ptr[rc] = x * dequant_ptr[rc != 0]; // dequantized value
-
- if (y) {
- eob = i; // last nonzero coeffs
- }
+ for (i = 0; i < non_zero_count; i++) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+ if (abs_coeff >= zbins[rc != 0]) {
+ int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
+ tmp = ((((tmp * quant_ptr[rc != 0]) >> 16) + tmp) *
+ quant_shift_ptr[rc != 0]) >> 16; // quantization
+ qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
+
+ if (tmp)
+ eob = i;
}
}
}
@@ -97,99 +81,65 @@ void vp9_quantize_b_32x32_c(const int16_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *dequant_ptr,
int zbin_oq_value, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
- int i, rc, eob;
- int zbins[2], nzbins[2];
- int x, y, z, sz;
+ const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0] + zbin_oq_value, 1),
+ ROUND_POWER_OF_TWO(zbin_ptr[1] + zbin_oq_value, 1) };
+ const int nzbins[2] = {zbins[0] * -1, zbins[1] * -1};
+
int idx = 0;
int idx_arr[1024];
+ int i, eob = -1;
+ (void)iscan;
- vpx_memset(qcoeff_ptr, 0, n_coeffs*sizeof(int16_t));
- vpx_memset(dqcoeff_ptr, 0, n_coeffs*sizeof(int16_t));
-
- eob = -1;
-
- // Base ZBIN
- zbins[0] = ROUND_POWER_OF_TWO(zbin_ptr[0] + zbin_oq_value, 1);
- zbins[1] = ROUND_POWER_OF_TWO(zbin_ptr[1] + zbin_oq_value, 1);
- nzbins[0] = zbins[0] * -1;
- nzbins[1] = zbins[1] * -1;
+ vpx_memset(qcoeff_ptr, 0, n_coeffs * sizeof(int16_t));
+ vpx_memset(dqcoeff_ptr, 0, n_coeffs * sizeof(int16_t));
if (!skip_block) {
// Pre-scan pass
for (i = 0; i < n_coeffs; i++) {
- rc = scan[i];
- z = coeff_ptr[rc];
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
// If the coefficient is out of the base ZBIN range, keep it for
// quantization.
- if (z >= zbins[rc != 0] || z <= nzbins[rc != 0])
+ if (coeff >= zbins[rc != 0] || coeff <= nzbins[rc != 0])
idx_arr[idx++] = i;
}
// Quantization pass: only process the coefficients selected in
// pre-scan pass. Note: idx can be zero.
for (i = 0; i < idx; i++) {
- rc = scan[idx_arr[i]];
-
- z = coeff_ptr[rc];
- sz = (z >> 31); // sign of z
- x = (z ^ sz) - sz; // x = abs(z)
-
- x += ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1);
- x = clamp(x, INT16_MIN, INT16_MAX);
- y = ((((x * quant_ptr[rc != 0]) >> 16) + x) *
- quant_shift_ptr[rc != 0]) >> 15; // quantize (x)
-
- x = (y ^ sz) - sz; // get the sign back
- qcoeff_ptr[rc] = x; // write to destination
- dqcoeff_ptr[rc] = x * dequant_ptr[rc != 0] / 2; // dequantized value
-
- if (y)
- eob = idx_arr[i]; // last nonzero coeffs
+ const int rc = scan[idx_arr[i]];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ int tmp;
+ int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+ abs_coeff += ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1);
+ abs_coeff = clamp(abs_coeff, INT16_MIN, INT16_MAX);
+ tmp = ((((abs_coeff * quant_ptr[rc != 0]) >> 16) + abs_coeff) *
+ quant_shift_ptr[rc != 0]) >> 15;
+
+ qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2;
+
+ if (tmp)
+ eob = idx_arr[i];
}
}
*eob_ptr = eob + 1;
}
-struct plane_block_idx {
- int plane;
- int block;
-};
-
-// TODO(jkoleszar): returning a struct so it can be used in a const context,
-// expect to refactor this further later.
-static INLINE struct plane_block_idx plane_block_idx(int y_blocks,
- int b_idx) {
- const int v_offset = y_blocks * 5 / 4;
- struct plane_block_idx res;
-
- if (b_idx < y_blocks) {
- res.plane = 0;
- res.block = b_idx;
- } else if (b_idx < v_offset) {
- res.plane = 1;
- res.block = b_idx - y_blocks;
- } else {
- assert(b_idx < y_blocks * 3 / 2);
- res.plane = 2;
- res.block = b_idx - v_offset;
- }
- return res;
-}
-
-void vp9_regular_quantize_b_4x4(MACROBLOCK *x, int y_blocks, int b_idx,
+void vp9_regular_quantize_b_4x4(MACROBLOCK *x, int plane, int block,
const int16_t *scan, const int16_t *iscan) {
MACROBLOCKD *const xd = &x->e_mbd;
- const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, b_idx);
- struct macroblock_plane* p = &x->plane[pb_idx.plane];
- struct macroblockd_plane* pd = &xd->plane[pb_idx.plane];
+ struct macroblock_plane *p = &x->plane[plane];
+ struct macroblockd_plane *pd = &xd->plane[plane];
- vp9_quantize_b(BLOCK_OFFSET(p->coeff, pb_idx.block),
+ vp9_quantize_b(BLOCK_OFFSET(p->coeff, block),
16, x->skip_block,
p->zbin, p->round, p->quant, p->quant_shift,
- BLOCK_OFFSET(pd->qcoeff, pb_idx.block),
- BLOCK_OFFSET(pd->dqcoeff, pb_idx.block),
- pd->dequant, p->zbin_extra, &pd->eobs[pb_idx.block], scan, iscan);
+ BLOCK_OFFSET(p->qcoeff, block),
+ BLOCK_OFFSET(pd->dqcoeff, block),
+ pd->dequant, p->zbin_extra, &p->eobs[block], scan, iscan);
}
static void invert_quant(int16_t *quant, int16_t *shift, int d) {
@@ -204,132 +154,119 @@ static void invert_quant(int16_t *quant, int16_t *shift, int d) {
}
void vp9_init_quantizer(VP9_COMP *cpi) {
- int i, q;
VP9_COMMON *const cm = &cpi->common;
+ QUANTS *const quants = &cpi->quants;
+ int i, q, quant;
for (q = 0; q < QINDEX_RANGE; q++) {
const int qzbin_factor = q == 0 ? 64 : (vp9_dc_quant(q, 0) < 148 ? 84 : 80);
const int qrounding_factor = q == 0 ? 64 : 48;
- // y
for (i = 0; i < 2; ++i) {
- const int quant = i == 0 ? vp9_dc_quant(q, cm->y_dc_delta_q)
- : vp9_ac_quant(q, 0);
- invert_quant(&cpi->y_quant[q][i], &cpi->y_quant_shift[q][i], quant);
- cpi->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
- cpi->y_round[q][i] = (qrounding_factor * quant) >> 7;
+ // y
+ quant = i == 0 ? vp9_dc_quant(q, cm->y_dc_delta_q)
+ : vp9_ac_quant(q, 0);
+ invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i], quant);
+ quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
+ quants->y_round[q][i] = (qrounding_factor * quant) >> 7;
cm->y_dequant[q][i] = quant;
- }
- // uv
- for (i = 0; i < 2; ++i) {
- const int quant = i == 0 ? vp9_dc_quant(q, cm->uv_dc_delta_q)
- : vp9_ac_quant(q, cm->uv_ac_delta_q);
- invert_quant(&cpi->uv_quant[q][i], &cpi->uv_quant_shift[q][i], quant);
- cpi->uv_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
- cpi->uv_round[q][i] = (qrounding_factor * quant) >> 7;
+ // uv
+ quant = i == 0 ? vp9_dc_quant(q, cm->uv_dc_delta_q)
+ : vp9_ac_quant(q, cm->uv_ac_delta_q);
+ invert_quant(&quants->uv_quant[q][i],
+ &quants->uv_quant_shift[q][i], quant);
+ quants->uv_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
+ quants->uv_round[q][i] = (qrounding_factor * quant) >> 7;
cm->uv_dequant[q][i] = quant;
- }
#if CONFIG_ALPHA
- // alpha
- for (i = 0; i < 2; ++i) {
- const int quant = i == 0 ? vp9_dc_quant(q, cm->a_dc_delta_q)
- : vp9_ac_quant(q, cm->a_ac_delta_q);
- invert_quant(&cpi->a_quant[q][i], &cpi->a_quant_shift[q][i], quant);
- cpi->a_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
- cpi->a_round[q][i] = (qrounding_factor * quant) >> 7;
+ // alpha
+ quant = i == 0 ? vp9_dc_quant(q, cm->a_dc_delta_q)
+ : vp9_ac_quant(q, cm->a_ac_delta_q);
+ invert_quant(&quants->a_quant[q][i], &quants->a_quant_shift[q][i], quant);
+ quants->a_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
+ quants->a_round[q][i] = (qrounding_factor * quant) >> 7;
cm->a_dequant[q][i] = quant;
- }
#endif
+ }
for (i = 2; i < 8; i++) {
- cpi->y_quant[q][i] = cpi->y_quant[q][1];
- cpi->y_quant_shift[q][i] = cpi->y_quant_shift[q][1];
- cpi->y_zbin[q][i] = cpi->y_zbin[q][1];
- cpi->y_round[q][i] = cpi->y_round[q][1];
+ quants->y_quant[q][i] = quants->y_quant[q][1];
+ quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1];
+ quants->y_zbin[q][i] = quants->y_zbin[q][1];
+ quants->y_round[q][i] = quants->y_round[q][1];
cm->y_dequant[q][i] = cm->y_dequant[q][1];
- cpi->uv_quant[q][i] = cpi->uv_quant[q][1];
- cpi->uv_quant_shift[q][i] = cpi->uv_quant_shift[q][1];
- cpi->uv_zbin[q][i] = cpi->uv_zbin[q][1];
- cpi->uv_round[q][i] = cpi->uv_round[q][1];
+ quants->uv_quant[q][i] = quants->uv_quant[q][1];
+ quants->uv_quant_shift[q][i] = quants->uv_quant_shift[q][1];
+ quants->uv_zbin[q][i] = quants->uv_zbin[q][1];
+ quants->uv_round[q][i] = quants->uv_round[q][1];
cm->uv_dequant[q][i] = cm->uv_dequant[q][1];
#if CONFIG_ALPHA
- cpi->a_quant[q][i] = cpi->a_quant[q][1];
- cpi->a_quant_shift[q][i] = cpi->a_quant_shift[q][1];
- cpi->a_zbin[q][i] = cpi->a_zbin[q][1];
- cpi->a_round[q][i] = cpi->a_round[q][1];
+ quants->a_quant[q][i] = quants->a_quant[q][1];
+ quants->a_quant_shift[q][i] = quants->a_quant_shift[q][1];
+ quants->a_zbin[q][i] = quants->a_zbin[q][1];
+ quants->a_round[q][i] = quants->a_round[q][1];
cm->a_dequant[q][i] = cm->a_dequant[q][1];
#endif
}
}
}
-void vp9_mb_init_quantizer(VP9_COMP *cpi, MACROBLOCK *x) {
+void vp9_init_plane_quantizers(VP9_COMP *cpi, MACROBLOCK *x) {
+ const VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ QUANTS *const quants = &cpi->quants;
+ const int segment_id = xd->mi[0]->mbmi.segment_id;
+ const int qindex = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
+ const int rdmult = vp9_compute_rd_mult(cpi, qindex + cm->y_dc_delta_q);
+ const int zbin = cpi->zbin_mode_boost;
int i;
- VP9_COMMON *const cm = &cpi->common;
- MACROBLOCKD *xd = &x->e_mbd;
- int zbin_extra;
- int segment_id = xd->mi_8x8[0]->mbmi.segment_id;
- const int qindex = vp9_get_qindex(&cpi->common.seg, segment_id,
- cpi->common.base_qindex);
-
- int rdmult = vp9_compute_rd_mult(cpi, qindex + cm->y_dc_delta_q);
// Y
- zbin_extra = (cpi->common.y_dequant[qindex][1] *
- (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7;
-
- x->plane[0].quant = cpi->y_quant[qindex];
- x->plane[0].quant_shift = cpi->y_quant_shift[qindex];
- x->plane[0].zbin = cpi->y_zbin[qindex];
- x->plane[0].round = cpi->y_round[qindex];
- x->plane[0].zbin_extra = (int16_t)zbin_extra;
- x->e_mbd.plane[0].dequant = cpi->common.y_dequant[qindex];
+ x->plane[0].quant = quants->y_quant[qindex];
+ x->plane[0].quant_shift = quants->y_quant_shift[qindex];
+ x->plane[0].zbin = quants->y_zbin[qindex];
+ x->plane[0].round = quants->y_round[qindex];
+ x->plane[0].zbin_extra = (int16_t)((cm->y_dequant[qindex][1] * zbin) >> 7);
+ xd->plane[0].dequant = cm->y_dequant[qindex];
// UV
- zbin_extra = (cpi->common.uv_dequant[qindex][1] *
- (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7;
-
for (i = 1; i < 3; i++) {
- x->plane[i].quant = cpi->uv_quant[qindex];
- x->plane[i].quant_shift = cpi->uv_quant_shift[qindex];
- x->plane[i].zbin = cpi->uv_zbin[qindex];
- x->plane[i].round = cpi->uv_round[qindex];
- x->plane[i].zbin_extra = (int16_t)zbin_extra;
- x->e_mbd.plane[i].dequant = cpi->common.uv_dequant[qindex];
+ x->plane[i].quant = quants->uv_quant[qindex];
+ x->plane[i].quant_shift = quants->uv_quant_shift[qindex];
+ x->plane[i].zbin = quants->uv_zbin[qindex];
+ x->plane[i].round = quants->uv_round[qindex];
+ x->plane[i].zbin_extra = (int16_t)((cm->uv_dequant[qindex][1] * zbin) >> 7);
+ xd->plane[i].dequant = cm->uv_dequant[qindex];
}
#if CONFIG_ALPHA
- x->plane[3].quant = cpi->a_quant[qindex];
- x->plane[3].quant_shift = cpi->a_quant_shift[qindex];
- x->plane[3].zbin = cpi->a_zbin[qindex];
- x->plane[3].round = cpi->a_round[qindex];
- x->plane[3].zbin_extra = (int16_t)zbin_extra;
- x->e_mbd.plane[3].dequant = cpi->common.a_dequant[qindex];
+ x->plane[3].quant = quants->a_quant[qindex];
+ x->plane[3].quant_shift = quants->a_quant_shift[qindex];
+ x->plane[3].zbin = quants->a_zbin[qindex];
+ x->plane[3].round = quants->a_round[qindex];
+ x->plane[3].zbin_extra = (int16_t)((cm->a_dequant[qindex][1] * zbin) >> 7);
+ xd->plane[3].dequant = cm->a_dequant[qindex];
#endif
- x->skip_block = vp9_segfeature_active(&cpi->common.seg, segment_id,
- SEG_LVL_SKIP);
+ x->skip_block = vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP);
+ x->q_index = qindex;
- /* save this macroblock QIndex for vp9_update_zbin_extra() */
- x->e_mbd.q_index = qindex;
+ x->errorperbit = rdmult >> 6;
+ x->errorperbit += (x->errorperbit == 0);
- /* R/D setup */
- cpi->mb.errorperbit = rdmult >> 6;
- cpi->mb.errorperbit += (cpi->mb.errorperbit == 0);
-
- vp9_initialize_me_consts(cpi, xd->q_index);
+ vp9_initialize_me_consts(cpi, x->q_index);
}
void vp9_update_zbin_extra(VP9_COMP *cpi, MACROBLOCK *x) {
- const int qindex = x->e_mbd.q_index;
+ const int qindex = x->q_index;
const int y_zbin_extra = (cpi->common.y_dequant[qindex][1] *
- (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7;
+ cpi->zbin_mode_boost) >> 7;
const int uv_zbin_extra = (cpi->common.uv_dequant[qindex][1] *
- (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7;
+ cpi->zbin_mode_boost) >> 7;
x->plane[0].zbin_extra = (int16_t)y_zbin_extra;
x->plane[1].zbin_extra = (int16_t)uv_zbin_extra;
@@ -337,26 +274,42 @@ void vp9_update_zbin_extra(VP9_COMP *cpi, MACROBLOCK *x) {
}
void vp9_frame_init_quantizer(VP9_COMP *cpi) {
- // Clear Zbin mode boost for default case
cpi->zbin_mode_boost = 0;
-
- // MB level quantizer setup
- vp9_mb_init_quantizer(cpi, &cpi->mb);
+ vp9_init_plane_quantizers(cpi, &cpi->mb);
}
-void vp9_set_quantizer(struct VP9_COMP *cpi, int q) {
- VP9_COMMON *cm = &cpi->common;
-
+void vp9_set_quantizer(VP9_COMMON *cm, int q) {
+ // quantizer has to be reinitialized with vp9_init_quantizer() if any
+ // delta_q changes.
cm->base_qindex = q;
-
- // if any of the delta_q values are changing update flag will
- // have to be set.
cm->y_dc_delta_q = 0;
cm->uv_dc_delta_q = 0;
cm->uv_ac_delta_q = 0;
+}
+
+// Table that converts 0-63 Q-range values passed in outside to the Qindex
+// range used internally.
+static const int quantizer_to_qindex[] = {
+ 0, 4, 8, 12, 16, 20, 24, 28,
+ 32, 36, 40, 44, 48, 52, 56, 60,
+ 64, 68, 72, 76, 80, 84, 88, 92,
+ 96, 100, 104, 108, 112, 116, 120, 124,
+ 128, 132, 136, 140, 144, 148, 152, 156,
+ 160, 164, 168, 172, 176, 180, 184, 188,
+ 192, 196, 200, 204, 208, 212, 216, 220,
+ 224, 228, 232, 236, 240, 244, 249, 255,
+};
+
+int vp9_quantizer_to_qindex(int quantizer) {
+ return quantizer_to_qindex[quantizer];
+}
+
+int vp9_qindex_to_quantizer(int qindex) {
+ int quantizer;
+
+ for (quantizer = 0; quantizer < 64; ++quantizer)
+ if (quantizer_to_qindex[quantizer] >= qindex)
+ return quantizer;
- // quantizer has to be reinitialized if any delta_q changes.
- // As there are not any here for now this is inactive code.
- // if(update)
- // vp9_init_quantizer(cpi);
+ return 63;
}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_quantize.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_quantize.h
index c078e1d41a5..1835e9cccb7 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_quantize.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_quantize.h
@@ -11,21 +11,54 @@
#ifndef VP9_ENCODER_VP9_QUANTIZE_H_
#define VP9_ENCODER_VP9_QUANTIZE_H_
+#include "./vpx_config.h"
#include "vp9/encoder/vp9_block.h"
-void vp9_regular_quantize_b_4x4(MACROBLOCK *x, int y_blocks, int b_idx,
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+ DECLARE_ALIGNED(16, int16_t, y_quant[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, y_quant_shift[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, y_zbin[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, y_round[QINDEX_RANGE][8]);
+
+ DECLARE_ALIGNED(16, int16_t, uv_quant[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, uv_quant_shift[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, uv_zbin[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, uv_round[QINDEX_RANGE][8]);
+
+#if CONFIG_ALPHA
+ DECLARE_ALIGNED(16, int16_t, a_quant[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, a_quant_shift[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, a_zbin[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, a_round[QINDEX_RANGE][8]);
+#endif
+} QUANTS;
+
+void vp9_regular_quantize_b_4x4(MACROBLOCK *x, int plane, int block,
const int16_t *scan, const int16_t *iscan);
struct VP9_COMP;
-
-void vp9_set_quantizer(struct VP9_COMP *cpi, int q);
+struct VP9Common;
void vp9_frame_init_quantizer(struct VP9_COMP *cpi);
void vp9_update_zbin_extra(struct VP9_COMP *cpi, MACROBLOCK *x);
-void vp9_mb_init_quantizer(struct VP9_COMP *cpi, MACROBLOCK *x);
+void vp9_init_plane_quantizers(struct VP9_COMP *cpi, MACROBLOCK *x);
void vp9_init_quantizer(struct VP9_COMP *cpi);
+void vp9_set_quantizer(struct VP9Common *cm, int q);
+
+int vp9_quantizer_to_qindex(int quantizer);
+
+int vp9_qindex_to_quantizer(int qindex);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
#endif // VP9_ENCODER_VP9_QUANTIZE_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ratectrl.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ratectrl.c
index 0aa3a6893eb..a04622c8cab 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ratectrl.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ratectrl.c
@@ -8,32 +8,86 @@
* be found in the AUTHORS file in the root of the source tree.
*/
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-#include <limits.h>
#include <assert.h>
+#include <limits.h>
#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_common.h"
-#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/common/vp9_entropymode.h"
-#include "vpx_mem/vpx_mem.h"
-#include "vp9/common/vp9_systemdependent.h"
-#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_seg_common.h"
+#include "vp9/common/vp9_systemdependent.h"
+
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+
+// Max rate target for 1080P and below encodes under normal circumstances
+// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
+#define MAX_MB_RATE 250
+#define MAXRATE_1080P 2025000
+
+#define DEFAULT_KF_BOOST 2000
+#define DEFAULT_GF_BOOST 2000
+
+#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
#define MIN_BPB_FACTOR 0.005
#define MAX_BPB_FACTOR 50
-// Bits Per MB at different Q (Multiplied by 512)
-#define BPER_MB_NORMBITS 9
+#define FRAME_OVERHEAD_BITS 200
+
+// Tables relating active max Q to active min Q
+static int kf_low_motion_minq[QINDEX_RANGE];
+static int kf_high_motion_minq[QINDEX_RANGE];
+static int arfgf_low_motion_minq[QINDEX_RANGE];
+static int arfgf_high_motion_minq[QINDEX_RANGE];
+static int inter_minq[QINDEX_RANGE];
+static int rtc_minq[QINDEX_RANGE];
+static int gf_high = 2000;
+static int gf_low = 400;
+static int kf_high = 5000;
+static int kf_low = 400;
+
+// Functions to compute the active minq lookup table entries based on a
+// formulaic approach to facilitate easier adjustment of the Q tables.
+// The formulae were derived from computing a 3rd order polynomial best
+// fit to the original data (after plotting real maxq vs minq (not q index))
+static int get_minq_index(double maxq, double x3, double x2, double x1) {
+ int i;
+ const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq,
+ maxq);
+
+ // Special case handling to deal with the step from q2.0
+ // down to lossless mode represented by q 1.0.
+ if (minqtarget <= 2.0)
+ return 0;
-static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] =
- { 1, 2, 3, 4, 5 };
+ for (i = 0; i < QINDEX_RANGE; i++)
+ if (minqtarget <= vp9_convert_qindex_to_q(i))
+ return i;
+
+ return QINDEX_RANGE - 1;
+}
+
+void vp9_rc_init_minq_luts() {
+ int i;
+
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ const double maxq = vp9_convert_qindex_to_q(i);
+ kf_low_motion_minq[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.125);
+ kf_high_motion_minq[i] = get_minq_index(maxq, 0.000002, -0.0012, 0.50);
+ arfgf_low_motion_minq[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30);
+ arfgf_high_motion_minq[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.50);
+ inter_minq[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90);
+ rtc_minq[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70);
+ }
+}
// These functions use formulaic calculations to make playing with the
// quantizer tables easier. If necessary they can be replaced by lookup
@@ -43,22 +97,8 @@ double vp9_convert_qindex_to_q(int qindex) {
return vp9_ac_quant(qindex, 0) / 4.0;
}
-int vp9_gfboost_qadjust(int qindex) {
- const double q = vp9_convert_qindex_to_q(qindex);
- return (int)((0.00000828 * q * q * q) +
- (-0.0055 * q * q) +
- (1.32 * q) + 79.3);
-}
-
-static int kfboost_qadjust(int qindex) {
- const double q = vp9_convert_qindex_to_q(qindex);
- return (int)((0.00000973 * q * q * q) +
- (-0.00613 * q * q) +
- (1.316 * q) + 121.2);
-}
-
-int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex,
- double correction_factor) {
+int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
+ double correction_factor) {
const double q = vp9_convert_qindex_to_q(qindex);
int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000;
@@ -67,207 +107,224 @@ int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex,
return (int)(0.5 + (enumerator * correction_factor / q));
}
-void vp9_save_coding_context(VP9_COMP *cpi) {
- CODING_CONTEXT *const cc = &cpi->coding_context;
- VP9_COMMON *cm = &cpi->common;
-
- // Stores a snapshot of key state variables which can subsequently be
- // restored with a call to vp9_restore_coding_context. These functions are
- // intended for use in a re-code loop in vp9_compress_frame where the
- // quantizer value is adjusted between loop iterations.
- vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost);
- vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts);
- vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp);
-
- vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs);
-
- vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
- cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols));
-
- vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
- vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
-
- cc->fc = cm->fc;
-}
-
-void vp9_restore_coding_context(VP9_COMP *cpi) {
- CODING_CONTEXT *const cc = &cpi->coding_context;
- VP9_COMMON *cm = &cpi->common;
-
- // Restore key state variables to the snapshot state stored in the
- // previous call to vp9_save_coding_context.
- vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
- vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts);
- vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp);
-
- vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs);
-
- vpx_memcpy(cm->last_frame_seg_map,
- cpi->coding_context.last_frame_seg_map_copy,
- (cm->mi_rows * cm->mi_cols));
-
- vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
- vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
-
- cm->fc = cc->fc;
+static int estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
+ double correction_factor) {
+ const int bpm = (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor));
+ return ((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS;
}
-void vp9_setup_key_frame(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
-
- vp9_setup_past_independence(cm);
-
- // interval before next GF
- cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
- /* All buffers are implicitly updated on key frames. */
- cpi->refresh_golden_frame = 1;
- cpi->refresh_alt_ref_frame = 1;
+int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const int min_frame_target = MAX(rc->min_frame_bandwidth,
+ rc->avg_frame_bandwidth >> 5);
+ if (target < min_frame_target)
+ target = min_frame_target;
+ if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
+ // If there is an active ARF at this location use the minimum
+ // bits on this frame even if it is a constructed arf.
+ // The active maximum quantizer insures that an appropriate
+ // number of bits will be spent if needed for constructed ARFs.
+ target = min_frame_target;
+ }
+ // Clip the frame target to the maximum allowed value.
+ if (target > rc->max_frame_bandwidth)
+ target = rc->max_frame_bandwidth;
+ return target;
}
-void vp9_setup_inter_frame(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
- if (cm->error_resilient_mode || cm->intra_only)
- vp9_setup_past_independence(cm);
-
- assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS);
- cm->fc = cm->frame_contexts[cm->frame_context_idx];
+int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ if (oxcf->rc_max_intra_bitrate_pct) {
+ const int max_rate = rc->avg_frame_bandwidth *
+ oxcf->rc_max_intra_bitrate_pct / 100;
+ target = MIN(target, max_rate);
+ }
+ if (target > rc->max_frame_bandwidth)
+ target = rc->max_frame_bandwidth;
+ return target;
}
-static int estimate_bits_at_q(int frame_kind, int q, int mbs,
- double correction_factor) {
- const int bpm = (int)(vp9_bits_per_mb(frame_kind, q, correction_factor));
- // Attempt to retain reasonable accuracy without overflow. The cutoff is
- // chosen such that the maximum product of Bpm and MBs fits 31 bits. The
- // largest Bpm takes 20 bits.
- return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs
- : (bpm * mbs) >> BPER_MB_NORMBITS;
+// Update the buffer level for higher layers, given the encoded current layer.
+static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
+ int temporal_layer = 0;
+ int current_temporal_layer = svc->temporal_layer_id;
+ for (temporal_layer = current_temporal_layer + 1;
+ temporal_layer < svc->number_temporal_layers; ++temporal_layer) {
+ LAYER_CONTEXT *lc = &svc->layer_context[temporal_layer];
+ RATE_CONTROL *lrc = &lc->rc;
+ int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate -
+ encoded_frame_size);
+ lrc->bits_off_target += bits_off_for_this_layer;
+
+ // Clip buffer level to maximum buffer size for the layer.
+ lrc->bits_off_target = MIN(lrc->bits_off_target, lc->maximum_buffer_size);
+ lrc->buffer_level = lrc->bits_off_target;
+ }
}
+// Update the buffer level: leaky bucket model.
+static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
-static void calc_iframe_target_size(VP9_COMP *cpi) {
- // boost defaults to half second
- int target;
-
- // Clear down mmx registers to allow floating point in what follows
- vp9_clear_system_state(); // __asm emms;
+ // Non-viewable frames are a special case and are treated as pure overhead.
+ if (!cm->show_frame) {
+ rc->bits_off_target -= encoded_frame_size;
+ } else {
+ rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
+ }
- // New Two pass RC
- target = cpi->per_frame_bandwidth;
+ // Clip the buffer level to the maximum specified buffer size.
+ rc->bits_off_target = MIN(rc->bits_off_target, oxcf->maximum_buffer_size);
+ rc->buffer_level = rc->bits_off_target;
- if (cpi->oxcf.rc_max_intra_bitrate_pct) {
- int max_rate = cpi->per_frame_bandwidth
- * cpi->oxcf.rc_max_intra_bitrate_pct / 100;
+ if (cpi->use_svc && cpi->oxcf.rc_mode == RC_MODE_CBR) {
+ update_layer_buffer_level(&cpi->svc, encoded_frame_size);
+ }
+}
- if (target > max_rate)
- target = max_rate;
+void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
+ if (pass == 0 && oxcf->rc_mode == RC_MODE_CBR) {
+ rc->avg_frame_qindex[0] = oxcf->worst_allowed_q;
+ rc->avg_frame_qindex[1] = oxcf->worst_allowed_q;
+ rc->avg_frame_qindex[2] = oxcf->worst_allowed_q;
+ } else {
+ rc->avg_frame_qindex[0] = (oxcf->worst_allowed_q +
+ oxcf->best_allowed_q) / 2;
+ rc->avg_frame_qindex[1] = (oxcf->worst_allowed_q +
+ oxcf->best_allowed_q) / 2;
+ rc->avg_frame_qindex[2] = (oxcf->worst_allowed_q +
+ oxcf->best_allowed_q) / 2;
}
- cpi->this_frame_target = target;
-}
+ rc->last_q[0] = oxcf->best_allowed_q;
+ rc->last_q[1] = oxcf->best_allowed_q;
+ rc->last_q[2] = oxcf->best_allowed_q;
+ rc->buffer_level = oxcf->starting_buffer_level;
+ rc->bits_off_target = oxcf->starting_buffer_level;
-// Do the best we can to define the parameters for the next GF based
-// on what information we have available.
-//
-// In this experimental code only two pass is supported
-// so we just use the interval determined in the two pass code.
-static void calc_gf_params(VP9_COMP *cpi) {
- // Set the gf interval
- cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
-}
+ rc->rolling_target_bits = rc->avg_frame_bandwidth;
+ rc->rolling_actual_bits = rc->avg_frame_bandwidth;
+ rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
+ rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
+ rc->total_actual_bits = 0;
+ rc->total_target_vs_actual = 0;
-static void calc_pframe_target_size(VP9_COMP *cpi) {
- const int min_frame_target = MAX(cpi->min_frame_bandwidth,
- cpi->av_per_frame_bandwidth >> 5);
- if (cpi->refresh_alt_ref_frame) {
- // Special alt reference frame case
- // Per frame bit target for the alt ref frame
- cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
- cpi->this_frame_target = cpi->per_frame_bandwidth;
- } else {
- // Normal frames (gf,and inter)
- cpi->this_frame_target = cpi->per_frame_bandwidth;
- }
+ rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
+ rc->frames_since_key = 8; // Sensible default for first frame.
+ rc->this_key_frame_forced = 0;
+ rc->next_key_frame_forced = 0;
+ rc->source_alt_ref_pending = 0;
+ rc->source_alt_ref_active = 0;
- // Check that the total sum of adjustments is not above the maximum allowed.
- // That is, having allowed for the KF and GF penalties, we have not pushed
- // the current inter-frame target too low. If the adjustment we apply here is
- // not capable of recovering all the extra bits we have spent in the KF or GF,
- // then the remainder will have to be recovered over a longer time span via
- // other buffer / rate control mechanisms.
- if (cpi->this_frame_target < min_frame_target)
- cpi->this_frame_target = min_frame_target;
+ rc->frames_till_gf_update_due = 0;
- if (!cpi->refresh_alt_ref_frame)
- // Note the baseline target data rate for this inter frame.
- cpi->inter_frame_target = cpi->this_frame_target;
+ rc->ni_av_qi = oxcf->worst_allowed_q;
+ rc->ni_tot_qi = 0;
+ rc->ni_frames = 0;
- // Adjust target frame size for Golden Frames:
- if (cpi->frames_till_gf_update_due == 0) {
- const int q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME]
- : cpi->oxcf.fixed_q;
+ rc->tot_q = 0.0;
+ rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q);
- cpi->refresh_golden_frame = 1;
+ rc->rate_correction_factor = 1.0;
+ rc->key_frame_rate_correction_factor = 1.0;
+ rc->gf_rate_correction_factor = 1.0;
+}
- calc_gf_params(cpi);
+int vp9_rc_drop_frame(VP9_COMP *cpi) {
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
- // If we are using alternate ref instead of gf then do not apply the boost
- // It will instead be applied to the altref update
- // Jims modified boost
- if (!cpi->source_alt_ref_active) {
- if (cpi->oxcf.fixed_q < 0) {
- // The spend on the GF is defined in the two pass code
- // for two pass encodes
- cpi->this_frame_target = cpi->per_frame_bandwidth;
+ if (!oxcf->drop_frames_water_mark) {
+ return 0;
+ } else {
+ if (rc->buffer_level < 0) {
+ // Always drop if buffer is below 0.
+ return 1;
+ } else {
+ // If buffer is below drop_mark, for now just drop every other frame
+ // (starting with the next frame) until it increases back over drop_mark.
+ int drop_mark = (int)(oxcf->drop_frames_water_mark *
+ oxcf->optimal_buffer_level / 100);
+ if ((rc->buffer_level > drop_mark) &&
+ (rc->decimation_factor > 0)) {
+ --rc->decimation_factor;
+ } else if (rc->buffer_level <= drop_mark &&
+ rc->decimation_factor == 0) {
+ rc->decimation_factor = 1;
+ }
+ if (rc->decimation_factor > 0) {
+ if (rc->decimation_count > 0) {
+ --rc->decimation_count;
+ return 1;
+ } else {
+ rc->decimation_count = rc->decimation_factor;
+ return 0;
+ }
} else {
- cpi->this_frame_target =
- (estimate_bits_at_q(1, q, cpi->common.MBs, 1.0)
- * cpi->last_boost) / 100;
+ rc->decimation_count = 0;
+ return 0;
}
- } else {
- // If there is an active ARF at this location use the minimum
- // bits on this frame even if it is a constructed arf.
- // The active maximum quantizer insures that an appropriate
- // number of bits will be spent if needed for constructed ARFs.
- cpi->this_frame_target = 0;
}
}
}
+static double get_rate_correction_factor(const VP9_COMP *cpi) {
+ if (cpi->common.frame_type == KEY_FRAME) {
+ return cpi->rc.key_frame_rate_correction_factor;
+ } else {
+ if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
+ !cpi->rc.is_src_frame_alt_ref &&
+ !(cpi->use_svc && cpi->oxcf.rc_mode == RC_MODE_CBR))
+ return cpi->rc.gf_rate_correction_factor;
+ else
+ return cpi->rc.rate_correction_factor;
+ }
+}
-void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
- const int q = cpi->common.base_qindex;
+static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
+ if (cpi->common.frame_type == KEY_FRAME) {
+ cpi->rc.key_frame_rate_correction_factor = factor;
+ } else {
+ if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
+ !cpi->rc.is_src_frame_alt_ref &&
+ !(cpi->use_svc && cpi->oxcf.rc_mode == RC_MODE_CBR))
+ cpi->rc.gf_rate_correction_factor = factor;
+ else
+ cpi->rc.rate_correction_factor = factor;
+ }
+}
+
+void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
+ const VP9_COMMON *const cm = &cpi->common;
int correction_factor = 100;
- double rate_correction_factor;
+ double rate_correction_factor = get_rate_correction_factor(cpi);
double adjustment_limit;
int projected_size_based_on_q = 0;
- // Clear down mmx registers to allow floating point in what follows
- vp9_clear_system_state(); // __asm emms;
+ // Do not update the rate factors for arf overlay frames.
+ if (cpi->rc.is_src_frame_alt_ref)
+ return;
- if (cpi->common.frame_type == KEY_FRAME) {
- rate_correction_factor = cpi->key_frame_rate_correction_factor;
- } else {
- if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
- rate_correction_factor = cpi->gf_rate_correction_factor;
- else
- rate_correction_factor = cpi->rate_correction_factor;
- }
+ // Clear down mmx registers to allow floating point in what follows
+ vp9_clear_system_state();
// Work out how big we would have expected the frame to be at this Q given
// the current correction factor.
// Stay in double to avoid int overflow when values are large
- projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q,
- cpi->common.MBs,
+ projected_size_based_on_q = estimate_bits_at_q(cm->frame_type,
+ cm->base_qindex, cm->MBs,
rate_correction_factor);
-
// Work out a size correction factor.
if (projected_size_based_on_q > 0)
- correction_factor =
- (100 * cpi->projected_frame_size) / projected_size_based_on_q;
+ correction_factor = (100 * cpi->rc.projected_frame_size) /
+ projected_size_based_on_q;
// More heavily damped adjustment used if we have been oscillating either side
// of target.
@@ -284,74 +341,48 @@ void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
break;
}
- // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
if (correction_factor > 102) {
// We are not already at the worst allowable quality
- correction_factor =
- (int)(100 + ((correction_factor - 100) * adjustment_limit));
- rate_correction_factor =
- ((rate_correction_factor * correction_factor) / 100);
+ correction_factor = (int)(100 + ((correction_factor - 100) *
+ adjustment_limit));
+ rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
// Keep rate_correction_factor within limits
if (rate_correction_factor > MAX_BPB_FACTOR)
rate_correction_factor = MAX_BPB_FACTOR;
} else if (correction_factor < 99) {
// We are not already at the best allowable quality
- correction_factor =
- (int)(100 - ((100 - correction_factor) * adjustment_limit));
- rate_correction_factor =
- ((rate_correction_factor * correction_factor) / 100);
+ correction_factor = (int)(100 - ((100 - correction_factor) *
+ adjustment_limit));
+ rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
// Keep rate_correction_factor within limits
if (rate_correction_factor < MIN_BPB_FACTOR)
rate_correction_factor = MIN_BPB_FACTOR;
}
- if (cpi->common.frame_type == KEY_FRAME) {
- cpi->key_frame_rate_correction_factor = rate_correction_factor;
- } else {
- if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
- cpi->gf_rate_correction_factor = rate_correction_factor;
- else
- cpi->rate_correction_factor = rate_correction_factor;
- }
+ set_rate_correction_factor(cpi, rate_correction_factor);
}
-int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) {
- int q = cpi->active_worst_quality;
-
- int i;
+int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
+ int active_best_quality, int active_worst_quality) {
+ const VP9_COMMON *const cm = &cpi->common;
+ int q = active_worst_quality;
int last_error = INT_MAX;
- int target_bits_per_mb;
- int bits_per_mb_at_this_q;
- double correction_factor;
-
- // Select the appropriate correction factor based upon type of frame.
- if (cpi->common.frame_type == KEY_FRAME) {
- correction_factor = cpi->key_frame_rate_correction_factor;
- } else {
- if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
- correction_factor = cpi->gf_rate_correction_factor;
- else
- correction_factor = cpi->rate_correction_factor;
- }
+ int i, target_bits_per_mb;
+ const double correction_factor = get_rate_correction_factor(cpi);
// Calculate required scaling factor based on target frame size and size of
// frame produced using previous Q.
- if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
- target_bits_per_mb =
- (target_bits_per_frame / cpi->common.MBs)
- << BPER_MB_NORMBITS; // Case where we would overflow int
- else
- target_bits_per_mb =
- (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
+ target_bits_per_mb =
+ ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs;
- i = cpi->active_best_quality;
+ i = active_best_quality;
do {
- bits_per_mb_at_this_q = (int)vp9_bits_per_mb(cpi->common.frame_type, i,
- correction_factor);
+ const int bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cm->frame_type, i,
+ correction_factor);
if (bits_per_mb_at_this_q <= target_bits_per_mb) {
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
@@ -363,114 +394,1026 @@ int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) {
} else {
last_error = bits_per_mb_at_this_q - target_bits_per_mb;
}
- } while (++i <= cpi->active_worst_quality);
+ } while (++i <= active_worst_quality);
return q;
}
+static int get_active_quality(int q, int gfu_boost, int low, int high,
+ int *low_motion_minq, int *high_motion_minq) {
+ if (gfu_boost > high) {
+ return low_motion_minq[q];
+ } else if (gfu_boost < low) {
+ return high_motion_minq[q];
+ } else {
+ const int gap = high - low;
+ const int offset = high - gfu_boost;
+ const int qdiff = high_motion_minq[q] - low_motion_minq[q];
+ const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
+ return low_motion_minq[q] + adjustment;
+ }
+}
-static int estimate_keyframe_frequency(VP9_COMP *cpi) {
- int i;
+static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const unsigned int curr_frame = cpi->common.current_video_frame;
+ int active_worst_quality;
- // Average key frame frequency
- int av_key_frame_frequency = 0;
+ if (cpi->common.frame_type == KEY_FRAME) {
+ active_worst_quality = curr_frame == 0 ? rc->worst_quality
+ : rc->last_q[KEY_FRAME] * 2;
+ } else {
+ if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
+ : rc->last_q[INTER_FRAME];
+ } else {
+ active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
+ : rc->last_q[INTER_FRAME] * 2;
+ }
+ }
- /* First key frame at start of sequence is a special case. We have no
- * frequency data.
- */
- if (cpi->key_frame_count == 1) {
- /* Assume a default of 1 kf every 2 seconds, or the max kf interval,
- * whichever is smaller.
- */
- int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1;
- av_key_frame_frequency = (int)cpi->output_framerate * 2;
+ return MIN(active_worst_quality, rc->worst_quality);
+}
- if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
- av_key_frame_frequency = cpi->oxcf.key_freq;
+// Adjust active_worst_quality level based on buffer level.
+static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
+ // Adjust active_worst_quality: If buffer is above the optimal/target level,
+ // bring active_worst_quality down depending on fullness of buffer.
+ // If buffer is below the optimal level, let the active_worst_quality go from
+ // ambient Q (at buffer = optimal level) to worst_quality level
+ // (at buffer = critical level).
+ const VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ const RATE_CONTROL *rc = &cpi->rc;
+ // Buffer level below which we push active_worst to worst_quality.
+ int64_t critical_level = oxcf->optimal_buffer_level >> 2;
+ int64_t buff_lvl_step = 0;
+ int adjustment = 0;
+ int active_worst_quality;
+ if (cm->frame_type == KEY_FRAME)
+ return rc->worst_quality;
+ if (cm->current_video_frame > 1)
+ active_worst_quality = MIN(rc->worst_quality,
+ rc->avg_frame_qindex[INTER_FRAME] * 5 / 4);
+ else
+ active_worst_quality = MIN(rc->worst_quality,
+ rc->avg_frame_qindex[KEY_FRAME] * 3 / 2);
+ if (rc->buffer_level > oxcf->optimal_buffer_level) {
+ // Adjust down.
+ // Maximum limit for down adjustment, ~30%.
+ int max_adjustment_down = active_worst_quality / 3;
+ if (max_adjustment_down) {
+ buff_lvl_step = ((oxcf->maximum_buffer_size -
+ oxcf->optimal_buffer_level) / max_adjustment_down);
+ if (buff_lvl_step)
+ adjustment = (int)((rc->buffer_level - oxcf->optimal_buffer_level) /
+ buff_lvl_step);
+ active_worst_quality -= adjustment;
+ }
+ } else if (rc->buffer_level > critical_level) {
+ // Adjust up from ambient Q.
+ if (critical_level) {
+ buff_lvl_step = (oxcf->optimal_buffer_level - critical_level);
+ if (buff_lvl_step) {
+ adjustment =
+ (int)((rc->worst_quality - rc->avg_frame_qindex[INTER_FRAME]) *
+ (oxcf->optimal_buffer_level - rc->buffer_level) /
+ buff_lvl_step);
+ }
+ active_worst_quality = rc->avg_frame_qindex[INTER_FRAME] + adjustment;
+ }
+ } else {
+ // Set to worst_quality if buffer is below critical level.
+ active_worst_quality = rc->worst_quality;
+ }
+ return active_worst_quality;
+}
+
+static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
+ int *bottom_index,
+ int *top_index) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ int active_best_quality;
+ int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
+ int q;
+
+ if (frame_is_intra_only(cm)) {
+ active_best_quality = rc->best_quality;
+ // Handle the special case for key frames forced when we have75 reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ if (rc->this_key_frame_forced) {
+ int qindex = rc->last_boosted_qindex;
+ double last_boosted_q = vp9_convert_qindex_to_q(qindex);
+ int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
+ (last_boosted_q * 0.75));
+ active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
+ } else if (cm->current_video_frame > 0) {
+ // not first frame of one pass and kf_boost is set
+ double q_adj_factor = 1.0;
+ double q_val;
+
+ active_best_quality = get_active_quality(rc->avg_frame_qindex[KEY_FRAME],
+ rc->kf_boost,
+ kf_low, kf_high,
+ kf_low_motion_minq,
+ kf_high_motion_minq);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
- cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
- = av_key_frame_frequency;
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = vp9_convert_qindex_to_q(active_best_quality);
+ active_best_quality += vp9_compute_qdelta(rc, q_val,
+ q_val * q_adj_factor);
+ }
+ } else if (!rc->is_src_frame_alt_ref &&
+ !cpi->use_svc &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1 &&
+ rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = rc->avg_frame_qindex[INTER_FRAME];
+ } else {
+ q = active_worst_quality;
+ }
+ active_best_quality = get_active_quality(
+ q, rc->gfu_boost, gf_low, gf_high,
+ arfgf_low_motion_minq, arfgf_high_motion_minq);
} else {
- unsigned int total_weight = 0;
- int last_kf_interval =
- (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;
-
- /* reset keyframe context and calculate weighted average of last
- * KEY_FRAME_CONTEXT keyframes
- */
- for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
- if (i < KEY_FRAME_CONTEXT - 1)
- cpi->prior_key_frame_distance[i]
- = cpi->prior_key_frame_distance[i + 1];
+ // Use the lower of active_worst_quality and recent/average Q.
+ if (cm->current_video_frame > 1) {
+ if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
+ active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
else
- cpi->prior_key_frame_distance[i] = last_kf_interval;
-
- av_key_frame_frequency += prior_key_frame_weight[i]
- * cpi->prior_key_frame_distance[i];
- total_weight += prior_key_frame_weight[i];
+ active_best_quality = rtc_minq[active_worst_quality];
+ } else {
+ if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
+ active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
+ else
+ active_best_quality = rtc_minq[active_worst_quality];
}
+ }
- av_key_frame_frequency /= total_weight;
+ // Clip the active best and worst quality values to limits
+ active_best_quality = clamp(active_best_quality,
+ rc->best_quality, rc->worst_quality);
+ active_worst_quality = clamp(active_worst_quality,
+ active_best_quality, rc->worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+ // Limit Q range for the adaptive loop.
+ if (cm->frame_type == KEY_FRAME &&
+ !rc->this_key_frame_forced &&
+ !(cm->current_video_frame == 0)) {
+ int qdelta = 0;
+ vp9_clear_system_state();
+ qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
+ active_worst_quality, 2.0);
+ *top_index = active_worst_quality + qdelta;
+ *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
}
- return av_key_frame_frequency;
+#endif
+
+ // Special case code to try and match quality with forced key frames
+ if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
+ q = rc->last_boosted_qindex;
+ } else {
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ active_best_quality, active_worst_quality);
+ if (q > *top_index) {
+ // Special case when we are targeting the max allowed rate
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ *top_index = q;
+ else
+ q = *top_index;
+ }
+ }
+ assert(*top_index <= rc->worst_quality &&
+ *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
}
+static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
+ int *bottom_index,
+ int *top_index) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const int cq_level = oxcf->cq_level;
+ int active_best_quality;
+ int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
+ int q;
+
+ if (frame_is_intra_only(cm)) {
+ active_best_quality = rc->best_quality;
+#if !CONFIG_MULTIPLE_ARF
+ // Handle the special case for key frames forced when we have75 reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ if (rc->this_key_frame_forced) {
+ int qindex = rc->last_boosted_qindex;
+ double last_boosted_q = vp9_convert_qindex_to_q(qindex);
+ int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
+ last_boosted_q * 0.75);
+ active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
+ } else if (cm->current_video_frame > 0) {
+ // not first frame of one pass and kf_boost is set
+ double q_adj_factor = 1.0;
+ double q_val;
+
+ active_best_quality = get_active_quality(rc->avg_frame_qindex[KEY_FRAME],
+ rc->kf_boost,
+ kf_low, kf_high,
+ kf_low_motion_minq,
+ kf_high_motion_minq);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
-void vp9_adjust_key_frame_context(VP9_COMP *cpi) {
- // Clear down mmx registers to allow floating point in what follows
- vp9_clear_system_state();
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = vp9_convert_qindex_to_q(active_best_quality);
+ active_best_quality += vp9_compute_qdelta(rc, q_val,
+ q_val * q_adj_factor);
+ }
+#else
+ double current_q;
+ // Force the KF quantizer to be 30% of the active_worst_quality.
+ current_q = vp9_convert_qindex_to_q(active_worst_quality);
+ active_best_quality = active_worst_quality
+ + vp9_compute_qdelta(rc, current_q, current_q * 0.3);
+#endif
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1 &&
+ rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = rc->avg_frame_qindex[INTER_FRAME];
+ } else {
+ q = rc->avg_frame_qindex[KEY_FRAME];
+ }
+ // For constrained quality dont allow Q less than the cq level
+ if (oxcf->rc_mode == RC_MODE_CONSTRAINED_QUALITY) {
+ if (q < cq_level)
+ q = cq_level;
+
+ active_best_quality = get_active_quality(q, rc->gfu_boost,
+ gf_low, gf_high,
+ arfgf_low_motion_minq,
+ arfgf_high_motion_minq);
+
+ // Constrained quality use slightly lower active best.
+ active_best_quality = active_best_quality * 15 / 16;
+
+ } else if (oxcf->rc_mode == RC_MODE_CONSTANT_QUALITY) {
+ if (!cpi->refresh_alt_ref_frame) {
+ active_best_quality = cq_level;
+ } else {
+ active_best_quality = get_active_quality(
+ q, rc->gfu_boost, gf_low, gf_high,
+ arfgf_low_motion_minq, arfgf_high_motion_minq);
+ }
+ } else {
+ active_best_quality = get_active_quality(
+ q, rc->gfu_boost, gf_low, gf_high,
+ arfgf_low_motion_minq, arfgf_high_motion_minq);
+ }
+ } else {
+ if (oxcf->rc_mode == RC_MODE_CONSTANT_QUALITY) {
+ active_best_quality = cq_level;
+ } else {
+ // Use the lower of active_worst_quality and recent/average Q.
+ if (cm->current_video_frame > 1)
+ active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]];
+ else
+ active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
+ // For the constrained quality mode we don't want
+ // q to fall below the cq level.
+ if ((oxcf->rc_mode == RC_MODE_CONSTRAINED_QUALITY) &&
+ (active_best_quality < cq_level)) {
+ active_best_quality = cq_level;
+ }
+ }
+ }
+
+ // Clip the active best and worst quality values to limits
+ active_best_quality = clamp(active_best_quality,
+ rc->best_quality, rc->worst_quality);
+ active_worst_quality = clamp(active_worst_quality,
+ active_best_quality, rc->worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+ {
+ int qdelta = 0;
+ vp9_clear_system_state();
+
+ // Limit Q range for the adaptive loop.
+ if (cm->frame_type == KEY_FRAME &&
+ !rc->this_key_frame_forced &&
+ !(cm->current_video_frame == 0)) {
+ qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
+ active_worst_quality, 2.0);
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
+ active_worst_quality, 1.75);
+ }
+ *top_index = active_worst_quality + qdelta;
+ *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
+ }
+#endif
- cpi->frames_since_key = 0;
- cpi->key_frame_count++;
+ if (oxcf->rc_mode == RC_MODE_CONSTANT_QUALITY) {
+ q = active_best_quality;
+ // Special case code to try and match quality with forced key frames
+ } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
+ q = rc->last_boosted_qindex;
+ } else {
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ active_best_quality, active_worst_quality);
+ if (q > *top_index) {
+ // Special case when we are targeting the max allowed rate
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ *top_index = q;
+ else
+ q = *top_index;
+ }
+ }
+#if CONFIG_MULTIPLE_ARF
+ // Force the quantizer determined by the coding order pattern.
+ if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
+ cpi->oxcf.rc_mode != RC_MODE_CONSTANT_QUALITY) {
+ double new_q;
+ double current_q = vp9_convert_qindex_to_q(active_worst_quality);
+ int level = cpi->this_frame_weight;
+ assert(level >= 0);
+ new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
+ q = active_worst_quality +
+ vp9_compute_qdelta(rc, current_q, new_q);
+
+ *bottom_index = q;
+ *top_index = q;
+ printf("frame:%d q:%d\n", cm->current_video_frame, q);
+ }
+#endif
+ assert(*top_index <= rc->worst_quality &&
+ *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
}
+static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
+ int *bottom_index,
+ int *top_index) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const int cq_level = oxcf->cq_level;
+ int active_best_quality;
+ int active_worst_quality = cpi->twopass.active_worst_quality;
+ int q;
+
+ if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) {
+#if !CONFIG_MULTIPLE_ARF
+ // Handle the special case for key frames forced when we have75 reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ if (rc->this_key_frame_forced) {
+ int qindex = rc->last_boosted_qindex;
+ double last_boosted_q = vp9_convert_qindex_to_q(qindex);
+ int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
+ last_boosted_q * 0.75);
+ active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
+ } else {
+ // Not forced keyframe.
+ double q_adj_factor = 1.0;
+ double q_val;
+ // Baseline value derived from cpi->active_worst_quality and kf boost.
+ active_best_quality = get_active_quality(active_worst_quality,
+ rc->kf_boost,
+ kf_low, kf_high,
+ kf_low_motion_minq,
+ kf_high_motion_minq);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
-void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit,
- int *frame_over_shoot_limit) {
- // Set-up bounds on acceptable frame size:
- if (cpi->oxcf.fixed_q >= 0) {
- // Fixed Q scenario: frame size never outranges target (there is no target!)
- *frame_under_shoot_limit = 0;
- *frame_over_shoot_limit = INT_MAX;
- } else {
- if (cpi->common.frame_type == KEY_FRAME) {
- *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
+ // Make a further adjustment based on the kf zero motion measure.
+ q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
+
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = vp9_convert_qindex_to_q(active_best_quality);
+ active_best_quality += vp9_compute_qdelta(rc, q_val,
+ q_val * q_adj_factor);
+ }
+#else
+ double current_q;
+ // Force the KF quantizer to be 30% of the active_worst_quality.
+ current_q = vp9_convert_qindex_to_q(active_worst_quality);
+ active_best_quality = active_worst_quality
+ + vp9_compute_qdelta(rc, current_q, current_q * 0.3);
+#endif
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1 &&
+ rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = rc->avg_frame_qindex[INTER_FRAME];
} else {
- if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) {
- *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
+ q = active_worst_quality;
+ }
+ // For constrained quality dont allow Q less than the cq level
+ if (oxcf->rc_mode == RC_MODE_CONSTRAINED_QUALITY) {
+ if (q < cq_level)
+ q = cq_level;
+
+ active_best_quality = get_active_quality(q, rc->gfu_boost,
+ gf_low, gf_high,
+ arfgf_low_motion_minq,
+ arfgf_high_motion_minq);
+
+ // Constrained quality use slightly lower active best.
+ active_best_quality = active_best_quality * 15 / 16;
+
+ } else if (oxcf->rc_mode == RC_MODE_CONSTANT_QUALITY) {
+ if (!cpi->refresh_alt_ref_frame) {
+ active_best_quality = cq_level;
} else {
- // Stron overshoot limit for constrained quality
- if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
- *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8;
- } else {
- *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
- }
+ active_best_quality = get_active_quality(
+ q, rc->gfu_boost, gf_low, gf_high,
+ arfgf_low_motion_minq, arfgf_high_motion_minq);
}
+ } else {
+ active_best_quality = get_active_quality(
+ q, rc->gfu_boost, gf_low, gf_high,
+ arfgf_low_motion_minq, arfgf_high_motion_minq);
}
+ } else {
+ if (oxcf->rc_mode == RC_MODE_CONSTANT_QUALITY) {
+ active_best_quality = cq_level;
+ } else {
+ active_best_quality = inter_minq[active_worst_quality];
+ // For the constrained quality mode we don't want
+ // q to fall below the cq level.
+ if ((oxcf->rc_mode == RC_MODE_CONSTRAINED_QUALITY) &&
+ (active_best_quality < cq_level)) {
+ active_best_quality = cq_level;
+ }
+ }
+ }
+
+ // Clip the active best and worst quality values to limits.
+ active_best_quality = clamp(active_best_quality,
+ rc->best_quality, rc->worst_quality);
+ active_worst_quality = clamp(active_worst_quality,
+ active_best_quality, rc->worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+ {
+ int qdelta = 0;
+ vp9_clear_system_state();
+
+ // Limit Q range for the adaptive loop.
+ if ((cm->frame_type == KEY_FRAME || vp9_is_upper_layer_key_frame(cpi)) &&
+ !rc->this_key_frame_forced) {
+ qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
+ active_worst_quality, 2.0);
+ } else if (!rc->is_src_frame_alt_ref &&
+ (oxcf->rc_mode != RC_MODE_CBR) &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
+ active_worst_quality, 1.75);
+ }
+ *top_index = active_worst_quality + qdelta;
+ *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
+ }
+#endif
+
+ if (oxcf->rc_mode == RC_MODE_CONSTANT_QUALITY) {
+ q = active_best_quality;
+ // Special case code to try and match quality with forced key frames.
+ } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
+ q = rc->last_boosted_qindex;
+ } else {
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ active_best_quality, active_worst_quality);
+ if (q > *top_index) {
+ // Special case when we are targeting the max allowed rate.
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ *top_index = q;
+ else
+ q = *top_index;
+ }
+ }
+#if CONFIG_MULTIPLE_ARF
+ // Force the quantizer determined by the coding order pattern.
+ if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
+ cpi->oxcf.rc_mode != RC_MODE_CONSTANT_QUALITY) {
+ double new_q;
+ double current_q = vp9_convert_qindex_to_q(active_worst_quality);
+ int level = cpi->this_frame_weight;
+ assert(level >= 0);
+ new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
+ q = active_worst_quality +
+ vp9_compute_qdelta(rc, current_q, new_q);
+
+ *bottom_index = q;
+ *top_index = q;
+ printf("frame:%d q:%d\n", cm->current_video_frame, q);
+ }
+#endif
+ assert(*top_index <= rc->worst_quality &&
+ *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi,
+ int *bottom_index, int *top_index) {
+ int q;
+ if (cpi->pass == 0) {
+ if (cpi->oxcf.rc_mode == RC_MODE_CBR)
+ q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
+ else
+ q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
+ } else {
+ q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index);
+ }
+
+ if (cpi->sf.use_nonrd_pick_mode) {
+ if (cpi->sf.force_frame_boost == 1)
+ q -= cpi->sf.max_delta_qindex;
+
+ if (q < *bottom_index)
+ *bottom_index = q;
+ else if (q > *top_index)
+ *top_index = q;
+ }
+ return q;
+}
+
+void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
+ int frame_target,
+ int *frame_under_shoot_limit,
+ int *frame_over_shoot_limit) {
+ if (cpi->oxcf.rc_mode == RC_MODE_CONSTANT_QUALITY) {
+ *frame_under_shoot_limit = 0;
+ *frame_over_shoot_limit = INT_MAX;
+ } else {
// For very small rate targets where the fractional adjustment
- // (eg * 7/8) may be tiny make sure there is at least a minimum
- // range.
- *frame_over_shoot_limit += 200;
- *frame_under_shoot_limit -= 200;
- if (*frame_under_shoot_limit < 0)
- *frame_under_shoot_limit = 0;
+ // may be tiny make sure there is at least a minimum range.
+ const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
+ *frame_under_shoot_limit = MAX(frame_target - tolerance - 200, 0);
+ *frame_over_shoot_limit = MIN(frame_target + tolerance + 200,
+ cpi->rc.max_frame_bandwidth);
}
}
+void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
+ const VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ rc->this_frame_target = target;
-// return of 0 means drop frame
-int vp9_pick_frame_size(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
+ // Target rate per SB64 (including partial SB64s.
+ rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) /
+ (cm->width * cm->height);
+}
+
+static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
+ // this frame refreshes means next frames don't unless specified by user
+ RATE_CONTROL *const rc = &cpi->rc;
+ rc->frames_since_golden = 0;
+
+#if CONFIG_MULTIPLE_ARF
+ if (!cpi->multi_arf_enabled)
+#endif
+ // Clear the alternate reference update pending flag.
+ rc->source_alt_ref_pending = 0;
+
+ // Set the alternate reference frame active flag
+ rc->source_alt_ref_active = 1;
+}
+
+static void update_golden_frame_stats(VP9_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ // Update the Golden frame usage counts.
+ if (cpi->refresh_golden_frame) {
+ // this frame refreshes means next frames don't unless specified by user
+ rc->frames_since_golden = 0;
+
+ if (!rc->source_alt_ref_pending)
+ rc->source_alt_ref_active = 0;
+
+ // Decrement count down till next gf
+ if (rc->frames_till_gf_update_due > 0)
+ rc->frames_till_gf_update_due--;
+
+ } else if (!cpi->refresh_alt_ref_frame) {
+ // Decrement count down till next gf
+ if (rc->frames_till_gf_update_due > 0)
+ rc->frames_till_gf_update_due--;
+
+ rc->frames_since_golden++;
+ }
+}
+
+void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+ const int qindex = cm->base_qindex;
+
+ // Update rate control heuristics
+ rc->projected_frame_size = (int)(bytes_used << 3);
+
+ // Post encode loop adjustment of Q prediction.
+ vp9_rc_update_rate_correction_factors(
+ cpi, (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF ||
+ oxcf->rc_mode == RC_MODE_CBR) ? 2 : 0);
+
+ // Keep a record of last Q and ambient average Q.
+ if (cm->frame_type == KEY_FRAME) {
+ rc->last_q[KEY_FRAME] = qindex;
+ rc->avg_frame_qindex[KEY_FRAME] =
+ ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) &&
+ !(cpi->use_svc && oxcf->rc_mode == RC_MODE_CBR)) {
+ rc->last_q[2] = qindex;
+ rc->avg_frame_qindex[2] =
+ ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[2] + qindex, 2);
+ } else {
+ rc->last_q[INTER_FRAME] = qindex;
+ rc->avg_frame_qindex[INTER_FRAME] =
+ ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
+ rc->ni_frames++;
+ rc->tot_q += vp9_convert_qindex_to_q(qindex);
+ rc->avg_q = rc->tot_q / rc->ni_frames;
+ // Calculate the average Q for normal inter frames (not key or GFU frames).
+ rc->ni_tot_qi += qindex;
+ rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
+ }
+
+ // Keep record of last boosted (KF/KF/ARF) Q value.
+ // If the current frame is coded at a lower Q then we also update it.
+ // If all mbs in this group are skipped only update if the Q value is
+ // better than that already stored.
+ // This is used to help set quality in forced key frames to reduce popping
+ if ((qindex < rc->last_boosted_qindex) ||
+ ((cpi->static_mb_pct < 100) &&
+ ((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
+ rc->last_boosted_qindex = qindex;
+ }
+
+ update_buffer_level(cpi, rc->projected_frame_size);
+
+ // Rolling monitors of whether we are over or underspending used to help
+ // regulate min and Max Q in two pass.
+ if (cm->frame_type != KEY_FRAME) {
+ rc->rolling_target_bits = ROUND_POWER_OF_TWO(
+ rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
+ rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
+ rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
+ rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
+ rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
+ rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
+ rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
+ }
+
+ // Actual bits spent
+ rc->total_actual_bits += rc->projected_frame_size;
+ rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
+
+ rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
+
+ if (oxcf->play_alternate && cpi->refresh_alt_ref_frame &&
+ (cm->frame_type != KEY_FRAME))
+ // Update the alternate reference frame stats as appropriate.
+ update_alt_ref_frame_stats(cpi);
+ else
+ // Update the Golden frame stats as appropriate.
+ update_golden_frame_stats(cpi);
if (cm->frame_type == KEY_FRAME)
- calc_iframe_target_size(cpi);
+ rc->frames_since_key = 0;
+ if (cm->show_frame) {
+ rc->frames_since_key++;
+ rc->frames_to_key--;
+ }
+}
+
+void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
+ // Update buffer level with zero size, update frame counters, and return.
+ update_buffer_level(cpi, 0);
+ cpi->common.last_frame_type = cpi->common.frame_type;
+ cpi->rc.frames_since_key++;
+ cpi->rc.frames_to_key--;
+}
+
+// Use this macro to turn on/off use of alt-refs in one-pass mode.
+#define USE_ALTREF_FOR_ONE_PASS 1
+
+static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
+ static const int af_ratio = 10;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+#if USE_ALTREF_FOR_ONE_PASS
+ target = (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ?
+ (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
+ (rc->baseline_gf_interval + af_ratio - 1) :
+ (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
+ (rc->baseline_gf_interval + af_ratio - 1);
+#else
+ target = rc->avg_frame_bandwidth;
+#endif
+ return vp9_rc_clamp_pframe_target_size(cpi, target);
+}
+
+static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
+ static const int kf_ratio = 25;
+ const RATE_CONTROL *rc = &cpi->rc;
+ const int target = rc->avg_frame_bandwidth * kf_ratio;
+ return vp9_rc_clamp_iframe_target_size(cpi, target);
+}
+
+void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+ // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
+ if (!cpi->refresh_alt_ref_frame &&
+ (cm->current_video_frame == 0 ||
+ (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+ rc->frames_to_key == 0 ||
+ (cpi->oxcf.auto_key && 0))) {
+ cm->frame_type = KEY_FRAME;
+ rc->this_key_frame_forced = cm->current_video_frame != 0 &&
+ rc->frames_to_key == 0;
+ rc->frames_to_key = cpi->oxcf.key_freq;
+ rc->kf_boost = DEFAULT_KF_BOOST;
+ rc->source_alt_ref_active = 0;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+ if (rc->frames_till_gf_update_due == 0) {
+ rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ // NOTE: frames_till_gf_update_due must be <= frames_to_key.
+ if (rc->frames_till_gf_update_due > rc->frames_to_key)
+ rc->frames_till_gf_update_due = rc->frames_to_key;
+ cpi->refresh_golden_frame = 1;
+ rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
+ rc->gfu_boost = DEFAULT_GF_BOOST;
+ }
+ if (cm->frame_type == KEY_FRAME)
+ target = calc_iframe_target_size_one_pass_vbr(cpi);
else
- calc_pframe_target_size(cpi);
+ target = calc_pframe_target_size_one_pass_vbr(cpi);
+ vp9_rc_set_frame_target(cpi, target);
+}
+
+static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ const RATE_CONTROL *rc = &cpi->rc;
+ const SVC *const svc = &cpi->svc;
+ const int64_t diff = oxcf->optimal_buffer_level - rc->buffer_level;
+ const int64_t one_pct_bits = 1 + oxcf->optimal_buffer_level / 100;
+ int min_frame_target = MAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
+ int target = rc->avg_frame_bandwidth;
+ if (svc->number_temporal_layers > 1 &&
+ oxcf->rc_mode == RC_MODE_CBR) {
+ // Note that for layers, avg_frame_bandwidth is the cumulative
+ // per-frame-bandwidth. For the target size of this frame, use the
+ // layer average frame size (i.e., non-cumulative per-frame-bw).
+ int current_temporal_layer = svc->temporal_layer_id;
+ const LAYER_CONTEXT *lc = &svc->layer_context[current_temporal_layer];
+ target = lc->avg_frame_size;
+ min_frame_target = MAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
+ }
+ if (diff > 0) {
+ // Lower the target bandwidth for this frame.
+ const int pct_low = (int)MIN(diff / one_pct_bits, oxcf->under_shoot_pct);
+ target -= (target * pct_low) / 200;
+ } else if (diff < 0) {
+ // Increase the target bandwidth for this frame.
+ const int pct_high = (int)MIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
+ target += (target * pct_high) / 200;
+ }
+ return MAX(min_frame_target, target);
+}
+
+static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ const SVC *const svc = &cpi->svc;
+ int target;
+ if (cpi->common.current_video_frame == 0) {
+ target = ((cpi->oxcf.starting_buffer_level / 2) > INT_MAX)
+ ? INT_MAX : (int)(cpi->oxcf.starting_buffer_level / 2);
+ } else {
+ int kf_boost = 32;
+ double framerate = oxcf->framerate;
+ if (svc->number_temporal_layers > 1 &&
+ oxcf->rc_mode == RC_MODE_CBR) {
+ // Use the layer framerate for temporal layers CBR mode.
+ const LAYER_CONTEXT *lc = &svc->layer_context[svc->temporal_layer_id];
+ framerate = lc->framerate;
+ }
+ kf_boost = MAX(kf_boost, (int)(2 * framerate - 16));
+ if (rc->frames_since_key < framerate / 2) {
+ kf_boost = (int)(kf_boost * rc->frames_since_key /
+ (framerate / 2));
+ }
+ target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
+ }
+ return vp9_rc_clamp_iframe_target_size(cpi, target);
+}
+
+void vp9_rc_get_svc_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target = rc->avg_frame_bandwidth;
+ if ((cm->current_video_frame == 0) ||
+ (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+ (cpi->oxcf.auto_key && (rc->frames_since_key %
+ cpi->oxcf.key_freq == 0))) {
+ cm->frame_type = KEY_FRAME;
+ rc->source_alt_ref_active = 0;
+
+ if (cpi->use_svc && cpi->svc.number_temporal_layers == 1) {
+ cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame = 1;
+ }
+
+ if (cpi->pass == 0 && cpi->oxcf.rc_mode == RC_MODE_CBR) {
+ target = calc_iframe_target_size_one_pass_cbr(cpi);
+ }
+ } else {
+ cm->frame_type = INTER_FRAME;
+
+ if (cpi->use_svc && cpi->svc.number_temporal_layers == 1) {
+ LAYER_CONTEXT *lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id];
+ if (cpi->svc.spatial_layer_id == 0) {
+ lc->is_key_frame = 0;
+ } else {
+ lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
+ }
+ }
+
+ if (cpi->pass == 0 && cpi->oxcf.rc_mode == RC_MODE_CBR) {
+ target = calc_pframe_target_size_one_pass_cbr(cpi);
+ }
+ }
+ vp9_rc_set_frame_target(cpi, target);
+ rc->frames_till_gf_update_due = INT_MAX;
+ rc->baseline_gf_interval = INT_MAX;
+}
+
+void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+ // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
+ if ((cm->current_video_frame == 0 ||
+ (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+ rc->frames_to_key == 0 ||
+ (cpi->oxcf.auto_key && 0))) {
+ cm->frame_type = KEY_FRAME;
+ rc->this_key_frame_forced = cm->current_video_frame != 0 &&
+ rc->frames_to_key == 0;
+ rc->frames_to_key = cpi->oxcf.key_freq;
+ rc->kf_boost = DEFAULT_KF_BOOST;
+ rc->source_alt_ref_active = 0;
+ target = calc_iframe_target_size_one_pass_cbr(cpi);
+ } else {
+ cm->frame_type = INTER_FRAME;
+ target = calc_pframe_target_size_one_pass_cbr(cpi);
+ }
+ vp9_rc_set_frame_target(cpi, target);
+ // Don't use gf_update by default in CBR mode.
+ rc->frames_till_gf_update_due = INT_MAX;
+ rc->baseline_gf_interval = INT_MAX;
+}
+
+int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget) {
+ int start_index = rc->worst_quality;
+ int target_index = rc->worst_quality;
+ int i;
+
+ // Convert the average q value to an index.
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ start_index = i;
+ if (vp9_convert_qindex_to_q(i) >= qstart)
+ break;
+ }
+
+ // Convert the q target to an index
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ target_index = i;
+ if (vp9_convert_qindex_to_q(i) >= qtarget)
+ break;
+ }
+
+ return target_index - start_index;
+}
+
+int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
+ int qindex, double rate_target_ratio) {
+ int target_index = rc->worst_quality;
+ int i;
+
+ // Look up the current projected bits per block for the base index
+ const int base_bits_per_mb = vp9_rc_bits_per_mb(frame_type, qindex, 1.0);
+
+ // Find the target bits per mb based on the base value and given ratio.
+ const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
+
+ // Convert the q target to an index
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ target_index = i;
+ if (vp9_rc_bits_per_mb(frame_type, i, 1.0) <= target_bits_per_mb )
+ break;
+ }
+
+ return target_index - qindex;
+}
+
+void vp9_rc_update_framerate(VP9_COMP *cpi) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int vbr_max_bits;
+
+ rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / oxcf->framerate);
+ rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth *
+ oxcf->two_pass_vbrmin_section / 100);
+
+ rc->min_frame_bandwidth = MAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
+
+ // A maximum bitrate for a frame is defined.
+ // The baseline for this aligns with HW implementations that
+ // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
+ // per 16x16 MB (averaged over a frame). However this limit is extended if
+ // a very high rate is given on the command line or the the rate cannnot
+ // be acheived because of a user specificed max q (e.g. when the user
+ // specifies lossless encode.
+ vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth *
+ oxcf->two_pass_vbrmax_section) / 100);
+ rc->max_frame_bandwidth = MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P),
+ vbr_max_bits);
+
+ // Set Maximum gf/arf interval
+ rc->max_gf_interval = 16;
+
+ // Extended interval for genuinely static scenes
+ rc->static_scene_max_gf_interval = cpi->oxcf.key_freq >> 1;
+
+ // Special conditions when alt ref frame enabled in lagged compress mode
+ if (oxcf->play_alternate && oxcf->lag_in_frames) {
+ if (rc->max_gf_interval > oxcf->lag_in_frames - 1)
+ rc->max_gf_interval = oxcf->lag_in_frames - 1;
+
+ if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
+ rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
+ }
- return 1;
+ if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
+ rc->max_gf_interval = rc->static_scene_max_gf_interval;
}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ratectrl.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ratectrl.h
index ddda7130c9a..b1cc676091f 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ratectrl.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ratectrl.h
@@ -12,28 +12,174 @@
#ifndef VP9_ENCODER_VP9_RATECTRL_H_
#define VP9_ENCODER_VP9_RATECTRL_H_
-#include "vp9/encoder/vp9_onyx_int.h"
+#include "vpx/vpx_integer.h"
-#define FRAME_OVERHEAD_BITS 200
+#include "vp9/common/vp9_blockd.h"
-void vp9_save_coding_context(VP9_COMP *cpi);
-void vp9_restore_coding_context(VP9_COMP *cpi);
+#ifdef __cplusplus
+extern "C" {
+#endif
-void vp9_setup_key_frame(VP9_COMP *cpi);
-void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var);
-int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame);
-void vp9_adjust_key_frame_context(VP9_COMP *cpi);
-void vp9_compute_frame_size_bounds(VP9_COMP *cpi,
- int *frame_under_shoot_limit,
- int *frame_over_shoot_limit);
+// Bits Per MB at different Q (Multiplied by 512)
+#define BPER_MB_NORMBITS 9
-// return of 0 means drop frame
-int vp9_pick_frame_size(VP9_COMP *cpi);
+typedef struct {
+ // Rate targetting variables
+ int base_frame_target; // A baseline frame target before adjustment
+ // for previous under or over shoot.
+ int this_frame_target; // Actual frame target after rc adjustment.
+ int projected_frame_size;
+ int sb64_target_rate;
+ int last_q[3]; // Separate values for Intra/Inter/ARF-GF
+ int last_boosted_qindex; // Last boosted GF/KF/ARF q
+
+ int gfu_boost;
+ int last_boost;
+ int kf_boost;
+
+ double rate_correction_factor;
+ double key_frame_rate_correction_factor;
+ double gf_rate_correction_factor;
+
+ int frames_since_golden;
+ int frames_till_gf_update_due;
+ int max_gf_interval;
+ int static_scene_max_gf_interval;
+ int baseline_gf_interval;
+ int frames_to_key;
+ int frames_since_key;
+ int this_key_frame_forced;
+ int next_key_frame_forced;
+ int source_alt_ref_pending;
+ int source_alt_ref_active;
+ int is_src_frame_alt_ref;
+
+ int avg_frame_bandwidth; // Average frame size target for clip
+ int min_frame_bandwidth; // Minimum allocation used for any frame
+ int max_frame_bandwidth; // Maximum burst rate allowed for a frame.
+
+ int ni_av_qi;
+ int ni_tot_qi;
+ int ni_frames;
+ int avg_frame_qindex[3]; // 0 - KEY, 1 - INTER, 2 - ARF/GF
+ double tot_q;
+ double avg_q;
+
+ int64_t buffer_level;
+ int64_t bits_off_target;
+ int64_t vbr_bits_off_target;
+
+ int decimation_factor;
+ int decimation_count;
+
+ int rolling_target_bits;
+ int rolling_actual_bits;
+
+ int long_rolling_target_bits;
+ int long_rolling_actual_bits;
+
+ int64_t total_actual_bits;
+ int64_t total_target_bits;
+ int64_t total_target_vs_actual;
+
+ int worst_quality;
+ int best_quality;
+ // int active_best_quality;
+} RATE_CONTROL;
+
+struct VP9_COMP;
+struct VP9EncoderConfig;
+
+void vp9_rc_init(const struct VP9EncoderConfig *oxcf, int pass,
+ RATE_CONTROL *rc);
double vp9_convert_qindex_to_q(int qindex);
-int vp9_gfboost_qadjust(int qindex);
-int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex,
- double correction_factor);
-void vp9_setup_inter_frame(VP9_COMP *cpi);
+
+void vp9_rc_init_minq_luts();
+
+// Generally at the high level, the following flow is expected
+// to be enforced for rate control:
+// First call per frame, one of:
+// vp9_rc_get_one_pass_vbr_params()
+// vp9_rc_get_one_pass_cbr_params()
+// vp9_rc_get_svc_params()
+// vp9_rc_get_first_pass_params()
+// vp9_rc_get_second_pass_params()
+// depending on the usage to set the rate control encode parameters desired.
+//
+// Then, call encode_frame_to_data_rate() to perform the
+// actual encode. This function will in turn call encode_frame()
+// one or more times, followed by one of:
+// vp9_rc_postencode_update()
+// vp9_rc_postencode_update_drop_frame()
+//
+// The majority of rate control parameters are only expected
+// to be set in the vp9_rc_get_..._params() functions and
+// updated during the vp9_rc_postencode_update...() functions.
+// The only exceptions are vp9_rc_drop_frame() and
+// vp9_rc_update_rate_correction_factors() functions.
+
+// Functions to set parameters for encoding before the actual
+// encode_frame_to_data_rate() function.
+void vp9_rc_get_one_pass_vbr_params(struct VP9_COMP *cpi);
+void vp9_rc_get_one_pass_cbr_params(struct VP9_COMP *cpi);
+void vp9_rc_get_svc_params(struct VP9_COMP *cpi);
+
+// Post encode update of the rate control parameters based
+// on bytes used
+void vp9_rc_postencode_update(struct VP9_COMP *cpi, uint64_t bytes_used);
+// Post encode update of the rate control parameters for dropped frames
+void vp9_rc_postencode_update_drop_frame(struct VP9_COMP *cpi);
+
+// Updates rate correction factors
+// Changes only the rate correction factors in the rate control structure.
+void vp9_rc_update_rate_correction_factors(struct VP9_COMP *cpi, int damp_var);
+
+// Decide if we should drop this frame: For 1-pass CBR.
+// Changes only the decimation count in the rate control structure
+int vp9_rc_drop_frame(struct VP9_COMP *cpi);
+
+// Computes frame size bounds.
+void vp9_rc_compute_frame_size_bounds(const struct VP9_COMP *cpi,
+ int this_frame_target,
+ int *frame_under_shoot_limit,
+ int *frame_over_shoot_limit);
+
+// Picks q and q bounds given the target for bits
+int vp9_rc_pick_q_and_bounds(const struct VP9_COMP *cpi,
+ int *bottom_index,
+ int *top_index);
+
+// Estimates q to achieve a target bits per frame
+int vp9_rc_regulate_q(const struct VP9_COMP *cpi, int target_bits_per_frame,
+ int active_best_quality, int active_worst_quality);
+
+// Estimates bits per mb for a given qindex and correction factor.
+int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
+ double correction_factor);
+
+// Clamping utilities for bitrate targets for iframes and pframes.
+int vp9_rc_clamp_iframe_target_size(const struct VP9_COMP *const cpi,
+ int target);
+int vp9_rc_clamp_pframe_target_size(const struct VP9_COMP *const cpi,
+ int target);
+// Utility to set frame_target into the RATE_CONTROL structure
+// This function is called only from the vp9_rc_get_..._params() functions.
+void vp9_rc_set_frame_target(struct VP9_COMP *cpi, int target);
+
+// Computes a q delta (in "q index" terms) to get from a starting q value
+// to a target q value
+int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget);
+
+// Computes a q delta (in "q index" terms) to get from a starting q value
+// to a value that should equate to the given rate ratio.
+int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
+ int qindex, double rate_target_ratio);
+
+void vp9_rc_update_framerate(struct VP9_COMP *cpi);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
#endif // VP9_ENCODER_VP9_RATECTRL_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_rdopt.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_rdopt.c
index f9de78bf82c..64f3e5a7479 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_rdopt.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_rdopt.c
@@ -8,39 +8,43 @@
* be found in the AUTHORS file in the root of the source tree.
*/
-#include <stdio.h>
-#include <math.h>
-#include <limits.h>
#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
-#include "vp9/common/vp9_pragmas.h"
-#include "vp9/encoder/vp9_tokenize.h"
-#include "vp9/encoder/vp9_treewriter.h"
-#include "vp9/encoder/vp9_onyx_int.h"
-#include "vp9/encoder/vp9_modecosts.h"
-#include "vp9/encoder/vp9_encodeintra.h"
+#include "./vp9_rtcd.h"
+
+#include "vpx_mem/vpx_mem.h"
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_idct.h"
+#include "vp9/common/vp9_mvref_common.h"
+#include "vp9/common/vp9_pragmas.h"
+#include "vp9/common/vp9_pred_common.h"
+#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
-#include "vp9/common/vp9_findnearmv.h"
-#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_seg_common.h"
+#include "vp9/common/vp9_systemdependent.h"
+
+#include "vp9/encoder/vp9_cost.h"
#include "vp9/encoder/vp9_encodemb.h"
-#include "vp9/encoder/vp9_quantize.h"
-#include "vp9/encoder/vp9_variance.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_mcomp.h"
-#include "vp9/encoder/vp9_rdopt.h"
+#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_ratectrl.h"
-#include "vpx_mem/vpx_mem.h"
-#include "vp9/common/vp9_systemdependent.h"
-#include "vp9/encoder/vp9_encodemv.h"
-#include "vp9/common/vp9_seg_common.h"
-#include "vp9/common/vp9_pred_common.h"
-#include "vp9/common/vp9_entropy.h"
-#include "./vp9_rtcd.h"
-#include "vp9/common/vp9_mvref_common.h"
-#include "vp9/common/vp9_common.h"
+#include "vp9/encoder/vp9_rdopt.h"
+#include "vp9/encoder/vp9_tokenize.h"
+#include "vp9/encoder/vp9_variance.h"
-#define INVALID_MV 0x80008000
+#define RD_THRESH_MAX_FACT 64
+#define RD_THRESH_INC 1
+#define RD_THRESH_POW 1.25
+#define RD_MULT_EPB_RATIO 64
/* Factor to weigh the rate for switchable interp filters */
#define SWITCHABLE_INTERP_RATE_FACTOR 1
@@ -51,91 +55,144 @@
#define MIN_EARLY_TERM_INDEX 3
-const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
- {NEARESTMV, LAST_FRAME, NONE},
- {NEARESTMV, ALTREF_FRAME, NONE},
- {NEARESTMV, GOLDEN_FRAME, NONE},
-
- {DC_PRED, INTRA_FRAME, NONE},
-
- {NEWMV, LAST_FRAME, NONE},
- {NEWMV, ALTREF_FRAME, NONE},
- {NEWMV, GOLDEN_FRAME, NONE},
-
- {NEARMV, LAST_FRAME, NONE},
- {NEARMV, ALTREF_FRAME, NONE},
- {NEARESTMV, LAST_FRAME, ALTREF_FRAME},
- {NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME},
-
- {TM_PRED, INTRA_FRAME, NONE},
-
- {NEARMV, LAST_FRAME, ALTREF_FRAME},
- {NEWMV, LAST_FRAME, ALTREF_FRAME},
- {NEARMV, GOLDEN_FRAME, NONE},
- {NEARMV, GOLDEN_FRAME, ALTREF_FRAME},
- {NEWMV, GOLDEN_FRAME, ALTREF_FRAME},
-
- {ZEROMV, LAST_FRAME, NONE},
- {ZEROMV, GOLDEN_FRAME, NONE},
- {ZEROMV, ALTREF_FRAME, NONE},
- {ZEROMV, LAST_FRAME, ALTREF_FRAME},
- {ZEROMV, GOLDEN_FRAME, ALTREF_FRAME},
-
- {H_PRED, INTRA_FRAME, NONE},
- {V_PRED, INTRA_FRAME, NONE},
- {D135_PRED, INTRA_FRAME, NONE},
- {D207_PRED, INTRA_FRAME, NONE},
- {D153_PRED, INTRA_FRAME, NONE},
- {D63_PRED, INTRA_FRAME, NONE},
- {D117_PRED, INTRA_FRAME, NONE},
- {D45_PRED, INTRA_FRAME, NONE},
+typedef struct {
+ PREDICTION_MODE mode;
+ MV_REFERENCE_FRAME ref_frame[2];
+} MODE_DEFINITION;
+
+typedef struct {
+ MV_REFERENCE_FRAME ref_frame[2];
+} REF_DEFINITION;
+
+struct rdcost_block_args {
+ MACROBLOCK *x;
+ ENTROPY_CONTEXT t_above[16];
+ ENTROPY_CONTEXT t_left[16];
+ int rate;
+ int64_t dist;
+ int64_t sse;
+ int this_rate;
+ int64_t this_dist;
+ int64_t this_sse;
+ int64_t this_rd;
+ int64_t best_rd;
+ int skip;
+ int use_fast_coef_costing;
+ const scan_order *so;
+};
+
+static const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
+ {NEARESTMV, {LAST_FRAME, NONE}},
+ {NEARESTMV, {ALTREF_FRAME, NONE}},
+ {NEARESTMV, {GOLDEN_FRAME, NONE}},
+
+ {DC_PRED, {INTRA_FRAME, NONE}},
+
+ {NEWMV, {LAST_FRAME, NONE}},
+ {NEWMV, {ALTREF_FRAME, NONE}},
+ {NEWMV, {GOLDEN_FRAME, NONE}},
+
+ {NEARMV, {LAST_FRAME, NONE}},
+ {NEARMV, {ALTREF_FRAME, NONE}},
+ {NEARESTMV, {LAST_FRAME, ALTREF_FRAME}},
+ {NEARESTMV, {GOLDEN_FRAME, ALTREF_FRAME}},
+
+ {TM_PRED, {INTRA_FRAME, NONE}},
+
+ {NEARMV, {LAST_FRAME, ALTREF_FRAME}},
+ {NEWMV, {LAST_FRAME, ALTREF_FRAME}},
+ {NEARMV, {GOLDEN_FRAME, NONE}},
+ {NEARMV, {GOLDEN_FRAME, ALTREF_FRAME}},
+ {NEWMV, {GOLDEN_FRAME, ALTREF_FRAME}},
+
+ {ZEROMV, {LAST_FRAME, NONE}},
+ {ZEROMV, {GOLDEN_FRAME, NONE}},
+ {ZEROMV, {ALTREF_FRAME, NONE}},
+ {ZEROMV, {LAST_FRAME, ALTREF_FRAME}},
+ {ZEROMV, {GOLDEN_FRAME, ALTREF_FRAME}},
+
+ {H_PRED, {INTRA_FRAME, NONE}},
+ {V_PRED, {INTRA_FRAME, NONE}},
+ {D135_PRED, {INTRA_FRAME, NONE}},
+ {D207_PRED, {INTRA_FRAME, NONE}},
+ {D153_PRED, {INTRA_FRAME, NONE}},
+ {D63_PRED, {INTRA_FRAME, NONE}},
+ {D117_PRED, {INTRA_FRAME, NONE}},
+ {D45_PRED, {INTRA_FRAME, NONE}},
};
-const REF_DEFINITION vp9_ref_order[MAX_REFS] = {
- {LAST_FRAME, NONE},
- {GOLDEN_FRAME, NONE},
- {ALTREF_FRAME, NONE},
- {LAST_FRAME, ALTREF_FRAME},
- {GOLDEN_FRAME, ALTREF_FRAME},
- {INTRA_FRAME, NONE},
+static const REF_DEFINITION vp9_ref_order[MAX_REFS] = {
+ {{LAST_FRAME, NONE}},
+ {{GOLDEN_FRAME, NONE}},
+ {{ALTREF_FRAME, NONE}},
+ {{LAST_FRAME, ALTREF_FRAME}},
+ {{GOLDEN_FRAME, ALTREF_FRAME}},
+ {{INTRA_FRAME, NONE}},
};
// The baseline rd thresholds for breaking out of the rd loop for
// certain modes are assumed to be based on 8x8 blocks.
// This table is used to correct for blocks size.
// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
-static int rd_thresh_block_size_factor[BLOCK_SIZES] =
- {2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32};
+static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = {
+ 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32
+};
-#define RD_THRESH_MAX_FACT 64
-#define RD_THRESH_INC 1
-#define RD_THRESH_POW 1.25
-#define RD_MULT_EPB_RATIO 64
+static int raster_block_offset(BLOCK_SIZE plane_bsize,
+ int raster_block, int stride) {
+ const int bw = b_width_log2(plane_bsize);
+ const int y = 4 * (raster_block >> bw);
+ const int x = 4 * (raster_block & ((1 << bw) - 1));
+ return y * stride + x;
+}
+static int16_t* raster_block_offset_int16(BLOCK_SIZE plane_bsize,
+ int raster_block, int16_t *base) {
+ const int stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+ return base + raster_block_offset(plane_bsize, raster_block, stride);
+}
+
+static void fill_mode_costs(VP9_COMP *cpi) {
+ const FRAME_CONTEXT *const fc = &cpi->common.fc;
+ int i, j;
-#define MV_COST_WEIGHT 108
-#define MV_COST_WEIGHT_SUB 120
+ for (i = 0; i < INTRA_MODES; i++)
+ for (j = 0; j < INTRA_MODES; j++)
+ vp9_cost_tokens(cpi->y_mode_costs[i][j], vp9_kf_y_mode_prob[i][j],
+ vp9_intra_mode_tree);
+
+ // TODO(rbultje) separate tables for superblock costing?
+ vp9_cost_tokens(cpi->mbmode_cost, fc->y_mode_prob[1], vp9_intra_mode_tree);
+ vp9_cost_tokens(cpi->intra_uv_mode_cost[KEY_FRAME],
+ vp9_kf_uv_mode_prob[TM_PRED], vp9_intra_mode_tree);
+ vp9_cost_tokens(cpi->intra_uv_mode_cost[INTER_FRAME],
+ fc->uv_mode_prob[TM_PRED], vp9_intra_mode_tree);
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ vp9_cost_tokens(cpi->switchable_interp_costs[i],
+ fc->switchable_interp_prob[i], vp9_switchable_interp_tree);
+}
static void fill_token_costs(vp9_coeff_cost *c,
- vp9_coeff_probs_model (*p)[BLOCK_TYPES]) {
+ vp9_coeff_probs_model (*p)[PLANE_TYPES]) {
int i, j, k, l;
TX_SIZE t;
- for (t = TX_4X4; t <= TX_32X32; t++)
- for (i = 0; i < BLOCK_TYPES; i++)
- for (j = 0; j < REF_TYPES; j++)
- for (k = 0; k < COEF_BANDS; k++)
- for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
+ for (t = TX_4X4; t <= TX_32X32; ++t)
+ for (i = 0; i < PLANE_TYPES; ++i)
+ for (j = 0; j < REF_TYPES; ++j)
+ for (k = 0; k < COEF_BANDS; ++k)
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
vp9_prob probs[ENTROPY_NODES];
vp9_model_to_full_probs(p[t][i][j][k][l], probs);
vp9_cost_tokens((int *)c[t][i][j][k][0][l], probs,
vp9_coef_tree);
vp9_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs,
vp9_coef_tree);
- assert(c[t][i][j][k][0][l][DCT_EOB_TOKEN] ==
- c[t][i][j][k][1][l][DCT_EOB_TOKEN]);
+ assert(c[t][i][j][k][0][l][EOB_TOKEN] ==
+ c[t][i][j][k][1][l][EOB_TOKEN]);
}
}
-static const int rd_iifactor[32] = {
+static const uint8_t rd_iifactor[32] = {
4, 4, 3, 2, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
@@ -155,13 +212,13 @@ void vp9_init_me_luts() {
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < QINDEX_RANGE; i++) {
- sad_per_bit16lut[i] =
- (int)((0.0418 * vp9_convert_qindex_to_q(i)) + 2.4107);
- sad_per_bit4lut[i] = (int)(0.063 * vp9_convert_qindex_to_q(i) + 2.742);
+ const double q = vp9_convert_qindex_to_q(i);
+ sad_per_bit16lut[i] = (int)(0.0418 * q + 2.4107);
+ sad_per_bit4lut[i] = (int)(0.063 * q + 2.742);
}
}
-int vp9_compute_rd_mult(VP9_COMP *cpi, int qindex) {
+int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex) {
const int q = vp9_dc_quant(qindex, 0);
// TODO(debargha): Adjust the function below
int rdmult = 88 * q * q / 25;
@@ -175,12 +232,9 @@ int vp9_compute_rd_mult(VP9_COMP *cpi, int qindex) {
}
static int compute_rd_thresh_factor(int qindex) {
- int q;
// TODO(debargha): Adjust the function below
- q = (int)(pow(vp9_dc_quant(qindex, 0) / 4.0, RD_THRESH_POW) * 5.12);
- if (q < 8)
- q = 8;
- return q;
+ const int q = (int)(pow(vp9_dc_quant(qindex, 0) / 4.0, RD_THRESH_POW) * 5.12);
+ return MAX(q, 8);
}
void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex) {
@@ -188,115 +242,90 @@ void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex) {
cpi->mb.sadperbit4 = sad_per_bit4lut[qindex];
}
-static void set_block_thresholds(VP9_COMP *cpi) {
+static void set_block_thresholds(const VP9_COMMON *cm, RD_OPT *rd) {
int i, bsize, segment_id;
- VP9_COMMON *cm = &cpi->common;
for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
- int q;
- int segment_qindex = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
- segment_qindex = clamp(segment_qindex + cm->y_dc_delta_q, 0, MAXQ);
- q = compute_rd_thresh_factor(segment_qindex);
+ const int qindex = clamp(vp9_get_qindex(&cm->seg, segment_id,
+ cm->base_qindex) + cm->y_dc_delta_q,
+ 0, MAXQ);
+ const int q = compute_rd_thresh_factor(qindex);
for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) {
- // Threshold here seem unecessarily harsh but fine given actual
- // range of values used for cpi->sf.thresh_mult[]
- int thresh_max = INT_MAX / (q * rd_thresh_block_size_factor[bsize]);
-
- for (i = 0; i < MAX_MODES; ++i) {
- if (cpi->sf.thresh_mult[i] < thresh_max) {
- cpi->rd_threshes[segment_id][bsize][i] =
- cpi->sf.thresh_mult[i] * q *
- rd_thresh_block_size_factor[bsize] / 4;
- } else {
- cpi->rd_threshes[segment_id][bsize][i] = INT_MAX;
- }
- }
-
- for (i = 0; i < MAX_REFS; ++i) {
- if (cpi->sf.thresh_mult_sub8x8[i] < thresh_max) {
- cpi->rd_thresh_sub8x8[segment_id][bsize][i] =
- cpi->sf.thresh_mult_sub8x8[i] * q *
- rd_thresh_block_size_factor[bsize] / 4;
- } else {
- cpi->rd_thresh_sub8x8[segment_id][bsize][i] = INT_MAX;
- }
+ // Threshold here seems unnecessarily harsh but fine given actual
+ // range of values used for cpi->sf.thresh_mult[].
+ const int t = q * rd_thresh_block_size_factor[bsize];
+ const int thresh_max = INT_MAX / t;
+
+ if (bsize >= BLOCK_8X8) {
+ for (i = 0; i < MAX_MODES; ++i)
+ rd->threshes[segment_id][bsize][i] =
+ rd->thresh_mult[i] < thresh_max
+ ? rd->thresh_mult[i] * t / 4
+ : INT_MAX;
+ } else {
+ for (i = 0; i < MAX_REFS; ++i)
+ rd->threshes[segment_id][bsize][i] =
+ rd->thresh_mult_sub8x8[i] < thresh_max
+ ? rd->thresh_mult_sub8x8[i] * t / 4
+ : INT_MAX;
}
}
}
}
void vp9_initialize_rd_consts(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
- int qindex, i;
-
- vp9_clear_system_state(); // __asm emms;
-
- // Further tests required to see if optimum is different
- // for key frames, golden frames and arf frames.
- // if (cpi->common.refresh_golden_frame ||
- // cpi->common.refresh_alt_ref_frame)
- qindex = clamp(cm->base_qindex + cm->y_dc_delta_q, 0, MAXQ);
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->mb;
+ RD_OPT *const rd = &cpi->rd;
+ int i;
- cpi->RDDIV = RDDIV_BITS; // in bits (to multiply D by 128)
- cpi->RDMULT = vp9_compute_rd_mult(cpi, qindex);
+ vp9_clear_system_state();
- cpi->mb.errorperbit = cpi->RDMULT / RD_MULT_EPB_RATIO;
- cpi->mb.errorperbit += (cpi->mb.errorperbit == 0);
+ rd->RDDIV = RDDIV_BITS; // in bits (to multiply D by 128)
+ rd->RDMULT = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
- vp9_set_speed_features(cpi);
+ x->errorperbit = rd->RDMULT / RD_MULT_EPB_RATIO;
+ x->errorperbit += (x->errorperbit == 0);
- set_block_thresholds(cpi);
+ x->select_txfm_size = (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
+ cm->frame_type != KEY_FRAME) ? 0 : 1;
- fill_token_costs(cpi->mb.token_costs, cm->fc.coef_probs);
+ set_block_thresholds(cm, rd);
- for (i = 0; i < PARTITION_CONTEXTS; i++)
- vp9_cost_tokens(cpi->mb.partition_cost[i],
- cm->fc.partition_prob[cm->frame_type][i],
- vp9_partition_tree);
+ if (!cpi->sf.use_nonrd_pick_mode || cm->frame_type == KEY_FRAME) {
+ fill_token_costs(x->token_costs, cm->fc.coef_probs);
- /*rough estimate for costing*/
- vp9_init_mode_costs(cpi);
+ for (i = 0; i < PARTITION_CONTEXTS; i++)
+ vp9_cost_tokens(x->partition_cost[i], get_partition_probs(cm, i),
+ vp9_partition_tree);
+ }
- if (!frame_is_intra_only(cm)) {
- vp9_build_nmv_cost_table(
- cpi->mb.nmvjointcost,
- cm->allow_high_precision_mv ? cpi->mb.nmvcost_hp : cpi->mb.nmvcost,
- &cm->fc.nmvc,
- cm->allow_high_precision_mv, 1, 1);
+ if (!cpi->sf.use_nonrd_pick_mode || (cm->current_video_frame & 0x07) == 1 ||
+ cm->frame_type == KEY_FRAME) {
+ fill_mode_costs(cpi);
- for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
- MB_PREDICTION_MODE m;
+ if (!frame_is_intra_only(cm)) {
+ vp9_build_nmv_cost_table(x->nmvjointcost,
+ cm->allow_high_precision_mv ? x->nmvcost_hp
+ : x->nmvcost,
+ &cm->fc.nmvc, cm->allow_high_precision_mv);
- for (m = NEARESTMV; m < MB_MODE_COUNT; m++)
- cpi->mb.inter_mode_cost[i][inter_mode_offset(m)] =
- cost_token(vp9_inter_mode_tree,
- cm->fc.inter_mode_probs[i],
- &vp9_inter_mode_encodings[inter_mode_offset(m)]);
+ for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
+ vp9_cost_tokens((int *)cpi->inter_mode_cost[i],
+ cm->fc.inter_mode_probs[i], vp9_inter_mode_tree);
}
}
}
-static INLINE void linear_interpolate2(double x, int ntab, int inv_step,
- const double *tab1, const double *tab2,
- double *v1, double *v2) {
- double y = x * inv_step;
- int d = (int) y;
- if (d >= ntab - 1) {
- *v1 = tab1[ntab - 1];
- *v2 = tab2[ntab - 1];
- } else {
- double a = y - d;
- *v1 = tab1[d] * (1 - a) + tab1[d + 1] * a;
- *v2 = tab2[d] * (1 - a) + tab2[d + 1] * a;
- }
-}
+static const int MAX_XSQ_Q10 = 245727;
-static void model_rd_norm(double x, double *R, double *D) {
- static const int inv_tab_step = 8;
- static const int tab_size = 120;
+static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
// NOTE: The tables below must be of the same size
- //
+
+ // The functions described below are sampled at the four most significant
+ // bits of x^2 + 8 / 256
+
// Normalized rate
// This table models the rate for a Laplacian source
// source with given variance when quantized with a uniform quantizer
@@ -304,22 +333,20 @@ static void model_rd_norm(double x, double *R, double *D) {
// Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
// where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
// and H(x) is the binary entropy function.
- static const double rate_tab[] = {
- 64.00, 4.944, 3.949, 3.372, 2.966, 2.655, 2.403, 2.194,
- 2.014, 1.858, 1.720, 1.596, 1.485, 1.384, 1.291, 1.206,
- 1.127, 1.054, 0.986, 0.923, 0.863, 0.808, 0.756, 0.708,
- 0.662, 0.619, 0.579, 0.541, 0.506, 0.473, 0.442, 0.412,
- 0.385, 0.359, 0.335, 0.313, 0.291, 0.272, 0.253, 0.236,
- 0.220, 0.204, 0.190, 0.177, 0.165, 0.153, 0.142, 0.132,
- 0.123, 0.114, 0.106, 0.099, 0.091, 0.085, 0.079, 0.073,
- 0.068, 0.063, 0.058, 0.054, 0.050, 0.047, 0.043, 0.040,
- 0.037, 0.034, 0.032, 0.029, 0.027, 0.025, 0.023, 0.022,
- 0.020, 0.019, 0.017, 0.016, 0.015, 0.014, 0.013, 0.012,
- 0.011, 0.010, 0.009, 0.008, 0.008, 0.007, 0.007, 0.006,
- 0.006, 0.005, 0.005, 0.005, 0.004, 0.004, 0.004, 0.003,
- 0.003, 0.003, 0.003, 0.002, 0.002, 0.002, 0.002, 0.002,
- 0.002, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
- 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.000,
+ static const int rate_tab_q10[] = {
+ 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651,
+ 4553, 4389, 4255, 4142, 4044, 3958, 3881, 3811,
+ 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186,
+ 3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638,
+ 2589, 2501, 2423, 2353, 2290, 2232, 2179, 2130,
+ 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651,
+ 1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199,
+ 1159, 1086, 1021, 963, 911, 864, 821, 781,
+ 745, 680, 623, 574, 530, 490, 455, 424,
+ 395, 345, 304, 269, 239, 213, 190, 171,
+ 154, 126, 104, 87, 73, 61, 52, 44,
+ 38, 28, 21, 16, 12, 10, 8, 6,
+ 5, 3, 2, 1, 1, 1, 0, 0,
};
// Normalized distortion
// This table models the normalized distortion for a Laplacian source
@@ -328,54 +355,74 @@ static void model_rd_norm(double x, double *R, double *D) {
// Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
// where x = qpstep / sqrt(variance)
// Note the actual distortion is Dn * variance.
- static const double dist_tab[] = {
- 0.000, 0.001, 0.005, 0.012, 0.021, 0.032, 0.045, 0.061,
- 0.079, 0.098, 0.119, 0.142, 0.166, 0.190, 0.216, 0.242,
- 0.269, 0.296, 0.324, 0.351, 0.378, 0.405, 0.432, 0.458,
- 0.484, 0.509, 0.534, 0.557, 0.580, 0.603, 0.624, 0.645,
- 0.664, 0.683, 0.702, 0.719, 0.735, 0.751, 0.766, 0.780,
- 0.794, 0.807, 0.819, 0.830, 0.841, 0.851, 0.861, 0.870,
- 0.878, 0.886, 0.894, 0.901, 0.907, 0.913, 0.919, 0.925,
- 0.930, 0.935, 0.939, 0.943, 0.947, 0.951, 0.954, 0.957,
- 0.960, 0.963, 0.966, 0.968, 0.971, 0.973, 0.975, 0.976,
- 0.978, 0.980, 0.981, 0.982, 0.984, 0.985, 0.986, 0.987,
- 0.988, 0.989, 0.990, 0.990, 0.991, 0.992, 0.992, 0.993,
- 0.993, 0.994, 0.994, 0.995, 0.995, 0.996, 0.996, 0.996,
- 0.996, 0.997, 0.997, 0.997, 0.997, 0.998, 0.998, 0.998,
- 0.998, 0.998, 0.998, 0.999, 0.999, 0.999, 0.999, 0.999,
- 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 1.000,
+ static const int dist_tab_q10[] = {
+ 0, 0, 1, 1, 1, 2, 2, 2,
+ 3, 3, 4, 5, 5, 6, 7, 7,
+ 8, 9, 11, 12, 13, 15, 16, 17,
+ 18, 21, 24, 26, 29, 31, 34, 36,
+ 39, 44, 49, 54, 59, 64, 69, 73,
+ 78, 88, 97, 106, 115, 124, 133, 142,
+ 151, 167, 184, 200, 215, 231, 245, 260,
+ 274, 301, 327, 351, 375, 397, 418, 439,
+ 458, 495, 528, 559, 587, 613, 637, 659,
+ 680, 717, 749, 777, 801, 823, 842, 859,
+ 874, 899, 919, 936, 949, 960, 969, 977,
+ 983, 994, 1001, 1006, 1010, 1013, 1015, 1017,
+ 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
+ };
+ static const int xsq_iq_q10[] = {
+ 0, 4, 8, 12, 16, 20, 24, 28,
+ 32, 40, 48, 56, 64, 72, 80, 88,
+ 96, 112, 128, 144, 160, 176, 192, 208,
+ 224, 256, 288, 320, 352, 384, 416, 448,
+ 480, 544, 608, 672, 736, 800, 864, 928,
+ 992, 1120, 1248, 1376, 1504, 1632, 1760, 1888,
+ 2016, 2272, 2528, 2784, 3040, 3296, 3552, 3808,
+ 4064, 4576, 5088, 5600, 6112, 6624, 7136, 7648,
+ 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328,
+ 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688,
+ 32736, 36832, 40928, 45024, 49120, 53216, 57312, 61408,
+ 65504, 73696, 81888, 90080, 98272, 106464, 114656, 122848,
+ 131040, 147424, 163808, 180192, 196576, 212960, 229344, 245728,
};
/*
- assert(sizeof(rate_tab) == tab_size * sizeof(rate_tab[0]);
- assert(sizeof(dist_tab) == tab_size * sizeof(dist_tab[0]);
- assert(sizeof(rate_tab) == sizeof(dist_tab));
+ static const int tab_size = sizeof(rate_tab_q10) / sizeof(rate_tab_q10[0]);
+ assert(sizeof(dist_tab_q10) / sizeof(dist_tab_q10[0]) == tab_size);
+ assert(sizeof(xsq_iq_q10) / sizeof(xsq_iq_q10[0]) == tab_size);
+ assert(MAX_XSQ_Q10 + 1 == xsq_iq_q10[tab_size - 1]);
*/
- assert(x >= 0.0);
- linear_interpolate2(x, tab_size, inv_tab_step,
- rate_tab, dist_tab, R, D);
+ int tmp = (xsq_q10 >> 2) + 8;
+ int k = get_msb(tmp) - 3;
+ int xq = (k << 3) + ((tmp >> k) & 0x7);
+ const int one_q10 = 1 << 10;
+ const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
+ const int b_q10 = one_q10 - a_q10;
+ *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
+ *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
}
-static void model_rd_from_var_lapndz(int var, int n, int qstep,
- int *rate, int64_t *dist) {
+void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n,
+ unsigned int qstep, int *rate,
+ int64_t *dist) {
// This function models the rate and distortion for a Laplacian
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expressions are in:
// Hang and Chen, "Source Model for transform video coder and its
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
// Sys. for Video Tech., April 1997.
- vp9_clear_system_state();
- if (var == 0 || n == 0) {
+ if (var == 0) {
*rate = 0;
*dist = 0;
} else {
- double D, R;
- double s2 = (double) var / n;
- double x = qstep / sqrt(s2);
- model_rd_norm(x, &R, &D);
- *rate = (int)((n << 8) * R + 0.5);
- *dist = (int)(var * D + 0.5);
+ int d_q10, r_q10;
+ const uint64_t xsq_q10_64 =
+ ((((uint64_t)qstep * qstep * n) << 10) + (var >> 1)) / var;
+ const int xsq_q10 = xsq_q10_64 > MAX_XSQ_Q10 ?
+ MAX_XSQ_Q10 : (int)xsq_q10_64;
+ model_rd_norm(xsq_q10, &r_q10, &d_q10);
+ *rate = (n * r_q10 + 2) >> 2;
+ *dist = (var * (int64_t)d_q10 + 512) >> 10;
}
- vp9_clear_system_state();
}
static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize,
@@ -384,26 +431,48 @@ static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize,
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
- int i, rate_sum = 0, dist_sum = 0;
+ int i;
+ int64_t rate_sum = 0;
+ int64_t dist_sum = 0;
+ const int ref = xd->mi[0]->mbmi.ref_frame[0];
+ unsigned int sse;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
- unsigned int sse;
- int rate;
- int64_t dist;
+
(void) cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
- // sse works better than var, since there is no dc prediction used
- model_rd_from_var_lapndz(sse, 1 << num_pels_log2_lookup[bs],
- pd->dequant[1] >> 3, &rate, &dist);
- rate_sum += rate;
- dist_sum += (int)dist;
+ if (i == 0)
+ x->pred_sse[ref] = sse;
+
+ // Fast approximate the modelling function.
+ if (cpi->oxcf.speed > 4) {
+ int64_t rate;
+ int64_t dist;
+ int64_t square_error = sse;
+ int quantizer = (pd->dequant[1] >> 3);
+
+ if (quantizer < 120)
+ rate = (square_error * (280 - quantizer)) >> 8;
+ else
+ rate = 0;
+ dist = (square_error * quantizer) >> 8;
+ rate_sum += rate;
+ dist_sum += dist;
+ } else {
+ int rate;
+ int64_t dist;
+ vp9_model_rd_from_var_lapndz(sse, 1 << num_pels_log2_lookup[bs],
+ pd->dequant[1] >> 3, &rate, &dist);
+ rate_sum += rate;
+ dist_sum += dist;
+ }
}
- *out_rate_sum = rate_sum;
+ *out_rate_sum = (int)rate_sum;
*out_dist_sum = dist_sum << 4;
}
@@ -414,10 +483,10 @@ static void model_rd_for_sb_y_tx(VP9_COMP *cpi, BLOCK_SIZE bsize,
int *out_skip) {
int j, k;
BLOCK_SIZE bs;
- struct macroblock_plane *const p = &x->plane[0];
- struct macroblockd_plane *const pd = &xd->plane[0];
- const int width = 4 << num_4x4_blocks_wide_lookup[bsize];
- const int height = 4 << num_4x4_blocks_high_lookup[bsize];
+ const struct macroblock_plane *const p = &x->plane[0];
+ const struct macroblockd_plane *const pd = &xd->plane[0];
+ const int width = 4 * num_4x4_blocks_wide_lookup[bsize];
+ const int height = 4 * num_4x4_blocks_high_lookup[bsize];
int rate_sum = 0;
int64_t dist_sum = 0;
const int t = 4 << tx_size;
@@ -444,7 +513,8 @@ static void model_rd_for_sb_y_tx(VP9_COMP *cpi, BLOCK_SIZE bsize,
&pd->dst.buf[j * pd->dst.stride + k], pd->dst.stride,
&sse);
// sse works better than var, since there is no dc prediction used
- model_rd_from_var_lapndz(sse, t * t, pd->dequant[1] >> 3, &rate, &dist);
+ vp9_model_rd_from_var_lapndz(sse, t * t, pd->dequant[1] >> 3,
+ &rate, &dist);
rate_sum += rate;
dist_sum += dist;
*out_skip &= (rate < 1024);
@@ -455,15 +525,15 @@ static void model_rd_for_sb_y_tx(VP9_COMP *cpi, BLOCK_SIZE bsize,
*out_dist_sum = dist_sum << 4;
}
-int64_t vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff,
+int64_t vp9_block_error_c(const int16_t *coeff, const int16_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
int i;
int64_t error = 0, sqcoeff = 0;
for (i = 0; i < block_size; i++) {
- int this_diff = coeff[i] - dqcoeff[i];
- error += (unsigned)this_diff * this_diff;
- sqcoeff += (unsigned) coeff[i] * coeff[i];
+ const int diff = coeff[i] - dqcoeff[i];
+ error += diff * diff;
+ sqcoeff += coeff[i] * coeff[i];
}
*ssz = sqcoeff;
@@ -481,43 +551,41 @@ static const int16_t band_counts[TX_SIZES][8] = {
{ 1, 2, 3, 4, 11, 256 - 21, 0 },
{ 1, 2, 3, 4, 11, 1024 - 21, 0 },
};
-
static INLINE int cost_coeffs(MACROBLOCK *x,
int plane, int block,
ENTROPY_CONTEXT *A, ENTROPY_CONTEXT *L,
TX_SIZE tx_size,
- const int16_t *scan, const int16_t *nb) {
+ const int16_t *scan, const int16_t *nb,
+ int use_fast_coef_costing) {
MACROBLOCKD *const xd = &x->e_mbd;
- MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
- struct macroblockd_plane *pd = &xd->plane[plane];
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ const struct macroblock_plane *p = &x->plane[plane];
+ const struct macroblockd_plane *pd = &xd->plane[plane];
const PLANE_TYPE type = pd->plane_type;
const int16_t *band_count = &band_counts[tx_size][1];
- const int eob = pd->eobs[block];
- const int16_t *const qcoeff_ptr = BLOCK_OFFSET(pd->qcoeff, block);
- const int ref = mbmi->ref_frame[0] != INTRA_FRAME;
- unsigned int (*token_costs)[2][PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] =
- x->token_costs[tx_size][type][ref];
- const ENTROPY_CONTEXT above_ec = !!*A, left_ec = !!*L;
- uint8_t *p_tok = x->token_cache;
- int pt = combine_entropy_contexts(above_ec, left_ec);
+ const int eob = p->eobs[block];
+ const int16_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ unsigned int (*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
+ x->token_costs[tx_size][type][is_inter_block(mbmi)];
+ uint8_t token_cache[32 * 32];
+ int pt = combine_entropy_contexts(*A, *L);
int c, cost;
-
// Check for consistency of tx_size with mode info
- assert(type == PLANE_TYPE_Y_WITH_DC ? mbmi->tx_size == tx_size
- : get_uv_tx_size(mbmi) == tx_size);
+ assert(type == PLANE_TYPE_Y ? mbmi->tx_size == tx_size
+ : get_uv_tx_size(mbmi) == tx_size);
if (eob == 0) {
// single eob token
- cost = token_costs[0][0][pt][DCT_EOB_TOKEN];
+ cost = token_costs[0][0][pt][EOB_TOKEN];
c = 0;
} else {
int band_left = *band_count++;
// dc token
- int v = qcoeff_ptr[0];
+ int v = qcoeff[0];
int prev_t = vp9_dct_value_tokens_ptr[v].token;
cost = (*token_costs)[0][pt][prev_t] + vp9_dct_value_cost_ptr[v];
- p_tok[0] = vp9_pt_energy_class[prev_t];
+ token_cache[0] = vp9_pt_energy_class[prev_t];
++token_costs;
// ac tokens
@@ -525,11 +593,15 @@ static INLINE int cost_coeffs(MACROBLOCK *x,
const int rc = scan[c];
int t;
- v = qcoeff_ptr[rc];
+ v = qcoeff[rc];
t = vp9_dct_value_tokens_ptr[v].token;
- pt = get_coef_context(nb, p_tok, c);
- cost += (*token_costs)[!prev_t][pt][t] + vp9_dct_value_cost_ptr[v];
- p_tok[rc] = vp9_pt_energy_class[t];
+ if (use_fast_coef_costing) {
+ cost += (*token_costs)[!prev_t][!prev_t][t] + vp9_dct_value_cost_ptr[v];
+ } else {
+ pt = get_coef_context(nb, token_cache, c);
+ cost += (*token_costs)[!prev_t][pt][t] + vp9_dct_value_cost_ptr[v];
+ token_cache[rc] = vp9_pt_energy_class[t];
+ }
prev_t = t;
if (!--band_left) {
band_left = *band_count++;
@@ -539,8 +611,12 @@ static INLINE int cost_coeffs(MACROBLOCK *x,
// eob token
if (band_left) {
- pt = get_coef_context(nb, p_tok, c);
- cost += (*token_costs)[0][pt][DCT_EOB_TOKEN];
+ if (use_fast_coef_costing) {
+ cost += (*token_costs)[0][!prev_t][EOB_TOKEN];
+ } else {
+ pt = get_coef_context(nb, token_cache, c);
+ cost += (*token_costs)[0][pt][EOB_TOKEN];
+ }
}
}
@@ -549,24 +625,22 @@ static INLINE int cost_coeffs(MACROBLOCK *x,
return cost;
}
-
-static void dist_block(int plane, int block, TX_SIZE tx_size, void *arg) {
+static void dist_block(int plane, int block, TX_SIZE tx_size,
+ struct rdcost_block_args* args) {
const int ss_txfrm_size = tx_size << 1;
- struct rdcost_block_args* args = arg;
MACROBLOCK* const x = args->x;
MACROBLOCKD* const xd = &x->e_mbd;
- struct macroblock_plane *const p = &x->plane[plane];
- struct macroblockd_plane *const pd = &xd->plane[plane];
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
int64_t this_sse;
- int shift = args->tx_size == TX_32X32 ? 0 : 2;
+ int shift = tx_size == TX_32X32 ? 0 : 2;
int16_t *const coeff = BLOCK_OFFSET(p->coeff, block);
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
args->dist = vp9_block_error(coeff, dqcoeff, 16 << ss_txfrm_size,
&this_sse) >> shift;
args->sse = this_sse >> shift;
- if (x->skip_encode &&
- xd->mi_8x8[0]->mbmi.ref_frame[0] == INTRA_FRAME) {
+ if (x->skip_encode && !is_inter_block(&xd->mi[0]->mbmi)) {
// TODO(jingning): tune the model to better capture the distortion.
int64_t p = (pd->dequant[1] * pd->dequant[1] *
(1 << ss_txfrm_size)) >> (shift + 2);
@@ -576,32 +650,31 @@ static void dist_block(int plane, int block, TX_SIZE tx_size, void *arg) {
}
static void rate_block(int plane, int block, BLOCK_SIZE plane_bsize,
- TX_SIZE tx_size, void *arg) {
- struct rdcost_block_args* args = arg;
-
+ TX_SIZE tx_size, struct rdcost_block_args* args) {
int x_idx, y_idx;
- txfrm_block_to_raster_xy(plane_bsize, args->tx_size, block, &x_idx, &y_idx);
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x_idx, &y_idx);
args->rate = cost_coeffs(args->x, plane, block, args->t_above + x_idx,
- args->t_left + y_idx, args->tx_size,
- args->scan, args->nb);
+ args->t_left + y_idx, tx_size,
+ args->so->scan, args->so->neighbors,
+ args->use_fast_coef_costing);
}
-static void block_yrd_txfm(int plane, int block, BLOCK_SIZE plane_bsize,
- TX_SIZE tx_size, void *arg) {
+static void block_rd_txfm(int plane, int block, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg) {
struct rdcost_block_args *args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
- struct encode_b_args encode_args = {x, NULL};
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int64_t rd1, rd2, rd;
if (args->skip)
return;
- if (!is_inter_block(&xd->mi_8x8[0]->mbmi))
- vp9_encode_block_intra(plane, block, plane_bsize, tx_size, &encode_args);
+ if (!is_inter_block(mbmi))
+ vp9_encode_block_intra(x, plane, block, plane_bsize, tx_size, &mbmi->skip);
else
- vp9_xform_quant(plane, block, plane_bsize, tx_size, &encode_args);
+ vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
dist_block(plane, block, tx_size, args);
rate_block(plane, block, plane_bsize, tx_size, args);
@@ -611,7 +684,8 @@ static void block_yrd_txfm(int plane, int block, BLOCK_SIZE plane_bsize,
// TODO(jingning): temporarily enabled only for luma component
rd = MIN(rd1, rd2);
if (plane == 0)
- x->zcoeff_blk[tx_size][block] = rd1 > rd2 || !xd->plane[plane].eobs[block];
+ x->zcoeff_blk[tx_size][block] = !x->plane[plane].eobs[block] ||
+ (rd1 > rd2 && !xd->lossless);
args->this_rate += args->rate;
args->this_dist += args->dist;
@@ -624,10 +698,16 @@ static void block_yrd_txfm(int plane, int block, BLOCK_SIZE plane_bsize,
}
}
-void vp9_get_entropy_contexts(TX_SIZE tx_size,
- ENTROPY_CONTEXT t_above[16], ENTROPY_CONTEXT t_left[16],
- const ENTROPY_CONTEXT *above, const ENTROPY_CONTEXT *left,
- int num_4x4_w, int num_4x4_h) {
+void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
+ const struct macroblockd_plane *pd,
+ ENTROPY_CONTEXT t_above[16],
+ ENTROPY_CONTEXT t_left[16]) {
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
+ const ENTROPY_CONTEXT *const above = pd->above_context;
+ const ENTROPY_CONTEXT *const left = pd->left_context;
+
int i;
switch (tx_size) {
case TX_4X4:
@@ -653,57 +733,43 @@ void vp9_get_entropy_contexts(TX_SIZE tx_size,
t_left[i] = !!*(const uint64_t *)&left[i];
break;
default:
- assert(!"Invalid transform size.");
+ assert(0 && "Invalid transform size.");
}
}
-static void init_rdcost_stack(MACROBLOCK *x, TX_SIZE tx_size,
- const int num_4x4_w, const int num_4x4_h,
- const int64_t ref_rdcost,
- struct rdcost_block_args *arg) {
- vpx_memset(arg, 0, sizeof(struct rdcost_block_args));
- arg->x = x;
- arg->tx_size = tx_size;
- arg->bw = num_4x4_w;
- arg->bh = num_4x4_h;
- arg->best_rd = ref_rdcost;
-}
-
static void txfm_rd_in_plane(MACROBLOCK *x,
- struct rdcost_block_args *rd_stack,
int *rate, int64_t *distortion,
int *skippable, int64_t *sse,
int64_t ref_best_rd, int plane,
- BLOCK_SIZE bsize, TX_SIZE tx_size) {
+ BLOCK_SIZE bsize, TX_SIZE tx_size,
+ int use_fast_coef_casting) {
MACROBLOCKD *const xd = &x->e_mbd;
- struct macroblockd_plane *const pd = &xd->plane[plane];
- const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
- const int num_4x4_w = num_4x4_blocks_wide_lookup[bs];
- const int num_4x4_h = num_4x4_blocks_high_lookup[bs];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ struct rdcost_block_args args;
+ vp9_zero(args);
+ args.x = x;
+ args.best_rd = ref_best_rd;
+ args.use_fast_coef_costing = use_fast_coef_casting;
- init_rdcost_stack(x, tx_size, num_4x4_w, num_4x4_h,
- ref_best_rd, rd_stack);
if (plane == 0)
- xd->mi_8x8[0]->mbmi.tx_size = tx_size;
+ xd->mi[0]->mbmi.tx_size = tx_size;
- vp9_get_entropy_contexts(tx_size, rd_stack->t_above, rd_stack->t_left,
- pd->above_context, pd->left_context,
- num_4x4_w, num_4x4_h);
+ vp9_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
- get_scan(xd, tx_size, pd->plane_type, 0, &rd_stack->scan, &rd_stack->nb);
+ args.so = get_scan(xd, tx_size, pd->plane_type, 0);
- foreach_transformed_block_in_plane(xd, bsize, plane,
- block_yrd_txfm, rd_stack);
- if (rd_stack->skip) {
+ vp9_foreach_transformed_block_in_plane(xd, bsize, plane,
+ block_rd_txfm, &args);
+ if (args.skip) {
*rate = INT_MAX;
*distortion = INT64_MAX;
*sse = INT64_MAX;
*skippable = 0;
} else {
- *distortion = rd_stack->this_dist;
- *rate = rd_stack->this_rate;
- *sse = rd_stack->this_sse;
- *skippable = vp9_is_skippable_in_plane(xd, bsize, plane);
+ *distortion = args.this_dist;
+ *rate = args.this_rate;
+ *sse = args.this_sse;
+ *skippable = vp9_is_skippable_in_plane(x, bsize, plane);
}
}
@@ -716,13 +782,13 @@ static void choose_largest_txfm_size(VP9_COMP *cpi, MACROBLOCK *x,
VP9_COMMON *const cm = &cpi->common;
const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode];
MACROBLOCKD *const xd = &x->e_mbd;
- MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
mbmi->tx_size = MIN(max_tx_size, largest_tx_size);
- txfm_rd_in_plane(x, &cpi->rdcost_stack, rate, distortion, skip,
+ txfm_rd_in_plane(x, rate, distortion, skip,
&sse[mbmi->tx_size], ref_best_rd, 0, bs,
- mbmi->tx_size);
+ mbmi->tx_size, cpi->sf.use_fast_coef_costing);
cpi->tx_stepdown_count[0]++;
}
@@ -735,64 +801,50 @@ static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
- MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
- vp9_prob skip_prob = vp9_get_pred_prob_mbskip(cm, xd);
- int64_t rd[TX_SIZES][2];
- int n, m;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ vp9_prob skip_prob = vp9_get_skip_prob(cm, xd);
+ int64_t rd[TX_SIZES][2] = {{INT64_MAX, INT64_MAX},
+ {INT64_MAX, INT64_MAX},
+ {INT64_MAX, INT64_MAX},
+ {INT64_MAX, INT64_MAX}};
+ TX_SIZE n, m;
int s0, s1;
+ const TX_SIZE max_mode_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode];
+ int64_t best_rd = INT64_MAX;
+ TX_SIZE best_tx = TX_4X4;
- const vp9_prob *tx_probs = get_tx_probs2(xd, &cm->fc.tx_probs, xd->mi_8x8[0]);
-
- for (n = TX_4X4; n <= max_tx_size; n++) {
- r[n][1] = r[n][0];
- if (r[n][0] == INT_MAX)
- continue;
- for (m = 0; m <= n - (n == max_tx_size); m++) {
- if (m == n)
- r[n][1] += vp9_cost_zero(tx_probs[m]);
- else
- r[n][1] += vp9_cost_one(tx_probs[m]);
- }
- }
-
+ const vp9_prob *tx_probs = get_tx_probs2(max_tx_size, xd, &cm->fc.tx_probs);
assert(skip_prob > 0);
s0 = vp9_cost_bit(skip_prob, 0);
s1 = vp9_cost_bit(skip_prob, 1);
for (n = TX_4X4; n <= max_tx_size; n++) {
+ r[n][1] = r[n][0];
+ if (r[n][0] < INT_MAX) {
+ for (m = 0; m <= n - (n == max_tx_size); m++) {
+ if (m == n)
+ r[n][1] += vp9_cost_zero(tx_probs[m]);
+ else
+ r[n][1] += vp9_cost_one(tx_probs[m]);
+ }
+ }
if (d[n] == INT64_MAX) {
rd[n][0] = rd[n][1] = INT64_MAX;
- continue;
- }
- if (s[n]) {
+ } else if (s[n]) {
rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
} else {
rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
}
- }
- if (max_tx_size == TX_32X32 &&
- (cm->tx_mode == ALLOW_32X32 ||
- (cm->tx_mode == TX_MODE_SELECT &&
- rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
- rd[TX_32X32][1] < rd[TX_4X4][1]))) {
- mbmi->tx_size = TX_32X32;
- } else if (max_tx_size >= TX_16X16 &&
- (cm->tx_mode == ALLOW_16X16 ||
- cm->tx_mode == ALLOW_32X32 ||
- (cm->tx_mode == TX_MODE_SELECT &&
- rd[TX_16X16][1] < rd[TX_8X8][1] &&
- rd[TX_16X16][1] < rd[TX_4X4][1]))) {
- mbmi->tx_size = TX_16X16;
- } else if (cm->tx_mode == ALLOW_8X8 ||
- cm->tx_mode == ALLOW_16X16 ||
- cm->tx_mode == ALLOW_32X32 ||
- (cm->tx_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) {
- mbmi->tx_size = TX_8X8;
- } else {
- mbmi->tx_size = TX_4X4;
+ if (rd[n][1] < best_rd) {
+ best_tx = n;
+ best_rd = rd[n][1];
+ }
}
+ mbmi->tx_size = cm->tx_mode == TX_MODE_SELECT ?
+ best_tx : MIN(max_tx_size, max_mode_tx_size);
+
*distortion = d[mbmi->tx_size];
*rate = r[mbmi->tx_size][cm->tx_mode == TX_MODE_SELECT];
@@ -802,33 +854,27 @@ static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
tx_cache[ALLOW_8X8] = rd[TX_8X8][0];
tx_cache[ALLOW_16X16] = rd[MIN(max_tx_size, TX_16X16)][0];
tx_cache[ALLOW_32X32] = rd[MIN(max_tx_size, TX_32X32)][0];
- if (max_tx_size == TX_32X32 &&
- rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
- rd[TX_32X32][1] < rd[TX_4X4][1])
- tx_cache[TX_MODE_SELECT] = rd[TX_32X32][1];
- else if (max_tx_size >= TX_16X16 &&
- rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1])
- tx_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
- else
- tx_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ?
- rd[TX_4X4][1] : rd[TX_8X8][1];
- if (max_tx_size == TX_32X32 &&
- rd[TX_32X32][1] < rd[TX_16X16][1] &&
- rd[TX_32X32][1] < rd[TX_8X8][1] &&
- rd[TX_32X32][1] < rd[TX_4X4][1]) {
+ if (max_tx_size == TX_32X32 && best_tx == TX_32X32) {
+ tx_cache[TX_MODE_SELECT] = rd[TX_32X32][1];
cpi->tx_stepdown_count[0]++;
- } else if (max_tx_size >= TX_16X16 &&
- rd[TX_16X16][1] < rd[TX_8X8][1] &&
- rd[TX_16X16][1] < rd[TX_4X4][1]) {
+ } else if (max_tx_size >= TX_16X16 && best_tx == TX_16X16) {
+ tx_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
cpi->tx_stepdown_count[max_tx_size - TX_16X16]++;
} else if (rd[TX_8X8][1] < rd[TX_4X4][1]) {
+ tx_cache[TX_MODE_SELECT] = rd[TX_8X8][1];
cpi->tx_stepdown_count[max_tx_size - TX_8X8]++;
} else {
+ tx_cache[TX_MODE_SELECT] = rd[TX_4X4][1];
cpi->tx_stepdown_count[max_tx_size - TX_4X4]++;
}
}
+static int64_t scaled_rd_cost(int rdmult, int rddiv,
+ int rate, int64_t dist, double scale) {
+ return (int64_t) (RDCOST(rdmult, rddiv, rate, dist) * scale);
+}
+
static void choose_txfm_size_from_modelrd(VP9_COMP *cpi, MACROBLOCK *x,
int (*r)[2], int *rate,
int64_t *d, int64_t *distortion,
@@ -838,20 +884,26 @@ static void choose_txfm_size_from_modelrd(VP9_COMP *cpi, MACROBLOCK *x,
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
- MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
- vp9_prob skip_prob = vp9_get_pred_prob_mbskip(cm, xd);
- int64_t rd[TX_SIZES][2];
- int n, m;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ vp9_prob skip_prob = vp9_get_skip_prob(cm, xd);
+ int64_t rd[TX_SIZES][2] = {{INT64_MAX, INT64_MAX},
+ {INT64_MAX, INT64_MAX},
+ {INT64_MAX, INT64_MAX},
+ {INT64_MAX, INT64_MAX}};
+ TX_SIZE n, m;
int s0, s1;
double scale_rd[TX_SIZES] = {1.73, 1.44, 1.20, 1.00};
- // double scale_r[TX_SIZES] = {2.82, 2.00, 1.41, 1.00};
-
- const vp9_prob *tx_probs = get_tx_probs2(xd, &cm->fc.tx_probs, xd->mi_8x8[0]);
+ const TX_SIZE max_mode_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode];
+ int64_t best_rd = INT64_MAX;
+ TX_SIZE best_tx = TX_4X4;
- // for (n = TX_4X4; n <= max_txfm_size; n++)
- // r[n][0] = (r[n][0] * scale_r[n]);
+ const vp9_prob *tx_probs = get_tx_probs2(max_tx_size, xd, &cm->fc.tx_probs);
+ assert(skip_prob > 0);
+ s0 = vp9_cost_bit(skip_prob, 0);
+ s1 = vp9_cost_bit(skip_prob, 1);
for (n = TX_4X4; n <= max_tx_size; n++) {
+ double scale = scale_rd[n];
r[n][1] = r[n][0];
for (m = 0; m <= n - (n == max_tx_size); m++) {
if (m == n)
@@ -859,62 +911,33 @@ static void choose_txfm_size_from_modelrd(VP9_COMP *cpi, MACROBLOCK *x,
else
r[n][1] += vp9_cost_one(tx_probs[m]);
}
- }
-
- assert(skip_prob > 0);
- s0 = vp9_cost_bit(skip_prob, 0);
- s1 = vp9_cost_bit(skip_prob, 1);
-
- for (n = TX_4X4; n <= max_tx_size; n++) {
if (s[n]) {
- rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
+ rd[n][0] = rd[n][1] = scaled_rd_cost(x->rdmult, x->rddiv, s1, d[n],
+ scale);
} else {
- rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
- rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
+ rd[n][0] = scaled_rd_cost(x->rdmult, x->rddiv, r[n][0] + s0, d[n],
+ scale);
+ rd[n][1] = scaled_rd_cost(x->rdmult, x->rddiv, r[n][1] + s0, d[n],
+ scale);
+ }
+ if (rd[n][1] < best_rd) {
+ best_rd = rd[n][1];
+ best_tx = n;
}
- }
- for (n = TX_4X4; n <= max_tx_size; n++) {
- rd[n][0] = (int64_t)(scale_rd[n] * rd[n][0]);
- rd[n][1] = (int64_t)(scale_rd[n] * rd[n][1]);
}
- if (max_tx_size == TX_32X32 &&
- (cm->tx_mode == ALLOW_32X32 ||
- (cm->tx_mode == TX_MODE_SELECT &&
- rd[TX_32X32][1] <= rd[TX_16X16][1] &&
- rd[TX_32X32][1] <= rd[TX_8X8][1] &&
- rd[TX_32X32][1] <= rd[TX_4X4][1]))) {
- mbmi->tx_size = TX_32X32;
- } else if (max_tx_size >= TX_16X16 &&
- (cm->tx_mode == ALLOW_16X16 ||
- cm->tx_mode == ALLOW_32X32 ||
- (cm->tx_mode == TX_MODE_SELECT &&
- rd[TX_16X16][1] <= rd[TX_8X8][1] &&
- rd[TX_16X16][1] <= rd[TX_4X4][1]))) {
- mbmi->tx_size = TX_16X16;
- } else if (cm->tx_mode == ALLOW_8X8 ||
- cm->tx_mode == ALLOW_16X16 ||
- cm->tx_mode == ALLOW_32X32 ||
- (cm->tx_mode == TX_MODE_SELECT &&
- rd[TX_8X8][1] <= rd[TX_4X4][1])) {
- mbmi->tx_size = TX_8X8;
- } else {
- mbmi->tx_size = TX_4X4;
- }
+ mbmi->tx_size = cm->tx_mode == TX_MODE_SELECT ?
+ best_tx : MIN(max_tx_size, max_mode_tx_size);
// Actually encode using the chosen mode if a model was used, but do not
// update the r, d costs
- txfm_rd_in_plane(x, &cpi->rdcost_stack, rate, distortion, skip,
- &sse[mbmi->tx_size], ref_best_rd, 0, bs, mbmi->tx_size);
+ txfm_rd_in_plane(x, rate, distortion, skip,
+ &sse[mbmi->tx_size], ref_best_rd, 0, bs, mbmi->tx_size,
+ cpi->sf.use_fast_coef_costing);
- if (max_tx_size == TX_32X32 &&
- rd[TX_32X32][1] <= rd[TX_16X16][1] &&
- rd[TX_32X32][1] <= rd[TX_8X8][1] &&
- rd[TX_32X32][1] <= rd[TX_4X4][1]) {
+ if (max_tx_size == TX_32X32 && best_tx == TX_32X32) {
cpi->tx_stepdown_count[0]++;
- } else if (max_tx_size >= TX_16X16 &&
- rd[TX_16X16][1] <= rd[TX_8X8][1] &&
- rd[TX_16X16][1] <= rd[TX_4X4][1]) {
+ } else if (max_tx_size >= TX_16X16 && best_tx == TX_16X16) {
cpi->tx_stepdown_count[max_tx_size - TX_16X16]++;
} else if (rd[TX_8X8][1] <= rd[TX_4X4][1]) {
cpi->tx_stepdown_count[max_tx_size - TX_8X8]++;
@@ -923,25 +946,23 @@ static void choose_txfm_size_from_modelrd(VP9_COMP *cpi, MACROBLOCK *x,
}
}
-static void super_block_yrd(VP9_COMP *cpi,
- MACROBLOCK *x, int *rate, int64_t *distortion,
- int *skip, int64_t *psse, BLOCK_SIZE bs,
- int64_t txfm_cache[TX_MODES],
- int64_t ref_best_rd) {
+static void inter_super_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
+ int64_t *distortion, int *skip,
+ int64_t *psse, BLOCK_SIZE bs,
+ int64_t txfm_cache[TX_MODES],
+ int64_t ref_best_rd) {
int r[TX_SIZES][2], s[TX_SIZES];
int64_t d[TX_SIZES], sse[TX_SIZES];
MACROBLOCKD *xd = &x->e_mbd;
- MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
- struct rdcost_block_args *rdcost_stack = &cpi->rdcost_stack;
- const int b_inter_mode = is_inter_block(mbmi);
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const TX_SIZE max_tx_size = max_txsize_lookup[bs];
+ TX_SIZE tx_size;
assert(bs == mbmi->sb_type);
- if (b_inter_mode)
- vp9_subtract_sby(x, bs);
- if (cpi->sf.tx_size_search_method == USE_LARGESTALL ||
- (cpi->sf.tx_size_search_method != USE_FULL_RD &&
- !b_inter_mode)) {
+ vp9_subtract_plane(x, bs, 0);
+
+ if (cpi->sf.tx_size_search_method == USE_LARGESTALL || xd->lossless) {
vpx_memset(txfm_cache, 0, TX_MODES * sizeof(int64_t));
choose_largest_txfm_size(cpi, x, rate, distortion, skip, sse,
ref_best_rd, bs);
@@ -950,36 +971,18 @@ static void super_block_yrd(VP9_COMP *cpi,
return;
}
- if (cpi->sf.tx_size_search_method == USE_LARGESTINTRA_MODELINTER &&
- b_inter_mode) {
- if (bs >= BLOCK_32X32)
- model_rd_for_sb_y_tx(cpi, bs, TX_32X32, x, xd,
- &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32]);
- if (bs >= BLOCK_16X16)
- model_rd_for_sb_y_tx(cpi, bs, TX_16X16, x, xd,
- &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16]);
-
- model_rd_for_sb_y_tx(cpi, bs, TX_8X8, x, xd,
- &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8]);
-
- model_rd_for_sb_y_tx(cpi, bs, TX_4X4, x, xd,
- &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4]);
-
+ if (cpi->sf.tx_size_search_method == USE_LARGESTINTRA_MODELINTER) {
+ for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
+ model_rd_for_sb_y_tx(cpi, bs, tx_size, x, xd,
+ &r[tx_size][0], &d[tx_size], &s[tx_size]);
choose_txfm_size_from_modelrd(cpi, x, r, rate, d, distortion, s,
skip, sse, ref_best_rd, bs);
} else {
- if (bs >= BLOCK_32X32)
- txfm_rd_in_plane(x, rdcost_stack, &r[TX_32X32][0], &d[TX_32X32],
- &s[TX_32X32], &sse[TX_32X32],
- ref_best_rd, 0, bs, TX_32X32);
- if (bs >= BLOCK_16X16)
- txfm_rd_in_plane(x, rdcost_stack, &r[TX_16X16][0], &d[TX_16X16],
- &s[TX_16X16], &sse[TX_16X16],
- ref_best_rd, 0, bs, TX_16X16);
- txfm_rd_in_plane(x, rdcost_stack, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8],
- &sse[TX_8X8], ref_best_rd, 0, bs, TX_8X8);
- txfm_rd_in_plane(x, rdcost_stack, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4],
- &sse[TX_4X4], ref_best_rd, 0, bs, TX_4X4);
+ for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
+ txfm_rd_in_plane(x, &r[tx_size][0], &d[tx_size],
+ &s[tx_size], &sse[tx_size],
+ ref_best_rd, 0, bs, tx_size,
+ cpi->sf.use_fast_coef_costing);
choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s,
skip, txfm_cache, bs);
}
@@ -987,8 +990,39 @@ static void super_block_yrd(VP9_COMP *cpi,
*psse = sse[mbmi->tx_size];
}
-static int conditional_skipintra(MB_PREDICTION_MODE mode,
- MB_PREDICTION_MODE best_intra_mode) {
+static void intra_super_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
+ int64_t *distortion, int *skip,
+ int64_t *psse, BLOCK_SIZE bs,
+ int64_t txfm_cache[TX_MODES],
+ int64_t ref_best_rd) {
+ int64_t sse[TX_SIZES];
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+
+ assert(bs == mbmi->sb_type);
+ if (cpi->sf.tx_size_search_method != USE_FULL_RD || xd->lossless) {
+ vpx_memset(txfm_cache, 0, TX_MODES * sizeof(int64_t));
+ choose_largest_txfm_size(cpi, x, rate, distortion, skip, sse,
+ ref_best_rd, bs);
+ } else {
+ int r[TX_SIZES][2], s[TX_SIZES];
+ int64_t d[TX_SIZES];
+ TX_SIZE tx_size;
+ for (tx_size = TX_4X4; tx_size <= max_txsize_lookup[bs]; ++tx_size)
+ txfm_rd_in_plane(x, &r[tx_size][0], &d[tx_size],
+ &s[tx_size], &sse[tx_size],
+ ref_best_rd, 0, bs, tx_size,
+ cpi->sf.use_fast_coef_costing);
+ choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s,
+ skip, txfm_cache, bs);
+ }
+ if (psse)
+ *psse = sse[mbmi->tx_size];
+}
+
+
+static int conditional_skipintra(PREDICTION_MODE mode,
+ PREDICTION_MODE best_intra_mode) {
if (mode == D117_PRED &&
best_intra_mode != V_PRED &&
best_intra_mode != D135_PRED)
@@ -1009,27 +1043,24 @@ static int conditional_skipintra(MB_PREDICTION_MODE mode,
}
static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
- MB_PREDICTION_MODE *best_mode,
- int *bmode_costs,
+ PREDICTION_MODE *best_mode,
+ const int *bmode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int64_t *bestdistortion,
BLOCK_SIZE bsize, int64_t rd_thresh) {
- MB_PREDICTION_MODE mode;
- MACROBLOCKD *xd = &x->e_mbd;
+ PREDICTION_MODE mode;
+ MACROBLOCKD *const xd = &x->e_mbd;
int64_t best_rd = rd_thresh;
- int rate = 0;
- int64_t distortion;
+
struct macroblock_plane *p = &x->plane[0];
struct macroblockd_plane *pd = &xd->plane[0];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
- uint8_t *src_init = raster_block_offset_uint8(BLOCK_8X8, ib,
- p->src.buf, src_stride);
- uint8_t *dst_init = raster_block_offset_uint8(BLOCK_8X8, ib,
- pd->dst.buf, dst_stride);
- int16_t *src_diff, *coeff;
-
+ const uint8_t *src_init = &p->src.buf[raster_block_offset(BLOCK_8X8, ib,
+ src_stride)];
+ uint8_t *dst_init = &pd->dst.buf[raster_block_offset(BLOCK_8X8, ib,
+ dst_stride)];
ENTROPY_CONTEXT ta[2], tempa[2];
ENTROPY_CONTEXT tl[2], templ[2];
@@ -1042,11 +1073,13 @@ static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
vpx_memcpy(ta, a, sizeof(ta));
vpx_memcpy(tl, l, sizeof(tl));
- xd->mi_8x8[0]->mbmi.tx_size = TX_4X4;
+ xd->mi[0]->mbmi.tx_size = TX_4X4;
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
int64_t this_rd;
int ratey = 0;
+ int64_t distortion = 0;
+ int rate = bmode_costs[mode];
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode)))
continue;
@@ -1058,56 +1091,52 @@ static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
continue;
}
- rate = bmode_costs[mode];
- distortion = 0;
-
vpx_memcpy(tempa, ta, sizeof(ta));
vpx_memcpy(templ, tl, sizeof(tl));
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
- int64_t ssz;
- const int16_t *scan;
- const int16_t *nb;
- uint8_t *src = src_init + idx * 4 + idy * 4 * src_stride;
- uint8_t *dst = dst_init + idx * 4 + idy * 4 * dst_stride;
const int block = ib + idy * 2 + idx;
- TX_TYPE tx_type;
- xd->mi_8x8[0]->bmi[block].as_mode = mode;
- src_diff = raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
- coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
+ const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
+ uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
+ int16_t *const src_diff = raster_block_offset_int16(BLOCK_8X8, block,
+ p->src_diff);
+ int16_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
+ xd->mi[0]->bmi[block].as_mode = mode;
vp9_predict_intra_block(xd, block, 1,
TX_4X4, mode,
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
- dst, dst_stride);
- vp9_subtract_block(4, 4, src_diff, 8,
- src, src_stride,
- dst, dst_stride);
-
- tx_type = get_tx_type_4x4(PLANE_TYPE_Y_WITH_DC, xd, block);
- get_scan_nb_4x4(tx_type, &scan, &nb);
-
- if (tx_type != DCT_DCT)
- vp9_short_fht4x4(src_diff, coeff, 8, tx_type);
- else
- x->fwd_txm4x4(src_diff, coeff, 8);
-
- vp9_regular_quantize_b_4x4(x, 16, block, scan, get_iscan_4x4(tx_type));
-
- ratey += cost_coeffs(x, 0, block,
- tempa + idx, templ + idy, TX_4X4, scan, nb);
- distortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block),
- 16, &ssz) >> 2;
- if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
- goto next;
-
- if (tx_type != DCT_DCT)
- vp9_iht4x4_16_add(BLOCK_OFFSET(pd->dqcoeff, block),
- dst, pd->dst.stride, tx_type);
- else
- xd->itxm_add(BLOCK_OFFSET(pd->dqcoeff, block), dst, pd->dst.stride,
- 16);
+ dst, dst_stride, idx, idy, 0);
+ vp9_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride);
+
+ if (xd->lossless) {
+ const scan_order *so = &vp9_default_scan_orders[TX_4X4];
+ vp9_fwht4x4(src_diff, coeff, 8);
+ vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
+ ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
+ so->scan, so->neighbors,
+ cpi->sf.use_fast_coef_costing);
+ if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
+ goto next;
+ vp9_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride,
+ p->eobs[block]);
+ } else {
+ int64_t unused;
+ const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block);
+ const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type];
+ vp9_fht4x4(src_diff, coeff, 8, tx_type);
+ vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
+ ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
+ so->scan, so->neighbors,
+ cpi->sf.use_fast_coef_costing);
+ distortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block),
+ 16, &unused) >> 2;
+ if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
+ goto next;
+ vp9_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block),
+ dst, dst_stride, p->eobs[block]);
+ }
}
}
@@ -1140,18 +1169,16 @@ static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
return best_rd;
}
-static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP * const cpi,
- MACROBLOCK * const mb,
- int * const rate,
- int * const rate_y,
- int64_t * const distortion,
+static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP *cpi, MACROBLOCK *mb,
+ int *rate, int *rate_y,
+ int64_t *distortion,
int64_t best_rd) {
int i, j;
- MACROBLOCKD *const xd = &mb->e_mbd;
- MODE_INFO *const mic = xd->mi_8x8[0];
- const MODE_INFO *above_mi = xd->mi_8x8[-xd->mode_info_stride];
- const MODE_INFO *left_mi = xd->left_available ? xd->mi_8x8[-1] : NULL;
- const BLOCK_SIZE bsize = xd->mi_8x8[0]->mbmi.sb_type;
+ const MACROBLOCKD *const xd = &mb->e_mbd;
+ MODE_INFO *const mic = xd->mi[0];
+ const MODE_INFO *above_mi = xd->mi[-xd->mi_stride];
+ const MODE_INFO *left_mi = xd->left_available ? xd->mi[-1] : NULL;
+ const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
@@ -1160,25 +1187,23 @@ static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP * const cpi,
int tot_rate_y = 0;
int64_t total_rd = 0;
ENTROPY_CONTEXT t_above[4], t_left[4];
- int *bmode_costs;
+ const int *bmode_costs = cpi->mbmode_cost;
vpx_memcpy(t_above, xd->plane[0].above_context, sizeof(t_above));
vpx_memcpy(t_left, xd->plane[0].left_context, sizeof(t_left));
- bmode_costs = mb->mbmode_cost;
-
// Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block.
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
- MB_PREDICTION_MODE best_mode = DC_PRED;
+ PREDICTION_MODE best_mode = DC_PRED;
int r = INT_MAX, ry = INT_MAX;
int64_t d = INT64_MAX, this_rd = INT64_MAX;
i = idy * 2 + idx;
if (cpi->common.frame_type == KEY_FRAME) {
- const MB_PREDICTION_MODE A = above_block_mode(mic, above_mi, i);
- const MB_PREDICTION_MODE L = left_block_mode(mic, left_mi, i);
+ const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, i);
+ const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, i);
- bmode_costs = mb->y_mode_costs[A][L];
+ bmode_costs = cpi->y_mode_costs[A][L];
}
this_rd = rd_pick_intra4x4block(cpi, mb, i, &best_mode, bmode_costs,
@@ -1217,15 +1242,15 @@ static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
int64_t tx_cache[TX_MODES],
int64_t best_rd) {
- MB_PREDICTION_MODE mode;
- MB_PREDICTION_MODE mode_selected = DC_PRED;
+ PREDICTION_MODE mode;
+ PREDICTION_MODE mode_selected = DC_PRED;
MACROBLOCKD *const xd = &x->e_mbd;
- MODE_INFO *const mic = xd->mi_8x8[0];
+ MODE_INFO *const mic = xd->mi[0];
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion, this_rd;
TX_SIZE best_tx = TX_4X4;
int i;
- int *bmode_costs = x->mbmode_cost;
+ int *bmode_costs = cpi->mbmode_cost;
if (cpi->sf.tx_size_search_method == USE_FULL_RD)
for (i = 0; i < TX_MODES; i++)
@@ -1234,22 +1259,22 @@ static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x,
/* Y Search for intra prediction mode */
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int64_t local_tx_cache[TX_MODES];
- MODE_INFO *above_mi = xd->mi_8x8[-xd->mode_info_stride];
- MODE_INFO *left_mi = xd->left_available ? xd->mi_8x8[-1] : NULL;
+ MODE_INFO *above_mi = xd->mi[-xd->mi_stride];
+ MODE_INFO *left_mi = xd->left_available ? xd->mi[-1] : NULL;
if (!(cpi->sf.intra_y_mode_mask[max_txsize_lookup[bsize]] & (1 << mode)))
continue;
if (cpi->common.frame_type == KEY_FRAME) {
- const MB_PREDICTION_MODE A = above_block_mode(mic, above_mi, 0);
- const MB_PREDICTION_MODE L = left_block_mode(mic, left_mi, 0);
+ const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0);
+ const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0);
- bmode_costs = x->y_mode_costs[A][L];
+ bmode_costs = cpi->y_mode_costs[A][L];
}
mic->mbmi.mode = mode;
- super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
- bsize, local_tx_cache, best_rd);
+ intra_super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion,
+ &s, NULL, bsize, local_tx_cache, best_rd);
if (this_rate_tokenonly == INT_MAX)
continue;
@@ -1284,12 +1309,12 @@ static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x,
return best_rd;
}
-static void super_block_uvrd(VP9_COMP *const cpi, MACROBLOCK *x,
+static void super_block_uvrd(const VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int64_t *distortion, int *skippable,
int64_t *sse, BLOCK_SIZE bsize,
int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
- MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
TX_SIZE uv_txfm_size = get_uv_tx_size(mbmi);
int plane;
int pnrate = 0, pnskip = 1;
@@ -1298,8 +1323,11 @@ static void super_block_uvrd(VP9_COMP *const cpi, MACROBLOCK *x,
if (ref_best_rd < 0)
goto term;
- if (is_inter_block(mbmi))
- vp9_subtract_sbuv(x, bsize);
+ if (is_inter_block(mbmi)) {
+ int plane;
+ for (plane = 1; plane < MAX_MB_PLANE; ++plane)
+ vp9_subtract_plane(x, bsize, plane);
+ }
*rate = 0;
*distortion = 0;
@@ -1307,8 +1335,9 @@ static void super_block_uvrd(VP9_COMP *const cpi, MACROBLOCK *x,
*skippable = 1;
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
- txfm_rd_in_plane(x, &cpi->rdcost_stack, &pnrate, &pndist, &pnskip, &pnsse,
- ref_best_rd, plane, bsize, uv_txfm_size);
+ txfm_rd_in_plane(x, &pnrate, &pndist, &pnskip, &pnsse,
+ ref_best_rd, plane, bsize, uv_txfm_size,
+ cpi->sf.use_fast_coef_costing);
if (pnrate == INT_MAX)
goto term;
*rate += pnrate;
@@ -1327,32 +1356,29 @@ static void super_block_uvrd(VP9_COMP *const cpi, MACROBLOCK *x,
}
static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x,
+ PICK_MODE_CONTEXT *ctx,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
- BLOCK_SIZE bsize) {
- MB_PREDICTION_MODE mode;
- MB_PREDICTION_MODE mode_selected = DC_PRED;
+ BLOCK_SIZE bsize, TX_SIZE max_tx_size) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ PREDICTION_MODE mode;
+ PREDICTION_MODE mode_selected = DC_PRED;
int64_t best_rd = INT64_MAX, this_rd;
int this_rate_tokenonly, this_rate, s;
int64_t this_distortion, this_sse;
- // int mode_mask = (bsize <= BLOCK_8X8)
- // ? ALL_INTRA_MODES : cpi->sf.intra_uv_mode_mask;
-
- for (mode = DC_PRED; mode <= TM_PRED; mode ++) {
- // if (!(mode_mask & (1 << mode)))
- if (!(cpi->sf.intra_uv_mode_mask[max_uv_txsize_lookup[bsize]]
- & (1 << mode)))
+ for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
+ if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode)))
continue;
- x->e_mbd.mi_8x8[0]->mbmi.uv_mode = mode;
+ xd->mi[0]->mbmi.uv_mode = mode;
super_block_uvrd(cpi, x, &this_rate_tokenonly,
&this_distortion, &s, &this_sse, bsize, best_rd);
if (this_rate_tokenonly == INT_MAX)
continue;
this_rate = this_rate_tokenonly +
- x->intra_uv_mode_cost[cpi->common.frame_type][mode];
+ cpi->intra_uv_mode_cost[cpi->common.frame_type][mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
@@ -1362,72 +1388,84 @@ static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x,
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
+ if (!x->select_txfm_size) {
+ int i;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ for (i = 1; i < MAX_MB_PLANE; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][2];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
+ p[i].eobs = ctx->eobs_pbuf[i][2];
+
+ ctx->coeff_pbuf[i][2] = ctx->coeff_pbuf[i][0];
+ ctx->qcoeff_pbuf[i][2] = ctx->qcoeff_pbuf[i][0];
+ ctx->dqcoeff_pbuf[i][2] = ctx->dqcoeff_pbuf[i][0];
+ ctx->eobs_pbuf[i][2] = ctx->eobs_pbuf[i][0];
+
+ ctx->coeff_pbuf[i][0] = p[i].coeff;
+ ctx->qcoeff_pbuf[i][0] = p[i].qcoeff;
+ ctx->dqcoeff_pbuf[i][0] = pd[i].dqcoeff;
+ ctx->eobs_pbuf[i][0] = p[i].eobs;
+ }
+ }
}
}
- x->e_mbd.mi_8x8[0]->mbmi.uv_mode = mode_selected;
-
+ xd->mi[0]->mbmi.uv_mode = mode_selected;
return best_rd;
}
-static int64_t rd_sbuv_dcpred(VP9_COMP *cpi, MACROBLOCK *x,
+static int64_t rd_sbuv_dcpred(const VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize) {
- int64_t this_rd;
- int64_t this_sse;
+ const VP9_COMMON *cm = &cpi->common;
+ int64_t unused;
- x->e_mbd.mi_8x8[0]->mbmi.uv_mode = DC_PRED;
+ x->e_mbd.mi[0]->mbmi.uv_mode = DC_PRED;
super_block_uvrd(cpi, x, rate_tokenonly, distortion,
- skippable, &this_sse, bsize, INT64_MAX);
- *rate = *rate_tokenonly +
- x->intra_uv_mode_cost[cpi->common.frame_type][DC_PRED];
- this_rd = RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
-
- return this_rd;
+ skippable, &unused, bsize, INT64_MAX);
+ *rate = *rate_tokenonly + cpi->intra_uv_mode_cost[cm->frame_type][DC_PRED];
+ return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
-static void choose_intra_uv_mode(VP9_COMP *cpi, BLOCK_SIZE bsize,
+static void choose_intra_uv_mode(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
+ BLOCK_SIZE bsize, TX_SIZE max_tx_size,
int *rate_uv, int *rate_uv_tokenonly,
int64_t *dist_uv, int *skip_uv,
- MB_PREDICTION_MODE *mode_uv) {
+ PREDICTION_MODE *mode_uv) {
MACROBLOCK *const x = &cpi->mb;
// Use an estimated rd for uv_intra based on DC_PRED if the
// appropriate speed flag is set.
if (cpi->sf.use_uv_intra_rd_estimate) {
- rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
- bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize);
+ rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv,
+ skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize);
// Else do a proper rd search for each possible transform size that may
// be considered in the main rd loop.
} else {
- rd_pick_intra_sbuv_mode(cpi, x,
+ rd_pick_intra_sbuv_mode(cpi, x, ctx,
rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
- bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize);
+ bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, max_tx_size);
}
- *mode_uv = x->e_mbd.mi_8x8[0]->mbmi.uv_mode;
+ *mode_uv = x->e_mbd.mi[0]->mbmi.uv_mode;
}
-static int cost_mv_ref(VP9_COMP *cpi, MB_PREDICTION_MODE mode,
+static int cost_mv_ref(const VP9_COMP *cpi, PREDICTION_MODE mode,
int mode_context) {
- MACROBLOCK *const x = &cpi->mb;
- MACROBLOCKD *const xd = &x->e_mbd;
- const int segment_id = xd->mi_8x8[0]->mbmi.segment_id;
+ const MACROBLOCK *const x = &cpi->mb;
+ const int segment_id = x->e_mbd.mi[0]->mbmi.segment_id;
// Don't account for mode here if segment skip is enabled.
if (!vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) {
assert(is_inter_mode(mode));
- return x->inter_mode_cost[mode_context][inter_mode_offset(mode)];
+ return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)];
} else {
return 0;
}
}
-void vp9_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) {
- x->e_mbd.mi_8x8[0]->mbmi.mode = mb;
- x->e_mbd.mi_8x8[0]->mbmi.mv[0].as_int = mv->as_int;
-}
-
static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
int_mv *frame_mv,
@@ -1435,79 +1473,59 @@ static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
int_mv single_newmv[MAX_REF_FRAMES],
int *rate_mv);
-static int labels2mode(MACROBLOCK *x, int i,
- MB_PREDICTION_MODE this_mode,
- int_mv *this_mv, int_mv *this_second_mv,
- int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
- int_mv seg_mvs[MAX_REF_FRAMES],
- int_mv *best_ref_mv,
- int_mv *second_best_ref_mv,
- int *mvjcost, int *mvcost[2], VP9_COMP *cpi) {
- MACROBLOCKD *const xd = &x->e_mbd;
- MODE_INFO *const mic = xd->mi_8x8[0];
- MB_MODE_INFO *mbmi = &mic->mbmi;
- int cost = 0, thismvcost = 0;
+static int set_and_cost_bmi_mvs(VP9_COMP *cpi, MACROBLOCKD *xd, int i,
+ PREDICTION_MODE mode, int_mv this_mv[2],
+ int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
+ int_mv seg_mvs[MAX_REF_FRAMES],
+ int_mv *best_ref_mv[2], const int *mvjcost,
+ int *mvcost[2]) {
+ MODE_INFO *const mic = xd->mi[0];
+ const MB_MODE_INFO *const mbmi = &mic->mbmi;
+ int thismvcost = 0;
int idx, idy;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type];
- const int has_second_rf = has_second_ref(mbmi);
+ const int is_compound = has_second_ref(mbmi);
- /* We have to be careful retrieving previously-encoded motion vectors.
- Ones from this macroblock have to be pulled from the BLOCKD array
- as they have not yet made it to the bmi array in our MB_MODE_INFO. */
- MB_PREDICTION_MODE m;
-
- // the only time we should do costing for new motion vector or mode
- // is when we are on a new label (jbb May 08, 2007)
- switch (m = this_mode) {
+ switch (mode) {
case NEWMV:
- this_mv->as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
- thismvcost = vp9_mv_bit_cost(&this_mv->as_mv, &best_ref_mv->as_mv,
+ this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
+ thismvcost += vp9_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
- if (has_second_rf) {
- this_second_mv->as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
- thismvcost += vp9_mv_bit_cost(&this_second_mv->as_mv,
- &second_best_ref_mv->as_mv,
+ if (is_compound) {
+ this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
+ thismvcost += vp9_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
}
break;
- case NEARESTMV:
- this_mv->as_int = frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int;
- if (has_second_rf)
- this_second_mv->as_int =
- frame_mv[NEARESTMV][mbmi->ref_frame[1]].as_int;
- break;
case NEARMV:
- this_mv->as_int = frame_mv[NEARMV][mbmi->ref_frame[0]].as_int;
- if (has_second_rf)
- this_second_mv->as_int =
- frame_mv[NEARMV][mbmi->ref_frame[1]].as_int;
+ case NEARESTMV:
+ this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
+ if (is_compound)
+ this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
break;
case ZEROMV:
- this_mv->as_int = 0;
- if (has_second_rf)
- this_second_mv->as_int = 0;
+ this_mv[0].as_int = 0;
+ if (is_compound)
+ this_mv[1].as_int = 0;
break;
default:
break;
}
- cost = cost_mv_ref(cpi, this_mode,
- mbmi->mode_context[mbmi->ref_frame[0]]);
-
- mic->bmi[i].as_mv[0].as_int = this_mv->as_int;
- if (has_second_rf)
- mic->bmi[i].as_mv[1].as_int = this_second_mv->as_int;
+ mic->bmi[i].as_mv[0].as_int = this_mv[0].as_int;
+ if (is_compound)
+ mic->bmi[i].as_mv[1].as_int = this_mv[1].as_int;
- mic->bmi[i].as_mode = m;
+ mic->bmi[i].as_mode = mode;
for (idy = 0; idy < num_4x4_blocks_high; ++idy)
for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
vpx_memcpy(&mic->bmi[i + idy * 2 + idx],
&mic->bmi[i], sizeof(mic->bmi[i]));
- cost += thismvcost;
- return cost;
+ return cost_mv_ref(cpi, mode, mbmi->mode_context[mbmi->ref_frame[0]]) +
+ thismvcost;
}
static int64_t encode_inter_mb_segment(VP9_COMP *cpi,
@@ -1517,32 +1535,38 @@ static int64_t encode_inter_mb_segment(VP9_COMP *cpi,
int *labelyrate,
int64_t *distortion, int64_t *sse,
ENTROPY_CONTEXT *ta,
- ENTROPY_CONTEXT *tl) {
+ ENTROPY_CONTEXT *tl,
+ int mi_row, int mi_col) {
int k;
MACROBLOCKD *xd = &x->e_mbd;
struct macroblockd_plane *const pd = &xd->plane[0];
struct macroblock_plane *const p = &x->plane[0];
- MODE_INFO *const mi = xd->mi_8x8[0];
- const BLOCK_SIZE bsize = mi->mbmi.sb_type;
- const int width = plane_block_width(bsize, pd);
- const int height = plane_block_height(bsize, pd);
+ MODE_INFO *const mi = xd->mi[0];
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd);
+ const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+ const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize];
int idx, idy;
- uint8_t *const src = raster_block_offset_uint8(BLOCK_8X8, i,
- p->src.buf, p->src.stride);
- uint8_t *const dst = raster_block_offset_uint8(BLOCK_8X8, i,
- pd->dst.buf, pd->dst.stride);
+ const uint8_t *const src = &p->src.buf[raster_block_offset(BLOCK_8X8, i,
+ p->src.stride)];
+ uint8_t *const dst = &pd->dst.buf[raster_block_offset(BLOCK_8X8, i,
+ pd->dst.stride)];
int64_t thisdistortion = 0, thissse = 0;
int thisrate = 0, ref;
+ const scan_order *so = &vp9_default_scan_orders[TX_4X4];
const int is_compound = has_second_ref(&mi->mbmi);
+ const InterpKernel *kernel = vp9_get_interp_kernel(mi->mbmi.interp_filter);
+
for (ref = 0; ref < 1 + is_compound; ++ref) {
- const uint8_t *pre = raster_block_offset_uint8(BLOCK_8X8, i,
- pd->pre[ref].buf, pd->pre[ref].stride);
+ const uint8_t *pre = &pd->pre[ref].buf[raster_block_offset(BLOCK_8X8, i,
+ pd->pre[ref].stride)];
vp9_build_inter_predictor(pre, pd->pre[ref].stride,
dst, pd->dst.stride,
&mi->bmi[i].as_mv[ref].as_mv,
- &xd->scale_factor[ref],
- width, height, ref, &xd->subpix, MV_PRECISION_Q3);
+ &xd->block_refs[ref]->sf, width, height, ref,
+ kernel, MV_PRECISION_Q3,
+ mi_col * MI_SIZE + 4 * (i % 2),
+ mi_row * MI_SIZE + 4 * (i / 2));
}
vp9_subtract_block(height, width,
@@ -1560,16 +1584,13 @@ static int64_t encode_inter_mb_segment(VP9_COMP *cpi,
coeff = BLOCK_OFFSET(p->coeff, k);
x->fwd_txm4x4(raster_block_offset_int16(BLOCK_8X8, k, p->src_diff),
coeff, 8);
- vp9_regular_quantize_b_4x4(x, 16, k, get_scan_4x4(DCT_DCT),
- get_iscan_4x4(DCT_DCT));
+ vp9_regular_quantize_b_4x4(x, 0, k, so->scan, so->iscan);
thisdistortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k),
16, &ssz);
thissse += ssz;
- thisrate += cost_coeffs(x, 0, k,
- ta + (k & 1),
- tl + (k >> 1), TX_4X4,
- vp9_default_scan_4x4,
- vp9_default_scan_4x4_neighbors);
+ thisrate += cost_coeffs(x, 0, k, ta + (k & 1), tl + (k >> 1), TX_4X4,
+ so->scan, so->neighbors,
+ cpi->sf.use_fast_coef_costing);
rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2);
rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2);
rd = MIN(rd1, rd2);
@@ -1598,7 +1619,7 @@ typedef struct {
} SEG_RDSTAT;
typedef struct {
- int_mv *ref_mv, *second_ref_mv;
+ int_mv *ref_mv[2];
int_mv mvp;
int64_t segment_rd;
@@ -1606,55 +1627,108 @@ typedef struct {
int64_t d;
int64_t sse;
int segment_yrate;
- MB_PREDICTION_MODE modes[4];
+ PREDICTION_MODE modes[4];
SEG_RDSTAT rdstat[4][INTER_MODES];
int mvthresh;
} BEST_SEG_INFO;
-static INLINE int mv_check_bounds(MACROBLOCK *x, int_mv *mv) {
- int r = 0;
- r |= (mv->as_mv.row >> 3) < x->mv_row_min;
- r |= (mv->as_mv.row >> 3) > x->mv_row_max;
- r |= (mv->as_mv.col >> 3) < x->mv_col_min;
- r |= (mv->as_mv.col >> 3) > x->mv_col_max;
- return r;
+static INLINE int mv_check_bounds(const MACROBLOCK *x, const MV *mv) {
+ return (mv->row >> 3) < x->mv_row_min ||
+ (mv->row >> 3) > x->mv_row_max ||
+ (mv->col >> 3) < x->mv_col_min ||
+ (mv->col >> 3) > x->mv_col_max;
}
static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
- MB_MODE_INFO *const mbmi = &x->e_mbd.mi_8x8[0]->mbmi;
+ MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &x->e_mbd.plane[0];
- p->src.buf = raster_block_offset_uint8(BLOCK_8X8, i, p->src.buf,
- p->src.stride);
+ p->src.buf = &p->src.buf[raster_block_offset(BLOCK_8X8, i, p->src.stride)];
assert(((intptr_t)pd->pre[0].buf & 0x7) == 0);
- pd->pre[0].buf = raster_block_offset_uint8(BLOCK_8X8, i, pd->pre[0].buf,
- pd->pre[0].stride);
+ pd->pre[0].buf = &pd->pre[0].buf[raster_block_offset(BLOCK_8X8, i,
+ pd->pre[0].stride)];
if (has_second_ref(mbmi))
- pd->pre[1].buf = raster_block_offset_uint8(BLOCK_8X8, i, pd->pre[1].buf,
- pd->pre[1].stride);
+ pd->pre[1].buf = &pd->pre[1].buf[raster_block_offset(BLOCK_8X8, i,
+ pd->pre[1].stride)];
}
static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
struct buf_2d orig_pre[2]) {
- MB_MODE_INFO *mbmi = &x->e_mbd.mi_8x8[0]->mbmi;
+ MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
x->plane[0].src = orig_src;
x->e_mbd.plane[0].pre[0] = orig_pre[0];
if (has_second_ref(mbmi))
x->e_mbd.plane[0].pre[1] = orig_pre[1];
}
-static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
- const TileInfo *const tile,
- BEST_SEG_INFO *bsi_buf, int filter_idx,
- int_mv seg_mvs[4][MAX_REF_FRAMES],
- int mi_row, int mi_col) {
- int i, br = 0, idx, idy;
+static INLINE int mv_has_subpel(const MV *mv) {
+ return (mv->row & 0x0F) || (mv->col & 0x0F);
+}
+
+// Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion.
+// TODO(aconverse): Find out if this is still productive then clean up or remove
+static int check_best_zero_mv(
+ const VP9_COMP *cpi, const uint8_t mode_context[MAX_REF_FRAMES],
+ int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
+ int disable_inter_mode_mask, int this_mode,
+ const MV_REFERENCE_FRAME ref_frames[2]) {
+ if (!(disable_inter_mode_mask & (1 << INTER_OFFSET(ZEROMV))) &&
+ (this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) &&
+ frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
+ (ref_frames[1] == NONE ||
+ frame_mv[this_mode][ref_frames[1]].as_int == 0)) {
+ int rfc = mode_context[ref_frames[0]];
+ int c1 = cost_mv_ref(cpi, NEARMV, rfc);
+ int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
+ int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
+
+ if (this_mode == NEARMV) {
+ if (c1 > c3) return 0;
+ } else if (this_mode == NEARESTMV) {
+ if (c2 > c3) return 0;
+ } else {
+ assert(this_mode == ZEROMV);
+ if (ref_frames[1] == NONE) {
+ if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) ||
+ (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0))
+ return 0;
+ } else {
+ if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 &&
+ frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) ||
+ (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 &&
+ frame_mv[NEARMV][ref_frames[1]].as_int == 0))
+ return 0;
+ }
+ }
+ }
+ return 1;
+}
+
+static int64_t rd_pick_best_sub8x8_mode(VP9_COMP *cpi, MACROBLOCK *x,
+ const TileInfo * const tile,
+ int_mv *best_ref_mv,
+ int_mv *second_best_ref_mv,
+ int64_t best_rd, int *returntotrate,
+ int *returnyrate,
+ int64_t *returndistortion,
+ int *skippable, int64_t *psse,
+ int mvthresh,
+ int_mv seg_mvs[4][MAX_REF_FRAMES],
+ BEST_SEG_INFO *bsi_buf, int filter_idx,
+ int mi_row, int mi_col) {
+ int i;
+ BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
+ MACROBLOCKD *xd = &x->e_mbd;
+ MODE_INFO *mi = xd->mi[0];
+ MB_MODE_INFO *mbmi = &mi->mbmi;
+ int mode_idx;
+ int k, br = 0, idx, idy;
int64_t bd = 0, block_sse = 0;
- MB_PREDICTION_MODE this_mode;
- MODE_INFO *mi = x->e_mbd.mi_8x8[0];
- MB_MODE_INFO *const mbmi = &mi->mbmi;
- struct macroblockd_plane *const pd = &x->e_mbd.plane[0];
+ PREDICTION_MODE this_mode;
+ VP9_COMMON *cm = &cpi->common;
+ struct macroblock_plane *const p = &x->plane[0];
+ struct macroblockd_plane *const pd = &xd->plane[0];
const int label_count = 4;
int64_t this_segment_rd = 0;
int label_mv_thresh;
@@ -1662,18 +1736,25 @@ static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
const BLOCK_SIZE bsize = mbmi->sb_type;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
- vp9_variance_fn_ptr_t *v_fn_ptr;
ENTROPY_CONTEXT t_above[2], t_left[2];
- BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
- int mode_idx;
int subpelmv = 1, have_ref = 0;
const int has_second_rf = has_second_ref(mbmi);
+ const int disable_inter_mode_mask = cpi->sf.disable_inter_mode_mask[bsize];
+
+ vp9_zero(*bsi);
+
+ bsi->segment_rd = best_rd;
+ bsi->ref_mv[0] = best_ref_mv;
+ bsi->ref_mv[1] = second_best_ref_mv;
+ bsi->mvp.as_int = best_ref_mv->as_int;
+ bsi->mvthresh = mvthresh;
+
+ for (i = 0; i < 4; i++)
+ bsi->modes[i] = ZEROMV;
vpx_memcpy(t_above, pd->above_context, sizeof(t_above));
vpx_memcpy(t_left, pd->left_context, sizeof(t_left));
- v_fn_ptr = &cpi->fn_ptr[bsize];
-
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
@@ -1685,68 +1766,35 @@ static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
// TODO(jingning,rbultje): rewrite the rate-distortion optimization
// loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
- int_mv mode_mv[MB_MODE_COUNT], second_mode_mv[MB_MODE_COUNT];
+ int_mv mode_mv[MB_MODE_COUNT][2];
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
- MB_PREDICTION_MODE mode_selected = ZEROMV;
+ PREDICTION_MODE mode_selected = ZEROMV;
int64_t best_rd = INT64_MAX;
- i = idy * 2 + idx;
-
- frame_mv[ZEROMV][mbmi->ref_frame[0]].as_int = 0;
- vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd, tile,
- &frame_mv[NEARESTMV][mbmi->ref_frame[0]],
- &frame_mv[NEARMV][mbmi->ref_frame[0]],
- i, 0, mi_row, mi_col);
- if (has_second_rf) {
- frame_mv[ZEROMV][mbmi->ref_frame[1]].as_int = 0;
- vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd, tile,
- &frame_mv[NEARESTMV][mbmi->ref_frame[1]],
- &frame_mv[NEARMV][mbmi->ref_frame[1]],
- i, 1, mi_row, mi_col);
+ const int i = idy * 2 + idx;
+ int ref;
+
+ for (ref = 0; ref < 1 + has_second_rf; ++ref) {
+ const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
+ frame_mv[ZEROMV][frame].as_int = 0;
+ vp9_append_sub8x8_mvs_for_idx(cm, xd, tile, i, ref, mi_row, mi_col,
+ &frame_mv[NEARESTMV][frame],
+ &frame_mv[NEARMV][frame]);
}
+
// search for the best motion vector on this segment
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
const struct buf_2d orig_src = x->plane[0].src;
struct buf_2d orig_pre[2];
- mode_idx = inter_mode_offset(this_mode);
+ mode_idx = INTER_OFFSET(this_mode);
bsi->rdstat[i][mode_idx].brdcost = INT64_MAX;
+ if (disable_inter_mode_mask & (1 << mode_idx))
+ continue;
- // if we're near/nearest and mv == 0,0, compare to zeromv
- if ((this_mode == NEARMV || this_mode == NEARESTMV ||
- this_mode == ZEROMV) &&
- frame_mv[this_mode][mbmi->ref_frame[0]].as_int == 0 &&
- (!has_second_rf ||
- frame_mv[this_mode][mbmi->ref_frame[1]].as_int == 0)) {
- int rfc = mbmi->mode_context[mbmi->ref_frame[0]];
- int c1 = cost_mv_ref(cpi, NEARMV, rfc);
- int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
- int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
-
- if (this_mode == NEARMV) {
- if (c1 > c3)
- continue;
- } else if (this_mode == NEARESTMV) {
- if (c2 > c3)
- continue;
- } else {
- assert(this_mode == ZEROMV);
- if (!has_second_rf) {
- if ((c3 >= c2 &&
- frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0) ||
- (c3 >= c1 &&
- frame_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0))
- continue;
- } else {
- if ((c3 >= c2 &&
- frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0 &&
- frame_mv[NEARESTMV][mbmi->ref_frame[1]].as_int == 0) ||
- (c3 >= c1 &&
- frame_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0 &&
- frame_mv[NEARMV][mbmi->ref_frame[1]].as_int == 0))
- continue;
- }
- }
- }
+ if (!check_best_zero_mv(cpi, mbmi->mode_context, frame_mv,
+ disable_inter_mode_mask,
+ this_mode, mbmi->ref_frame))
+ continue;
vpx_memcpy(orig_pre, pd->pre, sizeof(orig_pre));
vpx_memcpy(bsi->rdstat[i][mode_idx].ta, t_above,
@@ -1757,11 +1805,11 @@ static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
// motion search for newmv (single predictor case only)
if (!has_second_rf && this_mode == NEWMV &&
seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) {
+ MV *const new_mv = &mode_mv[NEWMV][0].as_mv;
int step_param = 0;
- int further_steps;
int thissme, bestsme = INT_MAX;
int sadpb = x->sadperbit4;
- int_mv mvp_full;
+ MV mvp_full;
int max_mv;
/* Is the best so far sufficiently good that we cant justify doing
@@ -1769,7 +1817,7 @@ static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
if (best_rd < label_mv_thresh)
break;
- if (cpi->compressor_speed) {
+ if (!is_best_mode(cpi->oxcf.mode)) {
// use previous block's result as next block's MV predictor.
if (i > 0) {
bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int;
@@ -1782,102 +1830,86 @@ static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
else
max_mv = MAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3;
- if (cpi->sf.auto_mv_step_size && cpi->common.show_frame) {
+ if (cpi->sf.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and the best ref mvs of the current block for
// the given reference.
- step_param = (vp9_init_search_range(cpi, max_mv) +
- cpi->mv_step_param) >> 1;
+ step_param = (vp9_init_search_range(&cpi->sf, max_mv) +
+ cpi->mv_step_param) / 2;
} else {
step_param = cpi->mv_step_param;
}
- mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3;
- mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3;
+ mvp_full.row = bsi->mvp.as_mv.row >> 3;
+ mvp_full.col = bsi->mvp.as_mv.col >> 3;
- if (cpi->sf.adaptive_motion_search && cpi->common.show_frame) {
- mvp_full.as_mv.row = x->pred_mv[mbmi->ref_frame[0]].as_mv.row >> 3;
- mvp_full.as_mv.col = x->pred_mv[mbmi->ref_frame[0]].as_mv.col >> 3;
+ if (cpi->sf.adaptive_motion_search && cm->show_frame) {
+ mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].as_mv.row >> 3;
+ mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].as_mv.col >> 3;
step_param = MAX(step_param, 8);
}
- further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
// adjust src pointer for this block
mi_buf_shift(x, i);
- if (cpi->sf.search_method == HEX) {
- bestsme = vp9_hex_search(x, &mvp_full.as_mv,
- step_param,
- sadpb, 1, v_fn_ptr, 1,
- &bsi->ref_mv->as_mv,
- &mode_mv[NEWMV].as_mv);
- } else if (cpi->sf.search_method == SQUARE) {
- bestsme = vp9_square_search(x, &mvp_full.as_mv,
- step_param,
- sadpb, 1, v_fn_ptr, 1,
- &bsi->ref_mv->as_mv,
- &mode_mv[NEWMV].as_mv);
- } else if (cpi->sf.search_method == BIGDIA) {
- bestsme = vp9_bigdia_search(x, &mvp_full.as_mv,
- step_param,
- sadpb, 1, v_fn_ptr, 1,
- &bsi->ref_mv->as_mv,
- &mode_mv[NEWMV].as_mv);
- } else {
- bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
- sadpb, further_steps, 0, v_fn_ptr,
- bsi->ref_mv, &mode_mv[NEWMV]);
- }
+
+ vp9_set_mv_search_range(x, &bsi->ref_mv[0]->as_mv);
+
+ bestsme = full_pixel_search(cpi, x, bsize, &mvp_full, step_param,
+ sadpb, &bsi->ref_mv[0]->as_mv, new_mv,
+ INT_MAX, 1);
// Should we do a full search (best quality only)
- if (cpi->compressor_speed == 0) {
+ if (is_best_mode(cpi->oxcf.mode)) {
+ int_mv *const best_mv = &mi->bmi[i].as_mv[0];
/* Check if mvp_full is within the range. */
- clamp_mv(&mvp_full.as_mv, x->mv_col_min, x->mv_col_max,
+ clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max,
x->mv_row_min, x->mv_row_max);
-
thissme = cpi->full_search_sad(x, &mvp_full,
- sadpb, 16, v_fn_ptr,
- x->nmvjointcost, x->mvcost,
- bsi->ref_mv, i);
-
+ sadpb, 16, &cpi->fn_ptr[bsize],
+ &bsi->ref_mv[0]->as_mv,
+ &best_mv->as_mv);
if (thissme < bestsme) {
bestsme = thissme;
- mode_mv[NEWMV].as_int = mi->bmi[i].as_mv[0].as_int;
+ *new_mv = best_mv->as_mv;
} else {
- /* The full search result is actually worse so re-instate the
- * previous best vector */
- mi->bmi[i].as_mv[0].as_int = mode_mv[NEWMV].as_int;
+ // The full search result is actually worse so re-instate the
+ // previous best vector
+ best_mv->as_mv = *new_mv;
}
}
if (bestsme < INT_MAX) {
int distortion;
- unsigned int sse;
cpi->find_fractional_mv_step(x,
- &mode_mv[NEWMV].as_mv,
- &bsi->ref_mv->as_mv,
- cpi->common.allow_high_precision_mv,
- x->errorperbit, v_fn_ptr,
- 0, cpi->sf.subpel_iters_per_step,
+ new_mv,
+ &bsi->ref_mv[0]->as_mv,
+ cm->allow_high_precision_mv,
+ x->errorperbit, &cpi->fn_ptr[bsize],
+ cpi->sf.subpel_force_stop,
+ cpi->sf.subpel_iters_per_step,
x->nmvjointcost, x->mvcost,
- &distortion, &sse);
+ &distortion,
+ &x->pred_sse[mbmi->ref_frame[0]]);
// save motion search result for use in compound prediction
- seg_mvs[i][mbmi->ref_frame[0]].as_int = mode_mv[NEWMV].as_int;
+ seg_mvs[i][mbmi->ref_frame[0]].as_mv = *new_mv;
}
if (cpi->sf.adaptive_motion_search)
- x->pred_mv[mbmi->ref_frame[0]].as_int = mode_mv[NEWMV].as_int;
+ x->pred_mv[mbmi->ref_frame[0]].as_mv = *new_mv;
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
- if (has_second_rf && this_mode == NEWMV &&
- mbmi->interp_filter == EIGHTTAP) {
+ if (has_second_rf) {
if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV ||
seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV)
continue;
+ }
+ if (has_second_rf && this_mode == NEWMV &&
+ mbmi->interp_filter == EIGHTTAP) {
// adjust src pointers
mi_buf_shift(x, i);
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
@@ -1895,57 +1927,44 @@ static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
}
bsi->rdstat[i][mode_idx].brate =
- labels2mode(x, i, this_mode, &mode_mv[this_mode],
- &second_mode_mv[this_mode], frame_mv, seg_mvs[i],
- bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
- x->mvcost, cpi);
-
- bsi->rdstat[i][mode_idx].mvs[0].as_int = mode_mv[this_mode].as_int;
- if (num_4x4_blocks_wide > 1)
- bsi->rdstat[i + 1][mode_idx].mvs[0].as_int =
- mode_mv[this_mode].as_int;
- if (num_4x4_blocks_high > 1)
- bsi->rdstat[i + 2][mode_idx].mvs[0].as_int =
- mode_mv[this_mode].as_int;
- if (has_second_rf) {
- bsi->rdstat[i][mode_idx].mvs[1].as_int =
- second_mode_mv[this_mode].as_int;
+ set_and_cost_bmi_mvs(cpi, xd, i, this_mode, mode_mv[this_mode],
+ frame_mv, seg_mvs[i], bsi->ref_mv,
+ x->nmvjointcost, x->mvcost);
+
+ for (ref = 0; ref < 1 + has_second_rf; ++ref) {
+ bsi->rdstat[i][mode_idx].mvs[ref].as_int =
+ mode_mv[this_mode][ref].as_int;
if (num_4x4_blocks_wide > 1)
- bsi->rdstat[i + 1][mode_idx].mvs[1].as_int =
- second_mode_mv[this_mode].as_int;
+ bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int =
+ mode_mv[this_mode][ref].as_int;
if (num_4x4_blocks_high > 1)
- bsi->rdstat[i + 2][mode_idx].mvs[1].as_int =
- second_mode_mv[this_mode].as_int;
+ bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int =
+ mode_mv[this_mode][ref].as_int;
}
// Trap vectors that reach beyond the UMV borders
- if (mv_check_bounds(x, &mode_mv[this_mode]))
- continue;
- if (has_second_rf &&
- mv_check_bounds(x, &second_mode_mv[this_mode]))
+ if (mv_check_bounds(x, &mode_mv[this_mode][0].as_mv) ||
+ (has_second_rf &&
+ mv_check_bounds(x, &mode_mv[this_mode][1].as_mv)))
continue;
if (filter_idx > 0) {
BEST_SEG_INFO *ref_bsi = bsi_buf;
- subpelmv = (mode_mv[this_mode].as_mv.row & 0x0f) ||
- (mode_mv[this_mode].as_mv.col & 0x0f);
- have_ref = mode_mv[this_mode].as_int ==
- ref_bsi->rdstat[i][mode_idx].mvs[0].as_int;
- if (has_second_rf) {
- subpelmv |= (second_mode_mv[this_mode].as_mv.row & 0x0f) ||
- (second_mode_mv[this_mode].as_mv.col & 0x0f);
- have_ref &= second_mode_mv[this_mode].as_int ==
- ref_bsi->rdstat[i][mode_idx].mvs[1].as_int;
+ subpelmv = 0;
+ have_ref = 1;
+
+ for (ref = 0; ref < 1 + has_second_rf; ++ref) {
+ subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv);
+ have_ref &= mode_mv[this_mode][ref].as_int ==
+ ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
}
if (filter_idx > 1 && !subpelmv && !have_ref) {
ref_bsi = bsi_buf + 1;
- have_ref = mode_mv[this_mode].as_int ==
- ref_bsi->rdstat[i][mode_idx].mvs[0].as_int;
- if (has_second_rf) {
- have_ref &= second_mode_mv[this_mode].as_int ==
- ref_bsi->rdstat[i][mode_idx].mvs[1].as_int;
- }
+ have_ref = 1;
+ for (ref = 0; ref < 1 + has_second_rf; ++ref)
+ have_ref &= mode_mv[this_mode][ref].as_int ==
+ ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
}
if (!subpelmv && have_ref &&
@@ -1974,16 +1993,17 @@ static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
&bsi->rdstat[i][mode_idx].bdist,
&bsi->rdstat[i][mode_idx].bsse,
bsi->rdstat[i][mode_idx].ta,
- bsi->rdstat[i][mode_idx].tl);
+ bsi->rdstat[i][mode_idx].tl,
+ mi_row, mi_col);
if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
bsi->rdstat[i][mode_idx].brdcost += RDCOST(x->rdmult, x->rddiv,
bsi->rdstat[i][mode_idx].brate, 0);
bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate;
- bsi->rdstat[i][mode_idx].eobs = pd->eobs[i];
+ bsi->rdstat[i][mode_idx].eobs = p->eobs[i];
if (num_4x4_blocks_wide > 1)
- bsi->rdstat[i + 1][mode_idx].eobs = pd->eobs[i + 1];
+ bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1];
if (num_4x4_blocks_high > 1)
- bsi->rdstat[i + 2][mode_idx].eobs = pd->eobs[i + 2];
+ bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2];
}
if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
@@ -1998,17 +2018,16 @@ static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
for (midx = 0; midx < INTER_MODES; ++midx)
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
- return;
+ return INT64_MAX;;
}
- mode_idx = inter_mode_offset(mode_selected);
+ mode_idx = INTER_OFFSET(mode_selected);
vpx_memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above));
vpx_memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left));
- labels2mode(x, i, mode_selected, &mode_mv[mode_selected],
- &second_mode_mv[mode_selected], frame_mv, seg_mvs[i],
- bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
- x->mvcost, cpi);
+ set_and_cost_bmi_mvs(cpi, xd, i, mode_selected, mode_mv[mode_selected],
+ frame_mv, seg_mvs[i], bsi->ref_mv, x->nmvjointcost,
+ x->mvcost);
br += bsi->rdstat[i][mode_idx].brate;
bd += bsi->rdstat[i][mode_idx].bdist;
@@ -2022,7 +2041,7 @@ static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
for (midx = 0; midx < INTER_MODES; ++midx)
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
- return;
+ return INT64_MAX;;
}
}
} /* for each label */
@@ -2034,54 +2053,18 @@ static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
bsi->sse = block_sse;
// update the coding decisions
- for (i = 0; i < 4; ++i)
- bsi->modes[i] = mi->bmi[i].as_mode;
-}
-
-static int64_t rd_pick_best_mbsegmentation(VP9_COMP *cpi, MACROBLOCK *x,
- const TileInfo *const tile,
- int_mv *best_ref_mv,
- int_mv *second_best_ref_mv,
- int64_t best_rd,
- int *returntotrate,
- int *returnyrate,
- int64_t *returndistortion,
- int *skippable, int64_t *psse,
- int mvthresh,
- int_mv seg_mvs[4][MAX_REF_FRAMES],
- BEST_SEG_INFO *bsi_buf,
- int filter_idx,
- int mi_row, int mi_col) {
- int i;
- BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
- MACROBLOCKD *xd = &x->e_mbd;
- MODE_INFO *mi = xd->mi_8x8[0];
- MB_MODE_INFO *mbmi = &mi->mbmi;
- int mode_idx;
-
- vp9_zero(*bsi);
-
- bsi->segment_rd = best_rd;
- bsi->ref_mv = best_ref_mv;
- bsi->second_ref_mv = second_best_ref_mv;
- bsi->mvp.as_int = best_ref_mv->as_int;
- bsi->mvthresh = mvthresh;
-
- for (i = 0; i < 4; i++)
- bsi->modes[i] = ZEROMV;
-
- rd_check_segment_txsize(cpi, x, tile, bsi_buf, filter_idx, seg_mvs,
- mi_row, mi_col);
+ for (k = 0; k < 4; ++k)
+ bsi->modes[k] = mi->bmi[k].as_mode;
if (bsi->segment_rd > best_rd)
return INT64_MAX;
/* set it to the best */
for (i = 0; i < 4; i++) {
- mode_idx = inter_mode_offset(bsi->modes[i]);
+ mode_idx = INTER_OFFSET(bsi->modes[i]);
mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int;
if (has_second_ref(mbmi))
mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int;
- xd->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs;
+ x->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs;
mi->bmi[i].as_mode = bsi->modes[i];
}
@@ -2091,7 +2074,7 @@ static int64_t rd_pick_best_mbsegmentation(VP9_COMP *cpi, MACROBLOCK *x,
*returntotrate = bsi->r;
*returndistortion = bsi->d;
*returnyrate = bsi->segment_yrate;
- *skippable = vp9_is_skippable_in_plane(&x->e_mbd, BLOCK_8X8, 0);
+ *skippable = vp9_is_skippable_in_plane(x, BLOCK_8X8, 0);
*psse = bsi->sse;
mbmi->mode = bsi->modes[3];
@@ -2102,14 +2085,14 @@ static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
uint8_t *ref_y_buffer, int ref_y_stride,
int ref_frame, BLOCK_SIZE block_size ) {
MACROBLOCKD *xd = &x->e_mbd;
- MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
int_mv this_mv;
int i;
int zero_seen = 0;
int best_index = 0;
int best_sad = INT_MAX;
int this_sad = INT_MAX;
- unsigned int max_mv = 0;
+ int max_mv = 0;
uint8_t *src_y_ptr = x->plane[0].src.buf;
uint8_t *ref_y_ptr;
@@ -2119,16 +2102,21 @@ static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
cpi->common.show_frame &&
block_size < cpi->sf.max_partition_size);
+ int_mv pred_mv[3];
+ pred_mv[0] = mbmi->ref_mvs[ref_frame][0];
+ pred_mv[1] = mbmi->ref_mvs[ref_frame][1];
+ pred_mv[2] = x->pred_mv[ref_frame];
+
// Get the sad for each candidate reference mv
for (i = 0; i < num_mv_refs; i++) {
- this_mv.as_int = (i < MAX_MV_REF_CANDIDATES) ?
- mbmi->ref_mvs[ref_frame][i].as_int : x->pred_mv[ref_frame].as_int;
+ this_mv.as_int = pred_mv[i].as_int;
max_mv = MAX(max_mv,
MAX(abs(this_mv.as_mv.row), abs(this_mv.as_mv.col)) >> 3);
- // The list is at an end if we see 0 for a second time.
+ // only need to check zero mv once
if (!this_mv.as_int && zero_seen)
- break;
+ continue;
+
zero_seen = zero_seen || !this_mv.as_int;
row_offset = this_mv.as_mv.row >> 3;
@@ -2150,14 +2138,15 @@ static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
// Note the index of the mv that worked best in the reference list.
x->mv_best_ref_index[ref_frame] = best_index;
x->max_mv_context[ref_frame] = max_mv;
+ x->pred_mv_sad[ref_frame] = best_sad;
}
-static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id,
+static void estimate_ref_frame_costs(const VP9_COMMON *cm,
+ const MACROBLOCKD *xd,
+ int segment_id,
unsigned int *ref_costs_single,
unsigned int *ref_costs_comp,
vp9_prob *comp_mode_p) {
- VP9_COMMON *const cm = &cpi->common;
- MACROBLOCKD *const xd = &cpi->mb.e_mbd;
int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
@@ -2165,11 +2154,11 @@ static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id,
vpx_memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp));
*comp_mode_p = 128;
} else {
- vp9_prob intra_inter_p = vp9_get_pred_prob_intra_inter(cm, xd);
+ vp9_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd);
vp9_prob comp_inter_p = 128;
- if (cm->comp_pred_mode == HYBRID_PREDICTION) {
- comp_inter_p = vp9_get_pred_prob_comp_inter_inter(cm, xd);
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+ comp_inter_p = vp9_get_reference_mode_prob(cm, xd);
*comp_mode_p = comp_inter_p;
} else {
*comp_mode_p = 128;
@@ -2177,12 +2166,12 @@ static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id,
ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
- if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) {
+ if (cm->reference_mode != COMPOUND_REFERENCE) {
vp9_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd);
vp9_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd);
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
- if (cm->comp_pred_mode == HYBRID_PREDICTION)
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
base_cost += vp9_cost_bit(comp_inter_p, 0);
ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] =
@@ -2197,11 +2186,11 @@ static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id,
ref_costs_single[GOLDEN_FRAME] = 512;
ref_costs_single[ALTREF_FRAME] = 512;
}
- if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) {
+ if (cm->reference_mode != SINGLE_REFERENCE) {
vp9_prob ref_comp_p = vp9_get_pred_prob_comp_ref_p(cm, xd);
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
- if (cm->comp_pred_mode == HYBRID_PREDICTION)
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
base_cost += vp9_cost_bit(comp_inter_p, 1);
ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0);
@@ -2217,8 +2206,8 @@ static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index,
int_mv *ref_mv,
int_mv *second_ref_mv,
- int64_t comp_pred_diff[NB_PREDICTION_TYPES],
- int64_t tx_size_diff[TX_MODES],
+ int64_t comp_pred_diff[REFERENCE_MODES],
+ const int64_t tx_size_diff[TX_MODES],
int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]) {
MACROBLOCKD *const xd = &x->e_mbd;
@@ -2226,14 +2215,14 @@ static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
// restored if we decide to encode this way
ctx->skip = x->skip;
ctx->best_mode_index = mode_index;
- ctx->mic = *xd->mi_8x8[0];
+ ctx->mic = *xd->mi[0];
- ctx->best_ref_mv.as_int = ref_mv->as_int;
- ctx->second_best_ref_mv.as_int = second_ref_mv->as_int;
+ ctx->best_ref_mv[0].as_int = ref_mv->as_int;
+ ctx->best_ref_mv[1].as_int = second_ref_mv->as_int;
- ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_PREDICTION_ONLY];
- ctx->comp_pred_diff = (int)comp_pred_diff[COMP_PREDICTION_ONLY];
- ctx->hybrid_pred_diff = (int)comp_pred_diff[HYBRID_PREDICTION];
+ ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE];
+ ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE];
+ ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT];
vpx_memcpy(ctx->tx_rd_diff, tx_size_diff, sizeof(ctx->tx_rd_diff));
vpx_memcpy(ctx->best_filter_diff, best_filter_diff,
@@ -2266,91 +2255,84 @@ static void setup_pred_block(const MACROBLOCKD *xd,
}
}
-static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
- const TileInfo *const tile,
- int idx, MV_REFERENCE_FRAME frame_type,
- BLOCK_SIZE block_size,
- int mi_row, int mi_col,
- int_mv frame_nearest_mv[MAX_REF_FRAMES],
- int_mv frame_near_mv[MAX_REF_FRAMES],
- struct buf_2d yv12_mb[4][MAX_MB_PLANE],
- struct scale_factors scale[MAX_REF_FRAMES]) {
- VP9_COMMON *cm = &cpi->common;
- YV12_BUFFER_CONFIG *yv12 = &cm->yv12_fb[cpi->common.ref_frame_map[idx]];
+void vp9_setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
+ const TileInfo *const tile,
+ MV_REFERENCE_FRAME ref_frame,
+ BLOCK_SIZE block_size,
+ int mi_row, int mi_col,
+ int_mv frame_nearest_mv[MAX_REF_FRAMES],
+ int_mv frame_near_mv[MAX_REF_FRAMES],
+ struct buf_2d yv12_mb[4][MAX_MB_PLANE]) {
+ const VP9_COMMON *cm = &cpi->common;
+ const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
MACROBLOCKD *const xd = &x->e_mbd;
- MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
-
- // set up scaling factors
- scale[frame_type] = cpi->common.active_ref_scale[frame_type - 1];
-
- scale[frame_type].sfc->set_scaled_offsets(&scale[frame_type],
- mi_row * MI_SIZE, mi_col * MI_SIZE);
+ MODE_INFO *const mi = xd->mi[0];
+ int_mv *const candidates = mi->mbmi.ref_mvs[ref_frame];
+ const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
// use the UV scaling factors.
- setup_pred_block(xd, yv12_mb[frame_type], yv12, mi_row, mi_col,
- &scale[frame_type], &scale[frame_type]);
+ setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf);
// Gets an initial list of candidate vectors from neighbours and orders them
- vp9_find_mv_refs(cm, xd, tile, xd->mi_8x8[0],
- xd->last_mi,
- frame_type,
- mbmi->ref_mvs[frame_type], mi_row, mi_col);
+ vp9_find_mv_refs(cm, xd, tile, mi, ref_frame, candidates, mi_row, mi_col);
// Candidate refinement carried out at encoder and decoder
- vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv,
- mbmi->ref_mvs[frame_type],
- &frame_nearest_mv[frame_type],
- &frame_near_mv[frame_type]);
+ vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
+ &frame_nearest_mv[ref_frame],
+ &frame_near_mv[ref_frame]);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the centre point for subsequent searches.
// The current implementation doesn't support scaling.
- if (!vp9_is_scaled(scale[frame_type].sfc) && block_size >= BLOCK_8X8)
- mv_pred(cpi, x, yv12_mb[frame_type][0].buf, yv12->y_stride,
- frame_type, block_size);
+ if (!vp9_is_scaled(sf) && block_size >= BLOCK_8X8)
+ mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride,
+ ref_frame, block_size);
}
-static YV12_BUFFER_CONFIG *get_scaled_ref_frame(VP9_COMP *cpi, int ref_frame) {
- YV12_BUFFER_CONFIG *scaled_ref_frame = NULL;
- int fb = get_ref_frame_idx(cpi, ref_frame);
- int fb_scale = get_scale_ref_frame_idx(cpi, ref_frame);
- if (cpi->scaled_ref_idx[fb_scale] != cpi->common.ref_frame_map[fb])
- scaled_ref_frame = &cpi->common.yv12_fb[cpi->scaled_ref_idx[fb_scale]];
- return scaled_ref_frame;
+const YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const VP9_COMP *cpi,
+ int ref_frame) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const int ref_idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)];
+ const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1];
+ return (scaled_idx != ref_idx) ? &cm->frame_bufs[scaled_idx].buf : NULL;
}
-static INLINE int get_switchable_rate(const MACROBLOCK *x) {
- const MACROBLOCKD *const xd = &x->e_mbd;
- const MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
+int vp9_get_switchable_rate(const VP9_COMP *cpi) {
+ const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
+ const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int ctx = vp9_get_pred_context_switchable_interp(xd);
return SWITCHABLE_INTERP_RATE_FACTOR *
- x->switchable_interp_costs[ctx][mbmi->interp_filter];
+ cpi->switchable_interp_costs[ctx][mbmi->interp_filter];
}
static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
- const TileInfo *const tile,
BLOCK_SIZE bsize,
int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv) {
MACROBLOCKD *xd = &x->e_mbd;
- VP9_COMMON *cm = &cpi->common;
- MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
- struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}};
+ const VP9_COMMON *cm = &cpi->common;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
int bestsme = INT_MAX;
- int further_steps, step_param;
+ int step_param;
int sadpb = x->sadperbit16;
- int_mv mvp_full;
+ MV mvp_full;
int ref = mbmi->ref_frame[0];
- int_mv ref_mv = mbmi->ref_mvs[ref][0];
- const BLOCK_SIZE block_size = get_plane_block_size(bsize, &xd->plane[0]);
+ MV ref_mv = mbmi->ref_mvs[ref][0].as_mv;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
- YV12_BUFFER_CONFIG *scaled_ref_frame = get_scaled_ref_frame(cpi, ref);
+ const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
+ ref);
+
+ MV pred_mv[3];
+ pred_mv[0] = mbmi->ref_mvs[ref][0].as_mv;
+ pred_mv[1] = mbmi->ref_mvs[ref][1].as_mv;
+ pred_mv[2] = x->pred_mv[ref].as_mv;
if (scaled_ref_frame) {
int i;
@@ -2360,84 +2342,62 @@ static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[0];
- setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
+ vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
}
- vp9_clamp_mv_min_max(x, &ref_mv.as_mv);
-
- // Adjust search parameters based on small partitions' result.
- if (x->fast_ms) {
- // && abs(mvp_full.as_mv.row - x->pred_mv.as_mv.row) < 24 &&
- // abs(mvp_full.as_mv.col - x->pred_mv.as_mv.col) < 24) {
- // adjust search range
- step_param = 6;
- if (x->fast_ms > 1)
- step_param = 8;
-
- // Get prediction MV.
- mvp_full.as_int = x->pred_mv[ref].as_int;
+ vp9_set_mv_search_range(x, &ref_mv);
- // Adjust MV sign if needed.
- if (cm->ref_frame_sign_bias[ref]) {
- mvp_full.as_mv.col *= -1;
- mvp_full.as_mv.row *= -1;
- }
+ // Work out the size of the first step in the mv step search.
+ // 0 here is maximum length first step. 1 is MAX >> 1 etc.
+ if (cpi->sf.auto_mv_step_size && cm->show_frame) {
+ // Take wtd average of the step_params based on the last frame's
+ // max mv magnitude and that based on the best ref mvs of the current
+ // block for the given reference.
+ step_param = (vp9_init_search_range(&cpi->sf, x->max_mv_context[ref]) +
+ cpi->mv_step_param) / 2;
} else {
- // Work out the size of the first step in the mv step search.
- // 0 here is maximum length first step. 1 is MAX >> 1 etc.
- if (cpi->sf.auto_mv_step_size && cpi->common.show_frame) {
- // Take wtd average of the step_params based on the last frame's
- // max mv magnitude and that based on the best ref mvs of the current
- // block for the given reference.
- step_param = (vp9_init_search_range(cpi, x->max_mv_context[ref]) +
- cpi->mv_step_param) >> 1;
- } else {
- step_param = cpi->mv_step_param;
- }
+ step_param = cpi->mv_step_param;
}
if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64 &&
- cpi->common.show_frame) {
+ cm->show_frame) {
int boffset = 2 * (b_width_log2(BLOCK_64X64) - MIN(b_height_log2(bsize),
b_width_log2(bsize)));
step_param = MAX(step_param, boffset);
}
- mvp_full.as_int = x->mv_best_ref_index[ref] < MAX_MV_REF_CANDIDATES ?
- mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_int :
- x->pred_mv[ref].as_int;
-
- mvp_full.as_mv.col >>= 3;
- mvp_full.as_mv.row >>= 3;
-
- // Further step/diamond searches as necessary
- further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
-
- if (cpi->sf.search_method == HEX) {
- bestsme = vp9_hex_search(x, &mvp_full.as_mv,
- step_param,
- sadpb, 1,
- &cpi->fn_ptr[block_size], 1,
- &ref_mv.as_mv, &tmp_mv->as_mv);
- } else if (cpi->sf.search_method == SQUARE) {
- bestsme = vp9_square_search(x, &mvp_full.as_mv,
- step_param,
- sadpb, 1,
- &cpi->fn_ptr[block_size], 1,
- &ref_mv.as_mv, &tmp_mv->as_mv);
- } else if (cpi->sf.search_method == BIGDIA) {
- bestsme = vp9_bigdia_search(x, &mvp_full.as_mv,
- step_param,
- sadpb, 1,
- &cpi->fn_ptr[block_size], 1,
- &ref_mv.as_mv, &tmp_mv->as_mv);
- } else {
- bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
- sadpb, further_steps, 1,
- &cpi->fn_ptr[block_size],
- &ref_mv, tmp_mv);
+ if (cpi->sf.adaptive_motion_search) {
+ int bwl = b_width_log2_lookup[bsize];
+ int bhl = b_height_log2_lookup[bsize];
+ int i;
+ int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
+
+ if (tlevel < 5)
+ step_param += 2;
+
+ for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
+ if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
+ x->pred_mv[ref].as_int = 0;
+ tmp_mv->as_int = INVALID_MV;
+
+ if (scaled_ref_frame) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ xd->plane[i].pre[0] = backup_yv12[i];
+ }
+ return;
+ }
+ }
}
+ mvp_full = pred_mv[x->mv_best_ref_index[ref]];
+
+ mvp_full.col >>= 3;
+ mvp_full.row >>= 3;
+
+ bestsme = full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
+ &ref_mv, &tmp_mv->as_mv, INT_MAX, 1);
+
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
@@ -2445,19 +2405,19 @@ static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
- unsigned int sse;
- cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv.as_mv,
+ cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv,
cm->allow_high_precision_mv,
x->errorperbit,
- &cpi->fn_ptr[block_size],
- 0, cpi->sf.subpel_iters_per_step,
+ &cpi->fn_ptr[bsize],
+ cpi->sf.subpel_force_stop,
+ cpi->sf.subpel_iters_per_step,
x->nmvjointcost, x->mvcost,
- &dis, &sse);
+ &dis, &x->pred_sse[ref]);
}
- *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv.as_mv,
+ *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
- if (cpi->sf.adaptive_motion_search && cpi->common.show_frame)
+ if (cpi->sf.adaptive_motion_search && cm->show_frame)
x->pred_mv[ref].as_int = tmp_mv->as_int;
if (scaled_ref_frame) {
@@ -2473,64 +2433,51 @@ static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col,
int_mv single_newmv[MAX_REF_FRAMES],
int *rate_mv) {
- int pw = 4 << b_width_log2(bsize), ph = 4 << b_height_log2(bsize);
+ const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
+ const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
MACROBLOCKD *xd = &x->e_mbd;
- MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
- int refs[2] = { mbmi->ref_frame[0],
- (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ const int refs[2] = { mbmi->ref_frame[0],
+ mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] };
int_mv ref_mv[2];
- const BLOCK_SIZE block_size = get_plane_block_size(bsize, &xd->plane[0]);
- int ite;
+ int ite, ref;
// Prediction buffer from second frame.
uint8_t *second_pred = vpx_memalign(16, pw * ph * sizeof(uint8_t));
+ const InterpKernel *kernel = vp9_get_interp_kernel(mbmi->interp_filter);
// Do joint motion search in compound mode to get more accurate mv.
- struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}};
- struct buf_2d backup_second_yv12[MAX_MB_PLANE] = {{0}};
- struct buf_2d scaled_first_yv12;
+ struct buf_2d backup_yv12[2][MAX_MB_PLANE];
+ struct buf_2d scaled_first_yv12 = xd->plane[0].pre[0];
int last_besterr[2] = {INT_MAX, INT_MAX};
- YV12_BUFFER_CONFIG *scaled_ref_frame[2] = {NULL, NULL};
- scaled_ref_frame[0] = get_scaled_ref_frame(cpi, mbmi->ref_frame[0]);
- scaled_ref_frame[1] = get_scaled_ref_frame(cpi, mbmi->ref_frame[1]);
-
- ref_mv[0] = mbmi->ref_mvs[refs[0]][0];
- ref_mv[1] = mbmi->ref_mvs[refs[1]][0];
-
- if (scaled_ref_frame[0]) {
- int i;
- // Swap out the reference frame for a version that's been scaled to
- // match the resolution of the current frame, allowing the existing
- // motion search code to be used without additional modifications.
- for (i = 0; i < MAX_MB_PLANE; i++)
- backup_yv12[i] = xd->plane[i].pre[0];
- setup_pre_planes(xd, 0, scaled_ref_frame[0], mi_row, mi_col, NULL);
- }
+ const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
+ vp9_get_scaled_ref_frame(cpi, mbmi->ref_frame[0]),
+ vp9_get_scaled_ref_frame(cpi, mbmi->ref_frame[1])
+ };
- if (scaled_ref_frame[1]) {
- int i;
- for (i = 0; i < MAX_MB_PLANE; i++)
- backup_second_yv12[i] = xd->plane[i].pre[1];
+ for (ref = 0; ref < 2; ++ref) {
+ ref_mv[ref] = mbmi->ref_mvs[refs[ref]][0];
+
+ if (scaled_ref_frame[ref]) {
+ int i;
+ // Swap out the reference frame for a version that's been scaled to
+ // match the resolution of the current frame, allowing the existing
+ // motion search code to be used without additional modifications.
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ backup_yv12[ref][i] = xd->plane[i].pre[ref];
+ vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
+ NULL);
+ }
- setup_pre_planes(xd, 1, scaled_ref_frame[1], mi_row, mi_col, NULL);
+ frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int;
}
- xd->scale_factor[0].sfc->set_scaled_offsets(&xd->scale_factor[0],
- mi_row, mi_col);
- xd->scale_factor[1].sfc->set_scaled_offsets(&xd->scale_factor[1],
- mi_row, mi_col);
- scaled_first_yv12 = xd->plane[0].pre[0];
-
- // Initialize mv using single prediction mode result.
- frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
- frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
-
// Allow joint search multiple times iteratively for each ref frame
// and break out the search loop if it couldn't find better mv.
for (ite = 0; ite < 4; ite++) {
struct buf_2d ref_yv12[2];
int bestsme = INT_MAX;
int sadpb = x->sadperbit16;
- int_mv tmp_mv;
+ MV tmp_mv;
int search_range = 3;
int tmp_col_min = x->mv_col_min;
@@ -2548,28 +2495,30 @@ static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
ref_yv12[!id].stride,
second_pred, pw,
&frame_mv[refs[!id]].as_mv,
- &xd->scale_factor[!id],
+ &xd->block_refs[!id]->sf,
pw, ph, 0,
- &xd->subpix, MV_PRECISION_Q3);
+ kernel, MV_PRECISION_Q3,
+ mi_col * MI_SIZE, mi_row * MI_SIZE);
// Compound motion search on first ref frame.
if (id)
xd->plane[0].pre[0] = ref_yv12[id];
- vp9_clamp_mv_min_max(x, &ref_mv[id].as_mv);
+ vp9_set_mv_search_range(x, &ref_mv[id].as_mv);
// Use mv result from single mode as mvp.
- tmp_mv.as_int = frame_mv[refs[id]].as_int;
+ tmp_mv = frame_mv[refs[id]].as_mv;
- tmp_mv.as_mv.col >>= 3;
- tmp_mv.as_mv.row >>= 3;
+ tmp_mv.col >>= 3;
+ tmp_mv.row >>= 3;
// Small-range full-pixel motion search
bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb,
search_range,
- &cpi->fn_ptr[block_size],
- x->nmvjointcost, x->mvcost,
- &ref_mv[id], second_pred,
- pw, ph);
+ &cpi->fn_ptr[bsize],
+ &ref_mv[id].as_mv, second_pred);
+ if (bestsme < INT_MAX)
+ bestsme = vp9_get_mvpred_av_var(x, &tmp_mv, &ref_mv[id].as_mv,
+ second_pred, &cpi->fn_ptr[bsize], 1);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
@@ -2579,13 +2528,12 @@ static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
-
bestsme = cpi->find_fractional_mv_step_comp(
- x, &tmp_mv.as_mv,
+ x, &tmp_mv,
&ref_mv[id].as_mv,
cpi->common.allow_high_precision_mv,
x->errorperbit,
- &cpi->fn_ptr[block_size],
+ &cpi->fn_ptr[bsize],
0, cpi->sf.subpel_iters_per_step,
x->nmvjointcost, x->mvcost,
&dis, &sse, second_pred,
@@ -2596,37 +2544,42 @@ static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
xd->plane[0].pre[0] = scaled_first_yv12;
if (bestsme < last_besterr[id]) {
- frame_mv[refs[id]].as_int = tmp_mv.as_int;
+ frame_mv[refs[id]].as_mv = tmp_mv;
last_besterr[id] = bestsme;
} else {
break;
}
}
- // restore the predictor
- if (scaled_ref_frame[0]) {
- int i;
- for (i = 0; i < MAX_MB_PLANE; i++)
- xd->plane[i].pre[0] = backup_yv12[i];
- }
+ *rate_mv = 0;
- if (scaled_ref_frame[1]) {
- int i;
- for (i = 0; i < MAX_MB_PLANE; i++)
- xd->plane[i].pre[1] = backup_second_yv12[i];
+ for (ref = 0; ref < 2; ++ref) {
+ if (scaled_ref_frame[ref]) {
+ // restore the predictor
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ xd->plane[i].pre[ref] = backup_yv12[ref][i];
+ }
+
+ *rate_mv += vp9_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
+ &mbmi->ref_mvs[refs[ref]][0].as_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
- *rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]].as_mv,
- &mbmi->ref_mvs[refs[0]][0].as_mv,
- x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
- *rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]].as_mv,
- &mbmi->ref_mvs[refs[1]][0].as_mv,
- x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
vpx_free(second_pred);
}
+static INLINE void restore_dst_buf(MACROBLOCKD *xd,
+ uint8_t *orig_dst[MAX_MB_PLANE],
+ int orig_dst_stride[MAX_MB_PLANE]) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = orig_dst[i];
+ xd->plane[i].dst.stride = orig_dst_stride[i];
+ }
+}
+
static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
- const TileInfo *const tile,
BLOCK_SIZE bsize,
int64_t txfm_cache[],
int *rate2, int64_t *distortion,
@@ -2634,15 +2587,16 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
int *rate_y, int64_t *distortion_y,
int *rate_uv, int64_t *distortion_uv,
int *mode_excluded, int *disable_skip,
- INTERPOLATION_TYPE *best_filter,
+ INTERP_FILTER *best_filter,
int_mv (*mode_mv)[MAX_REF_FRAMES],
int mi_row, int mi_col,
int_mv single_newmv[MAX_REF_FRAMES],
int64_t *psse,
const int64_t ref_best_rd) {
VP9_COMMON *cm = &cpi->common;
+ RD_OPT *rd_opt = &cpi->rd;
MACROBLOCKD *xd = &x->e_mbd;
- MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const int is_comp_pred = has_second_ref(mbmi);
const int num_refs = is_comp_pred ? 2 : 1;
const int this_mode = mbmi->mode;
@@ -2661,6 +2615,12 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
int orig_dst_stride[MAX_MB_PLANE];
int rs = 0;
+ if (is_comp_pred) {
+ if (frame_mv[refs[0]].as_int == INVALID_MV ||
+ frame_mv[refs[1]].as_int == INVALID_MV)
+ return INT64_MAX;
+ }
+
if (this_mode == NEWMV) {
int rate_mv;
if (is_comp_pred) {
@@ -2679,64 +2639,27 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
&mbmi->ref_mvs[refs[1]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
- if (frame_mv[refs[0]].as_int == INVALID_MV ||
- frame_mv[refs[1]].as_int == INVALID_MV)
- return INT64_MAX;
*rate2 += rate_mv;
} else {
int_mv tmp_mv;
- single_motion_search(cpi, x, tile, bsize, mi_row, mi_col,
+ single_motion_search(cpi, x, bsize, mi_row, mi_col,
&tmp_mv, &rate_mv);
+ if (tmp_mv.as_int == INVALID_MV)
+ return INT64_MAX;
*rate2 += rate_mv;
frame_mv[refs[0]].as_int =
- xd->mi_8x8[0]->bmi[0].as_mv[0].as_int = tmp_mv.as_int;
+ xd->mi[0]->bmi[0].as_mv[0].as_int = tmp_mv.as_int;
single_newmv[refs[0]].as_int = tmp_mv.as_int;
}
}
- // if we're near/nearest and mv == 0,0, compare to zeromv
- if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) &&
- frame_mv[refs[0]].as_int == 0 &&
- !vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) &&
- (num_refs == 1 || frame_mv[refs[1]].as_int == 0)) {
- int rfc = mbmi->mode_context[mbmi->ref_frame[0]];
- int c1 = cost_mv_ref(cpi, NEARMV, rfc);
- int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
- int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
-
- if (this_mode == NEARMV) {
- if (c1 > c3)
- return INT64_MAX;
- } else if (this_mode == NEARESTMV) {
- if (c2 > c3)
- return INT64_MAX;
- } else {
- assert(this_mode == ZEROMV);
- if (num_refs == 1) {
- if ((c3 >= c2 &&
- mode_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0) ||
- (c3 >= c1 &&
- mode_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0))
- return INT64_MAX;
- } else {
- if ((c3 >= c2 &&
- mode_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0 &&
- mode_mv[NEARESTMV][mbmi->ref_frame[1]].as_int == 0) ||
- (c3 >= c1 &&
- mode_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0 &&
- mode_mv[NEARMV][mbmi->ref_frame[1]].as_int == 0))
- return INT64_MAX;
- }
- }
- }
-
for (i = 0; i < num_refs; ++i) {
cur_mv[i] = frame_mv[refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
if (this_mode != NEWMV)
clamp_mv2(&cur_mv[i].as_mv, xd);
- if (mv_check_bounds(x, &cur_mv[i]))
+ if (mv_check_bounds(x, &cur_mv[i].as_mv))
return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
@@ -2755,67 +2678,57 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
* are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
* words if you present them in that order, the second one is always known
* if the first is known */
- *rate2 += cost_mv_ref(cpi, this_mode,
- mbmi->mode_context[mbmi->ref_frame[0]]);
+ *rate2 += cost_mv_ref(cpi, this_mode, mbmi->mode_context[refs[0]]);
- if (!(*mode_excluded)) {
- if (is_comp_pred) {
- *mode_excluded = (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY);
- } else {
- *mode_excluded = (cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY);
- }
- }
+ if (!(*mode_excluded))
+ *mode_excluded = is_comp_pred ? cm->reference_mode == SINGLE_REFERENCE
+ : cm->reference_mode == COMPOUND_REFERENCE;
pred_exists = 0;
// Are all MVs integer pel for Y and UV
- intpel_mv = (mbmi->mv[0].as_mv.row & 15) == 0 &&
- (mbmi->mv[0].as_mv.col & 15) == 0;
+ intpel_mv = !mv_has_subpel(&mbmi->mv[0].as_mv);
if (is_comp_pred)
- intpel_mv &= (mbmi->mv[1].as_mv.row & 15) == 0 &&
- (mbmi->mv[1].as_mv.col & 15) == 0;
+ intpel_mv &= !mv_has_subpel(&mbmi->mv[1].as_mv);
+
// Search for best switchable filter by checking the variance of
// pred error irrespective of whether the filter will be used
- if (cm->mcomp_filter_type != BILINEAR) {
+ rd_opt->mask_filter = 0;
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ rd_opt->filter_cache[i] = INT64_MAX;
+
+ if (cm->interp_filter != BILINEAR) {
*best_filter = EIGHTTAP;
- if (x->source_variance <
- cpi->sf.disable_filter_search_var_thresh) {
+ if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) {
*best_filter = EIGHTTAP;
- vp9_zero(cpi->rd_filter_cache);
} else {
- int i, newbest;
+ int newbest;
int tmp_rate_sum = 0;
int64_t tmp_dist_sum = 0;
- cpi->rd_filter_cache[SWITCHABLE_FILTERS] = INT64_MAX;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
int j;
int64_t rs_rd;
mbmi->interp_filter = i;
- vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
- rs = get_switchable_rate(x);
+ rs = vp9_get_switchable_rate(cpi);
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
if (i > 0 && intpel_mv) {
- cpi->rd_filter_cache[i] = RDCOST(x->rdmult, x->rddiv,
- tmp_rate_sum, tmp_dist_sum);
- cpi->rd_filter_cache[SWITCHABLE_FILTERS] =
- MIN(cpi->rd_filter_cache[SWITCHABLE_FILTERS],
- cpi->rd_filter_cache[i] + rs_rd);
- rd = cpi->rd_filter_cache[i];
- if (cm->mcomp_filter_type == SWITCHABLE)
+ rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum);
+ rd_opt->filter_cache[i] = rd;
+ rd_opt->filter_cache[SWITCHABLE_FILTERS] =
+ MIN(rd_opt->filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
+ if (cm->interp_filter == SWITCHABLE)
rd += rs_rd;
+ rd_opt->mask_filter = MAX(rd_opt->mask_filter, rd);
} else {
int rate_sum = 0;
int64_t dist_sum = 0;
- if ((cm->mcomp_filter_type == SWITCHABLE &&
+ if ((cm->interp_filter == SWITCHABLE &&
(!i || best_needs_copy)) ||
- (cm->mcomp_filter_type != SWITCHABLE &&
- (cm->mcomp_filter_type == mbmi->interp_filter ||
+ (cm->interp_filter != SWITCHABLE &&
+ (cm->interp_filter == mbmi->interp_filter ||
(i == 0 && intpel_mv)))) {
- for (j = 0; j < MAX_MB_PLANE; j++) {
- xd->plane[j].dst.buf = orig_dst[j];
- xd->plane[j].dst.stride = orig_dst_stride[j];
- }
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
} else {
for (j = 0; j < MAX_MB_PLANE; j++) {
xd->plane[j].dst.buf = tmp_buf + j * 64 * 64;
@@ -2824,25 +2737,24 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
}
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum);
- cpi->rd_filter_cache[i] = RDCOST(x->rdmult, x->rddiv,
- rate_sum, dist_sum);
- cpi->rd_filter_cache[SWITCHABLE_FILTERS] =
- MIN(cpi->rd_filter_cache[SWITCHABLE_FILTERS],
- cpi->rd_filter_cache[i] + rs_rd);
- rd = cpi->rd_filter_cache[i];
- if (cm->mcomp_filter_type == SWITCHABLE)
+
+ rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum);
+ rd_opt->filter_cache[i] = rd;
+ rd_opt->filter_cache[SWITCHABLE_FILTERS] =
+ MIN(rd_opt->filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
+ if (cm->interp_filter == SWITCHABLE)
rd += rs_rd;
+ rd_opt->mask_filter = MAX(rd_opt->mask_filter, rd);
+
if (i == 0 && intpel_mv) {
tmp_rate_sum = rate_sum;
tmp_dist_sum = dist_sum;
}
}
+
if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
if (rd / 2 > ref_best_rd) {
- for (i = 0; i < MAX_MB_PLANE; i++) {
- xd->plane[i].dst.buf = orig_dst[i];
- xd->plane[i].dst.stride = orig_dst_stride[i];
- }
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
}
@@ -2851,28 +2763,23 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
if (newbest) {
best_rd = rd;
*best_filter = mbmi->interp_filter;
- if (cm->mcomp_filter_type == SWITCHABLE && i && !intpel_mv)
+ if (cm->interp_filter == SWITCHABLE && i && !intpel_mv)
best_needs_copy = !best_needs_copy;
}
- if ((cm->mcomp_filter_type == SWITCHABLE && newbest) ||
- (cm->mcomp_filter_type != SWITCHABLE &&
- cm->mcomp_filter_type == mbmi->interp_filter)) {
+ if ((cm->interp_filter == SWITCHABLE && newbest) ||
+ (cm->interp_filter != SWITCHABLE &&
+ cm->interp_filter == mbmi->interp_filter)) {
pred_exists = 1;
}
}
-
- for (i = 0; i < MAX_MB_PLANE; i++) {
- xd->plane[i].dst.buf = orig_dst[i];
- xd->plane[i].dst.stride = orig_dst_stride[i];
- }
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
}
}
// Set the appropriate filter
- mbmi->interp_filter = cm->mcomp_filter_type != SWITCHABLE ?
- cm->mcomp_filter_type : *best_filter;
- vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
- rs = cm->mcomp_filter_type == SWITCHABLE ? get_switchable_rate(x) : 0;
+ mbmi->interp_filter = cm->interp_filter != SWITCHABLE ?
+ cm->interp_filter : *best_filter;
+ rs = cm->interp_filter == SWITCHABLE ? vp9_get_switchable_rate(cpi) : 0;
if (pred_exists) {
if (best_needs_copy) {
@@ -2888,7 +2795,6 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
}
-
if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
int tmp_rate;
int64_t tmp_dist;
@@ -2897,44 +2803,37 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
// if current pred_error modeled rd is substantially more than the best
// so far, do not bother doing full rd
if (rd / 2 > ref_best_rd) {
- for (i = 0; i < MAX_MB_PLANE; i++) {
- xd->plane[i].dst.buf = orig_dst[i];
- xd->plane[i].dst.stride = orig_dst_stride[i];
- }
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
}
- if (cpi->common.mcomp_filter_type == SWITCHABLE)
- *rate2 += get_switchable_rate(x);
+ if (cm->interp_filter == SWITCHABLE)
+ *rate2 += vp9_get_switchable_rate(cpi);
- if (!is_comp_pred && cpi->enable_encode_breakout) {
- if (cpi->active_map_enabled && x->active_ptr[0] == 0)
+ if (!is_comp_pred) {
+ if (!x->in_active_map) {
+ if (psse)
+ *psse = 0;
+ *distortion = 0;
x->skip = 1;
- else if (x->encode_breakout) {
+ } else if (cpi->allow_encode_breakout && x->encode_breakout) {
const BLOCK_SIZE y_size = get_plane_block_size(bsize, &xd->plane[0]);
const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
unsigned int var, sse;
// Skipping threshold for ac.
unsigned int thresh_ac;
- // The encode_breakout input
- unsigned int encode_breakout = x->encode_breakout << 4;
- unsigned int max_thresh = 36000;
-
+ // Set a maximum for threshold to avoid big PSNR loss in low bitrate case.
// Use extreme low threshold for static frames to limit skipping.
- if (cpi->enable_encode_breakout == 2)
- max_thresh = 128;
+ const unsigned int max_thresh = (cpi->allow_encode_breakout ==
+ ENCODE_BREAKOUT_LIMITED) ? 128 : 36000;
+ // The encode_breakout input
+ const unsigned int min_thresh =
+ MIN(((unsigned int)x->encode_breakout << 4), max_thresh);
// Calculate threshold according to dequant value.
thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) / 9;
-
- // Use encode_breakout input if it is bigger than internal threshold.
- if (thresh_ac < encode_breakout)
- thresh_ac = encode_breakout;
-
- // Set a maximum for threshold to avoid big PSNR loss in low bitrate case.
- if (thresh_ac > max_thresh)
- thresh_ac = max_thresh;
+ thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);
var = cpi->fn_ptr[y_size].vf(x->plane[0].src.buf, x->plane[0].src.stride,
xd->plane[0].dst.buf,
@@ -2975,7 +2874,7 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
x->skip = 1;
// The cost of skip bit needs to be added.
- *rate2 += vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 1);
+ *rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
// Scaling factor for SSE from spatial domain to frequency domain
// is 16. Adjust distortion accordingly.
@@ -2997,16 +2896,13 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
int64_t rdcosty = INT64_MAX;
// Y cost and distortion
- super_block_yrd(cpi, x, rate_y, distortion_y, &skippable_y, psse,
- bsize, txfm_cache, ref_best_rd);
+ inter_super_block_yrd(cpi, x, rate_y, distortion_y, &skippable_y, psse,
+ bsize, txfm_cache, ref_best_rd);
if (*rate_y == INT_MAX) {
*rate2 = INT_MAX;
*distortion = INT64_MAX;
- for (i = 0; i < MAX_MB_PLANE; i++) {
- xd->plane[i].dst.buf = orig_dst[i];
- xd->plane[i].dst.stride = orig_dst_stride[i];
- }
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
@@ -3021,10 +2917,7 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
if (*rate_uv == INT_MAX) {
*rate2 = INT_MAX;
*distortion = INT64_MAX;
- for (i = 0; i < MAX_MB_PLANE; i++) {
- xd->plane[i].dst.buf = orig_dst[i];
- xd->plane[i].dst.stride = orig_dst_stride[i];
- }
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
@@ -3034,14 +2927,34 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
*skippable = skippable_y && skippable_uv;
}
- for (i = 0; i < MAX_MB_PLANE; i++) {
- xd->plane[i].dst.buf = orig_dst[i];
- xd->plane[i].dst.stride = orig_dst_stride[i];
- }
-
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
return this_rd; // if 0, this will be re-calculated by caller
}
+static void swap_block_ptr(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
+ int max_plane) {
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = x->e_mbd.plane;
+ int i;
+
+ for (i = 0; i < max_plane; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][1];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
+ p[i].eobs = ctx->eobs_pbuf[i][1];
+
+ ctx->coeff_pbuf[i][1] = ctx->coeff_pbuf[i][0];
+ ctx->qcoeff_pbuf[i][1] = ctx->qcoeff_pbuf[i][0];
+ ctx->dqcoeff_pbuf[i][1] = ctx->dqcoeff_pbuf[i][0];
+ ctx->eobs_pbuf[i][1] = ctx->eobs_pbuf[i][0];
+
+ ctx->coeff_pbuf[i][0] = p[i].coeff;
+ ctx->qcoeff_pbuf[i][0] = p[i].qcoeff;
+ ctx->dqcoeff_pbuf[i][0] = pd[i].dqcoeff;
+ ctx->eobs_pbuf[i][0] = p[i].eobs;
+ }
+}
+
void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int *returnrate, int64_t *returndist,
BLOCK_SIZE bsize,
@@ -3051,9 +2964,11 @@ void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
int y_skip = 0, uv_skip = 0;
int64_t dist_y = 0, dist_uv = 0, tx_cache[TX_MODES] = { 0 };
+ TX_SIZE max_uv_tx_size;
x->skip_encode = 0;
ctx->skip = 0;
- xd->mi_8x8[0]->mbmi.ref_frame[0] = INTRA_FRAME;
+ xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
+
if (bsize >= BLOCK_8X8) {
if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, &y_skip, bsize, tx_cache,
@@ -3061,8 +2976,9 @@ void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
*returnrate = INT_MAX;
return;
}
- rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
- &dist_uv, &uv_skip, bsize);
+ max_uv_tx_size = get_uv_tx_size_impl(xd->mi[0]->mbmi.tx_size, bsize);
+ rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly,
+ &dist_uv, &uv_skip, bsize, max_uv_tx_size);
} else {
y_skip = 0;
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly,
@@ -3070,19 +2986,19 @@ void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
*returnrate = INT_MAX;
return;
}
- rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
- &dist_uv, &uv_skip, BLOCK_8X8);
+ max_uv_tx_size = get_uv_tx_size_impl(xd->mi[0]->mbmi.tx_size, bsize);
+ rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly,
+ &dist_uv, &uv_skip, BLOCK_8X8, max_uv_tx_size);
}
if (y_skip && uv_skip) {
*returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
- vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 1);
+ vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
*returndist = dist_y + dist_uv;
vp9_zero(ctx->tx_rd_diff);
} else {
int i;
- *returnrate = rate_y + rate_uv +
- vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 0);
+ *returnrate = rate_y + rate_uv + vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
*returndist = dist_y + dist_uv;
if (cpi->sf.tx_size_search_method == USE_FULL_RD)
for (i = 0; i < TX_MODES; i++) {
@@ -3093,7 +3009,35 @@ void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
}
}
- ctx->mic = *xd->mi_8x8[0];
+ ctx->mic = *xd->mi[0];
+}
+
+static INLINE int rd_less_than_thresh(int64_t best_rd, int thresh,
+ int thresh_fact) {
+ return best_rd < ((int64_t)thresh * thresh_fact >> 5) || thresh == INT_MAX;
+}
+
+// Updating rd_thresh_freq_fact[] here means that the different
+// partition/block sizes are handled independently based on the best
+// choice for the current partition. It may well be better to keep a scaled
+// best rd so far value and update rd_thresh_freq_fact based on the mode/size
+// combination that wins out.
+static void update_rd_thresh_fact(VP9_COMP *cpi, int bsize,
+ int best_mode_index) {
+ if (cpi->sf.adaptive_rd_thresh > 0) {
+ const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES;
+ int mode;
+ for (mode = 0; mode < top_mode; ++mode) {
+ int *const fact = &cpi->rd.thresh_freq_fact[bsize][mode];
+
+ if (mode == best_mode_index) {
+ *fact -= (*fact >> 3);
+ } else {
+ *fact = MIN(*fact + RD_THRESH_INC,
+ cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
+ }
+ }
+ }
}
int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
@@ -3104,12 +3048,12 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
- VP9_COMMON *cm = &cpi->common;
- MACROBLOCKD *xd = &x->e_mbd;
- MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
- const struct segmentation *seg = &cm->seg;
- const BLOCK_SIZE block_size = get_plane_block_size(bsize, &xd->plane[0]);
- MB_PREDICTION_MODE this_mode;
+ VP9_COMMON *const cm = &cpi->common;
+ RD_OPT *const rd_opt = &cpi->rd;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const struct segmentation *const seg = &cm->seg;
+ PREDICTION_MODE this_mode;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
unsigned char segment_id = mbmi->segment_id;
int comp_pred, i;
@@ -3118,51 +3062,46 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } };
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
- int idx_list[4] = {0,
- cpi->lst_fb_idx,
- cpi->gld_fb_idx,
- cpi->alt_fb_idx};
int64_t best_rd = best_rd_so_far;
int64_t best_tx_rd[TX_MODES];
int64_t best_tx_diff[TX_MODES];
- int64_t best_pred_diff[NB_PREDICTION_TYPES];
- int64_t best_pred_rd[NB_PREDICTION_TYPES];
+ int64_t best_pred_diff[REFERENCE_MODES];
+ int64_t best_pred_rd[REFERENCE_MODES];
int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS];
int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
- MB_MODE_INFO best_mbmode = { 0 };
- int j;
- int mode_index, best_mode_index = 0;
+ MB_MODE_INFO best_mbmode;
+ int mode_index, best_mode_index = -1;
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
vp9_prob comp_mode_p;
int64_t best_intra_rd = INT64_MAX;
int64_t best_inter_rd = INT64_MAX;
- MB_PREDICTION_MODE best_intra_mode = DC_PRED;
+ PREDICTION_MODE best_intra_mode = DC_PRED;
MV_REFERENCE_FRAME best_inter_ref_frame = LAST_FRAME;
- INTERPOLATION_TYPE tmp_best_filter = SWITCHABLE;
+ INTERP_FILTER tmp_best_filter = SWITCHABLE;
int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES];
int64_t dist_uv[TX_SIZES];
int skip_uv[TX_SIZES];
- MB_PREDICTION_MODE mode_uv[TX_SIZES];
- struct scale_factors scale_factor[4];
- unsigned int ref_frame_mask = 0;
- unsigned int mode_mask = 0;
+ PREDICTION_MODE mode_uv[TX_SIZES];
int64_t mode_distortions[MB_MODE_COUNT] = {-1};
- int64_t frame_distortions[MAX_REF_FRAMES] = {-1};
int intra_cost_penalty = 20 * vp9_dc_quant(cm->base_qindex, cm->y_dc_delta_q);
const int bws = num_8x8_blocks_wide_lookup[bsize] / 2;
const int bhs = num_8x8_blocks_high_lookup[bsize] / 2;
int best_skip2 = 0;
-
- x->skip_encode = cpi->sf.skip_encode_frame && xd->q_index < QIDX_SKIP_THRESH;
-
- // Everywhere the flag is set the error is much higher than its neighbors.
- ctx->frames_with_high_error = 0;
- ctx->modes_with_high_error = 0;
-
- estimate_ref_frame_costs(cpi, segment_id, ref_costs_single, ref_costs_comp,
+ int mode_skip_mask = 0;
+ int mode_skip_start = cpi->sf.mode_skip_start + 1;
+ const int *const rd_threshes = rd_opt->threshes[segment_id][bsize];
+ const int *const rd_thresh_freq_fact = rd_opt->thresh_freq_fact[bsize];
+ const int mode_search_skip_flags = cpi->sf.mode_search_skip_flags;
+ const int intra_y_mode_mask =
+ cpi->sf.intra_y_mode_mask[max_txsize_lookup[bsize]];
+ int disable_inter_mode_mask = cpi->sf.disable_inter_mode_mask[bsize];
+ vp9_zero(best_mbmode);
+ x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
+
+ estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
- for (i = 0; i < NB_PREDICTION_TYPES; ++i)
+ for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = INT64_MAX;
for (i = 0; i < TX_MODES; i++)
best_tx_rd[i] = INT64_MAX;
@@ -3170,51 +3109,105 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
best_filter_rd[i] = INT64_MAX;
for (i = 0; i < TX_SIZES; i++)
rate_uv_intra[i] = INT_MAX;
+ for (i = 0; i < MAX_REF_FRAMES; ++i)
+ x->pred_sse[i] = INT_MAX;
*returnrate = INT_MAX;
- // Create a mask set to 1 for each reference frame used by a smaller
- // resolution.
- if (cpi->sf.use_avoid_tested_higherror) {
- switch (block_size) {
- case BLOCK_64X64:
- for (i = 0; i < 4; i++) {
- for (j = 0; j < 4; j++) {
- ref_frame_mask |= x->mb_context[i][j].frames_with_high_error;
- mode_mask |= x->mb_context[i][j].modes_with_high_error;
- }
- }
- for (i = 0; i < 4; i++) {
- ref_frame_mask |= x->sb32_context[i].frames_with_high_error;
- mode_mask |= x->sb32_context[i].modes_with_high_error;
- }
- break;
- case BLOCK_32X32:
- for (i = 0; i < 4; i++) {
- ref_frame_mask |=
- x->mb_context[xd->sb_index][i].frames_with_high_error;
- mode_mask |= x->mb_context[xd->sb_index][i].modes_with_high_error;
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ x->pred_mv_sad[ref_frame] = INT_MAX;
+ if (cpi->ref_frame_flags & flag_list[ref_frame]) {
+ vp9_setup_buffer_inter(cpi, x, tile,
+ ref_frame, bsize, mi_row, mi_col,
+ frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
+ }
+ frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
+ frame_mv[ZEROMV][ref_frame].as_int = 0;
+ }
+
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ // All modes from vp9_mode_order that use this frame as any ref
+ static const int ref_frame_mask_all[] = {
+ 0x0, 0x123291, 0x25c444, 0x39b722
+ };
+ // Fixed mv modes (NEARESTMV, NEARMV, ZEROMV) from vp9_mode_order that use
+ // this frame as their primary ref
+ static const int ref_frame_mask_fixedmv[] = {
+ 0x0, 0x121281, 0x24c404, 0x080102
+ };
+ if (!(cpi->ref_frame_flags & flag_list[ref_frame])) {
+ // Skip modes for missing references
+ mode_skip_mask |= ref_frame_mask_all[ref_frame];
+ } else if (cpi->sf.reference_masking) {
+ for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
+ // Skip fixed mv modes for poor references
+ if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) {
+ mode_skip_mask |= ref_frame_mask_fixedmv[ref_frame];
+ break;
}
- break;
- default:
- // Until we handle all block sizes set it to present;
- ref_frame_mask = 0;
- mode_mask = 0;
- break;
+ }
+ }
+ // If the segment reference frame feature is enabled....
+ // then do nothing if the current ref frame is not allowed..
+ if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
+ vp9_get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
+ mode_skip_mask |= ref_frame_mask_all[ref_frame];
}
- ref_frame_mask = ~ref_frame_mask;
- mode_mask = ~mode_mask;
}
- for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
- if (cpi->ref_frame_flags & flag_list[ref_frame]) {
- setup_buffer_inter(cpi, x, tile, idx_list[ref_frame], ref_frame,
- block_size, mi_row, mi_col,
- frame_mv[NEARESTMV], frame_mv[NEARMV],
- yv12_mb, scale_factor);
+ // If the segment skip feature is enabled....
+ // then do nothing if the current mode is not allowed..
+ if (vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
+ const int inter_non_zero_mode_mask = 0x1F7F7;
+ mode_skip_mask |= inter_non_zero_mode_mask;
+ }
+
+ // Disable this drop out case if the ref frame
+ // segment level feature is enabled for this segment. This is to
+ // prevent the possibility that we end up unable to pick any mode.
+ if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
+ // Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
+ // unless ARNR filtering is enabled in which case we want
+ // an unfiltered alternative. We allow near/nearest as well
+ // because they may result in zero-zero MVs but be cheaper.
+ if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
+ mode_skip_mask =
+ ~((1 << THR_NEARESTA) | (1 << THR_NEARA) | (1 << THR_ZEROA));
+ if (frame_mv[NEARMV][ALTREF_FRAME].as_int != 0)
+ mode_skip_mask |= (1 << THR_NEARA);
+ if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != 0)
+ mode_skip_mask |= (1 << THR_NEARESTA);
}
- frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
- frame_mv[ZEROMV][ref_frame].as_int = 0;
+ }
+
+ // TODO(JBB): This is to make up for the fact that we don't have sad
+ // functions that work when the block size reads outside the umv. We
+ // should fix this either by making the motion search just work on
+ // a representative block in the boundary ( first ) and then implement a
+ // function that does sads when inside the border..
+ if ((mi_row + bhs) > cm->mi_rows || (mi_col + bws) > cm->mi_cols) {
+ const int new_modes_mask =
+ (1 << THR_NEWMV) | (1 << THR_NEWG) | (1 << THR_NEWA) |
+ (1 << THR_COMP_NEWLA) | (1 << THR_COMP_NEWGA);
+ mode_skip_mask |= new_modes_mask;
+ }
+
+ if (bsize > cpi->sf.max_intra_bsize) {
+ mode_skip_mask |= 0xFF30808;
+ }
+
+ if (!x->in_active_map) {
+ int mode_index;
+ assert(cpi->ref_frame_flags & VP9_LAST_FLAG);
+ if (frame_mv[NEARESTMV][LAST_FRAME].as_int == 0)
+ mode_index = THR_NEARESTMV;
+ else if (frame_mv[NEARMV][LAST_FRAME].as_int == 0)
+ mode_index = THR_NEARMV;
+ else
+ mode_index = THR_ZEROMV;
+ mode_skip_mask = ~(1 << mode_index);
+ mode_skip_start = MAX_MODES;
+ disable_inter_mode_mask = 0;
}
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
@@ -3228,125 +3221,104 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int64_t tx_cache[TX_MODES];
int i;
int this_skip2 = 0;
- int64_t total_sse = INT_MAX;
+ int64_t total_sse = INT64_MAX;
int early_term = 0;
- for (i = 0; i < TX_MODES; ++i)
- tx_cache[i] = INT64_MAX;
-
- x->skip = 0;
- this_mode = vp9_mode_order[mode_index].mode;
- ref_frame = vp9_mode_order[mode_index].ref_frame;
- second_ref_frame = vp9_mode_order[mode_index].second_ref_frame;
-
// Look at the reference frame of the best mode so far and set the
// skip mask to look at a subset of the remaining modes.
- if (mode_index > cpi->sf.mode_skip_start) {
- if (mode_index == (cpi->sf.mode_skip_start + 1)) {
- switch (vp9_mode_order[best_mode_index].ref_frame) {
- case INTRA_FRAME:
- cpi->mode_skip_mask = 0;
- break;
- case LAST_FRAME:
- cpi->mode_skip_mask = LAST_FRAME_MODE_MASK;
- break;
- case GOLDEN_FRAME:
- cpi->mode_skip_mask = GOLDEN_FRAME_MODE_MASK;
- break;
- case ALTREF_FRAME:
- cpi->mode_skip_mask = ALT_REF_MODE_MASK;
- break;
- case NONE:
- case MAX_REF_FRAMES:
- assert(!"Invalid Reference frame");
- }
+ if (mode_index == mode_skip_start && best_mode_index >= 0) {
+ switch (vp9_mode_order[best_mode_index].ref_frame[0]) {
+ case INTRA_FRAME:
+ break;
+ case LAST_FRAME:
+ mode_skip_mask |= LAST_FRAME_MODE_MASK;
+ break;
+ case GOLDEN_FRAME:
+ mode_skip_mask |= GOLDEN_FRAME_MODE_MASK;
+ break;
+ case ALTREF_FRAME:
+ mode_skip_mask |= ALT_REF_MODE_MASK;
+ break;
+ case NONE:
+ case MAX_REF_FRAMES:
+ assert(0 && "Invalid Reference frame");
}
- if (cpi->mode_skip_mask & ((int64_t)1 << mode_index))
- continue;
}
-
- // Skip if the current reference frame has been masked off
- if (cpi->sf.reference_masking && !cpi->set_ref_frame_mask &&
- (cpi->ref_frame_mask & (1 << ref_frame)))
+ if (mode_skip_mask & (1 << mode_index))
continue;
// Test best rd so far against threshold for trying this mode.
- if ((best_rd < ((int64_t)cpi->rd_threshes[segment_id][bsize][mode_index] *
- cpi->rd_thresh_freq_fact[bsize][mode_index] >> 5)) ||
- cpi->rd_threshes[segment_id][bsize][mode_index] == INT_MAX)
+ if (rd_less_than_thresh(best_rd, rd_threshes[mode_index],
+ rd_thresh_freq_fact[mode_index]))
continue;
- // Do not allow compound prediction if the segment level reference
- // frame feature is in use as in this case there can only be one reference.
- if ((second_ref_frame > INTRA_FRAME) &&
- vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
- continue;
-
- // Skip some checking based on small partitions' result.
- if (x->fast_ms > 1 && !ref_frame)
- continue;
- if (x->fast_ms > 2 && ref_frame != x->subblock_ref)
+ this_mode = vp9_mode_order[mode_index].mode;
+ ref_frame = vp9_mode_order[mode_index].ref_frame[0];
+ if (ref_frame != INTRA_FRAME &&
+ disable_inter_mode_mask & (1 << INTER_OFFSET(this_mode)))
continue;
+ second_ref_frame = vp9_mode_order[mode_index].ref_frame[1];
- if (cpi->sf.use_avoid_tested_higherror && bsize >= BLOCK_8X8) {
- if (!(ref_frame_mask & (1 << ref_frame))) {
- continue;
- }
- if (!(mode_mask & (1 << this_mode))) {
+ comp_pred = second_ref_frame > INTRA_FRAME;
+ if (comp_pred) {
+ if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
+ best_mode_index >=0 &&
+ vp9_mode_order[best_mode_index].ref_frame[0] == INTRA_FRAME)
continue;
- }
- if (second_ref_frame != NONE
- && !(ref_frame_mask & (1 << second_ref_frame))) {
+ if ((mode_search_skip_flags & FLAG_SKIP_COMP_REFMISMATCH) &&
+ ref_frame != best_inter_ref_frame &&
+ second_ref_frame != best_inter_ref_frame)
continue;
- }
- }
-
- mbmi->ref_frame[0] = ref_frame;
- mbmi->ref_frame[1] = second_ref_frame;
-
- if (!(ref_frame == INTRA_FRAME
- || (cpi->ref_frame_flags & flag_list[ref_frame]))) {
- continue;
- }
- if (!(second_ref_frame == NONE
- || (cpi->ref_frame_flags & flag_list[second_ref_frame]))) {
- continue;
+ mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
+ } else {
+ if (ref_frame != INTRA_FRAME)
+ mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
}
- comp_pred = second_ref_frame > INTRA_FRAME;
- if (comp_pred) {
- if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA)
- if (vp9_mode_order[best_mode_index].ref_frame == INTRA_FRAME)
+ if (ref_frame == INTRA_FRAME) {
+ if (!(intra_y_mode_mask & (1 << this_mode)))
+ continue;
+ if (this_mode != DC_PRED) {
+ // Disable intra modes other than DC_PRED for blocks with low variance
+ // Threshold for intra skipping based on source variance
+ // TODO(debargha): Specialize the threshold for super block sizes
+ const unsigned int skip_intra_var_thresh = 64;
+ if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
+ x->source_variance < skip_intra_var_thresh)
continue;
- if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_REFMISMATCH)
- if (ref_frame != best_inter_ref_frame &&
- second_ref_frame != best_inter_ref_frame)
+ // Only search the oblique modes if the best so far is
+ // one of the neighboring directional modes
+ if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
+ (this_mode >= D45_PRED && this_mode <= TM_PRED)) {
+ if (best_mode_index >= 0 &&
+ vp9_mode_order[best_mode_index].ref_frame[0] > INTRA_FRAME)
+ continue;
+ }
+ if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
+ if (conditional_skipintra(this_mode, best_intra_mode))
+ continue;
+ }
+ }
+ } else {
+ if (x->in_active_map &&
+ !vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+ const MV_REFERENCE_FRAME ref_frames[2] = {ref_frame, second_ref_frame};
+ if (!check_best_zero_mv(cpi, mbmi->mode_context, frame_mv,
+ disable_inter_mode_mask, this_mode, ref_frames))
continue;
+ }
}
- set_scale_factors(xd, ref_frame, second_ref_frame, scale_factor);
- mbmi->uv_mode = DC_PRED;
-
+ mbmi->mode = this_mode;
+ mbmi->uv_mode = x->in_active_map ? DC_PRED : this_mode;
+ mbmi->ref_frame[0] = ref_frame;
+ mbmi->ref_frame[1] = second_ref_frame;
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
- mbmi->interp_filter = cm->mcomp_filter_type;
- vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
-
- if (comp_pred) {
- if (!(cpi->ref_frame_flags & flag_list[second_ref_frame]))
- continue;
- set_scale_factors(xd, ref_frame, second_ref_frame, scale_factor);
-
- mode_excluded = mode_excluded
- ? mode_excluded
- : cm->comp_pred_mode == SINGLE_PREDICTION_ONLY;
- } else {
- if (ref_frame != INTRA_FRAME && second_ref_frame != INTRA_FRAME) {
- mode_excluded =
- mode_excluded ?
- mode_excluded : cm->comp_pred_mode == COMP_PREDICTION_ONLY;
- }
- }
+ mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP
+ : cm->interp_filter;
+ x->skip = 0;
+ set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++) {
@@ -3355,91 +3327,22 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
}
- // If the segment reference frame feature is enabled....
- // then do nothing if the current ref frame is not allowed..
- if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
- vp9_get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) !=
- (int)ref_frame) {
- continue;
- // If the segment skip feature is enabled....
- // then do nothing if the current mode is not allowed..
- } else if (vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP) &&
- (this_mode != ZEROMV && ref_frame != INTRA_FRAME)) {
- continue;
- // Disable this drop out case if the ref frame
- // segment level feature is enabled for this segment. This is to
- // prevent the possibility that we end up unable to pick any mode.
- } else if (!vp9_segfeature_active(seg, segment_id,
- SEG_LVL_REF_FRAME)) {
- // Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
- // unless ARNR filtering is enabled in which case we want
- // an unfiltered alternative. We allow near/nearest as well
- // because they may result in zero-zero MVs but be cheaper.
- if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
- if ((this_mode != ZEROMV &&
- !(this_mode == NEARMV &&
- frame_mv[NEARMV][ALTREF_FRAME].as_int == 0) &&
- !(this_mode == NEARESTMV &&
- frame_mv[NEARESTMV][ALTREF_FRAME].as_int == 0)) ||
- ref_frame != ALTREF_FRAME) {
- continue;
- }
- }
- }
- // TODO(JBB): This is to make up for the fact that we don't have sad
- // functions that work when the block size reads outside the umv. We
- // should fix this either by making the motion search just work on
- // a representative block in the boundary ( first ) and then implement a
- // function that does sads when inside the border..
- if (((mi_row + bhs) > cm->mi_rows || (mi_col + bws) > cm->mi_cols) &&
- this_mode == NEWMV) {
- continue;
- }
-
-#ifdef MODE_TEST_HIT_STATS
- // TEST/DEBUG CODE
- // Keep a rcord of the number of test hits at each size
- cpi->mode_test_hits[bsize]++;
-#endif
-
+ for (i = 0; i < TX_MODES; ++i)
+ tx_cache[i] = INT64_MAX;
if (ref_frame == INTRA_FRAME) {
TX_SIZE uv_tx;
- // Disable intra modes other than DC_PRED for blocks with low variance
- // Threshold for intra skipping based on source variance
- // TODO(debargha): Specialize the threshold for super block sizes
- static const unsigned int skip_intra_var_thresh[BLOCK_SIZES] = {
- 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
- };
- if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
- this_mode != DC_PRED &&
- x->source_variance < skip_intra_var_thresh[mbmi->sb_type])
- continue;
- // Only search the oblique modes if the best so far is
- // one of the neighboring directional modes
- if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
- (this_mode >= D45_PRED && this_mode <= TM_PRED)) {
- if (vp9_mode_order[best_mode_index].ref_frame > INTRA_FRAME)
- continue;
- }
- mbmi->mode = this_mode;
- if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
- if (conditional_skipintra(mbmi->mode, best_intra_mode))
- continue;
- }
-
- super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL,
- bsize, tx_cache, best_rd);
+ intra_super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL,
+ bsize, tx_cache, best_rd);
if (rate_y == INT_MAX)
continue;
- uv_tx = MIN(mbmi->tx_size, max_uv_txsize_lookup[bsize]);
+ uv_tx = get_uv_tx_size_impl(mbmi->tx_size, bsize);
if (rate_uv_intra[uv_tx] == INT_MAX) {
- choose_intra_uv_mode(cpi, bsize, &rate_uv_intra[uv_tx],
- &rate_uv_tokenonly[uv_tx],
- &dist_uv[uv_tx], &skip_uv[uv_tx],
- &mode_uv[uv_tx]);
+ choose_intra_uv_mode(cpi, ctx, bsize, uv_tx,
+ &rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx],
+ &dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]);
}
rate_uv = rate_uv_tokenonly[uv_tx];
@@ -3447,14 +3350,12 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
skippable = skippable && skip_uv[uv_tx];
mbmi->uv_mode = mode_uv[uv_tx];
- rate2 = rate_y + x->mbmode_cost[mbmi->mode] + rate_uv_intra[uv_tx];
+ rate2 = rate_y + cpi->mbmode_cost[mbmi->mode] + rate_uv_intra[uv_tx];
if (this_mode != DC_PRED && this_mode != TM_PRED)
rate2 += intra_cost_penalty;
distortion2 = distortion_y + distortion_uv;
} else {
- mbmi->mode = this_mode;
- compmode_cost = vp9_cost_bit(comp_mode_p, second_ref_frame > INTRA_FRAME);
- this_rd = handle_inter_mode(cpi, x, tile, bsize,
+ this_rd = handle_inter_mode(cpi, x, bsize,
tx_cache,
&rate2, &distortion2, &skippable,
&rate_y, &distortion_y,
@@ -3465,15 +3366,16 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
single_newmv, &total_sse, best_rd);
if (this_rd == INT64_MAX)
continue;
- }
- if (cm->comp_pred_mode == HYBRID_PREDICTION) {
- rate2 += compmode_cost;
+ compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred);
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
+ rate2 += compmode_cost;
}
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
- if (second_ref_frame > INTRA_FRAME) {
+ if (comp_pred) {
rate2 += ref_costs_comp[ref_frame];
} else {
rate2 += ref_costs_single[ref_frame];
@@ -3498,9 +3400,7 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int prob_skip_cost;
// Cost the skip mb case
- vp9_prob skip_prob =
- vp9_get_pred_prob_mbskip(cm, xd);
-
+ vp9_prob skip_prob = vp9_get_skip_prob(cm, xd);
if (skip_prob) {
prob_skip_cost = vp9_cost_bit(skip_prob, 1);
rate2 += prob_skip_cost;
@@ -3510,14 +3410,10 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
// Add in the cost of the no skip flag.
- int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd),
- 0);
- rate2 += prob_skip_cost;
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
} else {
// FIXME(rbultje) make this work for splitmv also
- int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd),
- 1);
- rate2 += prob_skip_cost;
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
distortion2 = total_sse;
assert(total_sse >= 0);
rate2 -= (rate_y + rate_uv);
@@ -3527,33 +3423,29 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
}
} else if (mb_skip_allowed) {
// Add in the cost of the no skip flag.
- int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd),
- 0);
- rate2 += prob_skip_cost;
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
+ if (ref_frame == INTRA_FRAME) {
// Keep record of best intra rd
- if (xd->mi_8x8[0]->mbmi.ref_frame[0] == INTRA_FRAME &&
- is_intra_mode(xd->mi_8x8[0]->mbmi.mode) &&
- this_rd < best_intra_rd) {
- best_intra_rd = this_rd;
- best_intra_mode = xd->mi_8x8[0]->mbmi.mode;
- }
- // Keep record of best inter rd with single reference
- if (xd->mi_8x8[0]->mbmi.ref_frame[0] > INTRA_FRAME &&
- xd->mi_8x8[0]->mbmi.ref_frame[1] == NONE &&
- !mode_excluded &&
- this_rd < best_inter_rd) {
- best_inter_rd = this_rd;
- best_inter_ref_frame = ref_frame;
+ if (this_rd < best_intra_rd) {
+ best_intra_rd = this_rd;
+ best_intra_mode = mbmi->mode;
+ }
+ } else {
+ // Keep record of best inter rd with single reference
+ if (!comp_pred && !mode_excluded && this_rd < best_inter_rd) {
+ best_inter_rd = this_rd;
+ best_inter_ref_frame = ref_frame;
+ }
}
if (!disable_skip && ref_frame == INTRA_FRAME) {
- for (i = 0; i < NB_PREDICTION_TYPES; ++i)
+ for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
best_filter_rd[i] = MIN(best_filter_rd[i], this_rd);
@@ -3564,13 +3456,10 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
|| distortion2 < mode_distortions[this_mode]) {
mode_distortions[this_mode] = distortion2;
}
- if (frame_distortions[ref_frame] == -1
- || distortion2 < frame_distortions[ref_frame]) {
- frame_distortions[ref_frame] = distortion2;
- }
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
+ int max_plane = MAX_MB_PLANE;
if (!mode_excluded) {
// Note index of best mode so far
best_mode_index = mode_index;
@@ -3578,6 +3467,7 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
+ max_plane = 1;
}
*returnrate = rate2;
@@ -3585,12 +3475,14 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
best_rd = this_rd;
best_mbmode = *mbmi;
best_skip2 = this_skip2;
+ if (!x->select_txfm_size)
+ swap_block_ptr(x, ctx, max_plane);
vpx_memcpy(ctx->zcoeff_blk, x->zcoeff_blk[mbmi->tx_size],
sizeof(uint8_t) * ctx->num_4x4_blk);
// TODO(debargha): enhance this test with a better distortion prediction
// based on qp, activity mask and history
- if ((cpi->sf.mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
+ if ((mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
(mode_index > MIN_EARLY_TERM_INDEX)) {
const int qstep = xd->plane[0].dequant[1];
// TODO(debargha): Enhance this by specializing for each mode_index
@@ -3609,9 +3501,9 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
/* keep record of best compound/single-only prediction */
if (!disable_skip && ref_frame != INTRA_FRAME) {
- int single_rd, hybrid_rd, single_rate, hybrid_rate;
+ int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
- if (cm->comp_pred_mode == HYBRID_PREDICTION) {
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
@@ -3622,40 +3514,39 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
- if (second_ref_frame <= INTRA_FRAME &&
- single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
- best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
- } else if (second_ref_frame > INTRA_FRAME &&
- single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
- best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
+ if (!comp_pred) {
+ if (single_rd < best_pred_rd[SINGLE_REFERENCE]) {
+ best_pred_rd[SINGLE_REFERENCE] = single_rd;
+ }
+ } else {
+ if (single_rd < best_pred_rd[COMPOUND_REFERENCE]) {
+ best_pred_rd[COMPOUND_REFERENCE] = single_rd;
+ }
}
- if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
- best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
- }
+ if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
+ best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
+
+ /* keep record of best filter type */
+ if (!mode_excluded && cm->interp_filter != BILINEAR) {
+ int64_t ref = rd_opt->filter_cache[cm->interp_filter == SWITCHABLE ?
+ SWITCHABLE_FILTERS : cm->interp_filter];
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+ int64_t adj_rd;
+ if (ref == INT64_MAX)
+ adj_rd = 0;
+ else if (rd_opt->filter_cache[i] == INT64_MAX)
+ // when early termination is triggered, the encoder does not have
+ // access to the rate-distortion cost. it only knows that the cost
+ // should be above the maximum valid value. hence it takes the known
+ // maximum plus an arbitrary constant as the rate-distortion cost.
+ adj_rd = rd_opt->mask_filter - ref + 10;
+ else
+ adj_rd = rd_opt->filter_cache[i] - ref;
- /* keep record of best filter type */
- if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME &&
- cm->mcomp_filter_type != BILINEAR) {
- int64_t ref = cpi->rd_filter_cache[cm->mcomp_filter_type == SWITCHABLE ?
- SWITCHABLE_FILTERS : cm->mcomp_filter_type];
- for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
- int64_t adj_rd;
- // In cases of poor prediction, filter_cache[] can contain really big
- // values, which actually are bigger than this_rd itself. This can
- // cause negative best_filter_rd[] values, which is obviously silly.
- // Therefore, if filter_cache < ref, we do an adjusted calculation.
- if (cpi->rd_filter_cache[i] >= ref) {
- adj_rd = this_rd + cpi->rd_filter_cache[i] - ref;
- } else {
- // FIXME(rbultje) do this for comppsred also
- //
- // To prevent out-of-range computation in
- // adj_rd = cpi->rd_filter_cache[i] * this_rd / ref
- // cpi->rd_filter_cache[i] / ref is converted to a 256 based ratio.
- int tmp = cpi->rd_filter_cache[i] * 256 / ref;
- adj_rd = (this_rd * tmp) >> 8;
+ adj_rd += this_rd;
+ best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd);
}
- best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd);
}
}
@@ -3683,76 +3574,36 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
break;
}
- if (best_rd >= best_rd_so_far)
+ if (best_mode_index < 0 || best_rd >= best_rd_so_far)
return INT64_MAX;
// If we used an estimate for the uv intra rd in the loop above...
if (cpi->sf.use_uv_intra_rd_estimate) {
// Do Intra UV best rd mode selection if best mode choice above was intra.
- if (vp9_mode_order[best_mode_index].ref_frame == INTRA_FRAME) {
- TX_SIZE uv_tx_size = get_uv_tx_size(mbmi);
- rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra[uv_tx_size],
+ if (vp9_mode_order[best_mode_index].ref_frame[0] == INTRA_FRAME) {
+ TX_SIZE uv_tx_size;
+ *mbmi = best_mbmode;
+ uv_tx_size = get_uv_tx_size(mbmi);
+ rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra[uv_tx_size],
&rate_uv_tokenonly[uv_tx_size],
&dist_uv[uv_tx_size],
&skip_uv[uv_tx_size],
- bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize);
- }
- }
-
- // If we are using reference masking and the set mask flag is set then
- // create the reference frame mask.
- if (cpi->sf.reference_masking && cpi->set_ref_frame_mask)
- cpi->ref_frame_mask = ~(1 << vp9_mode_order[best_mode_index].ref_frame);
-
- // Flag all modes that have a distortion thats > 2x the best we found at
- // this level.
- for (mode_index = 0; mode_index < MB_MODE_COUNT; ++mode_index) {
- if (mode_index == NEARESTMV || mode_index == NEARMV || mode_index == NEWMV)
- continue;
-
- if (mode_distortions[mode_index] > 2 * *returndistortion) {
- ctx->modes_with_high_error |= (1 << mode_index);
+ bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize,
+ uv_tx_size);
}
}
- // Flag all ref frames that have a distortion thats > 2x the best we found at
- // this level.
- for (ref_frame = INTRA_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
- if (frame_distortions[ref_frame] > 2 * *returndistortion) {
- ctx->frames_with_high_error |= (1 << ref_frame);
- }
- }
+ assert((cm->interp_filter == SWITCHABLE) ||
+ (cm->interp_filter == best_mbmode.interp_filter) ||
+ !is_inter_block(&best_mbmode));
- assert((cm->mcomp_filter_type == SWITCHABLE) ||
- (cm->mcomp_filter_type == best_mbmode.interp_filter) ||
- (best_mbmode.ref_frame[0] == INTRA_FRAME));
-
- // Updating rd_thresh_freq_fact[] here means that the different
- // partition/block sizes are handled independently based on the best
- // choice for the current partition. It may well be better to keep a scaled
- // best rd so far value and update rd_thresh_freq_fact based on the mode/size
- // combination that wins out.
- if (cpi->sf.adaptive_rd_thresh) {
- for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
- if (mode_index == best_mode_index) {
- cpi->rd_thresh_freq_fact[bsize][mode_index] -=
- (cpi->rd_thresh_freq_fact[bsize][mode_index] >> 3);
- } else {
- cpi->rd_thresh_freq_fact[bsize][mode_index] += RD_THRESH_INC;
- if (cpi->rd_thresh_freq_fact[bsize][mode_index] >
- (cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT)) {
- cpi->rd_thresh_freq_fact[bsize][mode_index] =
- cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT;
- }
- }
- }
- }
+ update_rd_thresh_fact(cpi, bsize, best_mode_index);
// macroblock modes
*mbmi = best_mbmode;
x->skip |= best_skip2;
- for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
+ for (i = 0; i < REFERENCE_MODES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
@@ -3766,13 +3617,8 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
else
best_filter_diff[i] = best_rd - best_filter_rd[i];
}
- if (cm->mcomp_filter_type == SWITCHABLE)
+ if (cm->interp_filter == SWITCHABLE)
assert(best_filter_diff[SWITCHABLE_FILTERS] == 0);
- } else {
- vp9_zero(best_filter_diff);
- }
-
- if (!x->skip) {
for (i = 0; i < TX_MODES; i++) {
if (best_tx_rd[i] == INT64_MAX)
best_tx_diff[i] = 0;
@@ -3780,11 +3626,21 @@ int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
best_tx_diff[i] = best_rd - best_tx_rd[i];
}
} else {
+ vp9_zero(best_filter_diff);
vp9_zero(best_tx_diff);
}
- set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1],
- scale_factor);
+ if (!x->in_active_map) {
+ assert(mbmi->ref_frame[0] == LAST_FRAME);
+ assert(mbmi->ref_frame[1] == NONE);
+ assert(mbmi->mode == NEARESTMV ||
+ mbmi->mode == NEARMV ||
+ mbmi->mode == ZEROMV);
+ assert(frame_mv[mbmi->mode][LAST_FRAME].as_int == 0);
+ assert(mbmi->mode == mbmi->uv_mode);
+ }
+
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
store_coding_context(x, ctx, best_mode_index,
&mbmi->ref_mvs[mbmi->ref_frame[0]][0],
&mbmi->ref_mvs[mbmi->ref_frame[1] < 0 ? 0 :
@@ -3803,11 +3659,11 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
- VP9_COMMON *cm = &cpi->common;
- MACROBLOCKD *xd = &x->e_mbd;
- MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
- const struct segmentation *seg = &cm->seg;
- const BLOCK_SIZE block_size = get_plane_block_size(bsize, &xd->plane[0]);
+ VP9_COMMON *const cm = &cpi->common;
+ RD_OPT *const rd_opt = &cpi->rd;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const struct segmentation *const seg = &cm->seg;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
unsigned char segment_id = mbmi->segment_id;
int comp_pred, i;
@@ -3815,40 +3671,34 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
- int idx_list[4] = {0,
- cpi->lst_fb_idx,
- cpi->gld_fb_idx,
- cpi->alt_fb_idx};
int64_t best_rd = best_rd_so_far;
int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise
- int64_t best_tx_rd[TX_MODES];
- int64_t best_tx_diff[TX_MODES];
- int64_t best_pred_diff[NB_PREDICTION_TYPES];
- int64_t best_pred_rd[NB_PREDICTION_TYPES];
+ static const int64_t best_tx_diff[TX_MODES] = { 0 };
+ int64_t best_pred_diff[REFERENCE_MODES];
+ int64_t best_pred_rd[REFERENCE_MODES];
int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS];
int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
- MB_MODE_INFO best_mbmode = { 0 };
- int mode_index, best_mode_index = 0;
+ MB_MODE_INFO best_mbmode;
+ int ref_index, best_ref_index = 0;
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
vp9_prob comp_mode_p;
int64_t best_inter_rd = INT64_MAX;
MV_REFERENCE_FRAME best_inter_ref_frame = LAST_FRAME;
- INTERPOLATION_TYPE tmp_best_filter = SWITCHABLE;
- int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES];
- int64_t dist_uv[TX_SIZES];
- int skip_uv[TX_SIZES];
- MB_PREDICTION_MODE mode_uv[TX_SIZES] = { 0 };
- struct scale_factors scale_factor[4];
- unsigned int ref_frame_mask = 0;
- unsigned int mode_mask = 0;
- int intra_cost_penalty = 20 * vp9_dc_quant(cpi->common.base_qindex,
- cpi->common.y_dc_delta_q);
+ INTERP_FILTER tmp_best_filter = SWITCHABLE;
+ int rate_uv_intra, rate_uv_tokenonly;
+ int64_t dist_uv;
+ int skip_uv;
+ PREDICTION_MODE mode_uv = DC_PRED;
+ int intra_cost_penalty = 20 * vp9_dc_quant(cm->base_qindex, cm->y_dc_delta_q);
int_mv seg_mvs[4][MAX_REF_FRAMES];
b_mode_info best_bmodes[4];
int best_skip2 = 0;
+ int ref_frame_mask = 0;
+ int mode_skip_mask = 0;
- x->skip_encode = cpi->sf.skip_encode_frame && xd->q_index < QIDX_SKIP_THRESH;
+ x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
vpx_memset(x->zcoeff_blk[TX_4X4], 0, 4);
+ vp9_zero(best_mbmode);
for (i = 0; i < 4; i++) {
int j;
@@ -3856,41 +3706,40 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
seg_mvs[i][j].as_int = INVALID_MV;
}
- estimate_ref_frame_costs(cpi, segment_id, ref_costs_single, ref_costs_comp,
+ estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
- for (i = 0; i < NB_PREDICTION_TYPES; ++i)
+ for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = INT64_MAX;
- for (i = 0; i < TX_MODES; i++)
- best_tx_rd[i] = INT64_MAX;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
best_filter_rd[i] = INT64_MAX;
- for (i = 0; i < TX_SIZES; i++)
- rate_uv_intra[i] = INT_MAX;
+ rate_uv_intra = INT_MAX;
*returnrate = INT_MAX;
- // Create a mask set to 1 for each reference frame used by a smaller
- // resolution.
- if (cpi->sf.use_avoid_tested_higherror) {
- ref_frame_mask = 0;
- mode_mask = 0;
- ref_frame_mask = ~ref_frame_mask;
- mode_mask = ~mode_mask;
- }
-
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
- setup_buffer_inter(cpi, x, tile, idx_list[ref_frame], ref_frame,
- block_size, mi_row, mi_col,
- frame_mv[NEARESTMV], frame_mv[NEARMV],
- yv12_mb, scale_factor);
+ vp9_setup_buffer_inter(cpi, x, tile,
+ ref_frame, bsize, mi_row, mi_col,
+ frame_mv[NEARESTMV], frame_mv[NEARMV],
+ yv12_mb);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
- for (mode_index = 0; mode_index < MAX_REFS; ++mode_index) {
+ for (ref_frame = LAST_FRAME;
+ ref_frame <= ALTREF_FRAME && cpi->sf.reference_masking; ++ref_frame) {
+ int i;
+ for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
+ if ((x->pred_mv_sad[ref_frame] >> 1) > x->pred_mv_sad[i]) {
+ ref_frame_mask |= (1 << ref_frame);
+ break;
+ }
+ }
+ }
+
+ for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) {
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
@@ -3898,125 +3747,84 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
int rate2 = 0, rate_y = 0, rate_uv = 0;
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable = 0;
- int64_t tx_cache[TX_MODES];
int i;
int this_skip2 = 0;
int64_t total_sse = INT_MAX;
int early_term = 0;
- for (i = 0; i < TX_MODES; ++i)
- tx_cache[i] = INT64_MAX;
-
- x->skip = 0;
- ref_frame = vp9_ref_order[mode_index].ref_frame;
- second_ref_frame = vp9_ref_order[mode_index].second_ref_frame;
+ ref_frame = vp9_ref_order[ref_index].ref_frame[0];
+ second_ref_frame = vp9_ref_order[ref_index].ref_frame[1];
// Look at the reference frame of the best mode so far and set the
// skip mask to look at a subset of the remaining modes.
- if (mode_index > 2 && cpi->sf.mode_skip_start < MAX_MODES) {
- if (mode_index == 3) {
- switch (vp9_ref_order[best_mode_index].ref_frame) {
+ if (ref_index > 2 && cpi->sf.mode_skip_start < MAX_MODES) {
+ if (ref_index == 3) {
+ switch (vp9_ref_order[best_ref_index].ref_frame[0]) {
case INTRA_FRAME:
- cpi->mode_skip_mask = 0;
+ mode_skip_mask = 0;
break;
case LAST_FRAME:
- cpi->mode_skip_mask = 0x0010;
+ mode_skip_mask = 0x0010;
break;
case GOLDEN_FRAME:
- cpi->mode_skip_mask = 0x0008;
+ mode_skip_mask = 0x0008;
break;
case ALTREF_FRAME:
- cpi->mode_skip_mask = 0x0000;
+ mode_skip_mask = 0x0000;
break;
case NONE:
case MAX_REF_FRAMES:
- assert(!"Invalid Reference frame");
+ assert(0 && "Invalid Reference frame");
}
}
- if (cpi->mode_skip_mask & ((int64_t)1 << mode_index))
+ if (mode_skip_mask & (1 << ref_index))
continue;
}
- // Skip if the current reference frame has been masked off
- if (cpi->sf.reference_masking && !cpi->set_ref_frame_mask &&
- (cpi->ref_frame_mask & (1 << ref_frame)))
- continue;
-
// Test best rd so far against threshold for trying this mode.
- if ((best_rd <
- ((int64_t)cpi->rd_thresh_sub8x8[segment_id][bsize][mode_index] *
- cpi->rd_thresh_freq_sub8x8[bsize][mode_index] >> 5)) ||
- cpi->rd_thresh_sub8x8[segment_id][bsize][mode_index] == INT_MAX)
+ if (rd_less_than_thresh(best_rd,
+ rd_opt->threshes[segment_id][bsize][ref_index],
+ rd_opt->thresh_freq_fact[bsize][ref_index]))
continue;
- // Do not allow compound prediction if the segment level reference
- // frame feature is in use as in this case there can only be one reference.
- if ((second_ref_frame > INTRA_FRAME) &&
- vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
- continue;
-
- mbmi->ref_frame[0] = ref_frame;
- mbmi->ref_frame[1] = second_ref_frame;
-
- if (!(ref_frame == INTRA_FRAME
- || (cpi->ref_frame_flags & flag_list[ref_frame]))) {
- continue;
- }
- if (!(second_ref_frame == NONE
- || (cpi->ref_frame_flags & flag_list[second_ref_frame]))) {
+ if (ref_frame > INTRA_FRAME &&
+ !(cpi->ref_frame_flags & flag_list[ref_frame])) {
continue;
}
comp_pred = second_ref_frame > INTRA_FRAME;
if (comp_pred) {
- if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA)
- if (vp9_ref_order[best_mode_index].ref_frame == INTRA_FRAME)
- continue;
- if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_REFMISMATCH)
- if (ref_frame != best_inter_ref_frame &&
- second_ref_frame != best_inter_ref_frame)
- continue;
+ if (!(cpi->ref_frame_flags & flag_list[second_ref_frame]))
+ continue;
+ // Do not allow compound prediction if the segment level reference frame
+ // feature is in use as in this case there can only be one reference.
+ if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
+ continue;
+ if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
+ vp9_ref_order[best_ref_index].ref_frame[0] == INTRA_FRAME)
+ continue;
+ if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_REFMISMATCH) &&
+ ref_frame != best_inter_ref_frame &&
+ second_ref_frame != best_inter_ref_frame)
+ continue;
}
// TODO(jingning, jkoleszar): scaling reference frame not supported for
// sub8x8 blocks.
- if (ref_frame > 0 &&
- vp9_is_scaled(scale_factor[ref_frame].sfc))
+ if (ref_frame > INTRA_FRAME &&
+ vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
continue;
- if (second_ref_frame > 0 &&
- vp9_is_scaled(scale_factor[second_ref_frame].sfc))
+ if (second_ref_frame > INTRA_FRAME &&
+ vp9_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf))
continue;
- set_scale_factors(xd, ref_frame, second_ref_frame, scale_factor);
- mbmi->uv_mode = DC_PRED;
-
- // Evaluate all sub-pel filters irrespective of whether we can use
- // them for this frame.
- mbmi->interp_filter = cm->mcomp_filter_type;
- vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
-
if (comp_pred) {
- if (!(cpi->ref_frame_flags & flag_list[second_ref_frame]))
- continue;
- set_scale_factors(xd, ref_frame, second_ref_frame, scale_factor);
-
- mode_excluded = mode_excluded
- ? mode_excluded
- : cm->comp_pred_mode == SINGLE_PREDICTION_ONLY;
- } else {
- if (ref_frame != INTRA_FRAME && second_ref_frame != INTRA_FRAME) {
- mode_excluded =
- mode_excluded ?
- mode_excluded : cm->comp_pred_mode == COMP_PREDICTION_ONLY;
- }
- }
-
- // Select prediction reference frames.
- for (i = 0; i < MAX_MB_PLANE; i++) {
- xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
- if (comp_pred)
- xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
+ mode_excluded = mode_excluded ? mode_excluded
+ : cm->reference_mode == SINGLE_REFERENCE;
+ } else if (ref_frame != INTRA_FRAME) {
+ mode_excluded = mode_excluded ? mode_excluded
+ : cm->reference_mode == COMPOUND_REFERENCE;
}
// If the segment reference frame feature is enabled....
@@ -4039,19 +3847,30 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
- if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0))
+ if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0))
continue;
}
-#ifdef MODE_TEST_HIT_STATS
- // TEST/DEBUG CODE
- // Keep a rcord of the number of test hits at each size
- cpi->mode_test_hits[bsize]++;
-#endif
+ mbmi->tx_size = TX_4X4;
+ mbmi->uv_mode = DC_PRED;
+ mbmi->ref_frame[0] = ref_frame;
+ mbmi->ref_frame[1] = second_ref_frame;
+ // Evaluate all sub-pel filters irrespective of whether we can use
+ // them for this frame.
+ mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP
+ : cm->interp_filter;
+ x->skip = 0;
+ set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
+
+ // Select prediction reference frames.
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
+ if (comp_pred)
+ xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
+ }
if (ref_frame == INTRA_FRAME) {
int rate;
- mbmi->tx_size = TX_4X4;
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y,
&distortion_y, best_rd) >= best_rd)
continue;
@@ -4059,20 +3878,18 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
rate2 += intra_cost_penalty;
distortion2 += distortion_y;
- if (rate_uv_intra[TX_4X4] == INT_MAX) {
- choose_intra_uv_mode(cpi, bsize, &rate_uv_intra[TX_4X4],
- &rate_uv_tokenonly[TX_4X4],
- &dist_uv[TX_4X4], &skip_uv[TX_4X4],
- &mode_uv[TX_4X4]);
+ if (rate_uv_intra == INT_MAX) {
+ choose_intra_uv_mode(cpi, ctx, bsize, TX_4X4,
+ &rate_uv_intra,
+ &rate_uv_tokenonly,
+ &dist_uv, &skip_uv,
+ &mode_uv);
}
- rate2 += rate_uv_intra[TX_4X4];
- rate_uv = rate_uv_tokenonly[TX_4X4];
- distortion2 += dist_uv[TX_4X4];
- distortion_uv = dist_uv[TX_4X4];
- mbmi->uv_mode = mode_uv[TX_4X4];
- tx_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
- for (i = 0; i < TX_MODES; ++i)
- tx_cache[i] = tx_cache[ONLY_4X4];
+ rate2 += rate_uv_intra;
+ rate_uv = rate_uv_tokenonly;
+ distortion2 += dist_uv;
+ distortion_uv = dist_uv;
+ mbmi->uv_mode = mode_uv;
} else {
int rate;
int64_t distortion;
@@ -4091,19 +3908,24 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
int uv_skippable;
this_rd_thresh = (ref_frame == LAST_FRAME) ?
- cpi->rd_thresh_sub8x8[segment_id][bsize][THR_LAST] :
- cpi->rd_thresh_sub8x8[segment_id][bsize][THR_ALTR];
+ rd_opt->threshes[segment_id][bsize][THR_LAST] :
+ rd_opt->threshes[segment_id][bsize][THR_ALTR];
this_rd_thresh = (ref_frame == GOLDEN_FRAME) ?
- cpi->rd_thresh_sub8x8[segment_id][bsize][THR_GOLD] : this_rd_thresh;
- xd->mi_8x8[0]->mbmi.tx_size = TX_4X4;
+ rd_opt->threshes[segment_id][bsize][THR_GOLD] : this_rd_thresh;
+ rd_opt->mask_filter = 0;
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ rd_opt->filter_cache[i] = INT64_MAX;
- cpi->rd_filter_cache[SWITCHABLE_FILTERS] = INT64_MAX;
- if (cm->mcomp_filter_type != BILINEAR) {
+ if (cm->interp_filter != BILINEAR) {
tmp_best_filter = EIGHTTAP;
- if (x->source_variance <
- cpi->sf.disable_filter_search_var_thresh) {
+ if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) {
tmp_best_filter = EIGHTTAP;
- vp9_zero(cpi->rd_filter_cache);
+ } else if (cpi->sf.adaptive_pred_interp_filter == 1 &&
+ ctx->pred_interp_filter < SWITCHABLE) {
+ tmp_best_filter = ctx->pred_interp_filter;
+ } else if (cpi->sf.adaptive_pred_interp_filter == 2) {
+ tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE ?
+ ctx->pred_interp_filter : 0;
} else {
for (switchable_filter_index = 0;
switchable_filter_index < SWITCHABLE_FILTERS;
@@ -4111,37 +3933,36 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
int newbest, rs;
int64_t rs_rd;
mbmi->interp_filter = switchable_filter_index;
- vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
-
- tmp_rd = rd_pick_best_mbsegmentation(cpi, x, tile,
- &mbmi->ref_mvs[ref_frame][0],
- second_ref,
- best_yrd,
- &rate, &rate_y, &distortion,
- &skippable, &total_sse,
- (int)this_rd_thresh, seg_mvs,
- bsi, switchable_filter_index,
- mi_row, mi_col);
+ tmp_rd = rd_pick_best_sub8x8_mode(cpi, x, tile,
+ &mbmi->ref_mvs[ref_frame][0],
+ second_ref, best_yrd, &rate,
+ &rate_y, &distortion,
+ &skippable, &total_sse,
+ (int) this_rd_thresh, seg_mvs,
+ bsi, switchable_filter_index,
+ mi_row, mi_col);
if (tmp_rd == INT64_MAX)
continue;
- cpi->rd_filter_cache[switchable_filter_index] = tmp_rd;
- rs = get_switchable_rate(x);
+ rs = vp9_get_switchable_rate(cpi);
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
- cpi->rd_filter_cache[SWITCHABLE_FILTERS] =
- MIN(cpi->rd_filter_cache[SWITCHABLE_FILTERS],
+ rd_opt->filter_cache[switchable_filter_index] = tmp_rd;
+ rd_opt->filter_cache[SWITCHABLE_FILTERS] =
+ MIN(rd_opt->filter_cache[SWITCHABLE_FILTERS],
tmp_rd + rs_rd);
- if (cm->mcomp_filter_type == SWITCHABLE)
+ if (cm->interp_filter == SWITCHABLE)
tmp_rd += rs_rd;
+ rd_opt->mask_filter = MAX(rd_opt->mask_filter, tmp_rd);
+
newbest = (tmp_rd < tmp_best_rd);
if (newbest) {
tmp_best_filter = mbmi->interp_filter;
tmp_best_rd = tmp_rd;
}
- if ((newbest && cm->mcomp_filter_type == SWITCHABLE) ||
- (mbmi->interp_filter == cm->mcomp_filter_type &&
- cm->mcomp_filter_type != SWITCHABLE)) {
+ if ((newbest && cm->interp_filter == SWITCHABLE) ||
+ (mbmi->interp_filter == cm->interp_filter &&
+ cm->interp_filter != SWITCHABLE)) {
tmp_best_rdu = tmp_rd;
tmp_best_rate = rate;
tmp_best_ratey = rate_y;
@@ -4150,8 +3971,8 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
tmp_best_skippable = skippable;
tmp_best_mbmode = *mbmi;
for (i = 0; i < 4; i++) {
- tmp_best_bmodes[i] = xd->mi_8x8[0]->bmi[i];
- x->zcoeff_blk[TX_4X4][i] = !xd->plane[0].eobs[i];
+ tmp_best_bmodes[i] = xd->mi[0]->bmi[i];
+ x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i];
}
pred_exists = 1;
if (switchable_filter_index == 0 &&
@@ -4170,32 +3991,23 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
}
}
- if (tmp_best_rdu == INT64_MAX)
+ if (tmp_best_rdu == INT64_MAX && pred_exists)
continue;
- mbmi->interp_filter = (cm->mcomp_filter_type == SWITCHABLE ?
- tmp_best_filter : cm->mcomp_filter_type);
- vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
+ mbmi->interp_filter = (cm->interp_filter == SWITCHABLE ?
+ tmp_best_filter : cm->interp_filter);
if (!pred_exists) {
// Handles the special case when a filter that is not in the
// switchable list (bilinear, 6-tap) is indicated at the frame level
- tmp_rd = rd_pick_best_mbsegmentation(cpi, x, tile,
- &mbmi->ref_mvs[ref_frame][0],
- second_ref,
- best_yrd,
- &rate, &rate_y, &distortion,
- &skippable, &total_sse,
- (int)this_rd_thresh, seg_mvs,
- bsi, 0,
- mi_row, mi_col);
+ tmp_rd = rd_pick_best_sub8x8_mode(cpi, x, tile,
+ &mbmi->ref_mvs[ref_frame][0],
+ second_ref, best_yrd, &rate, &rate_y,
+ &distortion, &skippable, &total_sse,
+ (int) this_rd_thresh, seg_mvs, bsi, 0,
+ mi_row, mi_col);
if (tmp_rd == INT64_MAX)
continue;
} else {
- if (cpi->common.mcomp_filter_type == SWITCHABLE) {
- int rs = get_switchable_rate(x);
- tmp_best_rdu -= RDCOST(x->rdmult, x->rddiv, rs, 0);
- }
- tmp_rd = tmp_best_rdu;
total_sse = tmp_best_sse;
rate = tmp_best_rate;
rate_y = tmp_best_ratey;
@@ -4203,21 +4015,19 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
skippable = tmp_best_skippable;
*mbmi = tmp_best_mbmode;
for (i = 0; i < 4; i++)
- xd->mi_8x8[0]->bmi[i] = tmp_best_bmodes[i];
+ xd->mi[0]->bmi[i] = tmp_best_bmodes[i];
}
rate2 += rate;
distortion2 += distortion;
- if (cpi->common.mcomp_filter_type == SWITCHABLE)
- rate2 += get_switchable_rate(x);
+ if (cm->interp_filter == SWITCHABLE)
+ rate2 += vp9_get_switchable_rate(cpi);
+
+ if (!mode_excluded)
+ mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE
+ : cm->reference_mode == COMPOUND_REFERENCE;
- if (!mode_excluded) {
- if (comp_pred)
- mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
- else
- mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
- }
compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred);
tmp_best_rdu = best_rd -
@@ -4237,16 +4047,11 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
distortion2 += distortion_uv;
skippable = skippable && uv_skippable;
total_sse += uv_sse;
-
- tx_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
- for (i = 0; i < TX_MODES; ++i)
- tx_cache[i] = tx_cache[ONLY_4X4];
}
}
- if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
rate2 += compmode_cost;
- }
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
@@ -4269,14 +4074,10 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
// Add in the cost of the no skip flag.
- int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd),
- 0);
- rate2 += prob_skip_cost;
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
} else {
// FIXME(rbultje) make this work for splitmv also
- int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd),
- 1);
- rate2 += prob_skip_cost;
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
distortion2 = total_sse;
assert(total_sse >= 0);
rate2 -= (rate_y + rate_uv);
@@ -4286,9 +4087,7 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
}
} else if (mb_skip_allowed) {
// Add in the cost of the no skip flag.
- int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd),
- 0);
- rate2 += prob_skip_cost;
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
}
// Calculate the final RD estimate for this mode.
@@ -4296,8 +4095,8 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
}
// Keep record of best inter rd with single reference
- if (xd->mi_8x8[0]->mbmi.ref_frame[0] > INTRA_FRAME &&
- xd->mi_8x8[0]->mbmi.ref_frame[1] == NONE &&
+ if (is_inter_block(mbmi) &&
+ !has_second_ref(mbmi) &&
!mode_excluded &&
this_rd < best_inter_rd) {
best_inter_rd = this_rd;
@@ -4305,7 +4104,7 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
}
if (!disable_skip && ref_frame == INTRA_FRAME) {
- for (i = 0; i < NB_PREDICTION_TYPES; ++i)
+ for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
best_filter_rd[i] = MIN(best_filter_rd[i], this_rd);
@@ -4314,12 +4113,14 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
+ int max_plane = MAX_MB_PLANE;
// Note index of best mode so far
- best_mode_index = mode_index;
+ best_ref_index = ref_index;
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
+ max_plane = 1;
}
*returnrate = rate2;
@@ -4329,16 +4130,18 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv);
best_mbmode = *mbmi;
best_skip2 = this_skip2;
- vpx_memcpy(ctx->zcoeff_blk, x->zcoeff_blk[mbmi->tx_size],
+ if (!x->select_txfm_size)
+ swap_block_ptr(x, ctx, max_plane);
+ vpx_memcpy(ctx->zcoeff_blk, x->zcoeff_blk[TX_4X4],
sizeof(uint8_t) * ctx->num_4x4_blk);
for (i = 0; i < 4; i++)
- best_bmodes[i] = xd->mi_8x8[0]->bmi[i];
+ best_bmodes[i] = xd->mi[0]->bmi[i];
// TODO(debargha): enhance this test with a better distortion prediction
// based on qp, activity mask and history
if ((cpi->sf.mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
- (mode_index > MIN_EARLY_TERM_INDEX)) {
+ (ref_index > MIN_EARLY_TERM_INDEX)) {
const int qstep = xd->plane[0].dequant[1];
// TODO(debargha): Enhance this by specializing for each mode_index
int scale = 4;
@@ -4356,9 +4159,9 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
/* keep record of best compound/single-only prediction */
if (!disable_skip && ref_frame != INTRA_FRAME) {
- int single_rd, hybrid_rd, single_rate, hybrid_rate;
+ int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
- if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
@@ -4369,54 +4172,35 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
- if (second_ref_frame <= INTRA_FRAME &&
- single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
- best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
- } else if (second_ref_frame > INTRA_FRAME &&
- single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
- best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
+ if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE]) {
+ best_pred_rd[SINGLE_REFERENCE] = single_rd;
+ } else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE]) {
+ best_pred_rd[COMPOUND_REFERENCE] = single_rd;
}
- if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
- best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
+ if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
+ best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
}
/* keep record of best filter type */
if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME &&
- cm->mcomp_filter_type != BILINEAR) {
- int64_t ref = cpi->rd_filter_cache[cm->mcomp_filter_type == SWITCHABLE ?
- SWITCHABLE_FILTERS : cm->mcomp_filter_type];
+ cm->interp_filter != BILINEAR) {
+ int64_t ref = rd_opt->filter_cache[cm->interp_filter == SWITCHABLE ?
+ SWITCHABLE_FILTERS : cm->interp_filter];
+ int64_t adj_rd;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
- int64_t adj_rd;
- // In cases of poor prediction, filter_cache[] can contain really big
- // values, which actually are bigger than this_rd itself. This can
- // cause negative best_filter_rd[] values, which is obviously silly.
- // Therefore, if filter_cache < ref, we do an adjusted calculation.
- if (cpi->rd_filter_cache[i] >= ref)
- adj_rd = this_rd + cpi->rd_filter_cache[i] - ref;
- else // FIXME(rbultje) do this for comppred also
- adj_rd = this_rd - (ref - cpi->rd_filter_cache[i]) * this_rd / ref;
- best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd);
- }
- }
-
- /* keep record of best txfm size */
- if (bsize < BLOCK_32X32) {
- if (bsize < BLOCK_16X16) {
- tx_cache[ALLOW_8X8] = tx_cache[ONLY_4X4];
- tx_cache[ALLOW_16X16] = tx_cache[ALLOW_8X8];
- }
- tx_cache[ALLOW_32X32] = tx_cache[ALLOW_16X16];
- }
- if (!mode_excluded && this_rd != INT64_MAX) {
- for (i = 0; i < TX_MODES && tx_cache[i] < INT64_MAX; i++) {
- int64_t adj_rd = INT64_MAX;
- if (ref_frame > INTRA_FRAME)
- adj_rd = this_rd + tx_cache[i] - tx_cache[cm->tx_mode];
+ if (ref == INT64_MAX)
+ adj_rd = 0;
+ else if (rd_opt->filter_cache[i] == INT64_MAX)
+ // when early termination is triggered, the encoder does not have
+ // access to the rate-distortion cost. it only knows that the cost
+ // should be above the maximum valid value. hence it takes the known
+ // maximum plus an arbitrary constant as the rate-distortion cost.
+ adj_rd = rd_opt->mask_filter - ref + 10;
else
- adj_rd = this_rd;
+ adj_rd = rd_opt->filter_cache[i] - ref;
- if (adj_rd < best_tx_rd[i])
- best_tx_rd[i] = adj_rd;
+ adj_rd += this_rd;
+ best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd);
}
}
@@ -4433,67 +4217,43 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
// If we used an estimate for the uv intra rd in the loop above...
if (cpi->sf.use_uv_intra_rd_estimate) {
// Do Intra UV best rd mode selection if best mode choice above was intra.
- if (vp9_ref_order[best_mode_index].ref_frame == INTRA_FRAME) {
- TX_SIZE uv_tx_size = get_uv_tx_size(mbmi);
- rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra[uv_tx_size],
- &rate_uv_tokenonly[uv_tx_size],
- &dist_uv[uv_tx_size],
- &skip_uv[uv_tx_size],
- BLOCK_8X8);
+ if (vp9_ref_order[best_ref_index].ref_frame[0] == INTRA_FRAME) {
+ *mbmi = best_mbmode;
+ rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra,
+ &rate_uv_tokenonly,
+ &dist_uv,
+ &skip_uv,
+ BLOCK_8X8, TX_4X4);
}
}
- // If we are using reference masking and the set mask flag is set then
- // create the reference frame mask.
- if (cpi->sf.reference_masking && cpi->set_ref_frame_mask)
- cpi->ref_frame_mask = ~(1 << vp9_ref_order[best_mode_index].ref_frame);
-
- if (best_rd == INT64_MAX && bsize < BLOCK_8X8) {
+ if (best_rd == INT64_MAX) {
*returnrate = INT_MAX;
- *returndistortion = INT_MAX;
+ *returndistortion = INT64_MAX;
return best_rd;
}
- assert((cm->mcomp_filter_type == SWITCHABLE) ||
- (cm->mcomp_filter_type == best_mbmode.interp_filter) ||
- (best_mbmode.ref_frame[0] == INTRA_FRAME));
-
- // Updating rd_thresh_freq_fact[] here means that the different
- // partition/block sizes are handled independently based on the best
- // choice for the current partition. It may well be better to keep a scaled
- // best rd so far value and update rd_thresh_freq_fact based on the mode/size
- // combination that wins out.
- if (cpi->sf.adaptive_rd_thresh) {
- for (mode_index = 0; mode_index < MAX_REFS; ++mode_index) {
- if (mode_index == best_mode_index) {
- cpi->rd_thresh_freq_sub8x8[bsize][mode_index] -=
- (cpi->rd_thresh_freq_sub8x8[bsize][mode_index] >> 3);
- } else {
- cpi->rd_thresh_freq_sub8x8[bsize][mode_index] += RD_THRESH_INC;
- if (cpi->rd_thresh_freq_sub8x8[bsize][mode_index] >
- (cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT)) {
- cpi->rd_thresh_freq_sub8x8[bsize][mode_index] =
- cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT;
- }
- }
- }
- }
+ assert((cm->interp_filter == SWITCHABLE) ||
+ (cm->interp_filter == best_mbmode.interp_filter) ||
+ !is_inter_block(&best_mbmode));
+
+ update_rd_thresh_fact(cpi, bsize, best_ref_index);
// macroblock modes
*mbmi = best_mbmode;
x->skip |= best_skip2;
- if (best_mbmode.ref_frame[0] == INTRA_FRAME) {
+ if (!is_inter_block(&best_mbmode)) {
for (i = 0; i < 4; i++)
- xd->mi_8x8[0]->bmi[i].as_mode = best_bmodes[i].as_mode;
+ xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode;
} else {
for (i = 0; i < 4; ++i)
- vpx_memcpy(&xd->mi_8x8[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info));
+ vpx_memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info));
- mbmi->mv[0].as_int = xd->mi_8x8[0]->bmi[3].as_mv[0].as_int;
- mbmi->mv[1].as_int = xd->mi_8x8[0]->bmi[3].as_mv[1].as_int;
+ mbmi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int;
+ mbmi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int;
}
- for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
+ for (i = 0; i < REFERENCE_MODES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
@@ -4507,26 +4267,14 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
else
best_filter_diff[i] = best_rd - best_filter_rd[i];
}
- if (cm->mcomp_filter_type == SWITCHABLE)
+ if (cm->interp_filter == SWITCHABLE)
assert(best_filter_diff[SWITCHABLE_FILTERS] == 0);
} else {
vp9_zero(best_filter_diff);
}
- if (!x->skip) {
- for (i = 0; i < TX_MODES; i++) {
- if (best_tx_rd[i] == INT64_MAX)
- best_tx_diff[i] = 0;
- else
- best_tx_diff[i] = best_rd - best_tx_rd[i];
- }
- } else {
- vp9_zero(best_tx_diff);
- }
-
- set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1],
- scale_factor);
- store_coding_context(x, ctx, best_mode_index,
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ store_coding_context(x, ctx, best_ref_index,
&mbmi->ref_mvs[mbmi->ref_frame[0]][0],
&mbmi->ref_mvs[mbmi->ref_frame[1] < 0 ? 0 :
mbmi->ref_frame[1]][0],
@@ -4534,3 +4282,120 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
return best_rd;
}
+
+void vp9_set_rd_speed_thresholds(VP9_COMP *cpi) {
+ int i;
+ RD_OPT *const rd = &cpi->rd;
+
+ // Set baseline threshold values
+ for (i = 0; i < MAX_MODES; ++i)
+ rd->thresh_mult[i] = is_best_mode(cpi->oxcf.mode) ? -500 : 0;
+
+ rd->thresh_mult[THR_NEARESTMV] = 0;
+ rd->thresh_mult[THR_NEARESTG] = 0;
+ rd->thresh_mult[THR_NEARESTA] = 0;
+
+ rd->thresh_mult[THR_DC] += 1000;
+
+ rd->thresh_mult[THR_NEWMV] += 1000;
+ rd->thresh_mult[THR_NEWA] += 1000;
+ rd->thresh_mult[THR_NEWG] += 1000;
+
+ rd->thresh_mult[THR_NEARMV] += 1000;
+ rd->thresh_mult[THR_NEARA] += 1000;
+ rd->thresh_mult[THR_COMP_NEARESTLA] += 1000;
+ rd->thresh_mult[THR_COMP_NEARESTGA] += 1000;
+
+ rd->thresh_mult[THR_TM] += 1000;
+
+ rd->thresh_mult[THR_COMP_NEARLA] += 1500;
+ rd->thresh_mult[THR_COMP_NEWLA] += 2000;
+ rd->thresh_mult[THR_NEARG] += 1000;
+ rd->thresh_mult[THR_COMP_NEARGA] += 1500;
+ rd->thresh_mult[THR_COMP_NEWGA] += 2000;
+
+ rd->thresh_mult[THR_ZEROMV] += 2000;
+ rd->thresh_mult[THR_ZEROG] += 2000;
+ rd->thresh_mult[THR_ZEROA] += 2000;
+ rd->thresh_mult[THR_COMP_ZEROLA] += 2500;
+ rd->thresh_mult[THR_COMP_ZEROGA] += 2500;
+
+ rd->thresh_mult[THR_H_PRED] += 2000;
+ rd->thresh_mult[THR_V_PRED] += 2000;
+ rd->thresh_mult[THR_D45_PRED ] += 2500;
+ rd->thresh_mult[THR_D135_PRED] += 2500;
+ rd->thresh_mult[THR_D117_PRED] += 2500;
+ rd->thresh_mult[THR_D153_PRED] += 2500;
+ rd->thresh_mult[THR_D207_PRED] += 2500;
+ rd->thresh_mult[THR_D63_PRED] += 2500;
+
+ /* disable frame modes if flags not set */
+ if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) {
+ rd->thresh_mult[THR_NEWMV ] = INT_MAX;
+ rd->thresh_mult[THR_NEARESTMV] = INT_MAX;
+ rd->thresh_mult[THR_ZEROMV ] = INT_MAX;
+ rd->thresh_mult[THR_NEARMV ] = INT_MAX;
+ }
+ if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
+ rd->thresh_mult[THR_NEARESTG ] = INT_MAX;
+ rd->thresh_mult[THR_ZEROG ] = INT_MAX;
+ rd->thresh_mult[THR_NEARG ] = INT_MAX;
+ rd->thresh_mult[THR_NEWG ] = INT_MAX;
+ }
+ if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) {
+ rd->thresh_mult[THR_NEARESTA ] = INT_MAX;
+ rd->thresh_mult[THR_ZEROA ] = INT_MAX;
+ rd->thresh_mult[THR_NEARA ] = INT_MAX;
+ rd->thresh_mult[THR_NEWA ] = INT_MAX;
+ }
+
+ if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) !=
+ (VP9_LAST_FLAG | VP9_ALT_FLAG)) {
+ rd->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX;
+ rd->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX;
+ rd->thresh_mult[THR_COMP_NEARLA ] = INT_MAX;
+ rd->thresh_mult[THR_COMP_NEWLA ] = INT_MAX;
+ }
+ if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) !=
+ (VP9_GOLD_FLAG | VP9_ALT_FLAG)) {
+ rd->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX;
+ rd->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX;
+ rd->thresh_mult[THR_COMP_NEARGA ] = INT_MAX;
+ rd->thresh_mult[THR_COMP_NEWGA ] = INT_MAX;
+ }
+}
+
+void vp9_set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi) {
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ RD_OPT *const rd = &cpi->rd;
+ int i;
+
+ for (i = 0; i < MAX_REFS; ++i)
+ rd->thresh_mult_sub8x8[i] = is_best_mode(cpi->oxcf.mode) ? -500 : 0;
+
+ rd->thresh_mult_sub8x8[THR_LAST] += 2500;
+ rd->thresh_mult_sub8x8[THR_GOLD] += 2500;
+ rd->thresh_mult_sub8x8[THR_ALTR] += 2500;
+ rd->thresh_mult_sub8x8[THR_INTRA] += 2500;
+ rd->thresh_mult_sub8x8[THR_COMP_LA] += 4500;
+ rd->thresh_mult_sub8x8[THR_COMP_GA] += 4500;
+
+ // Check for masked out split cases.
+ for (i = 0; i < MAX_REFS; i++)
+ if (sf->disable_split_mask & (1 << i))
+ rd->thresh_mult_sub8x8[i] = INT_MAX;
+
+ // disable mode test if frame flag is not set
+ if (!(cpi->ref_frame_flags & VP9_LAST_FLAG))
+ rd->thresh_mult_sub8x8[THR_LAST] = INT_MAX;
+ if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG))
+ rd->thresh_mult_sub8x8[THR_GOLD] = INT_MAX;
+ if (!(cpi->ref_frame_flags & VP9_ALT_FLAG))
+ rd->thresh_mult_sub8x8[THR_ALTR] = INT_MAX;
+ if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) !=
+ (VP9_LAST_FLAG | VP9_ALT_FLAG))
+ rd->thresh_mult_sub8x8[THR_COMP_LA] = INT_MAX;
+ if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) !=
+ (VP9_GOLD_FLAG | VP9_ALT_FLAG))
+ rd->thresh_mult_sub8x8[THR_COMP_GA] = INT_MAX;
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_rdopt.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_rdopt.h
index 92fb23548e0..b6b51e55382 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_rdopt.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_rdopt.h
@@ -8,24 +8,52 @@
* be found in the AUTHORS file in the root of the source tree.
*/
-
#ifndef VP9_ENCODER_VP9_RDOPT_H_
#define VP9_ENCODER_VP9_RDOPT_H_
+#include "vp9/encoder/vp9_encoder.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
#define RDDIV_BITS 7
#define RDCOST(RM, DM, R, D) \
(((128 + ((int64_t)R) * (RM)) >> 8) + (D << DM))
#define QIDX_SKIP_THRESH 115
+#define MV_COST_WEIGHT 108
+#define MV_COST_WEIGHT_SUB 120
+
+#define INVALID_MV 0x80008000
+
struct TileInfo;
-int vp9_compute_rd_mult(VP9_COMP *cpi, int qindex);
+int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex);
void vp9_initialize_rd_consts(VP9_COMP *cpi);
void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex);
+void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n,
+ unsigned int qstep, int *rate,
+ int64_t *dist);
+
+int vp9_get_switchable_rate(const VP9_COMP *cpi);
+
+void vp9_setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
+ const TileInfo *const tile,
+ MV_REFERENCE_FRAME ref_frame,
+ BLOCK_SIZE block_size,
+ int mi_row, int mi_col,
+ int_mv frame_nearest_mv[MAX_REF_FRAMES],
+ int_mv frame_near_mv[MAX_REF_FRAMES],
+ struct buf_2d yv12_mb[4][MAX_MB_PLANE]);
+
+const YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const VP9_COMP *cpi,
+ int ref_frame);
+
void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int *r, int64_t *d, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int64_t best_rd);
@@ -50,12 +78,60 @@ int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
void vp9_init_me_luts();
-void vp9_set_mbmode_and_mvs(MACROBLOCK *x,
- MB_PREDICTION_MODE mb, int_mv *mv);
+void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
+ const struct macroblockd_plane *pd,
+ ENTROPY_CONTEXT t_above[16],
+ ENTROPY_CONTEXT t_left[16]);
+
+void vp9_set_rd_speed_thresholds(VP9_COMP *cpi);
+
+void vp9_set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi);
+
+static INLINE int full_pixel_search(VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, MV *mvp_full,
+ int step_param, int error_per_bit,
+ const MV *ref_mv, MV *tmp_mv,
+ int var_max, int rd) {
+ int var = 0;
+
+ if (cpi->sf.search_method == FAST_DIAMOND) {
+ var = vp9_fast_dia_search(x, mvp_full, step_param, error_per_bit, 0,
+ &cpi->fn_ptr[bsize], 1, ref_mv, tmp_mv);
+ if (rd && var < var_max)
+ var = vp9_get_mvpred_var(x, tmp_mv, ref_mv, &cpi->fn_ptr[bsize], 1);
+ } else if (cpi->sf.search_method == FAST_HEX) {
+ var = vp9_fast_hex_search(x, mvp_full, step_param, error_per_bit, 0,
+ &cpi->fn_ptr[bsize], 1, ref_mv, tmp_mv);
+ if (rd && var < var_max)
+ var = vp9_get_mvpred_var(x, tmp_mv, ref_mv, &cpi->fn_ptr[bsize], 1);
+ } else if (cpi->sf.search_method == HEX) {
+ var = vp9_hex_search(x, mvp_full, step_param, error_per_bit, 1,
+ &cpi->fn_ptr[bsize], 1, ref_mv, tmp_mv);
+ if (rd && var < var_max)
+ var = vp9_get_mvpred_var(x, tmp_mv, ref_mv, &cpi->fn_ptr[bsize], 1);
+ } else if (cpi->sf.search_method == SQUARE) {
+ var = vp9_square_search(x, mvp_full, step_param, error_per_bit, 1,
+ &cpi->fn_ptr[bsize], 1, ref_mv, tmp_mv);
+ if (rd && var < var_max)
+ var = vp9_get_mvpred_var(x, tmp_mv, ref_mv, &cpi->fn_ptr[bsize], 1);
+ } else if (cpi->sf.search_method == BIGDIA) {
+ var = vp9_bigdia_search(x, mvp_full, step_param, error_per_bit, 1,
+ &cpi->fn_ptr[bsize], 1, ref_mv, tmp_mv);
+ if (rd && var < var_max)
+ var = vp9_get_mvpred_var(x, tmp_mv, ref_mv, &cpi->fn_ptr[bsize], 1);
+ } else {
+ int further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
+
+ var = vp9_full_pixel_diamond(cpi, x, mvp_full, step_param, error_per_bit,
+ further_steps, 1, &cpi->fn_ptr[bsize],
+ ref_mv, tmp_mv);
+ }
+
+ return var;
+}
-void vp9_get_entropy_contexts(TX_SIZE tx_size,
- ENTROPY_CONTEXT t_above[16], ENTROPY_CONTEXT t_left[16],
- const ENTROPY_CONTEXT *above, const ENTROPY_CONTEXT *left,
- int num_4x4_w, int num_4x4_h);
+#ifdef __cplusplus
+} // extern "C"
+#endif
#endif // VP9_ENCODER_VP9_RDOPT_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_resize.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_resize.c
new file mode 100644
index 00000000000..4e6efaeb969
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_resize.c
@@ -0,0 +1,576 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/encoder/vp9_resize.h"
+
+#define FILTER_BITS 7
+
+#define INTERP_TAPS 8
+#define SUBPEL_BITS 5
+#define SUBPEL_MASK ((1 << SUBPEL_BITS) - 1)
+#define INTERP_PRECISION_BITS 32
+
+typedef int16_t interp_kernel[INTERP_TAPS];
+
+// Filters for interpolation (0.5-band) - note this also filters integer pels.
+const interp_kernel vp9_filteredinterp_filters500[(1 << SUBPEL_BITS)] = {
+ {-3, 0, 35, 64, 35, 0, -3, 0},
+ {-3, -1, 34, 64, 36, 1, -3, 0},
+ {-3, -1, 32, 64, 38, 1, -3, 0},
+ {-2, -2, 31, 63, 39, 2, -3, 0},
+ {-2, -2, 29, 63, 41, 2, -3, 0},
+ {-2, -2, 28, 63, 42, 3, -4, 0},
+ {-2, -3, 27, 63, 43, 4, -4, 0},
+ {-2, -3, 25, 62, 45, 5, -4, 0},
+ {-2, -3, 24, 62, 46, 5, -4, 0},
+ {-2, -3, 23, 61, 47, 6, -4, 0},
+ {-2, -3, 21, 60, 49, 7, -4, 0},
+ {-1, -4, 20, 60, 50, 8, -4, -1},
+ {-1, -4, 19, 59, 51, 9, -4, -1},
+ {-1, -4, 17, 58, 52, 10, -4, 0},
+ {-1, -4, 16, 57, 53, 12, -4, -1},
+ {-1, -4, 15, 56, 54, 13, -4, -1},
+ {-1, -4, 14, 55, 55, 14, -4, -1},
+ {-1, -4, 13, 54, 56, 15, -4, -1},
+ {-1, -4, 12, 53, 57, 16, -4, -1},
+ {0, -4, 10, 52, 58, 17, -4, -1},
+ {-1, -4, 9, 51, 59, 19, -4, -1},
+ {-1, -4, 8, 50, 60, 20, -4, -1},
+ {0, -4, 7, 49, 60, 21, -3, -2},
+ {0, -4, 6, 47, 61, 23, -3, -2},
+ {0, -4, 5, 46, 62, 24, -3, -2},
+ {0, -4, 5, 45, 62, 25, -3, -2},
+ {0, -4, 4, 43, 63, 27, -3, -2},
+ {0, -4, 3, 42, 63, 28, -2, -2},
+ {0, -3, 2, 41, 63, 29, -2, -2},
+ {0, -3, 2, 39, 63, 31, -2, -2},
+ {0, -3, 1, 38, 64, 32, -1, -3},
+ {0, -3, 1, 36, 64, 34, -1, -3}
+};
+
+// Filters for interpolation (0.625-band) - note this also filters integer pels.
+const interp_kernel vp9_filteredinterp_filters625[(1 << SUBPEL_BITS)] = {
+ {-1, -8, 33, 80, 33, -8, -1, 0},
+ {-1, -8, 30, 80, 35, -8, -1, 1},
+ {-1, -8, 28, 80, 37, -7, -2, 1},
+ {0, -8, 26, 79, 39, -7, -2, 1},
+ {0, -8, 24, 79, 41, -7, -2, 1},
+ {0, -8, 22, 78, 43, -6, -2, 1},
+ {0, -8, 20, 78, 45, -5, -3, 1},
+ {0, -8, 18, 77, 48, -5, -3, 1},
+ {0, -8, 16, 76, 50, -4, -3, 1},
+ {0, -8, 15, 75, 52, -3, -4, 1},
+ {0, -7, 13, 74, 54, -3, -4, 1},
+ {0, -7, 11, 73, 56, -2, -4, 1},
+ {0, -7, 10, 71, 58, -1, -4, 1},
+ {1, -7, 8, 70, 60, 0, -5, 1},
+ {1, -6, 6, 68, 62, 1, -5, 1},
+ {1, -6, 5, 67, 63, 2, -5, 1},
+ {1, -6, 4, 65, 65, 4, -6, 1},
+ {1, -5, 2, 63, 67, 5, -6, 1},
+ {1, -5, 1, 62, 68, 6, -6, 1},
+ {1, -5, 0, 60, 70, 8, -7, 1},
+ {1, -4, -1, 58, 71, 10, -7, 0},
+ {1, -4, -2, 56, 73, 11, -7, 0},
+ {1, -4, -3, 54, 74, 13, -7, 0},
+ {1, -4, -3, 52, 75, 15, -8, 0},
+ {1, -3, -4, 50, 76, 16, -8, 0},
+ {1, -3, -5, 48, 77, 18, -8, 0},
+ {1, -3, -5, 45, 78, 20, -8, 0},
+ {1, -2, -6, 43, 78, 22, -8, 0},
+ {1, -2, -7, 41, 79, 24, -8, 0},
+ {1, -2, -7, 39, 79, 26, -8, 0},
+ {1, -2, -7, 37, 80, 28, -8, -1},
+ {1, -1, -8, 35, 80, 30, -8, -1},
+};
+
+// Filters for interpolation (0.75-band) - note this also filters integer pels.
+const interp_kernel vp9_filteredinterp_filters750[(1 << SUBPEL_BITS)] = {
+ {2, -11, 25, 96, 25, -11, 2, 0},
+ {2, -11, 22, 96, 28, -11, 2, 0},
+ {2, -10, 19, 95, 31, -11, 2, 0},
+ {2, -10, 17, 95, 34, -12, 2, 0},
+ {2, -9, 14, 94, 37, -12, 2, 0},
+ {2, -8, 12, 93, 40, -12, 1, 0},
+ {2, -8, 9, 92, 43, -12, 1, 1},
+ {2, -7, 7, 91, 46, -12, 1, 0},
+ {2, -7, 5, 90, 49, -12, 1, 0},
+ {2, -6, 3, 88, 52, -12, 0, 1},
+ {2, -5, 1, 86, 55, -12, 0, 1},
+ {2, -5, -1, 84, 58, -11, 0, 1},
+ {2, -4, -2, 82, 61, -11, -1, 1},
+ {2, -4, -4, 80, 64, -10, -1, 1},
+ {1, -3, -5, 77, 67, -9, -1, 1},
+ {1, -3, -6, 75, 70, -8, -2, 1},
+ {1, -2, -7, 72, 72, -7, -2, 1},
+ {1, -2, -8, 70, 75, -6, -3, 1},
+ {1, -1, -9, 67, 77, -5, -3, 1},
+ {1, -1, -10, 64, 80, -4, -4, 2},
+ {1, -1, -11, 61, 82, -2, -4, 2},
+ {1, 0, -11, 58, 84, -1, -5, 2},
+ {1, 0, -12, 55, 86, 1, -5, 2},
+ {1, 0, -12, 52, 88, 3, -6, 2},
+ {0, 1, -12, 49, 90, 5, -7, 2},
+ {0, 1, -12, 46, 91, 7, -7, 2},
+ {1, 1, -12, 43, 92, 9, -8, 2},
+ {0, 1, -12, 40, 93, 12, -8, 2},
+ {0, 2, -12, 37, 94, 14, -9, 2},
+ {0, 2, -12, 34, 95, 17, -10, 2},
+ {0, 2, -11, 31, 95, 19, -10, 2},
+ {0, 2, -11, 28, 96, 22, -11, 2}
+};
+
+// Filters for interpolation (0.875-band) - note this also filters integer pels.
+const interp_kernel vp9_filteredinterp_filters875[(1 << SUBPEL_BITS)] = {
+ {3, -8, 13, 112, 13, -8, 3, 0},
+ {3, -7, 10, 112, 17, -9, 3, -1},
+ {2, -6, 7, 111, 21, -9, 3, -1},
+ {2, -5, 4, 111, 24, -10, 3, -1},
+ {2, -4, 1, 110, 28, -11, 3, -1},
+ {1, -3, -1, 108, 32, -12, 4, -1},
+ {1, -2, -3, 106, 36, -13, 4, -1},
+ {1, -1, -6, 105, 40, -14, 4, -1},
+ {1, -1, -7, 102, 44, -14, 4, -1},
+ {1, 0, -9, 100, 48, -15, 4, -1},
+ {1, 1, -11, 97, 53, -16, 4, -1},
+ {0, 1, -12, 95, 57, -16, 4, -1},
+ {0, 2, -13, 91, 61, -16, 4, -1},
+ {0, 2, -14, 88, 65, -16, 4, -1},
+ {0, 3, -15, 84, 69, -17, 4, 0},
+ {0, 3, -16, 81, 73, -16, 3, 0},
+ {0, 3, -16, 77, 77, -16, 3, 0},
+ {0, 3, -16, 73, 81, -16, 3, 0},
+ {0, 4, -17, 69, 84, -15, 3, 0},
+ {-1, 4, -16, 65, 88, -14, 2, 0},
+ {-1, 4, -16, 61, 91, -13, 2, 0},
+ {-1, 4, -16, 57, 95, -12, 1, 0},
+ {-1, 4, -16, 53, 97, -11, 1, 1},
+ {-1, 4, -15, 48, 100, -9, 0, 1},
+ {-1, 4, -14, 44, 102, -7, -1, 1},
+ {-1, 4, -14, 40, 105, -6, -1, 1},
+ {-1, 4, -13, 36, 106, -3, -2, 1},
+ {-1, 4, -12, 32, 108, -1, -3, 1},
+ {-1, 3, -11, 28, 110, 1, -4, 2},
+ {-1, 3, -10, 24, 111, 4, -5, 2},
+ {-1, 3, -9, 21, 111, 7, -6, 2},
+ {-1, 3, -9, 17, 112, 10, -7, 3}
+};
+
+// Filters for interpolation (full-band) - no filtering for integer pixels
+const interp_kernel vp9_filteredinterp_filters1000[(1 << SUBPEL_BITS)] = {
+ {0, 0, 0, 128, 0, 0, 0, 0},
+ {0, 1, -3, 128, 3, -1, 0, 0},
+ {-1, 2, -6, 127, 7, -2, 1, 0},
+ {-1, 3, -9, 126, 12, -4, 1, 0},
+ {-1, 4, -12, 125, 16, -5, 1, 0},
+ {-1, 4, -14, 123, 20, -6, 2, 0},
+ {-1, 5, -15, 120, 25, -8, 2, 0},
+ {-1, 5, -17, 118, 30, -9, 3, -1},
+ {-1, 6, -18, 114, 35, -10, 3, -1},
+ {-1, 6, -19, 111, 41, -12, 3, -1},
+ {-1, 6, -20, 107, 46, -13, 4, -1},
+ {-1, 6, -21, 103, 52, -14, 4, -1},
+ {-1, 6, -21, 99, 57, -16, 5, -1},
+ {-1, 6, -21, 94, 63, -17, 5, -1},
+ {-1, 6, -20, 89, 68, -18, 5, -1},
+ {-1, 6, -20, 84, 73, -19, 6, -1},
+ {-1, 6, -20, 79, 79, -20, 6, -1},
+ {-1, 6, -19, 73, 84, -20, 6, -1},
+ {-1, 5, -18, 68, 89, -20, 6, -1},
+ {-1, 5, -17, 63, 94, -21, 6, -1},
+ {-1, 5, -16, 57, 99, -21, 6, -1},
+ {-1, 4, -14, 52, 103, -21, 6, -1},
+ {-1, 4, -13, 46, 107, -20, 6, -1},
+ {-1, 3, -12, 41, 111, -19, 6, -1},
+ {-1, 3, -10, 35, 114, -18, 6, -1},
+ {-1, 3, -9, 30, 118, -17, 5, -1},
+ {0, 2, -8, 25, 120, -15, 5, -1},
+ {0, 2, -6, 20, 123, -14, 4, -1},
+ {0, 1, -5, 16, 125, -12, 4, -1},
+ {0, 1, -4, 12, 126, -9, 3, -1},
+ {0, 1, -2, 7, 127, -6, 2, -1},
+ {0, 0, -1, 3, 128, -3, 1, 0}
+};
+
+// Filters for factor of 2 downsampling.
+static const int16_t vp9_down2_symeven_half_filter[] = {56, 12, -3, -1};
+static const int16_t vp9_down2_symodd_half_filter[] = {64, 35, 0, -3};
+
+static const interp_kernel *choose_interp_filter(int inlength, int outlength) {
+ int outlength16 = outlength * 16;
+ if (outlength16 >= inlength * 16)
+ return vp9_filteredinterp_filters1000;
+ else if (outlength16 >= inlength * 13)
+ return vp9_filteredinterp_filters875;
+ else if (outlength16 >= inlength * 11)
+ return vp9_filteredinterp_filters750;
+ else if (outlength16 >= inlength * 9)
+ return vp9_filteredinterp_filters625;
+ else
+ return vp9_filteredinterp_filters500;
+}
+
+static void interpolate(const uint8_t *const input, int inlength,
+ uint8_t *output, int outlength) {
+ const int64_t delta = (((uint64_t)inlength << 32) + outlength / 2) /
+ outlength;
+ const int64_t offset = inlength > outlength ?
+ (((int64_t)(inlength - outlength) << 31) + outlength / 2) / outlength :
+ -(((int64_t)(outlength - inlength) << 31) + outlength / 2) / outlength;
+ uint8_t *optr = output;
+ int x, x1, x2, sum, k, int_pel, sub_pel;
+ int64_t y;
+
+ const interp_kernel *interp_filters =
+ choose_interp_filter(inlength, outlength);
+
+ x = 0;
+ y = offset;
+ while ((y >> INTERP_PRECISION_BITS) < (INTERP_TAPS / 2 - 1)) {
+ x++;
+ y += delta;
+ }
+ x1 = x;
+ x = outlength - 1;
+ y = delta * x + offset;
+ while ((y >> INTERP_PRECISION_BITS) +
+ (int64_t)(INTERP_TAPS / 2) >= inlength) {
+ x--;
+ y -= delta;
+ }
+ x2 = x;
+ if (x1 > x2) {
+ for (x = 0, y = offset; x < outlength; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k) {
+ const int pk = int_pel - INTERP_TAPS / 2 + 1 + k;
+ sum += filter[k] * input[(pk < 0 ? 0 :
+ (pk >= inlength ? inlength - 1 : pk))];
+ }
+ *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+ }
+ } else {
+ // Initial part.
+ for (x = 0, y = offset; x < x1; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k)
+ sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k < 0 ?
+ 0 :
+ int_pel - INTERP_TAPS / 2 + 1 + k)];
+ *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+ }
+ // Middle part.
+ for (; x <= x2; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k)
+ sum += filter[k] * input[int_pel - INTERP_TAPS / 2 + 1 + k];
+ *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+ }
+ // End part.
+ for (; x < outlength; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k)
+ sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k >=
+ inlength ? inlength - 1 :
+ int_pel - INTERP_TAPS / 2 + 1 + k)];
+ *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+ }
+ }
+}
+
+static void down2_symeven(const uint8_t *const input, int length,
+ uint8_t *output) {
+ // Actual filter len = 2 * filter_len_half.
+ static const int16_t *filter = vp9_down2_symeven_half_filter;
+ const int filter_len_half = sizeof(vp9_down2_symeven_half_filter) / 2;
+ int i, j;
+ uint8_t *optr = output;
+ int l1 = filter_len_half;
+ int l2 = (length - filter_len_half);
+ l1 += (l1 & 1);
+ l2 += (l2 & 1);
+ if (l1 > l2) {
+ // Short input length.
+ for (i = 0; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] +
+ input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ } else {
+ // Initial part.
+ for (i = 0; i < l1; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + 1 + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ // Middle part.
+ for (; i < l2; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[i - j] + input[i + 1 + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ // End part.
+ for (; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[i - j] +
+ input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ }
+}
+
+static void down2_symodd(const uint8_t *const input, int length,
+ uint8_t *output) {
+ // Actual filter len = 2 * filter_len_half - 1.
+ static const int16_t *filter = vp9_down2_symodd_half_filter;
+ const int filter_len_half = sizeof(vp9_down2_symodd_half_filter) / 2;
+ int i, j;
+ uint8_t *optr = output;
+ int l1 = filter_len_half - 1;
+ int l2 = (length - filter_len_half + 1);
+ l1 += (l1 & 1);
+ l2 += (l2 & 1);
+ if (l1 > l2) {
+ // Short input length.
+ for (i = 0; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] +
+ input[(i + j >= length ? length - 1 : i + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ } else {
+ // Initial part.
+ for (i = 0; i < l1; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ // Middle part.
+ for (; i < l2; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[i - j] + input[i + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ // End part.
+ for (; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[i - j] + input[(i + j >= length ? length - 1 : i + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ }
+}
+
+static int get_down2_length(int length, int steps) {
+ int s;
+ for (s = 0; s < steps; ++s)
+ length = (length + 1) >> 1;
+ return length;
+}
+
+int get_down2_steps(int in_length, int out_length) {
+ int steps = 0;
+ int proj_in_length;
+ while ((proj_in_length = get_down2_length(in_length, 1)) >= out_length) {
+ ++steps;
+ in_length = proj_in_length;
+ }
+ return steps;
+}
+
+static void resize_multistep(const uint8_t *const input,
+ int length,
+ uint8_t *output,
+ int olength,
+ uint8_t *buf) {
+ int steps;
+ if (length == olength) {
+ memcpy(output, input, sizeof(uint8_t) * length);
+ return;
+ }
+ steps = get_down2_steps(length, olength);
+
+ if (steps > 0) {
+ int s;
+ uint8_t *out = NULL;
+ uint8_t *tmpbuf = NULL;
+ uint8_t *otmp, *otmp2;
+ int filteredlength = length;
+ if (!tmpbuf) {
+ tmpbuf = (uint8_t *)malloc(sizeof(uint8_t) * length);
+ otmp = tmpbuf;
+ } else {
+ otmp = buf;
+ }
+ otmp2 = otmp + get_down2_length(length, 1);
+ for (s = 0; s < steps; ++s) {
+ const int proj_filteredlength = get_down2_length(filteredlength, 1);
+ const uint8_t *const in = (s == 0 ? input : out);
+ if (s == steps - 1 && proj_filteredlength == olength)
+ out = output;
+ else
+ out = (s & 1 ? otmp2 : otmp);
+ if (filteredlength & 1)
+ down2_symodd(in, filteredlength, out);
+ else
+ down2_symeven(in, filteredlength, out);
+ filteredlength = proj_filteredlength;
+ }
+ if (filteredlength != olength) {
+ interpolate(out, filteredlength, output, olength);
+ }
+ if (tmpbuf)
+ free(tmpbuf);
+ } else {
+ interpolate(input, length, output, olength);
+ }
+}
+
+static void fill_col_to_arr(uint8_t *img, int stride, int len, uint8_t *arr) {
+ int i;
+ uint8_t *iptr = img;
+ uint8_t *aptr = arr;
+ for (i = 0; i < len; ++i, iptr += stride) {
+ *aptr++ = *iptr;
+ }
+}
+
+static void fill_arr_to_col(uint8_t *img, int stride, int len, uint8_t *arr) {
+ int i;
+ uint8_t *iptr = img;
+ uint8_t *aptr = arr;
+ for (i = 0; i < len; ++i, iptr += stride) {
+ *iptr = *aptr++;
+ }
+}
+
+void vp9_resize_plane(const uint8_t *const input,
+ int height,
+ int width,
+ int in_stride,
+ uint8_t *output,
+ int height2,
+ int width2,
+ int out_stride) {
+ int i;
+ uint8_t *intbuf = (uint8_t *)malloc(sizeof(uint8_t) * width2 * height);
+ uint8_t *tmpbuf = (uint8_t *)malloc(sizeof(uint8_t) *
+ (width < height ? height : width));
+ uint8_t *arrbuf = (uint8_t *)malloc(sizeof(uint8_t) * (height + height2));
+ for (i = 0; i < height; ++i)
+ resize_multistep(input + in_stride * i, width,
+ intbuf + width2 * i, width2, tmpbuf);
+ for (i = 0; i < width2; ++i) {
+ fill_col_to_arr(intbuf + i, width2, height, arrbuf);
+ resize_multistep(arrbuf, height, arrbuf + height, height2, tmpbuf);
+ fill_arr_to_col(output + i, out_stride, height2, arrbuf + height);
+ }
+ free(intbuf);
+ free(tmpbuf);
+ free(arrbuf);
+}
+
+void vp9_resize_frame420(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u, const uint8_t *const v,
+ int uv_stride,
+ int height, int width,
+ uint8_t *oy, int oy_stride,
+ uint8_t *ou, uint8_t *ov, int ouv_stride,
+ int oheight, int owidth) {
+ vp9_resize_plane(y, height, width, y_stride,
+ oy, oheight, owidth, oy_stride);
+ vp9_resize_plane(u, height / 2, width / 2, uv_stride,
+ ou, oheight / 2, owidth / 2, ouv_stride);
+ vp9_resize_plane(v, height / 2, width / 2, uv_stride,
+ ov, oheight / 2, owidth / 2, ouv_stride);
+}
+
+void vp9_resize_frame422(const uint8_t *const y, int y_stride,
+ const uint8_t *const u, const uint8_t *const v,
+ int uv_stride,
+ int height, int width,
+ uint8_t *oy, int oy_stride,
+ uint8_t *ou, uint8_t *ov, int ouv_stride,
+ int oheight, int owidth) {
+ vp9_resize_plane(y, height, width, y_stride,
+ oy, oheight, owidth, oy_stride);
+ vp9_resize_plane(u, height, width / 2, uv_stride,
+ ou, oheight, owidth / 2, ouv_stride);
+ vp9_resize_plane(v, height, width / 2, uv_stride,
+ ov, oheight, owidth / 2, ouv_stride);
+}
+
+void vp9_resize_frame444(const uint8_t *const y, int y_stride,
+ const uint8_t *const u, const uint8_t *const v,
+ int uv_stride,
+ int height, int width,
+ uint8_t *oy, int oy_stride,
+ uint8_t *ou, uint8_t *ov, int ouv_stride,
+ int oheight, int owidth) {
+ vp9_resize_plane(y, height, width, y_stride,
+ oy, oheight, owidth, oy_stride);
+ vp9_resize_plane(u, height, width, uv_stride,
+ ou, oheight, owidth, ouv_stride);
+ vp9_resize_plane(v, height, width, uv_stride,
+ ov, oheight, owidth, ouv_stride);
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_resize.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_resize.h
new file mode 100644
index 00000000000..1818cd47efb
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_resize.h
@@ -0,0 +1,68 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_RESIZE_H_
+#define VP9_ENCODER_VP9_RESIZE_H_
+
+#include <stdio.h>
+#include "vpx/vpx_integer.h"
+
+void vp9_resize_plane(const uint8_t *const input,
+ int height,
+ int width,
+ int in_stride,
+ uint8_t *output,
+ int height2,
+ int width2,
+ int out_stride);
+void vp9_resize_frame420(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u,
+ const uint8_t *const v,
+ int uv_stride,
+ int height,
+ int width,
+ uint8_t *oy,
+ int oy_stride,
+ uint8_t *ou,
+ uint8_t *ov,
+ int ouv_stride,
+ int oheight,
+ int owidth);
+void vp9_resize_frame422(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u,
+ const uint8_t *const v,
+ int uv_stride,
+ int height,
+ int width,
+ uint8_t *oy,
+ int oy_stride,
+ uint8_t *ou,
+ uint8_t *ov,
+ int ouv_stride,
+ int oheight,
+ int owidth);
+void vp9_resize_frame444(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u,
+ const uint8_t *const v,
+ int uv_stride,
+ int height,
+ int width,
+ uint8_t *oy,
+ int oy_stride,
+ uint8_t *ou,
+ uint8_t *ov,
+ int ouv_stride,
+ int oheight,
+ int owidth);
+
+#endif // VP9_ENCODER_VP9_RESIZE_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_sad.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_sad.c
new file mode 100644
index 00000000000..892e9055198
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_sad.c
@@ -0,0 +1,137 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <stdlib.h>
+
+#include "./vp9_rtcd.h"
+#include "./vpx_config.h"
+
+#include "vpx/vpx_integer.h"
+#include "vp9/encoder/vp9_variance.h"
+
+static INLINE unsigned int sad(const uint8_t *a, int a_stride,
+ const uint8_t *b, int b_stride,
+ int width, int height) {
+ int y, x;
+ unsigned int sad = 0;
+
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++)
+ sad += abs(a[x] - b[x]);
+
+ a += a_stride;
+ b += b_stride;
+ }
+
+ return sad;
+}
+
+#define sadMxN(m, n) \
+unsigned int vp9_sad##m##x##n##_c(const uint8_t *src, int src_stride, \
+ const uint8_t *ref, int ref_stride, \
+ unsigned int max_sad) { \
+ return sad(src, src_stride, ref, ref_stride, m, n); \
+} \
+unsigned int vp9_sad##m##x##n##_avg_c(const uint8_t *src, int src_stride, \
+ const uint8_t *ref, int ref_stride, \
+ const uint8_t *second_pred, \
+ unsigned int max_sad) { \
+ uint8_t comp_pred[m * n]; \
+ vp9_comp_avg_pred(comp_pred, second_pred, m, n, ref, ref_stride); \
+ return sad(src, src_stride, comp_pred, m, m, n); \
+}
+
+#define sadMxNxK(m, n, k) \
+void vp9_sad##m##x##n##x##k##_c(const uint8_t *src, int src_stride, \
+ const uint8_t *ref, int ref_stride, \
+ unsigned int *sads) { \
+ int i; \
+ for (i = 0; i < k; ++i) \
+ sads[i] = vp9_sad##m##x##n##_c(src, src_stride, &ref[i], ref_stride, \
+ 0x7fffffff); \
+}
+
+#define sadMxNx4D(m, n) \
+void vp9_sad##m##x##n##x4d_c(const uint8_t *src, int src_stride, \
+ const uint8_t *const refs[], int ref_stride, \
+ unsigned int *sads) { \
+ int i; \
+ for (i = 0; i < 4; ++i) \
+ sads[i] = vp9_sad##m##x##n##_c(src, src_stride, refs[i], ref_stride, \
+ 0x7fffffff); \
+}
+
+// 64x64
+sadMxN(64, 64)
+sadMxNxK(64, 64, 3)
+sadMxNxK(64, 64, 8)
+sadMxNx4D(64, 64)
+
+// 64x32
+sadMxN(64, 32)
+sadMxNx4D(64, 32)
+
+// 32x64
+sadMxN(32, 64)
+sadMxNx4D(32, 64)
+
+// 32x32
+sadMxN(32, 32)
+sadMxNxK(32, 32, 3)
+sadMxNxK(32, 32, 8)
+sadMxNx4D(32, 32)
+
+// 32x16
+sadMxN(32, 16)
+sadMxNx4D(32, 16)
+
+// 16x32
+sadMxN(16, 32)
+sadMxNx4D(16, 32)
+
+// 16x16
+sadMxN(16, 16)
+sadMxNxK(16, 16, 3)
+sadMxNxK(16, 16, 8)
+sadMxNx4D(16, 16)
+
+// 16x8
+sadMxN(16, 8)
+sadMxNxK(16, 8, 3)
+sadMxNxK(16, 8, 8)
+sadMxNx4D(16, 8)
+
+// 8x16
+sadMxN(8, 16)
+sadMxNxK(8, 16, 3)
+sadMxNxK(8, 16, 8)
+sadMxNx4D(8, 16)
+
+// 8x8
+sadMxN(8, 8)
+sadMxNxK(8, 8, 3)
+sadMxNxK(8, 8, 8)
+sadMxNx4D(8, 8)
+
+// 8x4
+sadMxN(8, 4)
+sadMxNxK(8, 4, 8)
+sadMxNx4D(8, 4)
+
+// 4x8
+sadMxN(4, 8)
+sadMxNxK(4, 8, 8)
+sadMxNx4D(4, 8)
+
+// 4x4
+sadMxN(4, 4)
+sadMxNxK(4, 4, 3)
+sadMxNxK(4, 4, 8)
+sadMxNx4D(4, 4)
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_sad_c.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_sad_c.c
deleted file mode 100644
index 42ddb21a51b..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_sad_c.c
+++ /dev/null
@@ -1,615 +0,0 @@
-/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-
-#include <stdlib.h>
-#include "vp9/common/vp9_sadmxn.h"
-#include "vp9/encoder/vp9_variance.h"
-#include "./vpx_config.h"
-#include "vpx/vpx_integer.h"
-#include "./vp9_rtcd.h"
-
-#define sad_mxn_func(m, n) \
-unsigned int vp9_sad##m##x##n##_c(const uint8_t *src_ptr, \
- int src_stride, \
- const uint8_t *ref_ptr, \
- int ref_stride, \
- unsigned int max_sad) { \
- return sad_mx_n_c(src_ptr, src_stride, ref_ptr, ref_stride, m, n); \
-} \
-unsigned int vp9_sad##m##x##n##_avg_c(const uint8_t *src_ptr, \
- int src_stride, \
- const uint8_t *ref_ptr, \
- int ref_stride, \
- const uint8_t *second_pred, \
- unsigned int max_sad) { \
- uint8_t comp_pred[m * n]; \
- comp_avg_pred(comp_pred, second_pred, m, n, ref_ptr, ref_stride); \
- return sad_mx_n_c(src_ptr, src_stride, comp_pred, m, m, n); \
-}
-
-sad_mxn_func(64, 64)
-sad_mxn_func(64, 32)
-sad_mxn_func(32, 64)
-sad_mxn_func(32, 32)
-sad_mxn_func(32, 16)
-sad_mxn_func(16, 32)
-sad_mxn_func(16, 16)
-sad_mxn_func(16, 8)
-sad_mxn_func(8, 16)
-sad_mxn_func(8, 8)
-sad_mxn_func(8, 4)
-sad_mxn_func(4, 8)
-sad_mxn_func(4, 4)
-
-void vp9_sad64x32x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad64x32(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad64x32(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad64x32(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad64x32(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad32x64x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad32x64(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad32x64(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad32x64(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad32x64(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad32x16x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad32x16(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad32x16(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad32x16(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad32x16(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad16x32x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad16x32(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad16x32(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad16x32(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad16x32(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad64x64x3_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad64x64(src_ptr, src_stride, ref_ptr, ref_stride,
- 0x7fffffff);
- sad_array[1] = vp9_sad64x64(src_ptr, src_stride, ref_ptr + 1, ref_stride,
- 0x7fffffff);
- sad_array[2] = vp9_sad64x64(src_ptr, src_stride, ref_ptr + 2, ref_stride,
- 0x7fffffff);
-}
-
-void vp9_sad32x32x3_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr, ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr + 1, ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr + 2, ref_stride, 0x7fffffff);
-}
-
-void vp9_sad64x64x8_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr, ref_stride,
- 0x7fffffff);
- sad_array[1] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr + 1, ref_stride,
- 0x7fffffff);
- sad_array[2] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr + 2, ref_stride,
- 0x7fffffff);
- sad_array[3] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr + 3, ref_stride,
- 0x7fffffff);
- sad_array[4] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr + 4, ref_stride,
- 0x7fffffff);
- sad_array[5] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr + 5, ref_stride,
- 0x7fffffff);
- sad_array[6] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr + 6, ref_stride,
- 0x7fffffff);
- sad_array[7] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr + 7, ref_stride,
- 0x7fffffff);
-}
-
-void vp9_sad32x32x8_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr, ref_stride,
- 0x7fffffff);
- sad_array[1] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr + 1, ref_stride,
- 0x7fffffff);
- sad_array[2] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr + 2, ref_stride,
- 0x7fffffff);
- sad_array[3] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr + 3, ref_stride,
- 0x7fffffff);
- sad_array[4] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr + 4, ref_stride,
- 0x7fffffff);
- sad_array[5] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr + 5, ref_stride,
- 0x7fffffff);
- sad_array[6] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr + 6, ref_stride,
- 0x7fffffff);
- sad_array[7] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr + 7, ref_stride,
- 0x7fffffff);
-}
-
-void vp9_sad16x16x3_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr, ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr + 1, ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr + 2, ref_stride, 0x7fffffff);
-}
-
-void vp9_sad16x16x8_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- uint32_t *sad_array) {
- sad_array[0] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr, ref_stride,
- 0x7fffffff);
- sad_array[1] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr + 1, ref_stride,
- 0x7fffffff);
- sad_array[2] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr + 2, ref_stride,
- 0x7fffffff);
- sad_array[3] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr + 3, ref_stride,
- 0x7fffffff);
- sad_array[4] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr + 4, ref_stride,
- 0x7fffffff);
- sad_array[5] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr + 5, ref_stride,
- 0x7fffffff);
- sad_array[6] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr + 6, ref_stride,
- 0x7fffffff);
- sad_array[7] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr + 7, ref_stride,
- 0x7fffffff);
-}
-
-void vp9_sad16x8x3_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr, ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr + 1, ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr + 2, ref_stride, 0x7fffffff);
-}
-
-void vp9_sad16x8x8_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- uint32_t *sad_array) {
- sad_array[0] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr, ref_stride,
- 0x7fffffff);
- sad_array[1] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr + 1, ref_stride,
- 0x7fffffff);
- sad_array[2] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr + 2, ref_stride,
- 0x7fffffff);
- sad_array[3] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr + 3, ref_stride,
- 0x7fffffff);
- sad_array[4] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr + 4, ref_stride,
- 0x7fffffff);
- sad_array[5] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr + 5, ref_stride,
- 0x7fffffff);
- sad_array[6] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr + 6, ref_stride,
- 0x7fffffff);
- sad_array[7] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr + 7, ref_stride,
- 0x7fffffff);
-}
-
-void vp9_sad8x8x3_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr, ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr + 1, ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr + 2, ref_stride, 0x7fffffff);
-}
-
-void vp9_sad8x8x8_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- uint32_t *sad_array) {
- sad_array[0] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr, ref_stride,
- 0x7fffffff);
- sad_array[1] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr + 1, ref_stride,
- 0x7fffffff);
- sad_array[2] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr + 2, ref_stride,
- 0x7fffffff);
- sad_array[3] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr + 3, ref_stride,
- 0x7fffffff);
- sad_array[4] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr + 4, ref_stride,
- 0x7fffffff);
- sad_array[5] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr + 5, ref_stride,
- 0x7fffffff);
- sad_array[6] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr + 6, ref_stride,
- 0x7fffffff);
- sad_array[7] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr + 7, ref_stride,
- 0x7fffffff);
-}
-
-void vp9_sad8x16x3_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr, ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr + 1, ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr + 2, ref_stride, 0x7fffffff);
-}
-
-void vp9_sad8x16x8_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- uint32_t *sad_array) {
- sad_array[0] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr, ref_stride,
- 0x7fffffff);
- sad_array[1] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr + 1, ref_stride,
- 0x7fffffff);
- sad_array[2] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr + 2, ref_stride,
- 0x7fffffff);
- sad_array[3] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr + 3, ref_stride,
- 0x7fffffff);
- sad_array[4] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr + 4, ref_stride,
- 0x7fffffff);
- sad_array[5] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr + 5, ref_stride,
- 0x7fffffff);
- sad_array[6] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr + 6, ref_stride,
- 0x7fffffff);
- sad_array[7] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr + 7, ref_stride,
- 0x7fffffff);
-}
-
-void vp9_sad4x4x3_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr, ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr + 1, ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr + 2, ref_stride, 0x7fffffff);
-}
-
-void vp9_sad4x4x8_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- uint32_t *sad_array) {
- sad_array[0] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr, ref_stride,
- 0x7fffffff);
- sad_array[1] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr + 1, ref_stride,
- 0x7fffffff);
- sad_array[2] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr + 2, ref_stride,
- 0x7fffffff);
- sad_array[3] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr + 3, ref_stride,
- 0x7fffffff);
- sad_array[4] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr + 4, ref_stride,
- 0x7fffffff);
- sad_array[5] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr + 5, ref_stride,
- 0x7fffffff);
- sad_array[6] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr + 6, ref_stride,
- 0x7fffffff);
- sad_array[7] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr + 7, ref_stride,
- 0x7fffffff);
-}
-
-void vp9_sad64x64x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad64x64(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad32x32x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad32x32(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad16x16x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad16x16(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad16x8x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad16x8(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad8x8x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad8x8(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad8x16x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad8x16(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad8x4x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad8x4x8_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- uint32_t *sad_array) {
- sad_array[0] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr, ref_stride,
- 0x7fffffff);
- sad_array[1] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr + 1, ref_stride,
- 0x7fffffff);
- sad_array[2] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr + 2, ref_stride,
- 0x7fffffff);
- sad_array[3] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr + 3, ref_stride,
- 0x7fffffff);
- sad_array[4] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr + 4, ref_stride,
- 0x7fffffff);
- sad_array[5] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr + 5, ref_stride,
- 0x7fffffff);
- sad_array[6] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr + 6, ref_stride,
- 0x7fffffff);
- sad_array[7] = vp9_sad8x4(src_ptr, src_stride,
- ref_ptr + 7, ref_stride,
- 0x7fffffff);
-}
-
-void vp9_sad4x8x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
-
-void vp9_sad4x8x8_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- uint32_t *sad_array) {
- sad_array[0] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr, ref_stride,
- 0x7fffffff);
- sad_array[1] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr + 1, ref_stride,
- 0x7fffffff);
- sad_array[2] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr + 2, ref_stride,
- 0x7fffffff);
- sad_array[3] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr + 3, ref_stride,
- 0x7fffffff);
- sad_array[4] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr + 4, ref_stride,
- 0x7fffffff);
- sad_array[5] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr + 5, ref_stride,
- 0x7fffffff);
- sad_array[6] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr + 6, ref_stride,
- 0x7fffffff);
- sad_array[7] = vp9_sad4x8(src_ptr, src_stride,
- ref_ptr + 7, ref_stride,
- 0x7fffffff);
-}
-
-void vp9_sad4x4x4d_c(const uint8_t *src_ptr,
- int src_stride,
- const uint8_t* const ref_ptr[],
- int ref_stride,
- unsigned int *sad_array) {
- sad_array[0] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr[0], ref_stride, 0x7fffffff);
- sad_array[1] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr[1], ref_stride, 0x7fffffff);
- sad_array[2] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr[2], ref_stride, 0x7fffffff);
- sad_array[3] = vp9_sad4x4(src_ptr, src_stride,
- ref_ptr[3], ref_stride, 0x7fffffff);
-}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_segmentation.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_segmentation.c
index 24f011f8309..574df6293e1 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_segmentation.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_segmentation.c
@@ -10,46 +10,28 @@
#include <limits.h>
+
#include "vpx_mem/vpx_mem.h"
-#include "vp9/encoder/vp9_segmentation.h"
+
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_tile_common.h"
-void vp9_enable_segmentation(VP9_PTR ptr) {
- VP9_COMP *cpi = (VP9_COMP *)ptr;
- struct segmentation *const seg = &cpi->common.seg;
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_segmentation.h"
+void vp9_enable_segmentation(struct segmentation *seg) {
seg->enabled = 1;
seg->update_map = 1;
seg->update_data = 1;
}
-void vp9_disable_segmentation(VP9_PTR ptr) {
- VP9_COMP *cpi = (VP9_COMP *)ptr;
- struct segmentation *const seg = &cpi->common.seg;
+void vp9_disable_segmentation(struct segmentation *seg) {
seg->enabled = 0;
}
-void vp9_set_segmentation_map(VP9_PTR ptr,
- unsigned char *segmentation_map) {
- VP9_COMP *cpi = (VP9_COMP *)ptr;
- struct segmentation *const seg = &cpi->common.seg;
-
- // Copy in the new segmentation map
- vpx_memcpy(cpi->segmentation_map, segmentation_map,
- (cpi->common.mi_rows * cpi->common.mi_cols));
-
- // Signal that the map should be updated.
- seg->update_map = 1;
- seg->update_data = 1;
-}
-
-void vp9_set_segment_data(VP9_PTR ptr,
+void vp9_set_segment_data(struct segmentation *seg,
signed char *feature_data,
unsigned char abs_delta) {
- VP9_COMP *cpi = (VP9_COMP *)ptr;
- struct segmentation *const seg = &cpi->common.seg;
-
seg->abs_delta = abs_delta;
vpx_memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data));
@@ -58,6 +40,15 @@ void vp9_set_segment_data(VP9_PTR ptr,
// vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0,
// sizeof(cpi->mb.e_mbd.segment_feature_mask));
}
+void vp9_disable_segfeature(struct segmentation *seg, int segment_id,
+ SEG_LVL_FEATURES feature_id) {
+ seg->feature_mask[segment_id] &= ~(1 << feature_id);
+}
+
+void vp9_clear_segdata(struct segmentation *seg, int segment_id,
+ SEG_LVL_FEATURES feature_id) {
+ seg->feature_data[segment_id][feature_id] = 0;
+}
// Based on set of segment counts calculate a probability tree
static void calc_segtree_probs(int *segcounts, vp9_prob *segment_tree_probs) {
@@ -118,7 +109,7 @@ static int cost_segmap(int *segcounts, vp9_prob *probs) {
}
static void count_segs(VP9_COMP *cpi, const TileInfo *const tile,
- MODE_INFO **mi_8x8,
+ MODE_INFO **mi,
int *no_pred_segcounts,
int (*temporal_predictor_count)[2],
int *t_unpred_seg_counts,
@@ -130,8 +121,8 @@ static void count_segs(VP9_COMP *cpi, const TileInfo *const tile,
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
- xd->mi_8x8 = mi_8x8;
- segment_id = xd->mi_8x8[0]->mbmi.segment_id;
+ xd->mi = mi;
+ segment_id = xd->mi[0]->mbmi.segment_id;
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
@@ -140,7 +131,7 @@ static void count_segs(VP9_COMP *cpi, const TileInfo *const tile,
// Temporal prediction not allowed on key frames
if (cm->frame_type != KEY_FRAME) {
- const BLOCK_SIZE bsize = mi_8x8[0]->mbmi.sb_type;
+ const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
// Test to see if the segment id matches the predicted value.
const int pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map,
bsize, mi_row, mi_col);
@@ -149,46 +140,46 @@ static void count_segs(VP9_COMP *cpi, const TileInfo *const tile,
// Store the prediction status for this mb and update counts
// as appropriate
- vp9_set_pred_flag_seg_id(xd, pred_flag);
+ xd->mi[0]->mbmi.seg_id_predicted = pred_flag;
temporal_predictor_count[pred_context][pred_flag]++;
+ // Update the "unpredicted" segment count
if (!pred_flag)
- // Update the "unpredicted" segment count
t_unpred_seg_counts[segment_id]++;
}
}
static void count_segs_sb(VP9_COMP *cpi, const TileInfo *const tile,
- MODE_INFO **mi_8x8,
+ MODE_INFO **mi,
int *no_pred_segcounts,
int (*temporal_predictor_count)[2],
int *t_unpred_seg_counts,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const VP9_COMMON *const cm = &cpi->common;
- const int mis = cm->mode_info_stride;
+ const int mis = cm->mi_stride;
int bw, bh;
const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
- bw = num_8x8_blocks_wide_lookup[mi_8x8[0]->mbmi.sb_type];
- bh = num_8x8_blocks_high_lookup[mi_8x8[0]->mbmi.sb_type];
+ bw = num_8x8_blocks_wide_lookup[mi[0]->mbmi.sb_type];
+ bh = num_8x8_blocks_high_lookup[mi[0]->mbmi.sb_type];
if (bw == bs && bh == bs) {
- count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count,
+ count_segs(cpi, tile, mi, no_pred_segcounts, temporal_predictor_count,
t_unpred_seg_counts, bs, bs, mi_row, mi_col);
} else if (bw == bs && bh < bs) {
- count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count,
+ count_segs(cpi, tile, mi, no_pred_segcounts, temporal_predictor_count,
t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
- count_segs(cpi, tile, mi_8x8 + hbs * mis, no_pred_segcounts,
+ count_segs(cpi, tile, mi + hbs * mis, no_pred_segcounts,
temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
mi_row + hbs, mi_col);
} else if (bw < bs && bh == bs) {
- count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count,
+ count_segs(cpi, tile, mi, no_pred_segcounts, temporal_predictor_count,
t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
- count_segs(cpi, tile, mi_8x8 + hbs,
+ count_segs(cpi, tile, mi + hbs,
no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts,
hbs, bs, mi_row, mi_col + hbs);
} else {
@@ -201,7 +192,7 @@ static void count_segs_sb(VP9_COMP *cpi, const TileInfo *const tile,
const int mi_dc = hbs * (n & 1);
const int mi_dr = hbs * (n >> 1);
- count_segs_sb(cpi, tile, &mi_8x8[mi_dr * mis + mi_dc],
+ count_segs_sb(cpi, tile, &mi[mi_dr * mis + mi_dc],
no_pred_segcounts, temporal_predictor_count,
t_unpred_seg_counts,
mi_row + mi_dr, mi_col + mi_dc, subsize);
@@ -226,9 +217,6 @@ void vp9_choose_segmap_coding_method(VP9_COMP *cpi) {
vp9_prob t_pred_tree[SEG_TREE_PROBS];
vp9_prob t_nopred_prob[PREDICTION_PROBS];
- const int mis = cm->mode_info_stride;
- MODE_INFO **mi_ptr, **mi;
-
// Set default state for the segment tree probabilities and the
// temporal coding probabilities
vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
@@ -238,12 +226,13 @@ void vp9_choose_segmap_coding_method(VP9_COMP *cpi) {
// predicts this one
for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) {
TileInfo tile;
-
+ MODE_INFO **mi_ptr;
vp9_tile_init(&tile, cm, 0, tile_col);
+
mi_ptr = cm->mi_grid_visible + tile.mi_col_start;
for (mi_row = 0; mi_row < cm->mi_rows;
- mi_row += 8, mi_ptr += 8 * mis) {
- mi = mi_ptr;
+ mi_row += 8, mi_ptr += 8 * cm->mi_stride) {
+ MODE_INFO **mi = mi_ptr;
for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
mi_col += 8, mi += 8)
count_segs_sb(cpi, &tile, mi, no_pred_segcounts,
@@ -287,3 +276,12 @@ void vp9_choose_segmap_coding_method(VP9_COMP *cpi) {
vpx_memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree));
}
}
+
+void vp9_reset_segment_features(struct segmentation *seg) {
+ // Set up default state for MB feature flags
+ seg->enabled = 0;
+ seg->update_map = 0;
+ seg->update_data = 0;
+ vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
+ vp9_clearall_segfeatures(seg);
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_segmentation.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_segmentation.h
index 2183771c459..50dd562c805 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_segmentation.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_segmentation.h
@@ -13,14 +13,21 @@
#define VP9_ENCODER_VP9_SEGMENTATION_H_
#include "vp9/common/vp9_blockd.h"
-#include "vp9/encoder/vp9_onyx_int.h"
+#include "vp9/encoder/vp9_encoder.h"
-void vp9_enable_segmentation(VP9_PTR ptr);
-void vp9_disable_segmentation(VP9_PTR ptr);
+#ifdef __cplusplus
+extern "C" {
+#endif
-// Valid values for a segment are 0 to 3
-// Segmentation map is arrange as [Rows][Columns]
-void vp9_set_segmentation_map(VP9_PTR ptr, unsigned char *segmentation_map);
+void vp9_enable_segmentation(struct segmentation *seg);
+void vp9_disable_segmentation(struct segmentation *seg);
+
+void vp9_disable_segfeature(struct segmentation *seg,
+ int segment_id,
+ SEG_LVL_FEATURES feature_id);
+void vp9_clear_segdata(struct segmentation *seg,
+ int segment_id,
+ SEG_LVL_FEATURES feature_id);
// The values given for each segment can be either deltas (from the default
// value chosen for the frame) or absolute values.
@@ -32,9 +39,15 @@ void vp9_set_segmentation_map(VP9_PTR ptr, unsigned char *segmentation_map);
//
// abs_delta = SEGMENT_DELTADATA (deltas) abs_delta = SEGMENT_ABSDATA (use
// the absolute values given).
-void vp9_set_segment_data(VP9_PTR ptr, signed char *feature_data,
+void vp9_set_segment_data(struct segmentation *seg, signed char *feature_data,
unsigned char abs_delta);
void vp9_choose_segmap_coding_method(VP9_COMP *cpi);
+void vp9_reset_segment_features(struct segmentation *seg);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
#endif // VP9_ENCODER_VP9_SEGMENTATION_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_speed_features.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_speed_features.c
new file mode 100644
index 00000000000..93e23eee282
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_speed_features.c
@@ -0,0 +1,397 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_speed_features.h"
+
+enum {
+ ALL_INTRA_MODES = (1 << DC_PRED) |
+ (1 << V_PRED) | (1 << H_PRED) |
+ (1 << D45_PRED) | (1 << D135_PRED) |
+ (1 << D117_PRED) | (1 << D153_PRED) |
+ (1 << D207_PRED) | (1 << D63_PRED) |
+ (1 << TM_PRED),
+
+ INTRA_DC_ONLY = (1 << DC_PRED),
+
+ INTRA_DC_TM = (1 << TM_PRED) | (1 << DC_PRED),
+
+ INTRA_DC_H_V = (1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED),
+
+ INTRA_DC_TM_H_V = INTRA_DC_TM | (1 << V_PRED) | (1 << H_PRED)
+};
+
+enum {
+ DISABLE_ALL_INTER_SPLIT = (1 << THR_COMP_GA) |
+ (1 << THR_COMP_LA) |
+ (1 << THR_ALTR) |
+ (1 << THR_GOLD) |
+ (1 << THR_LAST),
+
+ DISABLE_ALL_SPLIT = (1 << THR_INTRA) | DISABLE_ALL_INTER_SPLIT,
+
+ DISABLE_COMPOUND_SPLIT = (1 << THR_COMP_GA) | (1 << THR_COMP_LA),
+
+ LAST_AND_INTRA_SPLIT_ONLY = (1 << THR_COMP_GA) |
+ (1 << THR_COMP_LA) |
+ (1 << THR_ALTR) |
+ (1 << THR_GOLD)
+};
+
+static void set_good_speed_feature(VP9_COMP *cpi, VP9_COMMON *cm,
+ SPEED_FEATURES *sf, int speed) {
+ sf->adaptive_rd_thresh = 1;
+ sf->recode_loop = (speed < 1) ? ALLOW_RECODE : ALLOW_RECODE_KFMAXBW;
+ sf->allow_skip_recode = 1;
+
+ if (speed >= 1) {
+ sf->use_square_partition_only = !frame_is_intra_only(cm);
+ sf->less_rectangular_check = 1;
+ sf->tx_size_search_method = frame_is_boosted(cpi) ? USE_FULL_RD
+ : USE_LARGESTALL;
+
+ if (MIN(cm->width, cm->height) >= 720)
+ sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
+ : DISABLE_ALL_INTER_SPLIT;
+ else
+ sf->disable_split_mask = DISABLE_COMPOUND_SPLIT;
+ sf->use_rd_breakout = 1;
+ sf->adaptive_motion_search = 1;
+ sf->auto_mv_step_size = 1;
+ sf->adaptive_rd_thresh = 2;
+ sf->subpel_iters_per_step = 1;
+ sf->mode_skip_start = 10;
+ sf->adaptive_pred_interp_filter = 1;
+
+ sf->recode_loop = ALLOW_RECODE_KFARFGF;
+ sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
+ sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
+ }
+
+ if (speed >= 2) {
+ if (MIN(cm->width, cm->height) >= 720)
+ sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
+ : DISABLE_ALL_INTER_SPLIT;
+ else
+ sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY;
+
+ sf->adaptive_pred_interp_filter = 2;
+ sf->reference_masking = 1;
+ sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
+ FLAG_SKIP_INTRA_BESTINTER |
+ FLAG_SKIP_COMP_BESTINTRA |
+ FLAG_SKIP_INTRA_LOWVAR;
+ sf->disable_filter_search_var_thresh = 100;
+ sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
+ sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX;
+ sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_LOW_MOTION;
+ sf->adjust_partitioning_from_last_frame = 1;
+ sf->last_partitioning_redo_frequency = 3;
+ }
+
+ if (speed >= 3) {
+ sf->tx_size_search_method = frame_is_intra_only(cm) ? USE_FULL_RD
+ : USE_LARGESTALL;
+ if (MIN(cm->width, cm->height) >= 720)
+ sf->disable_split_mask = DISABLE_ALL_SPLIT;
+ else
+ sf->disable_split_mask = DISABLE_ALL_INTER_SPLIT;
+
+ sf->recode_loop = ALLOW_RECODE_KFMAXBW;
+ sf->adaptive_rd_thresh = 3;
+ sf->mode_skip_start = 6;
+ sf->use_fast_coef_updates = ONE_LOOP_REDUCED;
+ sf->use_fast_coef_costing = 1;
+ }
+
+ if (speed >= 4) {
+ sf->use_square_partition_only = 1;
+ sf->tx_size_search_method = USE_LARGESTALL;
+ sf->disable_split_mask = DISABLE_ALL_SPLIT;
+ sf->adaptive_rd_thresh = 4;
+ sf->mode_search_skip_flags |= FLAG_SKIP_COMP_REFMISMATCH |
+ FLAG_EARLY_TERMINATE;
+ sf->disable_filter_search_var_thresh = 200;
+ sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_ALL;
+ sf->use_lp32x32fdct = 1;
+ }
+
+ if (speed >= 5) {
+ int i;
+
+ sf->partition_search_type = FIXED_PARTITION;
+ sf->optimize_coefficients = 0;
+ sf->search_method = HEX;
+ sf->disable_filter_search_var_thresh = 500;
+ for (i = 0; i < TX_SIZES; ++i) {
+ sf->intra_y_mode_mask[i] = INTRA_DC_ONLY;
+ sf->intra_uv_mode_mask[i] = INTRA_DC_ONLY;
+ }
+ cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
+ }
+}
+
+static void set_rt_speed_feature(VP9_COMMON *cm, SPEED_FEATURES *sf,
+ int speed) {
+ sf->static_segmentation = 0;
+ sf->adaptive_rd_thresh = 1;
+ sf->encode_breakout_thresh = 1;
+ sf->use_fast_coef_costing = 1;
+
+ if (speed == 1) {
+ sf->use_square_partition_only = !frame_is_intra_only(cm);
+ sf->less_rectangular_check = 1;
+ sf->tx_size_search_method = frame_is_intra_only(cm) ? USE_FULL_RD
+ : USE_LARGESTALL;
+
+ if (MIN(cm->width, cm->height) >= 720)
+ sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
+ : DISABLE_ALL_INTER_SPLIT;
+ else
+ sf->disable_split_mask = DISABLE_COMPOUND_SPLIT;
+
+ sf->use_rd_breakout = 1;
+ sf->adaptive_motion_search = 1;
+ sf->adaptive_pred_interp_filter = 1;
+ sf->auto_mv_step_size = 1;
+ sf->adaptive_rd_thresh = 2;
+ sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
+ sf->encode_breakout_thresh = 8;
+ }
+
+ if (speed >= 2) {
+ sf->use_square_partition_only = !frame_is_intra_only(cm);
+ sf->less_rectangular_check = 1;
+ sf->tx_size_search_method = frame_is_intra_only(cm) ? USE_FULL_RD
+ : USE_LARGESTALL;
+ if (MIN(cm->width, cm->height) >= 720)
+ sf->disable_split_mask = cm->show_frame ?
+ DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT;
+ else
+ sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY;
+
+ sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
+ FLAG_SKIP_INTRA_BESTINTER |
+ FLAG_SKIP_COMP_BESTINTRA |
+ FLAG_SKIP_INTRA_LOWVAR;
+ sf->use_rd_breakout = 1;
+ sf->adaptive_motion_search = 1;
+ sf->adaptive_pred_interp_filter = 2;
+ sf->auto_mv_step_size = 1;
+ sf->reference_masking = 1;
+
+ sf->disable_filter_search_var_thresh = 50;
+ sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
+
+ sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX;
+ sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_LOW_MOTION;
+ sf->adjust_partitioning_from_last_frame = 1;
+ sf->last_partitioning_redo_frequency = 3;
+
+ sf->adaptive_rd_thresh = 2;
+ sf->use_lp32x32fdct = 1;
+ sf->mode_skip_start = 11;
+ sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
+ sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
+ sf->encode_breakout_thresh = 200;
+ }
+
+ if (speed >= 3) {
+ sf->use_square_partition_only = 1;
+ sf->disable_filter_search_var_thresh = 100;
+ sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_ALL;
+ sf->constrain_copy_partition = 1;
+ sf->use_uv_intra_rd_estimate = 1;
+ sf->skip_encode_sb = 1;
+ sf->subpel_iters_per_step = 1;
+ sf->use_fast_coef_updates = ONE_LOOP_REDUCED;
+ sf->adaptive_rd_thresh = 4;
+ sf->mode_skip_start = 6;
+ sf->allow_skip_recode = 0;
+ sf->optimize_coefficients = 0;
+ sf->disable_split_mask = DISABLE_ALL_SPLIT;
+ sf->lpf_pick = LPF_PICK_FROM_Q;
+ sf->encode_breakout_thresh = 700;
+ }
+
+ if (speed >= 4) {
+ int i;
+ sf->last_partitioning_redo_frequency = 4;
+ sf->adaptive_rd_thresh = 5;
+ sf->use_fast_coef_costing = 0;
+ sf->auto_min_max_partition_size = STRICT_NEIGHBORING_MIN_MAX;
+ sf->adjust_partitioning_from_last_frame =
+ cm->last_frame_type != cm->frame_type || (0 ==
+ (cm->current_video_frame + 1) % sf->last_partitioning_redo_frequency);
+ sf->subpel_force_stop = 1;
+ for (i = 0; i < TX_SIZES; i++) {
+ sf->intra_y_mode_mask[i] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[i] = INTRA_DC_ONLY;
+ }
+ sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_ONLY;
+ sf->frame_parameter_update = 0;
+ sf->encode_breakout_thresh = 1000;
+ sf->search_method = FAST_HEX;
+ sf->disable_inter_mode_mask[BLOCK_32X32] = 1 << INTER_OFFSET(ZEROMV);
+ sf->disable_inter_mode_mask[BLOCK_32X64] = ~(1 << INTER_OFFSET(NEARESTMV));
+ sf->disable_inter_mode_mask[BLOCK_64X32] = ~(1 << INTER_OFFSET(NEARESTMV));
+ sf->disable_inter_mode_mask[BLOCK_64X64] = ~(1 << INTER_OFFSET(NEARESTMV));
+ sf->max_intra_bsize = BLOCK_32X32;
+ sf->allow_skip_recode = 1;
+ }
+
+ if (speed >= 5) {
+ sf->max_partition_size = BLOCK_32X32;
+ sf->min_partition_size = BLOCK_8X8;
+ sf->partition_check =
+ (cm->current_video_frame % sf->last_partitioning_redo_frequency == 1);
+ sf->force_frame_boost = cm->frame_type == KEY_FRAME ||
+ (cm->current_video_frame %
+ (sf->last_partitioning_redo_frequency << 1) == 1);
+ sf->max_delta_qindex = (cm->frame_type == KEY_FRAME) ? 20 : 15;
+ sf->partition_search_type = REFERENCE_PARTITION;
+ sf->use_nonrd_pick_mode = 1;
+ sf->search_method = FAST_DIAMOND;
+ sf->allow_skip_recode = 0;
+ sf->chessboard_index = cm->current_video_frame & 0x01;
+ }
+
+ if (speed >= 6) {
+ // Adaptively switch between SOURCE_VAR_BASED_PARTITION and FIXED_PARTITION.
+ sf->partition_search_type = SOURCE_VAR_BASED_PARTITION;
+ sf->search_type_check_frequency = 50;
+ sf->source_var_thresh = 360;
+ }
+
+ if (speed >= 7) {
+ int i;
+ for (i = 0; i < BLOCK_SIZES; ++i)
+ sf->disable_inter_mode_mask[i] = ~(1 << INTER_OFFSET(NEARESTMV));
+ }
+}
+
+void vp9_set_speed_features(VP9_COMP *cpi) {
+ SPEED_FEATURES *const sf = &cpi->sf;
+ VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ int i;
+
+ // best quality defaults
+ sf->frame_parameter_update = 1;
+ sf->search_method = NSTEP;
+ sf->recode_loop = ALLOW_RECODE;
+ sf->subpel_search_method = SUBPEL_TREE;
+ sf->subpel_iters_per_step = 2;
+ sf->subpel_force_stop = 0;
+ sf->optimize_coefficients = !oxcf->lossless;
+ sf->reduce_first_step_size = 0;
+ sf->auto_mv_step_size = 0;
+ sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
+ sf->comp_inter_joint_search_thresh = BLOCK_4X4;
+ sf->adaptive_rd_thresh = 0;
+ sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_OFF;
+ sf->tx_size_search_method = USE_FULL_RD;
+ sf->use_lp32x32fdct = 0;
+ sf->adaptive_motion_search = 0;
+ sf->adaptive_pred_interp_filter = 0;
+ sf->reference_masking = 0;
+ sf->partition_search_type = SEARCH_PARTITION;
+ sf->less_rectangular_check = 0;
+ sf->use_square_partition_only = 0;
+ sf->auto_min_max_partition_size = NOT_IN_USE;
+ sf->max_partition_size = BLOCK_64X64;
+ sf->min_partition_size = BLOCK_4X4;
+ sf->adjust_partitioning_from_last_frame = 0;
+ sf->last_partitioning_redo_frequency = 4;
+ sf->constrain_copy_partition = 0;
+ sf->disable_split_mask = 0;
+ sf->mode_search_skip_flags = 0;
+ sf->force_frame_boost = 0;
+ sf->max_delta_qindex = 0;
+ sf->disable_split_var_thresh = 0;
+ sf->disable_filter_search_var_thresh = 0;
+ for (i = 0; i < TX_SIZES; i++) {
+ sf->intra_y_mode_mask[i] = ALL_INTRA_MODES;
+ sf->intra_uv_mode_mask[i] = ALL_INTRA_MODES;
+ }
+ sf->use_rd_breakout = 0;
+ sf->skip_encode_sb = 0;
+ sf->use_uv_intra_rd_estimate = 0;
+ sf->allow_skip_recode = 0;
+ sf->lpf_pick = LPF_PICK_FROM_FULL_IMAGE;
+ sf->use_fast_coef_updates = TWO_LOOP;
+ sf->use_fast_coef_costing = 0;
+ sf->mode_skip_start = MAX_MODES; // Mode index at which mode skip mask set
+ sf->use_nonrd_pick_mode = 0;
+ sf->encode_breakout_thresh = 0;
+ for (i = 0; i < BLOCK_SIZES; ++i)
+ sf->disable_inter_mode_mask[i] = 0;
+ sf->max_intra_bsize = BLOCK_64X64;
+ // This setting only takes effect when partition_search_type is set
+ // to FIXED_PARTITION.
+ sf->always_this_block_size = BLOCK_16X16;
+ sf->search_type_check_frequency = 50;
+ sf->source_var_thresh = 100;
+
+ // Recode loop tolerence %.
+ sf->recode_tolerance = 25;
+
+ switch (oxcf->mode) {
+ case ONE_PASS_BEST:
+ case TWO_PASS_SECOND_BEST: // This is the best quality mode.
+ cpi->diamond_search_sad = vp9_full_range_search;
+ break;
+ case TWO_PASS_FIRST:
+ case ONE_PASS_GOOD:
+ case TWO_PASS_SECOND_GOOD:
+ set_good_speed_feature(cpi, cm, sf, oxcf->speed);
+ break;
+ case REALTIME:
+ set_rt_speed_feature(cm, sf, oxcf->speed);
+ break;
+ }
+
+ // Slow quant, dct and trellis not worthwhile for first pass
+ // so make sure they are always turned off.
+ if (cpi->pass == 1)
+ sf->optimize_coefficients = 0;
+
+ // No recode for 1 pass.
+ if (cpi->pass == 0) {
+ sf->recode_loop = DISALLOW_RECODE;
+ sf->optimize_coefficients = 0;
+ }
+
+ if (sf->subpel_search_method == SUBPEL_TREE) {
+ cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree;
+ cpi->find_fractional_mv_step_comp = vp9_find_best_sub_pixel_comp_tree;
+ }
+
+ cpi->mb.optimize = sf->optimize_coefficients == 1 && cpi->pass != 1;
+
+ if (cpi->encode_breakout && oxcf->mode == REALTIME &&
+ sf->encode_breakout_thresh > cpi->encode_breakout)
+ cpi->encode_breakout = sf->encode_breakout_thresh;
+
+ if (sf->disable_split_mask == DISABLE_ALL_SPLIT)
+ sf->adaptive_pred_interp_filter = 0;
+
+ if (!cpi->oxcf.frame_periodic_boost) {
+ sf->max_delta_qindex = 0;
+ }
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_speed_features.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_speed_features.h
new file mode 100644
index 00000000000..46806c9a9fb
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_speed_features.h
@@ -0,0 +1,362 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_SPEED_FEATURES_H_
+#define VP9_ENCODER_VP9_SPEED_FEATURES_H_
+
+#include "vp9/common/vp9_enums.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef enum {
+ DIAMOND = 0,
+ NSTEP = 1,
+ HEX = 2,
+ BIGDIA = 3,
+ SQUARE = 4,
+ FAST_HEX = 5,
+ FAST_DIAMOND = 6
+} SEARCH_METHODS;
+
+typedef enum {
+ // No recode.
+ DISALLOW_RECODE = 0,
+ // Allow recode for KF and exceeding maximum frame bandwidth.
+ ALLOW_RECODE_KFMAXBW = 1,
+ // Allow recode only for KF/ARF/GF frames.
+ ALLOW_RECODE_KFARFGF = 2,
+ // Allow recode for all frames based on bitrate constraints.
+ ALLOW_RECODE = 3,
+} RECODE_LOOP_TYPE;
+
+typedef enum {
+ SUBPEL_TREE = 0,
+ // Other methods to come
+} SUBPEL_SEARCH_METHODS;
+
+typedef enum {
+ LAST_FRAME_PARTITION_OFF = 0,
+ LAST_FRAME_PARTITION_LOW_MOTION = 1,
+ LAST_FRAME_PARTITION_ALL = 2
+} LAST_FRAME_PARTITION_METHOD;
+
+typedef enum {
+ USE_FULL_RD = 0,
+ USE_LARGESTINTRA,
+ USE_LARGESTINTRA_MODELINTER,
+ USE_LARGESTALL
+} TX_SIZE_SEARCH_METHOD;
+
+typedef enum {
+ NOT_IN_USE = 0,
+ RELAXED_NEIGHBORING_MIN_MAX = 1,
+ STRICT_NEIGHBORING_MIN_MAX = 2
+} AUTO_MIN_MAX_MODE;
+
+typedef enum {
+ // Try the full image with different values.
+ LPF_PICK_FROM_FULL_IMAGE,
+ // Try a small portion of the image with different values.
+ LPF_PICK_FROM_SUBIMAGE,
+ // Estimate the level based on quantizer and frame type
+ LPF_PICK_FROM_Q,
+} LPF_PICK_METHOD;
+
+typedef enum {
+ // Terminate search early based on distortion so far compared to
+ // qp step, distortion in the neighborhood of the frame, etc.
+ FLAG_EARLY_TERMINATE = 1 << 0,
+
+ // Skips comp inter modes if the best so far is an intra mode.
+ FLAG_SKIP_COMP_BESTINTRA = 1 << 1,
+
+ // Skips comp inter modes if the best single intermode so far does
+ // not have the same reference as one of the two references being
+ // tested.
+ FLAG_SKIP_COMP_REFMISMATCH = 1 << 2,
+
+ // Skips oblique intra modes if the best so far is an inter mode.
+ FLAG_SKIP_INTRA_BESTINTER = 1 << 3,
+
+ // Skips oblique intra modes at angles 27, 63, 117, 153 if the best
+ // intra so far is not one of the neighboring directions.
+ FLAG_SKIP_INTRA_DIRMISMATCH = 1 << 4,
+
+ // Skips intra modes other than DC_PRED if the source variance is small
+ FLAG_SKIP_INTRA_LOWVAR = 1 << 5,
+} MODE_SEARCH_SKIP_LOGIC;
+
+typedef enum {
+ // Search partitions using RD/NONRD criterion
+ SEARCH_PARTITION = 0,
+
+ // Always use a fixed size partition
+ FIXED_PARTITION = 1,
+
+ // Use a fixed size partition in every 64X64 SB, where the size is
+ // determined based on source variance
+ VAR_BASED_FIXED_PARTITION = 2,
+
+ REFERENCE_PARTITION = 3,
+
+ // Use an arbitrary partitioning scheme based on source variance within
+ // a 64X64 SB
+ VAR_BASED_PARTITION,
+
+ // Use non-fixed partitions based on source variance
+ SOURCE_VAR_BASED_PARTITION
+} PARTITION_SEARCH_TYPE;
+
+typedef enum {
+ // Does a dry run to see if any of the contexts need to be updated or not,
+ // before the final run.
+ TWO_LOOP = 0,
+
+ // No dry run conducted.
+ ONE_LOOP = 1,
+
+ // No dry run, also only half the coef contexts and bands are updated.
+ // The rest are not updated at all.
+ ONE_LOOP_REDUCED = 2
+} FAST_COEFF_UPDATE;
+
+typedef struct SPEED_FEATURES {
+ // Frame level coding parameter update
+ int frame_parameter_update;
+
+ // Motion search method (Diamond, NSTEP, Hex, Big Diamond, Square, etc).
+ SEARCH_METHODS search_method;
+
+ RECODE_LOOP_TYPE recode_loop;
+
+ // Subpel_search_method can only be subpel_tree which does a subpixel
+ // logarithmic search that keeps stepping at 1/2 pixel units until
+ // you stop getting a gain, and then goes on to 1/4 and repeats
+ // the same process. Along the way it skips many diagonals.
+ SUBPEL_SEARCH_METHODS subpel_search_method;
+
+ // Maximum number of steps in logarithmic subpel search before giving up.
+ int subpel_iters_per_step;
+
+ // Control when to stop subpel search
+ int subpel_force_stop;
+
+ // This parameter controls the number of steps we'll do in a diamond
+ // search.
+ int max_step_search_steps;
+
+ // This parameter controls which step in the n-step process we start at.
+ // It's changed adaptively based on circumstances.
+ int reduce_first_step_size;
+
+ // If this is set to 1, we limit the motion search range to 2 times the
+ // largest motion vector found in the last frame.
+ int auto_mv_step_size;
+
+ // Trellis (dynamic programming) optimization of quantized values (+1, 0).
+ int optimize_coefficients;
+
+ // Always set to 0. If on it enables 0 cost background transmission
+ // (except for the initial transmission of the segmentation). The feature is
+ // disabled because the addition of very large block sizes make the
+ // backgrounds very to cheap to encode, and the segmentation we have
+ // adds overhead.
+ int static_segmentation;
+
+ // If 1 we iterate finding a best reference for 2 ref frames together - via
+ // a log search that iterates 4 times (check around mv for last for best
+ // error of combined predictor then check around mv for alt). If 0 we
+ // we just use the best motion vector found for each frame by itself.
+ BLOCK_SIZE comp_inter_joint_search_thresh;
+
+ // This variable is used to cap the maximum number of times we skip testing a
+ // mode to be evaluated. A high value means we will be faster.
+ int adaptive_rd_thresh;
+
+ // Enables skipping the reconstruction step (idct, recon) in the
+ // intermediate steps assuming the last frame didn't have too many intra
+ // blocks and the q is less than a threshold.
+ int skip_encode_sb;
+ int skip_encode_frame;
+ // Speed feature to allow or disallow skipping of recode at block
+ // level within a frame.
+ int allow_skip_recode;
+
+ // This variable allows us to reuse the last frames partition choices
+ // (64x64 v 32x32 etc) for this frame. It can be set to only use the last
+ // frame as a starting point in low motion scenes or always use it. If set
+ // we use last partitioning_redo frequency to determine how often to redo
+ // the partitioning from scratch. Adjust_partitioning_from_last_frame
+ // enables us to adjust up or down one partitioning from the last frames
+ // partitioning.
+ LAST_FRAME_PARTITION_METHOD use_lastframe_partitioning;
+
+ // Determine which method we use to determine transform size. We can choose
+ // between options like full rd, largest for prediction size, largest
+ // for intra and model coefs for the rest.
+ TX_SIZE_SEARCH_METHOD tx_size_search_method;
+
+ // Low precision 32x32 fdct keeps everything in 16 bits and thus is less
+ // precise but significantly faster than the non lp version.
+ int use_lp32x32fdct;
+
+ // TODO(JBB): remove this as its no longer used.
+
+ // After looking at the first set of modes (set by index here), skip
+ // checking modes for reference frames that don't match the reference frame
+ // of the best so far.
+ int mode_skip_start;
+
+ // TODO(JBB): Remove this.
+ int reference_masking;
+
+ PARTITION_SEARCH_TYPE partition_search_type;
+
+ // Used if partition_search_type = FIXED_SIZE_PARTITION
+ BLOCK_SIZE always_this_block_size;
+
+ // Skip rectangular partition test when partition type none gives better
+ // rd than partition type split.
+ int less_rectangular_check;
+
+ // Disable testing non square partitions. (eg 16x32)
+ int use_square_partition_only;
+
+ // Sets min and max partition sizes for this 64x64 region based on the
+ // same 64x64 in last encoded frame, and the left and above neighbor.
+ AUTO_MIN_MAX_MODE auto_min_max_partition_size;
+
+ // Min and max partition size we enable (block_size) as per auto
+ // min max, but also used by adjust partitioning, and pick_partitioning.
+ BLOCK_SIZE min_partition_size;
+ BLOCK_SIZE max_partition_size;
+
+ // Whether or not we allow partitions one smaller or one greater than the last
+ // frame's partitioning. Only used if use_lastframe_partitioning is set.
+ int adjust_partitioning_from_last_frame;
+
+ // How frequently we re do the partitioning from scratch. Only used if
+ // use_lastframe_partitioning is set.
+ int last_partitioning_redo_frequency;
+
+ // This enables constrained copy partitioning, which, given an input block
+ // size bsize, will copy previous partition for partitions less than bsize,
+ // otherwise bsize partition is used. bsize is currently set to 16x16.
+ // Used for the case where motion is detected in superblock.
+ int constrain_copy_partition;
+
+ // Disables sub 8x8 blocksizes in different scenarios: Choices are to disable
+ // it always, to allow it for only Last frame and Intra, disable it for all
+ // inter modes or to enable it always.
+ int disable_split_mask;
+
+ // TODO(jingning): combine the related motion search speed features
+ // This allows us to use motion search at other sizes as a starting
+ // point for this motion search and limits the search range around it.
+ int adaptive_motion_search;
+
+ // Allows sub 8x8 modes to use the prediction filter that was determined
+ // best for 8x8 mode. If set to 0 we always re check all the filters for
+ // sizes less than 8x8, 1 means we check all filter modes if no 8x8 filter
+ // was selected, and 2 means we use 8 tap if no 8x8 filter mode was selected.
+ int adaptive_pred_interp_filter;
+
+ // Search through variable block partition types in non-RD mode decision
+ // encoding process for RTC.
+ int partition_check;
+
+ // Chessboard pattern index
+ int chessboard_index;
+
+ // Use finer quantizer in every other few frames that run variable block
+ // partition type search.
+ int force_frame_boost;
+
+ // Maximally allowed base quantization index fluctuation.
+ int max_delta_qindex;
+
+ // Implements various heuristics to skip searching modes
+ // The heuristics selected are based on flags
+ // defined in the MODE_SEARCH_SKIP_HEURISTICS enum
+ unsigned int mode_search_skip_flags;
+
+ // A source variance threshold below which the split mode is disabled
+ unsigned int disable_split_var_thresh;
+
+ // A source variance threshold below which filter search is disabled
+ // Choose a very large value (UINT_MAX) to use 8-tap always
+ unsigned int disable_filter_search_var_thresh;
+
+ // These bit masks allow you to enable or disable intra modes for each
+ // transform size separately.
+ int intra_y_mode_mask[TX_SIZES];
+ int intra_uv_mode_mask[TX_SIZES];
+
+ // This variable enables an early break out of mode testing if the model for
+ // rd built from the prediction signal indicates a value that's much
+ // higher than the best rd we've seen so far.
+ int use_rd_breakout;
+
+ // This enables us to use an estimate for intra rd based on dc mode rather
+ // than choosing an actual uv mode in the stage of encoding before the actual
+ // final encode.
+ int use_uv_intra_rd_estimate;
+
+ // This feature controls how the loop filter level is determined.
+ LPF_PICK_METHOD lpf_pick;
+
+ // This feature limits the number of coefficients updates we actually do
+ // by only looking at counts from 1/2 the bands.
+ FAST_COEFF_UPDATE use_fast_coef_updates;
+
+ // This flag controls the use of non-RD mode decision.
+ int use_nonrd_pick_mode;
+
+ // This variable sets the encode_breakout threshold. Currently, it is only
+ // enabled in real time mode.
+ int encode_breakout_thresh;
+
+ // A binary mask indicating if NEARESTMV, NEARMV, ZEROMV, NEWMV
+ // modes are disabled in order from LSB to MSB for each BLOCK_SIZE.
+ int disable_inter_mode_mask[BLOCK_SIZES];
+
+ // This feature controls whether we do the expensive context update and
+ // calculation in the rd coefficient costing loop.
+ int use_fast_coef_costing;
+
+ // This feature controls the tolerence vs target used in deciding whether to
+ // recode a frame. It has no meaning if recode is disabled.
+ int recode_tolerance;
+
+ // This variable controls the maximum block size where intra blocks can be
+ // used in inter frames.
+ // TODO(aconverse): Fold this into one of the other many mode skips
+ BLOCK_SIZE max_intra_bsize;
+
+ // The frequency that we check if SOURCE_VAR_BASED_PARTITION or
+ // FIXED_PARTITION search type should be used.
+ int search_type_check_frequency;
+
+ // The threshold used in SOURCE_VAR_BASED_PARTITION search type.
+ unsigned int source_var_thresh;
+} SPEED_FEATURES;
+
+struct VP9_COMP;
+
+void vp9_set_speed_features(struct VP9_COMP *cpi);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_SPEED_FEATURES_H_
+
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ssim.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ssim.c
index a5f18e6313b..026e6a8fd9d 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ssim.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ssim.c
@@ -8,8 +8,9 @@
* be found in the AUTHORS file in the root of the source tree.
*/
+#include "./vp9_rtcd.h"
-#include "vp9/encoder/vp9_onyx_int.h"
+#include "vp9/encoder/vp9_ssim.h"
void vp9_ssim_parms_16x16_c(uint8_t *s, int sp, uint8_t *r,
int rp, unsigned long *sum_s, unsigned long *sum_r,
@@ -65,12 +66,6 @@ static double similarity(unsigned long sum_s, unsigned long sum_r,
return ssim_n * 1.0 / ssim_d;
}
-static double ssim_16x16(uint8_t *s, int sp, uint8_t *r, int rp) {
- unsigned long sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
- vp9_ssim_parms_16x16(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
- &sum_sxr);
- return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 256);
-}
static double ssim_8x8(uint8_t *s, int sp, uint8_t *r, int rp) {
unsigned long sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
vp9_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ssim.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ssim.h
new file mode 100644
index 00000000000..a581c2c23d4
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_ssim.h
@@ -0,0 +1,30 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_SSIM_H_
+#define VP9_ENCODER_VP9_SSIM_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "vpx_scale/yv12config.h"
+
+double vp9_calc_ssim(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
+ int lumamask, double *weight);
+
+double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
+ double *ssim_y, double *ssim_u, double *ssim_v);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_SSIM_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_subexp.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_subexp.c
index eb864d96cb5..9796d647624 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_subexp.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_subexp.c
@@ -11,34 +11,13 @@
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
-#include "vp9/encoder/vp9_boolhuff.h"
-#include "vp9/encoder/vp9_treewriter.h"
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_writer.h"
-#define vp9_cost_upd ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)) >> 8)
#define vp9_cost_upd256 ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)))
static int update_bits[255];
-static int count_uniform(int v, int n) {
- int l = get_unsigned_bits(n);
- int m;
- if (l == 0) return 0;
- m = (1 << l) - n;
- if (v < m)
- return l - 1;
- else
- return l;
-}
-
-static int split_index(int i, int n, int modulus) {
- int max1 = (n - 1 - modulus / 2) / modulus + 1;
- if (i % modulus == modulus / 2)
- i = i / modulus;
- else
- i = max1 + i - (i + modulus - modulus / 2) / modulus;
- return i;
-}
-
static int recenter_nonneg(int v, int m) {
if (v > (m << 1))
return v;
@@ -82,29 +61,16 @@ static int remap_prob(int v, int m) {
return i;
}
-static int count_term_subexp(int word, int k, int num_syms) {
- int count = 0;
- int i = 0;
- int mk = 0;
- while (1) {
- int b = (i ? k + i - 1 : k);
- int a = (1 << b);
- if (num_syms <= mk + 3 * a) {
- count += count_uniform(word - mk, num_syms - mk);
- break;
- } else {
- int t = (word >= mk + a);
- count++;
- if (t) {
- i = i + 1;
- mk += a;
- } else {
- count += b;
- break;
- }
- }
- }
- return count;
+static int count_term_subexp(int word) {
+ if (word < 16)
+ return 5;
+ if (word < 32)
+ return 6;
+ if (word < 64)
+ return 8;
+ if (word < 129)
+ return 10;
+ return 11;
}
static int prob_diff_update_cost(vp9_prob newp, vp9_prob oldp) {
@@ -112,12 +78,9 @@ static int prob_diff_update_cost(vp9_prob newp, vp9_prob oldp) {
return update_bits[delp] * 256;
}
-static void encode_uniform(vp9_writer *w, int v, int n) {
- int l = get_unsigned_bits(n);
- int m;
- if (l == 0)
- return;
- m = (1 << l) - n;
+static void encode_uniform(vp9_writer *w, int v) {
+ const int l = 8;
+ const int m = (1 << l) - 191;
if (v < m) {
vp9_write_literal(w, v, l - 1);
} else {
@@ -126,38 +89,32 @@ static void encode_uniform(vp9_writer *w, int v, int n) {
}
}
-static void encode_term_subexp(vp9_writer *w, int word, int k, int num_syms) {
- int i = 0;
- int mk = 0;
- while (1) {
- int b = (i ? k + i - 1 : k);
- int a = (1 << b);
- if (num_syms <= mk + 3 * a) {
- encode_uniform(w, word - mk, num_syms - mk);
- break;
- } else {
- int t = (word >= mk + a);
- vp9_write_literal(w, t, 1);
- if (t) {
- i = i + 1;
- mk += a;
- } else {
- vp9_write_literal(w, word - mk, b);
- break;
- }
- }
+static INLINE int write_bit_gte(vp9_writer *w, int word, int test) {
+ vp9_write_literal(w, word >= test, 1);
+ return word >= test;
+}
+
+static void encode_term_subexp(vp9_writer *w, int word) {
+ if (!write_bit_gte(w, word, 16)) {
+ vp9_write_literal(w, word, 4);
+ } else if (!write_bit_gte(w, word, 32)) {
+ vp9_write_literal(w, word - 16, 4);
+ } else if (!write_bit_gte(w, word, 64)) {
+ vp9_write_literal(w, word - 32, 5);
+ } else {
+ encode_uniform(w, word - 64);
}
}
void vp9_write_prob_diff_update(vp9_writer *w, vp9_prob newp, vp9_prob oldp) {
const int delp = remap_prob(newp, oldp);
- encode_term_subexp(w, delp, SUBEXP_PARAM, 255);
+ encode_term_subexp(w, delp);
}
void vp9_compute_update_table() {
int i;
for (i = 0; i < 254; i++)
- update_bits[i] = count_term_subexp(i, SUBEXP_PARAM, 255);
+ update_bits[i] = count_term_subexp(i);
}
int vp9_prob_diff_update_savings_search(const unsigned int *ct,
@@ -184,8 +141,7 @@ int vp9_prob_diff_update_savings_search(const unsigned int *ct,
int vp9_prob_diff_update_savings_search_model(const unsigned int *ct,
const vp9_prob *oldp,
vp9_prob *bestp,
- vp9_prob upd,
- int b, int r) {
+ vp9_prob upd) {
int i, old_b, new_b, update_b, savings, bestsavings, step;
int newp;
vp9_prob bestnewp, newplist[ENTROPY_NODES], oldplist[ENTROPY_NODES];
@@ -221,7 +177,7 @@ int vp9_prob_diff_update_savings_search_model(const unsigned int *ct,
}
void vp9_cond_prob_diff_update(vp9_writer *w, vp9_prob *oldp,
- unsigned int *ct) {
+ const unsigned int ct[2]) {
const vp9_prob upd = DIFF_UPDATE_PROB;
vp9_prob newp = get_binary_prob(ct[0], ct[1]);
const int savings = vp9_prob_diff_update_savings_search(ct, *oldp, &newp,
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_subexp.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_subexp.h
index 521c7778d3a..8e9c0c62acd 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_subexp.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_subexp.h
@@ -9,8 +9,12 @@
*/
-#ifndef VP9_DECODER_VP9_SUBEXP_H_
-#define VP9_DECODER_VP9_SUBEXP_H_
+#ifndef VP9_ENCODER_VP9_SUBEXP_H_
+#define VP9_ENCODER_VP9_SUBEXP_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
void vp9_compute_update_table();
@@ -29,7 +33,10 @@ int vp9_prob_diff_update_savings_search(const unsigned int *ct,
int vp9_prob_diff_update_savings_search_model(const unsigned int *ct,
const vp9_prob *oldp,
vp9_prob *bestp,
- vp9_prob upd,
- int b, int r);
+ vp9_prob upd);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
-#endif // VP9_DECODER_VP9_SUBEXP_H_
+#endif // VP9_ENCODER_VP9_SUBEXP_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_svc_layercontext.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_svc_layercontext.c
new file mode 100644
index 00000000000..2e98fa71764
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_svc_layercontext.c
@@ -0,0 +1,229 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_svc_layercontext.h"
+
+void vp9_init_layer_context(VP9_COMP *const cpi) {
+ SVC *const svc = &cpi->svc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ int layer;
+ int layer_end;
+
+ svc->spatial_layer_id = 0;
+ svc->temporal_layer_id = 0;
+
+ if (svc->number_temporal_layers > 1) {
+ layer_end = svc->number_temporal_layers;
+ } else {
+ layer_end = svc->number_spatial_layers;
+ }
+
+ for (layer = 0; layer < layer_end; ++layer) {
+ LAYER_CONTEXT *const lc = &svc->layer_context[layer];
+ RATE_CONTROL *const lrc = &lc->rc;
+ lc->current_video_frame_in_layer = 0;
+ lrc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
+ lrc->ni_av_qi = oxcf->worst_allowed_q;
+ lrc->total_actual_bits = 0;
+ lrc->total_target_vs_actual = 0;
+ lrc->ni_tot_qi = 0;
+ lrc->tot_q = 0.0;
+ lrc->avg_q = 0.0;
+ lrc->ni_frames = 0;
+ lrc->decimation_count = 0;
+ lrc->decimation_factor = 0;
+ lrc->rate_correction_factor = 1.0;
+ lrc->key_frame_rate_correction_factor = 1.0;
+
+ if (svc->number_temporal_layers > 1) {
+ lc->target_bandwidth = oxcf->ts_target_bitrate[layer] * 1000;
+ lrc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
+ } else {
+ lc->target_bandwidth = oxcf->ss_target_bitrate[layer] * 1000;
+ lrc->last_q[0] = oxcf->best_allowed_q;
+ lrc->last_q[1] = oxcf->best_allowed_q;
+ lrc->last_q[2] = oxcf->best_allowed_q;
+ }
+
+ lrc->buffer_level = vp9_rescale((int)(oxcf->starting_buffer_level),
+ lc->target_bandwidth, 1000);
+ lrc->bits_off_target = lrc->buffer_level;
+ }
+}
+
+// Update the layer context from a change_config() call.
+void vp9_update_layer_context_change_config(VP9_COMP *const cpi,
+ const int target_bandwidth) {
+ SVC *const svc = &cpi->svc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ int layer;
+ int layer_end;
+ float bitrate_alloc = 1.0;
+
+ if (svc->number_temporal_layers > 1) {
+ layer_end = svc->number_temporal_layers;
+ } else {
+ layer_end = svc->number_spatial_layers;
+ }
+
+ for (layer = 0; layer < layer_end; ++layer) {
+ LAYER_CONTEXT *const lc = &svc->layer_context[layer];
+ RATE_CONTROL *const lrc = &lc->rc;
+
+ if (svc->number_temporal_layers > 1) {
+ lc->target_bandwidth = oxcf->ts_target_bitrate[layer] * 1000;
+ } else {
+ lc->target_bandwidth = oxcf->ss_target_bitrate[layer] * 1000;
+ }
+ bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth;
+ // Update buffer-related quantities.
+ lc->starting_buffer_level =
+ (int64_t)(oxcf->starting_buffer_level * bitrate_alloc);
+ lc->optimal_buffer_level =
+ (int64_t)(oxcf->optimal_buffer_level * bitrate_alloc);
+ lc->maximum_buffer_size =
+ (int64_t)(oxcf->maximum_buffer_size * bitrate_alloc);
+ lrc->bits_off_target = MIN(lrc->bits_off_target, lc->maximum_buffer_size);
+ lrc->buffer_level = MIN(lrc->buffer_level, lc->maximum_buffer_size);
+ // Update framerate-related quantities.
+ if (svc->number_temporal_layers > 1) {
+ lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[layer];
+ } else {
+ lc->framerate = oxcf->framerate;
+ }
+ lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
+ lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
+ // Update qp-related quantities.
+ lrc->worst_quality = rc->worst_quality;
+ lrc->best_quality = rc->best_quality;
+ }
+}
+
+static LAYER_CONTEXT *get_layer_context(SVC *svc) {
+ return svc->number_temporal_layers > 1 ?
+ &svc->layer_context[svc->temporal_layer_id] :
+ &svc->layer_context[svc->spatial_layer_id];
+}
+
+void vp9_update_temporal_layer_framerate(VP9_COMP *const cpi) {
+ SVC *const svc = &cpi->svc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ LAYER_CONTEXT *const lc = get_layer_context(svc);
+ RATE_CONTROL *const lrc = &lc->rc;
+ const int layer = svc->temporal_layer_id;
+
+ lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[layer];
+ lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
+ lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth;
+ // Update the average layer frame size (non-cumulative per-frame-bw).
+ if (layer == 0) {
+ lc->avg_frame_size = lrc->avg_frame_bandwidth;
+ } else {
+ const double prev_layer_framerate =
+ oxcf->framerate / oxcf->ts_rate_decimator[layer - 1];
+ const int prev_layer_target_bandwidth =
+ oxcf->ts_target_bitrate[layer - 1] * 1000;
+ lc->avg_frame_size =
+ (int)((lc->target_bandwidth - prev_layer_target_bandwidth) /
+ (lc->framerate - prev_layer_framerate));
+ }
+}
+
+void vp9_update_spatial_layer_framerate(VP9_COMP *const cpi, double framerate) {
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ LAYER_CONTEXT *const lc = get_layer_context(&cpi->svc);
+ RATE_CONTROL *const lrc = &lc->rc;
+
+ lc->framerate = framerate;
+ lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
+ lrc->min_frame_bandwidth = (int)(lrc->avg_frame_bandwidth *
+ oxcf->two_pass_vbrmin_section / 100);
+ lrc->max_frame_bandwidth = (int)(((int64_t)lrc->avg_frame_bandwidth *
+ oxcf->two_pass_vbrmax_section) / 100);
+ lrc->max_gf_interval = 16;
+
+ lrc->static_scene_max_gf_interval = cpi->oxcf.key_freq >> 1;
+
+ if (oxcf->play_alternate && oxcf->lag_in_frames) {
+ if (lrc->max_gf_interval > oxcf->lag_in_frames - 1)
+ lrc->max_gf_interval = oxcf->lag_in_frames - 1;
+
+ if (lrc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
+ lrc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
+ }
+
+ if (lrc->max_gf_interval > lrc->static_scene_max_gf_interval)
+ lrc->max_gf_interval = lrc->static_scene_max_gf_interval;
+}
+
+void vp9_restore_layer_context(VP9_COMP *const cpi) {
+ LAYER_CONTEXT *const lc = get_layer_context(&cpi->svc);
+ const int old_frame_since_key = cpi->rc.frames_since_key;
+ const int old_frame_to_key = cpi->rc.frames_to_key;
+
+ cpi->rc = lc->rc;
+ cpi->twopass = lc->twopass;
+ cpi->oxcf.target_bandwidth = lc->target_bandwidth;
+ cpi->oxcf.starting_buffer_level = lc->starting_buffer_level;
+ cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level;
+ cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size;
+ // Reset the frames_since_key and frames_to_key counters to their values
+ // before the layer restore. Keep these defined for the stream (not layer).
+ if (cpi->svc.number_temporal_layers > 1) {
+ cpi->rc.frames_since_key = old_frame_since_key;
+ cpi->rc.frames_to_key = old_frame_to_key;
+ }
+}
+
+void vp9_save_layer_context(VP9_COMP *const cpi) {
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ LAYER_CONTEXT *const lc = get_layer_context(&cpi->svc);
+
+ lc->rc = cpi->rc;
+ lc->twopass = cpi->twopass;
+ lc->target_bandwidth = (int)oxcf->target_bandwidth;
+ lc->starting_buffer_level = oxcf->starting_buffer_level;
+ lc->optimal_buffer_level = oxcf->optimal_buffer_level;
+ lc->maximum_buffer_size = oxcf->maximum_buffer_size;
+}
+
+void vp9_init_second_pass_spatial_svc(VP9_COMP *cpi) {
+ SVC *const svc = &cpi->svc;
+ int i;
+
+ for (i = 0; i < svc->number_spatial_layers; ++i) {
+ struct twopass_rc *const twopass = &svc->layer_context[i].twopass;
+
+ svc->spatial_layer_id = i;
+ vp9_init_second_pass(cpi);
+
+ twopass->total_stats.spatial_layer_id = i;
+ twopass->total_left_stats.spatial_layer_id = i;
+ }
+ svc->spatial_layer_id = 0;
+}
+
+void vp9_inc_frame_in_layer(SVC *svc) {
+ LAYER_CONTEXT *const lc = (svc->number_temporal_layers > 1)
+ ? &svc->layer_context[svc->temporal_layer_id]
+ : &svc->layer_context[svc->spatial_layer_id];
+ ++lc->current_video_frame_in_layer;
+}
+
+int vp9_is_upper_layer_key_frame(const VP9_COMP *const cpi) {
+ return cpi->use_svc &&
+ cpi->svc.number_temporal_layers == 1 &&
+ cpi->svc.spatial_layer_id > 0 &&
+ cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame;
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_svc_layercontext.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_svc_layercontext.h
new file mode 100644
index 00000000000..74d9c1c0d42
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_svc_layercontext.h
@@ -0,0 +1,84 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_SVC_LAYERCONTEXT_H_
+#define VP9_ENCODER_VP9_SVC_LAYERCONTEXT_H_
+
+#include "vpx/vpx_encoder.h"
+
+#include "vp9/encoder/vp9_ratectrl.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+ RATE_CONTROL rc;
+ int target_bandwidth;
+ int64_t starting_buffer_level;
+ int64_t optimal_buffer_level;
+ int64_t maximum_buffer_size;
+ double framerate;
+ int avg_frame_size;
+ struct twopass_rc twopass;
+ struct vpx_fixed_buf rc_twopass_stats_in;
+ unsigned int current_video_frame_in_layer;
+ int is_key_frame;
+} LAYER_CONTEXT;
+
+typedef struct {
+ int spatial_layer_id;
+ int temporal_layer_id;
+ int number_spatial_layers;
+ int number_temporal_layers;
+ // Layer context used for rate control in one pass temporal CBR mode or
+ // two pass spatial mode. Defined for temporal or spatial layers for now.
+ // Does not support temporal combined with spatial RC.
+ LAYER_CONTEXT layer_context[MAX(VPX_TS_MAX_LAYERS, VPX_SS_MAX_LAYERS)];
+} SVC;
+
+struct VP9_COMP;
+
+// Initialize layer context data from init_config().
+void vp9_init_layer_context(struct VP9_COMP *const cpi);
+
+// Update the layer context from a change_config() call.
+void vp9_update_layer_context_change_config(struct VP9_COMP *const cpi,
+ const int target_bandwidth);
+
+// Prior to encoding the frame, update framerate-related quantities
+// for the current temporal layer.
+void vp9_update_temporal_layer_framerate(struct VP9_COMP *const cpi);
+
+// Update framerate-related quantities for the current spatial layer.
+void vp9_update_spatial_layer_framerate(struct VP9_COMP *const cpi,
+ double framerate);
+
+// Prior to encoding the frame, set the layer context, for the current layer
+// to be encoded, to the cpi struct.
+void vp9_restore_layer_context(struct VP9_COMP *const cpi);
+
+// Save the layer context after encoding the frame.
+void vp9_save_layer_context(struct VP9_COMP *const cpi);
+
+// Initialize second pass rc for spatial svc.
+void vp9_init_second_pass_spatial_svc(struct VP9_COMP *cpi);
+
+// Increment number of video frames in layer
+void vp9_inc_frame_in_layer(SVC *svc);
+
+// Check if current layer is key frame in spatial upper layer
+int vp9_is_upper_layer_key_frame(const struct VP9_COMP *const cpi);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_SVC_LAYERCONTEXT_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_temporal_filter.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_temporal_filter.c
index 2cace0378da..6eff2008014 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_temporal_filter.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_temporal_filter.c
@@ -11,37 +11,49 @@
#include <math.h>
#include <limits.h>
+#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_onyxc_int.h"
+#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconinter.h"
-#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/common/vp9_systemdependent.h"
-#include "vp9/encoder/vp9_quantize.h"
-#include "vp9/common/vp9_alloccommon.h"
-#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/encoder/vp9_extend.h"
#include "vp9/encoder/vp9_firstpass.h"
-#include "vp9/encoder/vp9_psnr.h"
-#include "vpx_scale/vpx_scale.h"
-#include "vp9/common/vp9_extend.h"
+#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_ratectrl.h"
-#include "vp9/common/vp9_quant_common.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/vpx_timer.h"
+#include "vpx_scale/vpx_scale.h"
-#define ALT_REF_MC_ENABLED 1 // dis/enable MC in AltRef filtering
-#define ALT_REF_SUBPEL_ENABLED 1 // dis/enable subpel in MC AltRef filtering
+static int fixed_divide[512];
static void temporal_filter_predictors_mb_c(MACROBLOCKD *xd,
uint8_t *y_mb_ptr,
uint8_t *u_mb_ptr,
uint8_t *v_mb_ptr,
int stride,
+ int uv_block_size,
int mv_row,
int mv_col,
uint8_t *pred,
- struct scale_factors *scale) {
+ struct scale_factors *scale,
+ int x, int y) {
const int which_mv = 0;
- MV mv = { mv_row, mv_col };
+ const MV mv = { mv_row, mv_col };
+ const InterpKernel *const kernel =
+ vp9_get_interp_kernel(xd->mi[0]->mbmi.interp_filter);
+
+ enum mv_precision mv_precision_uv;
+ int uv_stride;
+ if (uv_block_size == 8) {
+ uv_stride = (stride + 1) >> 1;
+ mv_precision_uv = MV_PRECISION_Q4;
+ } else {
+ uv_stride = stride;
+ mv_precision_uv = MV_PRECISION_Q3;
+ }
vp9_build_inter_predictor(y_mb_ptr, stride,
&pred[0], 16,
@@ -49,25 +61,31 @@ static void temporal_filter_predictors_mb_c(MACROBLOCKD *xd,
scale,
16, 16,
which_mv,
- &xd->subpix, MV_PRECISION_Q3);
-
- stride = (stride + 1) >> 1;
+ kernel, MV_PRECISION_Q3, x, y);
- vp9_build_inter_predictor(u_mb_ptr, stride,
- &pred[256], 8,
+ vp9_build_inter_predictor(u_mb_ptr, uv_stride,
+ &pred[256], uv_block_size,
&mv,
scale,
- 8, 8,
+ uv_block_size, uv_block_size,
which_mv,
- &xd->subpix, MV_PRECISION_Q4);
+ kernel, mv_precision_uv, x, y);
- vp9_build_inter_predictor(v_mb_ptr, stride,
- &pred[320], 8,
+ vp9_build_inter_predictor(v_mb_ptr, uv_stride,
+ &pred[512], uv_block_size,
&mv,
scale,
- 8, 8,
+ uv_block_size, uv_block_size,
which_mv,
- &xd->subpix, MV_PRECISION_Q4);
+ kernel, mv_precision_uv, x, y);
+}
+
+void vp9_temporal_filter_init() {
+ int i;
+
+ fixed_divide[0] = 0;
+ for (i = 1; i < 512; ++i)
+ fixed_divide[i] = 0x80000 / i;
}
void vp9_temporal_filter_apply_c(uint8_t *frame1,
@@ -81,6 +99,7 @@ void vp9_temporal_filter_apply_c(uint8_t *frame1,
unsigned int i, j, k;
int modifier;
int byte = 0;
+ const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
for (i = 0, k = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++, k++) {
@@ -93,7 +112,7 @@ void vp9_temporal_filter_apply_c(uint8_t *frame1,
// modifier = (int)roundf(coeff > 16 ? 0 : 16-coeff);
modifier *= modifier;
modifier *= 3;
- modifier += 1 << (strength - 1);
+ modifier += rounding;
modifier >>= strength;
if (modifier > 16)
@@ -112,30 +131,28 @@ void vp9_temporal_filter_apply_c(uint8_t *frame1,
}
}
-#if ALT_REF_MC_ENABLED
-
static int temporal_filter_find_matching_mb_c(VP9_COMP *cpi,
uint8_t *arf_frame_buf,
uint8_t *frame_ptr_buf,
- int stride,
- int error_thresh) {
+ int stride) {
MACROBLOCK *x = &cpi->mb;
MACROBLOCKD* const xd = &x->e_mbd;
int step_param;
int sadpb = x->sadperbit16;
int bestsme = INT_MAX;
+ int distortion;
+ unsigned int sse;
- int_mv best_ref_mv1;
- int_mv best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
- int_mv *ref_mv;
+ MV best_ref_mv1 = {0, 0};
+ MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
+ MV *ref_mv = &x->e_mbd.mi[0]->bmi[0].as_mv[0].as_mv;
// Save input state
struct buf_2d src = x->plane[0].src;
struct buf_2d pre = xd->plane[0].pre[0];
- best_ref_mv1.as_int = 0;
- best_ref_mv1_full.as_mv.col = best_ref_mv1.as_mv.col >> 3;
- best_ref_mv1_full.as_mv.row = best_ref_mv1.as_mv.row >> 3;
+ best_ref_mv1_full.col = best_ref_mv1.col >> 3;
+ best_ref_mv1_full.row = best_ref_mv1.row >> 3;
// Setup frame pointers
x->plane[0].src.buf = arf_frame_buf;
@@ -143,38 +160,22 @@ static int temporal_filter_find_matching_mb_c(VP9_COMP *cpi,
xd->plane[0].pre[0].buf = frame_ptr_buf;
xd->plane[0].pre[0].stride = stride;
- // Further step/diamond searches as necessary
- if (cpi->speed < 8)
- step_param = cpi->sf.reduce_first_step_size + ((cpi->speed > 5) ? 1 : 0);
- else
- step_param = cpi->sf.reduce_first_step_size + 2;
- step_param = MIN(step_param, (cpi->sf.max_step_search_steps - 2));
+ step_param = cpi->sf.reduce_first_step_size + (cpi->oxcf.speed > 5 ? 1 : 0);
+ step_param = MIN(step_param, cpi->sf.max_step_search_steps - 2);
- /*cpi->sf.search_method == HEX*/
// Ignore mv costing by sending NULL pointer instead of cost arrays
- ref_mv = &x->e_mbd.mi_8x8[0]->bmi[0].as_mv[0];
- bestsme = vp9_hex_search(x, &best_ref_mv1_full.as_mv,
- step_param, sadpb, 1,
- &cpi->fn_ptr[BLOCK_16X16],
- 0, &best_ref_mv1.as_mv, &ref_mv->as_mv);
-
-#if ALT_REF_SUBPEL_ENABLED
- // Try sub-pixel MC?
- // if (bestsme > error_thresh && bestsme < INT_MAX)
- {
- int distortion;
- unsigned int sse;
- // Ignore mv costing by sending NULL pointer instead of cost array
- bestsme = cpi->find_fractional_mv_step(x, &ref_mv->as_mv,
- &best_ref_mv1.as_mv,
- cpi->common.allow_high_precision_mv,
- x->errorperbit,
- &cpi->fn_ptr[BLOCK_16X16],
- 0, cpi->sf.subpel_iters_per_step,
- NULL, NULL,
- &distortion, &sse);
- }
-#endif
+ vp9_hex_search(x, &best_ref_mv1_full, step_param, sadpb, 1,
+ &cpi->fn_ptr[BLOCK_16X16], 0, &best_ref_mv1, ref_mv);
+
+ // Ignore mv costing by sending NULL pointer instead of cost array
+ bestsme = cpi->find_fractional_mv_step(x, ref_mv,
+ &best_ref_mv1,
+ cpi->common.allow_high_precision_mv,
+ x->errorperbit,
+ &cpi->fn_ptr[BLOCK_16X16],
+ 0, cpi->sf.subpel_iters_per_step,
+ NULL, NULL,
+ &distortion, &sse);
// Restore input state
x->plane[0].src = src;
@@ -182,7 +183,6 @@ static int temporal_filter_find_matching_mb_c(VP9_COMP *cpi,
return bestsme;
}
-#endif
static void temporal_filter_iterate_c(VP9_COMP *cpi,
int frame_count,
@@ -197,24 +197,27 @@ static void temporal_filter_iterate_c(VP9_COMP *cpi,
int mb_rows = cpi->common.mb_rows;
int mb_y_offset = 0;
int mb_uv_offset = 0;
- DECLARE_ALIGNED_ARRAY(16, unsigned int, accumulator, 16 * 16 + 8 * 8 + 8 * 8);
- DECLARE_ALIGNED_ARRAY(16, uint16_t, count, 16 * 16 + 8 * 8 + 8 * 8);
+ DECLARE_ALIGNED_ARRAY(16, unsigned int, accumulator, 16 * 16 * 3);
+ DECLARE_ALIGNED_ARRAY(16, uint16_t, count, 16 * 16 * 3);
MACROBLOCKD *mbd = &cpi->mb.e_mbd;
YV12_BUFFER_CONFIG *f = cpi->frames[alt_ref_index];
uint8_t *dst1, *dst2;
- DECLARE_ALIGNED_ARRAY(16, uint8_t, predictor, 16 * 16 + 8 * 8 + 8 * 8);
+ DECLARE_ALIGNED_ARRAY(16, uint8_t, predictor, 16 * 16 * 3);
+ const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y;
// Save input state
uint8_t* input_buffer[MAX_MB_PLANE];
int i;
+ // TODO(aconverse): Add 4:2:2 support
+ assert(mbd->plane[1].subsampling_x == mbd->plane[1].subsampling_y);
+
for (i = 0; i < MAX_MB_PLANE; i++)
input_buffer[i] = mbd->plane[i].pre[0].buf;
for (mb_row = 0; mb_row < mb_rows; mb_row++) {
-#if ALT_REF_MC_ENABLED
- // Source frames are extended to 16 pixels. This is different than
- // L/A/G reference frames that have a border of 32 (VP9BORDERINPIXELS)
+ // Source frames are extended to 16 pixels. This is different than
+ // L/A/G reference frames that have a border of 32 (VP9ENCBORDERINPIXELS)
// A 6/8 tap filter is used for motion search. This requires 2 pixels
// before and 3 pixels after. So the largest Y mv on a border would
// then be 16 - VP9_INTERP_EXTEND. The UV blocks are half the size of the
@@ -227,62 +230,56 @@ static void temporal_filter_iterate_c(VP9_COMP *cpi,
cpi->mb.mv_row_min = -((mb_row * 16) + (17 - 2 * VP9_INTERP_EXTEND));
cpi->mb.mv_row_max = ((cpi->common.mb_rows - 1 - mb_row) * 16)
+ (17 - 2 * VP9_INTERP_EXTEND);
-#endif
for (mb_col = 0; mb_col < mb_cols; mb_col++) {
int i, j, k;
int stride;
- vpx_memset(accumulator, 0, 384 * sizeof(unsigned int));
- vpx_memset(count, 0, 384 * sizeof(uint16_t));
+ vpx_memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0]));
+ vpx_memset(count, 0, 16 * 16 * 3 * sizeof(count[0]));
-#if ALT_REF_MC_ENABLED
cpi->mb.mv_col_min = -((mb_col * 16) + (17 - 2 * VP9_INTERP_EXTEND));
cpi->mb.mv_col_max = ((cpi->common.mb_cols - 1 - mb_col) * 16)
+ (17 - 2 * VP9_INTERP_EXTEND);
-#endif
for (frame = 0; frame < frame_count; frame++) {
+ const int thresh_low = 10000;
+ const int thresh_high = 20000;
+
if (cpi->frames[frame] == NULL)
continue;
- mbd->mi_8x8[0]->bmi[0].as_mv[0].as_mv.row = 0;
- mbd->mi_8x8[0]->bmi[0].as_mv[0].as_mv.col = 0;
+ mbd->mi[0]->bmi[0].as_mv[0].as_mv.row = 0;
+ mbd->mi[0]->bmi[0].as_mv[0].as_mv.col = 0;
if (frame == alt_ref_index) {
filter_weight = 2;
} else {
- int err = 0;
-#if ALT_REF_MC_ENABLED
-#define THRESH_LOW 10000
-#define THRESH_HIGH 20000
-
// Find best match in this frame by MC
- err = temporal_filter_find_matching_mb_c
- (cpi,
- cpi->frames[alt_ref_index]->y_buffer + mb_y_offset,
- cpi->frames[frame]->y_buffer + mb_y_offset,
- cpi->frames[frame]->y_stride,
- THRESH_LOW);
-#endif
+ int err = temporal_filter_find_matching_mb_c(cpi,
+ cpi->frames[alt_ref_index]->y_buffer + mb_y_offset,
+ cpi->frames[frame]->y_buffer + mb_y_offset,
+ cpi->frames[frame]->y_stride);
+
// Assign higher weight to matching MB if it's error
// score is lower. If not applying MC default behavior
// is to weight all MBs equal.
- filter_weight = err < THRESH_LOW
- ? 2 : err < THRESH_HIGH ? 1 : 0;
+ filter_weight = err < thresh_low
+ ? 2 : err < thresh_high ? 1 : 0;
}
if (filter_weight != 0) {
// Construct the predictors
- temporal_filter_predictors_mb_c
- (mbd,
- cpi->frames[frame]->y_buffer + mb_y_offset,
- cpi->frames[frame]->u_buffer + mb_uv_offset,
- cpi->frames[frame]->v_buffer + mb_uv_offset,
- cpi->frames[frame]->y_stride,
- mbd->mi_8x8[0]->bmi[0].as_mv[0].as_mv.row,
- mbd->mi_8x8[0]->bmi[0].as_mv[0].as_mv.col,
- predictor, scale);
+ temporal_filter_predictors_mb_c(mbd,
+ cpi->frames[frame]->y_buffer + mb_y_offset,
+ cpi->frames[frame]->u_buffer + mb_uv_offset,
+ cpi->frames[frame]->v_buffer + mb_uv_offset,
+ cpi->frames[frame]->y_stride,
+ mb_uv_height,
+ mbd->mi[0]->bmi[0].as_mv[0].as_mv.row,
+ mbd->mi[0]->bmi[0].as_mv[0].as_mv.col,
+ predictor, scale,
+ mb_col * 16, mb_row * 16);
// Apply the filter (YUV)
vp9_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
@@ -290,12 +287,14 @@ static void temporal_filter_iterate_c(VP9_COMP *cpi,
accumulator, count);
vp9_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
- predictor + 256, 8, strength, filter_weight,
- accumulator + 256, count + 256);
+ predictor + 256, mb_uv_height, strength,
+ filter_weight, accumulator + 256,
+ count + 256);
vp9_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
- predictor + 320, 8, strength, filter_weight,
- accumulator + 320, count + 320);
+ predictor + 512, mb_uv_height, strength,
+ filter_weight, accumulator + 512,
+ count + 512);
}
}
@@ -306,7 +305,7 @@ static void temporal_filter_iterate_c(VP9_COMP *cpi,
for (i = 0, k = 0; i < 16; i++) {
for (j = 0; j < 16; j++, k++) {
unsigned int pval = accumulator[k] + (count[k] >> 1);
- pval *= cpi->fixed_divide[count[k]];
+ pval *= fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (uint8_t)pval;
@@ -314,7 +313,6 @@ static void temporal_filter_iterate_c(VP9_COMP *cpi,
// move to next pixel
byte++;
}
-
byte += stride - 16;
}
@@ -322,35 +320,32 @@ static void temporal_filter_iterate_c(VP9_COMP *cpi,
dst2 = cpi->alt_ref_buffer.v_buffer;
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;
- for (i = 0, k = 256; i < 8; i++) {
- for (j = 0; j < 8; j++, k++) {
- int m = k + 64;
+ for (i = 0, k = 256; i < mb_uv_height; i++) {
+ for (j = 0; j < mb_uv_height; j++, k++) {
+ int m = k + 256;
// U
unsigned int pval = accumulator[k] + (count[k] >> 1);
- pval *= cpi->fixed_divide[count[k]];
+ pval *= fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (uint8_t)pval;
// V
pval = accumulator[m] + (count[m] >> 1);
- pval *= cpi->fixed_divide[count[m]];
+ pval *= fixed_divide[count[m]];
pval >>= 19;
dst2[byte] = (uint8_t)pval;
// move to next pixel
byte++;
}
-
- byte += stride - 8;
+ byte += stride - mb_uv_height;
}
-
mb_y_offset += 16;
- mb_uv_offset += 8;
+ mb_uv_offset += mb_uv_height;
}
-
mb_y_offset += 16 * (f->y_stride - mb_cols);
- mb_uv_offset += 8 * (f->uv_stride - mb_cols);
+ mb_uv_offset += mb_uv_height * (f->uv_stride - mb_cols);
}
// Restore input state
@@ -360,24 +355,18 @@ static void temporal_filter_iterate_c(VP9_COMP *cpi,
void vp9_temporal_filter_prepare(VP9_COMP *cpi, int distance) {
VP9_COMMON *const cm = &cpi->common;
-
int frame = 0;
-
int frames_to_blur_backward = 0;
int frames_to_blur_forward = 0;
int frames_to_blur = 0;
int start_frame = 0;
-
int strength = cpi->active_arnr_strength;
int blur_type = cpi->oxcf.arnr_type;
int max_frames = cpi->active_arnr_frames;
-
const int num_frames_backward = distance;
const int num_frames_forward = vp9_lookahead_depth(cpi->lookahead)
- (num_frames_backward + 1);
-
- struct scale_factors scale;
- struct scale_factors_common scale_comm;
+ struct scale_factors sf;
switch (blur_type) {
case 1:
@@ -392,7 +381,6 @@ void vp9_temporal_filter_prepare(VP9_COMP *cpi, int distance) {
case 2:
// Forward Blur
-
frames_to_blur_forward = num_frames_forward;
if (frames_to_blur_forward >= max_frames)
@@ -437,7 +425,7 @@ void vp9_temporal_filter_prepare(VP9_COMP *cpi, int distance) {
#endif
// Setup scaling factors. Scaling on each of the arnr frames is not supported
- vp9_setup_scale_factors_for_frame(&scale, &scale_comm,
+ vp9_setup_scale_factors_for_frame(&sf,
get_frame_new_buffer(cm)->y_crop_width,
get_frame_new_buffer(cm)->y_crop_height,
cm->width, cm->height);
@@ -452,25 +440,27 @@ void vp9_temporal_filter_prepare(VP9_COMP *cpi, int distance) {
}
temporal_filter_iterate_c(cpi, frames_to_blur, frames_to_blur_backward,
- strength, &scale);
+ strength, &sf);
}
-void configure_arnr_filter(VP9_COMP *cpi, const unsigned int this_frame,
- const int group_boost) {
+void vp9_configure_arnr_filter(VP9_COMP *cpi,
+ const unsigned int frames_to_arnr,
+ const int group_boost) {
int half_gf_int;
int frames_after_arf;
int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
int q;
- // Define the arnr filter width for this group of frames:
- // We only filter frames that lie within a distance of half
- // the GF interval from the ARF frame. We also have to trap
- // cases where the filter extends beyond the end of clip.
- // Note: this_frame->frame has been updated in the loop
- // so it now points at the ARF frame.
- half_gf_int = cpi->baseline_gf_interval >> 1;
- frames_after_arf = (int)(cpi->twopass.total_stats.count - this_frame - 1);
+ // Define the arnr filter width for this group of frames. We only
+ // filter frames that lie within a distance of half the GF interval
+ // from the ARF frame. We also have to trap cases where the filter
+ // extends beyond the end of the lookahead buffer.
+ // Note: frames_to_arnr parameter is the offset of the arnr
+ // frame from the current frame.
+ half_gf_int = cpi->rc.baseline_gf_interval >> 1;
+ frames_after_arf = vp9_lookahead_depth(cpi->lookahead)
+ - frames_to_arnr - 1;
switch (cpi->oxcf.arnr_type) {
case 1: // Backward filter
@@ -507,11 +497,16 @@ void configure_arnr_filter(VP9_COMP *cpi, const unsigned int this_frame,
cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
// Adjust the strength based on active max q
- q = ((int)vp9_convert_qindex_to_q(cpi->active_worst_quality) >> 1);
- if (q > 8) {
+ if (cpi->common.current_video_frame > 1)
+ q = ((int)vp9_convert_qindex_to_q(
+ cpi->rc.avg_frame_qindex[INTER_FRAME]));
+ else
+ q = ((int)vp9_convert_qindex_to_q(
+ cpi->rc.avg_frame_qindex[KEY_FRAME]));
+ if (q > 16) {
cpi->active_arnr_strength = cpi->oxcf.arnr_strength;
} else {
- cpi->active_arnr_strength = cpi->oxcf.arnr_strength - (8 - q);
+ cpi->active_arnr_strength = cpi->oxcf.arnr_strength - ((16 - q) / 2);
if (cpi->active_arnr_strength < 0)
cpi->active_arnr_strength = 0;
}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_temporal_filter.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_temporal_filter.h
index c5f3b467e54..9453dc16ae9 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_temporal_filter.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_temporal_filter.h
@@ -11,8 +11,18 @@
#ifndef VP9_ENCODER_VP9_TEMPORAL_FILTER_H_
#define VP9_ENCODER_VP9_TEMPORAL_FILTER_H_
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp9_temporal_filter_init();
void vp9_temporal_filter_prepare(VP9_COMP *cpi, int distance);
-void configure_arnr_filter(VP9_COMP *cpi, const unsigned int this_frame,
- const int group_boost);
+void vp9_configure_arnr_filter(VP9_COMP *cpi,
+ const unsigned int frames_to_arnr,
+ const int group_boost);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
#endif // VP9_ENCODER_VP9_TEMPORAL_FILTER_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_tokenize.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_tokenize.c
index 550263aa8fc..17214c3eeb7 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_tokenize.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_tokenize.c
@@ -8,33 +8,107 @@
* be found in the AUTHORS file in the root of the source tree.
*/
-
+#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
-#include <assert.h>
-#include "vp9/encoder/vp9_onyx_int.h"
-#include "vp9/encoder/vp9_tokenize.h"
+
#include "vpx_mem/vpx_mem.h"
+#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_seg_common.h"
-#include "vp9/common/vp9_entropy.h"
-
-/* Global event counters used for accumulating statistics across several
- compressions, then generating vp9_context.c = initial stats. */
-#ifdef ENTROPY_STATS
-vp9_coeff_accum context_counters[TX_SIZES][BLOCK_TYPES];
-extern vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES];
-#endif /* ENTROPY_STATS */
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_tokenize.h"
static TOKENVALUE dct_value_tokens[DCT_MAX_VALUE * 2];
const TOKENVALUE *vp9_dct_value_tokens_ptr;
-static int dct_value_cost[DCT_MAX_VALUE * 2];
-const int *vp9_dct_value_cost_ptr;
+static int16_t dct_value_cost[DCT_MAX_VALUE * 2];
+const int16_t *vp9_dct_value_cost_ptr;
+
+// Array indices are identical to previously-existing CONTEXT_NODE indices
+const vp9_tree_index vp9_coef_tree[TREE_SIZE(ENTROPY_TOKENS)] = {
+ -EOB_TOKEN, 2, // 0 = EOB
+ -ZERO_TOKEN, 4, // 1 = ZERO
+ -ONE_TOKEN, 6, // 2 = ONE
+ 8, 12, // 3 = LOW_VAL
+ -TWO_TOKEN, 10, // 4 = TWO
+ -THREE_TOKEN, -FOUR_TOKEN, // 5 = THREE
+ 14, 16, // 6 = HIGH_LOW
+ -CATEGORY1_TOKEN, -CATEGORY2_TOKEN, // 7 = CAT_ONE
+ 18, 20, // 8 = CAT_THREEFOUR
+ -CATEGORY3_TOKEN, -CATEGORY4_TOKEN, // 9 = CAT_THREE
+ -CATEGORY5_TOKEN, -CATEGORY6_TOKEN // 10 = CAT_FIVE
+};
-static void fill_value_tokens() {
+// Unconstrained Node Tree
+const vp9_tree_index vp9_coef_con_tree[TREE_SIZE(ENTROPY_TOKENS)] = {
+ 2, 6, // 0 = LOW_VAL
+ -TWO_TOKEN, 4, // 1 = TWO
+ -THREE_TOKEN, -FOUR_TOKEN, // 2 = THREE
+ 8, 10, // 3 = HIGH_LOW
+ -CATEGORY1_TOKEN, -CATEGORY2_TOKEN, // 4 = CAT_ONE
+ 12, 14, // 5 = CAT_THREEFOUR
+ -CATEGORY3_TOKEN, -CATEGORY4_TOKEN, // 6 = CAT_THREE
+ -CATEGORY5_TOKEN, -CATEGORY6_TOKEN // 7 = CAT_FIVE
+};
+
+static const vp9_prob Pcat1[] = { 159};
+static const vp9_prob Pcat2[] = { 165, 145};
+static const vp9_prob Pcat3[] = { 173, 148, 140};
+static const vp9_prob Pcat4[] = { 176, 155, 140, 135};
+static const vp9_prob Pcat5[] = { 180, 157, 141, 134, 130};
+static const vp9_prob Pcat6[] = {
+ 254, 254, 254, 252, 249, 243, 230, 196, 177, 153, 140, 133, 130, 129
+};
+
+static vp9_tree_index cat1[2], cat2[4], cat3[6], cat4[8], cat5[10], cat6[28];
+
+static void init_bit_tree(vp9_tree_index *p, int n) {
+ int i = 0;
+
+ while (++i < n) {
+ p[0] = p[1] = i << 1;
+ p += 2;
+ }
+
+ p[0] = p[1] = 0;
+}
+
+static void init_bit_trees() {
+ init_bit_tree(cat1, 1);
+ init_bit_tree(cat2, 2);
+ init_bit_tree(cat3, 3);
+ init_bit_tree(cat4, 4);
+ init_bit_tree(cat5, 5);
+ init_bit_tree(cat6, 14);
+}
+
+const vp9_extra_bit vp9_extra_bits[ENTROPY_TOKENS] = {
+ {0, 0, 0, 0}, // ZERO_TOKEN
+ {0, 0, 0, 1}, // ONE_TOKEN
+ {0, 0, 0, 2}, // TWO_TOKEN
+ {0, 0, 0, 3}, // THREE_TOKEN
+ {0, 0, 0, 4}, // FOUR_TOKEN
+ {cat1, Pcat1, 1, 5}, // CATEGORY1_TOKEN
+ {cat2, Pcat2, 2, 7}, // CATEGORY2_TOKEN
+ {cat3, Pcat3, 3, 11}, // CATEGORY3_TOKEN
+ {cat4, Pcat4, 4, 19}, // CATEGORY4_TOKEN
+ {cat5, Pcat5, 5, 35}, // CATEGORY5_TOKEN
+ {cat6, Pcat6, 14, 67}, // CATEGORY6_TOKEN
+ {0, 0, 0, 0} // EOB_TOKEN
+};
+
+struct vp9_token vp9_coef_encodings[ENTROPY_TOKENS];
+
+void vp9_coef_tree_initialize() {
+ init_bit_trees();
+ vp9_tokens_from_tree(vp9_coef_encodings, vp9_coef_tree);
+}
+
+void vp9_tokenize_initialize() {
TOKENVALUE *const t = dct_value_tokens + DCT_MAX_VALUE;
const vp9_extra_bit *const e = vp9_extra_bits;
@@ -65,7 +139,7 @@ static void fill_value_tokens() {
// initialize the cost for extra bits for all possible coefficient value.
{
int cost = 0;
- const vp9_extra_bit *p = vp9_extra_bits + t[i].token;
+ const vp9_extra_bit *p = &vp9_extra_bits[t[i].token];
if (p->base_val) {
const int extra = t[i].extra;
@@ -81,24 +155,55 @@ static void fill_value_tokens() {
} while (++i < DCT_MAX_VALUE);
vp9_dct_value_tokens_ptr = dct_value_tokens + DCT_MAX_VALUE;
- vp9_dct_value_cost_ptr = dct_value_cost + DCT_MAX_VALUE;
+ vp9_dct_value_cost_ptr = dct_value_cost + DCT_MAX_VALUE;
}
struct tokenize_b_args {
VP9_COMP *cpi;
MACROBLOCKD *xd;
TOKENEXTRA **tp;
- TX_SIZE tx_size;
};
static void set_entropy_context_b(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct tokenize_b_args* const args = arg;
MACROBLOCKD *const xd = args->xd;
+ struct macroblock_plane *p = &args->cpi->mb.plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
int aoff, loff;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &aoff, &loff);
- set_contexts(xd, pd, plane_bsize, tx_size, pd->eobs[block] > 0, aoff, loff);
+ vp9_set_contexts(xd, pd, plane_bsize, tx_size, p->eobs[block] > 0,
+ aoff, loff);
+}
+
+static INLINE void add_token(TOKENEXTRA **t, const vp9_prob *context_tree,
+ int16_t extra, uint8_t token,
+ uint8_t skip_eob_node,
+ unsigned int *counts) {
+ (*t)->token = token;
+ (*t)->extra = extra;
+ (*t)->context_tree = context_tree;
+ (*t)->skip_eob_node = skip_eob_node;
+ (*t)++;
+ ++counts[token];
+}
+
+static INLINE void add_token_no_extra(TOKENEXTRA **t,
+ const vp9_prob *context_tree,
+ uint8_t token,
+ uint8_t skip_eob_node,
+ unsigned int *counts) {
+ (*t)->token = token;
+ (*t)->context_tree = context_tree;
+ (*t)->skip_eob_node = skip_eob_node;
+ (*t)++;
+ ++counts[token];
+}
+
+static INLINE int get_tx_eob(const struct segmentation *seg, int segment_id,
+ TX_SIZE tx_size) {
+ const int eob_max = 16 << (tx_size << 1);
+ return vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP) ? 0 : eob_max;
}
static void tokenize_b(int plane, int block, BLOCK_SIZE plane_bsize,
@@ -107,70 +212,80 @@ static void tokenize_b(int plane, int block, BLOCK_SIZE plane_bsize,
VP9_COMP *cpi = args->cpi;
MACROBLOCKD *xd = args->xd;
TOKENEXTRA **tp = args->tp;
+ uint8_t token_cache[32 * 32];
+ struct macroblock_plane *p = &cpi->mb.plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
- MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
int pt; /* near block/prev token context index */
- int c = 0, rc = 0;
+ int c;
TOKENEXTRA *t = *tp; /* store tokens starting here */
- const int eob = pd->eobs[block];
+ int eob = p->eobs[block];
const PLANE_TYPE type = pd->plane_type;
- const int16_t *qcoeff_ptr = BLOCK_OFFSET(pd->qcoeff, block);
-
+ const int16_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
const int segment_id = mbmi->segment_id;
const int16_t *scan, *nb;
- vp9_coeff_count *const counts = cpi->coef_counts[tx_size];
- vp9_coeff_probs_model *const coef_probs = cpi->common.fc.coef_probs[tx_size];
+ const scan_order *so;
const int ref = is_inter_block(mbmi);
- uint8_t token_cache[1024];
- const uint8_t *const band_translate = get_band_translate(tx_size);
+ unsigned int (*const counts)[COEFF_CONTEXTS][ENTROPY_TOKENS] =
+ cpi->coef_counts[tx_size][type][ref];
+ vp9_prob (*const coef_probs)[COEFF_CONTEXTS][UNCONSTRAINED_NODES] =
+ cpi->common.fc.coef_probs[tx_size][type][ref];
+ unsigned int (*const eob_branch)[COEFF_CONTEXTS] =
+ cpi->common.counts.eob_branch[tx_size][type][ref];
+ const uint8_t *const band = get_band_translate(tx_size);
const int seg_eob = get_tx_eob(&cpi->common.seg, segment_id, tx_size);
+
int aoff, loff;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &aoff, &loff);
- assert((!type && !plane) || (type && plane));
-
pt = get_entropy_context(tx_size, pd->above_context + aoff,
- pd->left_context + loff);
- get_scan(xd, tx_size, type, block, &scan, &nb);
+ pd->left_context + loff);
+ so = get_scan(xd, tx_size, type, block);
+ scan = so->scan;
+ nb = so->neighbors;
c = 0;
- do {
- const int band = get_coef_band(band_translate, c);
- int token;
+ while (c < eob) {
int v = 0;
- rc = scan[c];
- if (c)
- pt = get_coef_context(nb, token_cache, c);
- if (c < eob) {
- v = qcoeff_ptr[rc];
- assert(-DCT_MAX_VALUE <= v && v < DCT_MAX_VALUE);
-
- t->extra = vp9_dct_value_tokens_ptr[v].extra;
- token = vp9_dct_value_tokens_ptr[v].token;
- } else {
- token = DCT_EOB_TOKEN;
- }
+ int skip_eob = 0;
+ v = qcoeff[scan[c]];
- t->token = token;
- t->context_tree = coef_probs[type][ref][band][pt];
- t->skip_eob_node = (c > 0) && (token_cache[scan[c - 1]] == 0);
+ while (!v) {
+ add_token_no_extra(&t, coef_probs[band[c]][pt], ZERO_TOKEN, skip_eob,
+ counts[band[c]][pt]);
+ eob_branch[band[c]][pt] += !skip_eob;
- assert(vp9_coef_encodings[t->token].len - t->skip_eob_node > 0);
-
- ++counts[type][ref][band][pt][token];
- if (!t->skip_eob_node)
- ++cpi->common.counts.eob_branch[tx_size][type][ref][band][pt];
+ skip_eob = 1;
+ token_cache[scan[c]] = 0;
+ ++c;
+ pt = get_coef_context(nb, token_cache, c);
+ v = qcoeff[scan[c]];
+ }
- token_cache[rc] = vp9_pt_energy_class[token];
- ++t;
- } while (c < eob && ++c < seg_eob);
+ add_token(&t, coef_probs[band[c]][pt],
+ vp9_dct_value_tokens_ptr[v].extra,
+ (uint8_t)vp9_dct_value_tokens_ptr[v].token,
+ (uint8_t)skip_eob,
+ counts[band[c]][pt]);
+ eob_branch[band[c]][pt] += !skip_eob;
+
+ token_cache[scan[c]] =
+ vp9_pt_energy_class[vp9_dct_value_tokens_ptr[v].token];
+ ++c;
+ pt = get_coef_context(nb, token_cache, c);
+ }
+ if (c < seg_eob) {
+ add_token_no_extra(&t, coef_probs[band[c]][pt], EOB_TOKEN, 0,
+ counts[band[c]][pt]);
+ ++eob_branch[band[c]][pt];
+ }
*tp = t;
- set_contexts(xd, pd, plane_bsize, tx_size, c > 0, aoff, loff);
+ vp9_set_contexts(xd, pd, plane_bsize, tx_size, c > 0, aoff, loff);
}
struct is_skippable_args {
- MACROBLOCKD *xd;
+ MACROBLOCK *x;
int *skippable;
};
@@ -178,21 +293,16 @@ static void is_skippable(int plane, int block,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *argv) {
struct is_skippable_args *args = argv;
- args->skippable[0] &= (!args->xd->plane[plane].eobs[block]);
+ (void)plane_bsize;
+ (void)tx_size;
+ args->skippable[0] &= (!args->x->plane[plane].eobs[block]);
}
-int vp9_sb_is_skippable(MACROBLOCKD *xd, BLOCK_SIZE bsize) {
+int vp9_is_skippable_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
int result = 1;
- struct is_skippable_args args = {xd, &result};
- foreach_transformed_block(xd, bsize, is_skippable, &args);
- return result;
-}
-
-int vp9_is_skippable_in_plane(MACROBLOCKD *xd, BLOCK_SIZE bsize,
- int plane) {
- int result = 1;
- struct is_skippable_args args = {xd, &result};
- foreach_transformed_block_in_plane(xd, bsize, plane, is_skippable, &args);
+ struct is_skippable_args args = {x, &result};
+ vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, plane, is_skippable,
+ &args);
return result;
}
@@ -200,17 +310,15 @@ void vp9_tokenize_sb(VP9_COMP *cpi, TOKENEXTRA **t, int dry_run,
BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
- MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
TOKENEXTRA *t_backup = *t;
- const int mb_skip_context = vp9_get_pred_context_mbskip(xd);
+ const int ctx = vp9_get_skip_context(xd);
const int skip_inc = !vp9_segfeature_active(&cm->seg, mbmi->segment_id,
SEG_LVL_SKIP);
- struct tokenize_b_args arg = {cpi, xd, t, mbmi->tx_size};
-
- mbmi->skip_coeff = vp9_sb_is_skippable(xd, bsize);
- if (mbmi->skip_coeff) {
+ struct tokenize_b_args arg = {cpi, xd, t};
+ if (mbmi->skip) {
if (!dry_run)
- cm->counts.mbskip[mb_skip_context][1] += skip_inc;
+ cm->counts.skip[ctx][1] += skip_inc;
reset_skip_context(xd, bsize);
if (dry_run)
*t = t_backup;
@@ -218,157 +326,10 @@ void vp9_tokenize_sb(VP9_COMP *cpi, TOKENEXTRA **t, int dry_run,
}
if (!dry_run) {
- cm->counts.mbskip[mb_skip_context][0] += skip_inc;
- foreach_transformed_block(xd, bsize, tokenize_b, &arg);
+ cm->counts.skip[ctx][0] += skip_inc;
+ vp9_foreach_transformed_block(xd, bsize, tokenize_b, &arg);
} else {
- foreach_transformed_block(xd, bsize, set_entropy_context_b, &arg);
+ vp9_foreach_transformed_block(xd, bsize, set_entropy_context_b, &arg);
*t = t_backup;
}
}
-
-#ifdef ENTROPY_STATS
-void init_context_counters(void) {
- FILE *f = fopen("context.bin", "rb");
- if (!f) {
- vp9_zero(context_counters);
- } else {
- fread(context_counters, sizeof(context_counters), 1, f);
- fclose(f);
- }
-
- f = fopen("treeupdate.bin", "rb");
- if (!f) {
- vpx_memset(tree_update_hist, 0, sizeof(tree_update_hist));
- } else {
- fread(tree_update_hist, sizeof(tree_update_hist), 1, f);
- fclose(f);
- }
-}
-
-static void print_counter(FILE *f, vp9_coeff_accum *context_counters,
- int block_types, const char *header) {
- int type, ref, band, pt, t;
-
- fprintf(f, "static const vp9_coeff_count %s = {\n", header);
-
-#define Comma(X) (X ? "," : "")
- type = 0;
- do {
- ref = 0;
- fprintf(f, "%s\n { /* block Type %d */", Comma(type), type);
- do {
- fprintf(f, "%s\n { /* %s */", Comma(type), ref ? "Inter" : "Intra");
- band = 0;
- do {
- fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band);
- pt = 0;
- do {
- fprintf(f, "%s\n {", Comma(pt));
-
- t = 0;
- do {
- const int64_t x = context_counters[type][ref][band][pt][t];
- const int y = (int) x;
-
- assert(x == (int64_t) y); /* no overflow handling yet */
- fprintf(f, "%s %d", Comma(t), y);
- } while (++t < 1 + MAX_ENTROPY_TOKENS);
- fprintf(f, "}");
- } while (++pt < PREV_COEF_CONTEXTS);
- fprintf(f, "\n }");
- } while (++band < COEF_BANDS);
- fprintf(f, "\n }");
- } while (++ref < REF_TYPES);
- fprintf(f, "\n }");
- } while (++type < block_types);
- fprintf(f, "\n};\n");
-}
-
-static void print_probs(FILE *f, vp9_coeff_accum *context_counters,
- int block_types, const char *header) {
- int type, ref, band, pt, t;
-
- fprintf(f, "static const vp9_coeff_probs %s = {", header);
-
- type = 0;
-#define Newline(x, spaces) (x ? " " : "\n" spaces)
- do {
- fprintf(f, "%s%s{ /* block Type %d */",
- Comma(type), Newline(type, " "), type);
- ref = 0;
- do {
- fprintf(f, "%s%s{ /* %s */",
- Comma(band), Newline(band, " "), ref ? "Inter" : "Intra");
- band = 0;
- do {
- fprintf(f, "%s%s{ /* Coeff Band %d */",
- Comma(band), Newline(band, " "), band);
- pt = 0;
- do {
- unsigned int branch_ct[ENTROPY_NODES][2];
- unsigned int coef_counts[MAX_ENTROPY_TOKENS + 1];
- vp9_prob coef_probs[ENTROPY_NODES];
-
- if (pt >= 3 && band == 0)
- break;
- for (t = 0; t < MAX_ENTROPY_TOKENS + 1; ++t)
- coef_counts[t] = context_counters[type][ref][band][pt][t];
- vp9_tree_probs_from_distribution(vp9_coef_tree, coef_probs,
- branch_ct, coef_counts, 0);
- branch_ct[0][1] = coef_counts[MAX_ENTROPY_TOKENS] - branch_ct[0][0];
- coef_probs[0] = get_binary_prob(branch_ct[0][0], branch_ct[0][1]);
- fprintf(f, "%s\n {", Comma(pt));
-
- t = 0;
- do {
- fprintf(f, "%s %3d", Comma(t), coef_probs[t]);
- } while (++t < ENTROPY_NODES);
-
- fprintf(f, " }");
- } while (++pt < PREV_COEF_CONTEXTS);
- fprintf(f, "\n }");
- } while (++band < COEF_BANDS);
- fprintf(f, "\n }");
- } while (++ref < REF_TYPES);
- fprintf(f, "\n }");
- } while (++type < block_types);
- fprintf(f, "\n};\n");
-}
-
-void print_context_counters() {
- FILE *f = fopen("vp9_context.c", "w");
-
- fprintf(f, "#include \"vp9_entropy.h\"\n");
- fprintf(f, "\n/* *** GENERATED FILE: DO NOT EDIT *** */\n\n");
-
- /* print counts */
- print_counter(f, context_counters[TX_4X4], BLOCK_TYPES,
- "vp9_default_coef_counts_4x4[BLOCK_TYPES]");
- print_counter(f, context_counters[TX_8X8], BLOCK_TYPES,
- "vp9_default_coef_counts_8x8[BLOCK_TYPES]");
- print_counter(f, context_counters[TX_16X16], BLOCK_TYPES,
- "vp9_default_coef_counts_16x16[BLOCK_TYPES]");
- print_counter(f, context_counters[TX_32X32], BLOCK_TYPES,
- "vp9_default_coef_counts_32x32[BLOCK_TYPES]");
-
- /* print coefficient probabilities */
- print_probs(f, context_counters[TX_4X4], BLOCK_TYPES,
- "default_coef_probs_4x4[BLOCK_TYPES]");
- print_probs(f, context_counters[TX_8X8], BLOCK_TYPES,
- "default_coef_probs_8x8[BLOCK_TYPES]");
- print_probs(f, context_counters[TX_16X16], BLOCK_TYPES,
- "default_coef_probs_16x16[BLOCK_TYPES]");
- print_probs(f, context_counters[TX_32X32], BLOCK_TYPES,
- "default_coef_probs_32x32[BLOCK_TYPES]");
-
- fclose(f);
-
- f = fopen("context.bin", "wb");
- fwrite(context_counters, sizeof(context_counters), 1, f);
- fclose(f);
-}
-#endif
-
-void vp9_tokenize_initialize() {
- fill_value_tokens();
-}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_tokenize.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_tokenize.h
index b78e100ec95..063c0bafe7b 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_tokenize.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_tokenize.h
@@ -12,10 +12,18 @@
#define VP9_ENCODER_VP9_TOKENIZE_H_
#include "vp9/common/vp9_entropy.h"
+
#include "vp9/encoder/vp9_block.h"
+#include "vp9/encoder/vp9_treewriter.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
void vp9_tokenize_initialize();
+#define EOSB_TOKEN 127 // Not signalled, encoder only
+
typedef struct {
int16_t token;
int16_t extra;
@@ -28,29 +36,26 @@ typedef struct {
uint8_t skip_eob_node;
} TOKENEXTRA;
-typedef int64_t vp9_coeff_accum[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS]
- [MAX_ENTROPY_TOKENS + 1];
+extern const vp9_tree_index vp9_coef_tree[];
+extern const vp9_tree_index vp9_coef_con_tree[];
+extern struct vp9_token vp9_coef_encodings[];
+
+int vp9_is_skippable_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane);
-int vp9_sb_is_skippable(MACROBLOCKD *xd, BLOCK_SIZE bsize);
-int vp9_is_skippable_in_plane(MACROBLOCKD *xd, BLOCK_SIZE bsize,
- int plane);
struct VP9_COMP;
void vp9_tokenize_sb(struct VP9_COMP *cpi, TOKENEXTRA **t, int dry_run,
BLOCK_SIZE bsize);
-#ifdef ENTROPY_STATS
-void init_context_counters();
-void print_context_counters();
-
-extern vp9_coeff_accum context_counters[TX_SIZES][BLOCK_TYPES];
-#endif
-
-extern const int *vp9_dct_value_cost_ptr;
+extern const int16_t *vp9_dct_value_cost_ptr;
/* TODO: The Token field should be broken out into a separate char array to
* improve cache locality, since it's needed for costing when the rest of the
* fields are not.
*/
extern const TOKENVALUE *vp9_dct_value_tokens_ptr;
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
#endif // VP9_ENCODER_VP9_TOKENIZE_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_treewriter.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_treewriter.c
index e4aed5374cf..bb04b4025c8 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_treewriter.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_treewriter.c
@@ -10,29 +10,49 @@
#include "vp9/encoder/vp9_treewriter.h"
-static void cost(int *costs, vp9_tree tree, const vp9_prob *probs,
- int i, int c) {
- const vp9_prob prob = probs[i / 2];
- int b;
-
- for (b = 0; b <= 1; ++b) {
- const int cc = c + vp9_cost_bit(prob, b);
- const vp9_tree_index ii = tree[i + b];
-
- if (ii <= 0)
- costs[-ii] = cc;
- else
- cost(costs, tree, probs, ii, cc);
- }
+static void tree2tok(struct vp9_token *tokens, const vp9_tree_index *tree,
+ int i, int v, int l) {
+ v += v;
+ ++l;
+
+ do {
+ const vp9_tree_index j = tree[i++];
+ if (j <= 0) {
+ tokens[-j].value = v;
+ tokens[-j].len = l;
+ } else {
+ tree2tok(tokens, tree, j, v, l);
+ }
+ } while (++v & 1);
}
-void vp9_cost_tokens(int *costs, const vp9_prob *probs, vp9_tree tree) {
- cost(costs, tree, probs, 0, 0);
+void vp9_tokens_from_tree(struct vp9_token *tokens,
+ const vp9_tree_index *tree) {
+ tree2tok(tokens, tree, 0, 0, 0);
}
-void vp9_cost_tokens_skip(int *costs, const vp9_prob *probs, vp9_tree tree) {
- assert(tree[0] <= 0 && tree[1] > 0);
+static unsigned int convert_distribution(unsigned int i, vp9_tree tree,
+ unsigned int branch_ct[][2],
+ const unsigned int num_events[]) {
+ unsigned int left, right;
+
+ if (tree[i] <= 0)
+ left = num_events[-tree[i]];
+ else
+ left = convert_distribution(tree[i], tree, branch_ct, num_events);
+
+ if (tree[i + 1] <= 0)
+ right = num_events[-tree[i + 1]];
+ else
+ right = convert_distribution(tree[i + 1], tree, branch_ct, num_events);
+
+ branch_ct[i >> 1][0] = left;
+ branch_ct[i >> 1][1] = right;
+ return left + right;
+}
- costs[-tree[0]] = vp9_cost_bit(probs[0], 0);
- cost(costs, tree, probs, 2, 0);
+void vp9_tree_probs_from_distribution(vp9_tree tree,
+ unsigned int branch_ct[/* n-1 */][2],
+ const unsigned int num_events[/* n */]) {
+ convert_distribution(0, tree, branch_ct, num_events);
}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_treewriter.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_treewriter.h
index eeda5cda796..4a76d87cdfe 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_treewriter.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_treewriter.h
@@ -8,47 +8,29 @@
* be found in the AUTHORS file in the root of the source tree.
*/
-
#ifndef VP9_ENCODER_VP9_TREEWRITER_H_
#define VP9_ENCODER_VP9_TREEWRITER_H_
-/* Trees map alphabets into huffman-like codes suitable for an arithmetic
- bit coder. Timothy S Murphy 11 October 2004 */
-
-#include "vp9/common/vp9_treecoder.h"
-
-#include "vp9/encoder/vp9_boolhuff.h" /* for now */
-
-
-#define vp9_write_prob(w, v) vp9_write_literal((w), (v), 8)
-
-/* Approximate length of an encoded bool in 256ths of a bit at given prob */
+#include "vp9/encoder/vp9_writer.h"
-#define vp9_cost_zero(x) (vp9_prob_cost[x])
-#define vp9_cost_one(x) vp9_cost_zero(vp9_complement(x))
-
-#define vp9_cost_bit(x, b) vp9_cost_zero((b) ? vp9_complement(x) : (x))
-
-/* VP8BC version is scaled by 2^20 rather than 2^8; see bool_coder.h */
-
-
-/* Both of these return bits, not scaled bits. */
-static INLINE unsigned int cost_branch256(const unsigned int ct[2],
- vp9_prob p) {
- return ct[0] * vp9_cost_zero(p) + ct[1] * vp9_cost_one(p);
-}
+#ifdef __cplusplus
+extern "C" {
+#endif
-static INLINE unsigned int cost_branch(const unsigned int ct[2],
- vp9_prob p) {
- return cost_branch256(ct, p) >> 8;
-}
+void vp9_tree_probs_from_distribution(vp9_tree tree,
+ unsigned int branch_ct[ /* n - 1 */ ][2],
+ const unsigned int num_events[ /* n */ ]);
+struct vp9_token {
+ int value;
+ int len;
+};
-static INLINE void treed_write(vp9_writer *w,
- vp9_tree tree, const vp9_prob *probs,
- int bits, int len) {
- vp9_tree_index i = 0;
+void vp9_tokens_from_tree(struct vp9_token*, const vp9_tree_index *);
+static INLINE void vp9_write_tree(vp9_writer *w, const vp9_tree_index *tree,
+ const vp9_prob *probs, int bits, int len,
+ vp9_tree_index i) {
do {
const int bit = (bits >> --len) & 1;
vp9_write(w, bit, probs[i >> 1]);
@@ -56,32 +38,14 @@ static INLINE void treed_write(vp9_writer *w,
} while (len);
}
-static INLINE void write_token(vp9_writer *w, vp9_tree tree,
- const vp9_prob *probs,
- const struct vp9_token *token) {
- treed_write(w, tree, probs, token->value, token->len);
-}
-
-static INLINE int treed_cost(vp9_tree tree, const vp9_prob *probs,
- int bits, int len) {
- int cost = 0;
- vp9_tree_index i = 0;
-
- do {
- const int bit = (bits >> --len) & 1;
- cost += vp9_cost_bit(probs[i >> 1], bit);
- i = tree[i + bit];
- } while (len);
-
- return cost;
-}
-
-static INLINE int cost_token(vp9_tree tree, const vp9_prob *probs,
- const struct vp9_token *token) {
- return treed_cost(tree, probs, token->value, token->len);
+static INLINE void vp9_write_token(vp9_writer *w, const vp9_tree_index *tree,
+ const vp9_prob *probs,
+ const struct vp9_token *token) {
+ vp9_write_tree(w, tree, probs, token->value, token->len, 0);
}
-void vp9_cost_tokens(int *costs, const vp9_prob *probs, vp9_tree tree);
-void vp9_cost_tokens_skip(int *costs, const vp9_prob *probs, vp9_tree tree);
+#ifdef __cplusplus
+} // extern "C"
+#endif
#endif // VP9_ENCODER_VP9_TREEWRITER_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance.c
new file mode 100644
index 00000000000..91d8ea4dcba
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance.c
@@ -0,0 +1,256 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "./vp9_rtcd.h"
+
+#include "vpx_ports/mem.h"
+#include "vpx/vpx_integer.h"
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_filter.h"
+
+#include "vp9/encoder/vp9_variance.h"
+
+void variance(const uint8_t *a, int a_stride,
+ const uint8_t *b, int b_stride,
+ int w, int h, unsigned int *sse, int *sum) {
+ int i, j;
+
+ *sum = 0;
+ *sse = 0;
+
+ for (i = 0; i < h; i++) {
+ for (j = 0; j < w; j++) {
+ const int diff = a[j] - b[j];
+ *sum += diff;
+ *sse += diff * diff;
+ }
+
+ a += a_stride;
+ b += b_stride;
+ }
+}
+
+// Applies a 1-D 2-tap bi-linear filter to the source block in either horizontal
+// or vertical direction to produce the filtered output block. Used to implement
+// first-pass of 2-D separable filter.
+//
+// Produces int32_t output to retain precision for next pass. Two filter taps
+// should sum to VP9_FILTER_WEIGHT. pixel_step defines whether the filter is
+// applied horizontally (pixel_step=1) or vertically (pixel_step=stride). It
+// defines the offset required to move from one input to the next.
+static void var_filter_block2d_bil_first_pass(const uint8_t *src_ptr,
+ uint16_t *output_ptr,
+ unsigned int src_pixels_per_line,
+ int pixel_step,
+ unsigned int output_height,
+ unsigned int output_width,
+ const int16_t *vp9_filter) {
+ unsigned int i, j;
+
+ for (i = 0; i < output_height; i++) {
+ for (j = 0; j < output_width; j++) {
+ output_ptr[j] = ROUND_POWER_OF_TWO((int)src_ptr[0] * vp9_filter[0] +
+ (int)src_ptr[pixel_step] * vp9_filter[1],
+ FILTER_BITS);
+
+ src_ptr++;
+ }
+
+ // Next row...
+ src_ptr += src_pixels_per_line - output_width;
+ output_ptr += output_width;
+ }
+}
+
+// Applies a 1-D 2-tap bi-linear filter to the source block in either horizontal
+// or vertical direction to produce the filtered output block. Used to implement
+// second-pass of 2-D separable filter.
+//
+// Requires 32-bit input as produced by filter_block2d_bil_first_pass. Two
+// filter taps should sum to VP9_FILTER_WEIGHT. pixel_step defines whether the
+// filter is applied horizontally (pixel_step=1) or vertically (pixel_step=
+// stride). It defines the offset required to move from one input to the next.
+static void var_filter_block2d_bil_second_pass(const uint16_t *src_ptr,
+ uint8_t *output_ptr,
+ unsigned int src_pixels_per_line,
+ unsigned int pixel_step,
+ unsigned int output_height,
+ unsigned int output_width,
+ const int16_t *vp9_filter) {
+ unsigned int i, j;
+
+ for (i = 0; i < output_height; i++) {
+ for (j = 0; j < output_width; j++) {
+ output_ptr[j] = ROUND_POWER_OF_TWO((int)src_ptr[0] * vp9_filter[0] +
+ (int)src_ptr[pixel_step] * vp9_filter[1],
+ FILTER_BITS);
+ src_ptr++;
+ }
+
+ src_ptr += src_pixels_per_line - output_width;
+ output_ptr += output_width;
+ }
+}
+
+unsigned int vp9_get_mb_ss_c(const int16_t *src_ptr) {
+ unsigned int i, sum = 0;
+
+ for (i = 0; i < 256; i++)
+ sum += src_ptr[i] * src_ptr[i];
+
+ return sum;
+}
+
+#define VAR(W, H) \
+unsigned int vp9_variance##W##x##H##_c(const uint8_t *a, int a_stride, \
+ const uint8_t *b, int b_stride, \
+ unsigned int *sse) { \
+ int sum; \
+ variance(a, a_stride, b, b_stride, W, H, sse, &sum); \
+ return *sse - (((int64_t)sum * sum) / (W * H)); \
+}
+
+#define SUBPIX_VAR(W, H) \
+unsigned int vp9_sub_pixel_variance##W##x##H##_c( \
+ const uint8_t *src, int src_stride, \
+ int xoffset, int yoffset, \
+ const uint8_t *dst, int dst_stride, \
+ unsigned int *sse) { \
+ uint16_t fdata3[(H + 1) * W]; \
+ uint8_t temp2[H * W]; \
+\
+ var_filter_block2d_bil_first_pass(src, fdata3, src_stride, 1, H + 1, W, \
+ BILINEAR_FILTERS_2TAP(xoffset)); \
+ var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \
+ BILINEAR_FILTERS_2TAP(yoffset)); \
+\
+ return vp9_variance##W##x##H##_c(temp2, W, dst, dst_stride, sse); \
+}
+
+#define SUBPIX_AVG_VAR(W, H) \
+unsigned int vp9_sub_pixel_avg_variance##W##x##H##_c( \
+ const uint8_t *src, int src_stride, \
+ int xoffset, int yoffset, \
+ const uint8_t *dst, int dst_stride, \
+ unsigned int *sse, \
+ const uint8_t *second_pred) { \
+ uint16_t fdata3[(H + 1) * W]; \
+ uint8_t temp2[H * W]; \
+ DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, H * W); \
+\
+ var_filter_block2d_bil_first_pass(src, fdata3, src_stride, 1, H + 1, W, \
+ BILINEAR_FILTERS_2TAP(xoffset)); \
+ var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \
+ BILINEAR_FILTERS_2TAP(yoffset)); \
+\
+ vp9_comp_avg_pred(temp3, second_pred, W, H, temp2, W); \
+\
+ return vp9_variance##W##x##H##_c(temp3, W, dst, dst_stride, sse); \
+}
+
+unsigned int vp9_mse16x16_c(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ unsigned int *sse) {
+ int sum;
+ variance(src, src_stride, ref, ref_stride, 16, 16, sse, &sum);
+ return *sse;
+}
+
+unsigned int vp9_mse16x8_c(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ unsigned int *sse) {
+ int sum;
+ variance(src, src_stride, ref, ref_stride, 16, 8, sse, &sum);
+ return *sse;
+}
+
+unsigned int vp9_mse8x16_c(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ unsigned int *sse) {
+ int sum;
+ variance(src, src_stride, ref, ref_stride, 8, 16, sse, &sum);
+ return *sse;
+}
+
+unsigned int vp9_mse8x8_c(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ unsigned int *sse) {
+ int sum;
+ variance(src, src_stride, ref, ref_stride, 8, 8, sse, &sum);
+ return *sse;
+}
+
+VAR(4, 4)
+SUBPIX_VAR(4, 4)
+SUBPIX_AVG_VAR(4, 4)
+
+VAR(4, 8)
+SUBPIX_VAR(4, 8)
+SUBPIX_AVG_VAR(4, 8)
+
+VAR(8, 4)
+SUBPIX_VAR(8, 4)
+SUBPIX_AVG_VAR(8, 4)
+
+VAR(8, 8)
+SUBPIX_VAR(8, 8)
+SUBPIX_AVG_VAR(8, 8)
+
+VAR(8, 16)
+SUBPIX_VAR(8, 16)
+SUBPIX_AVG_VAR(8, 16)
+
+VAR(16, 8)
+SUBPIX_VAR(16, 8)
+SUBPIX_AVG_VAR(16, 8)
+
+VAR(16, 16)
+SUBPIX_VAR(16, 16)
+SUBPIX_AVG_VAR(16, 16)
+
+VAR(16, 32)
+SUBPIX_VAR(16, 32)
+SUBPIX_AVG_VAR(16, 32)
+
+VAR(32, 16)
+SUBPIX_VAR(32, 16)
+SUBPIX_AVG_VAR(32, 16)
+
+VAR(32, 32)
+SUBPIX_VAR(32, 32)
+SUBPIX_AVG_VAR(32, 32)
+
+VAR(32, 64)
+SUBPIX_VAR(32, 64)
+SUBPIX_AVG_VAR(32, 64)
+
+VAR(64, 32)
+SUBPIX_VAR(64, 32)
+SUBPIX_AVG_VAR(64, 32)
+
+VAR(64, 64)
+SUBPIX_VAR(64, 64)
+SUBPIX_AVG_VAR(64, 64)
+
+void vp9_comp_avg_pred(uint8_t *comp_pred, const uint8_t *pred, int width,
+ int height, const uint8_t *ref, int ref_stride) {
+ int i, j;
+
+ for (i = 0; i < height; i++) {
+ for (j = 0; j < width; j++) {
+ const int tmp = pred[j] + ref[j];
+ comp_pred[j] = ROUND_POWER_OF_TWO(tmp, 1);
+ }
+ comp_pred += width;
+ pred += width;
+ ref += ref_stride;
+ }
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance.h
index 2ded97c559e..c47fe133554 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance.h
@@ -12,16 +12,15 @@
#define VP9_ENCODER_VP9_VARIANCE_H_
#include "vpx/vpx_integer.h"
-// #include "./vpx_config.h"
-void variance(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- int w,
- int h,
- unsigned int *sse,
- int *sum);
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void variance(const uint8_t *a, int a_stride,
+ const uint8_t *b, int b_stride,
+ int w, int h,
+ unsigned int *sse, int *sum);
typedef unsigned int(*vp9_sad_fn_t)(const uint8_t *src_ptr,
int source_stride,
@@ -42,12 +41,6 @@ typedef void (*vp9_sad_multi_fn_t)(const uint8_t *src_ptr,
int ref_stride,
unsigned int *sad_array);
-typedef void (*vp9_sad_multi1_fn_t)(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int ref_stride,
- unsigned int *sad_array);
-
typedef void (*vp9_sad_multi_d_fn_t)(const uint8_t *src_ptr,
int source_stride,
const uint8_t* const ref_ptr[],
@@ -76,40 +69,22 @@ typedef unsigned int (*vp9_subp_avg_variance_fn_t)(const uint8_t *src_ptr,
unsigned int *sse,
const uint8_t *second_pred);
-typedef unsigned int (*vp9_getmbss_fn_t)(const short *);
-
-typedef unsigned int (*vp9_get16x16prederror_fn_t)(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int ref_stride);
-
typedef struct vp9_variance_vtable {
vp9_sad_fn_t sdf;
vp9_sad_avg_fn_t sdaf;
vp9_variance_fn_t vf;
vp9_subpixvariance_fn_t svf;
vp9_subp_avg_variance_fn_t svaf;
- vp9_variance_fn_t svf_halfpix_h;
- vp9_variance_fn_t svf_halfpix_v;
- vp9_variance_fn_t svf_halfpix_hv;
vp9_sad_multi_fn_t sdx3f;
- vp9_sad_multi1_fn_t sdx8f;
+ vp9_sad_multi_fn_t sdx8f;
vp9_sad_multi_d_fn_t sdx4df;
} vp9_variance_fn_ptr_t;
-static void comp_avg_pred(uint8_t *comp_pred, const uint8_t *pred, int width,
- int height, const uint8_t *ref, int ref_stride) {
- int i, j;
+void vp9_comp_avg_pred(uint8_t *comp_pred, const uint8_t *pred, int width,
+ int height, const uint8_t *ref, int ref_stride);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
- for (i = 0; i < height; i++) {
- for (j = 0; j < width; j++) {
- int tmp;
- tmp = pred[j] + ref[j];
- comp_pred[j] = (tmp + 1) >> 1;
- }
- comp_pred += width;
- pred += width;
- ref += ref_stride;
- }
-}
#endif // VP9_ENCODER_VP9_VARIANCE_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance_c.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance_c.c
deleted file mode 100644
index 8bc38508991..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_variance_c.c
+++ /dev/null
@@ -1,1094 +0,0 @@
-/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-#include "./vp9_rtcd.h"
-
-#include "vpx_ports/mem.h"
-#include "vpx/vpx_integer.h"
-
-#include "vp9/common/vp9_common.h"
-#include "vp9/common/vp9_filter.h"
-
-#include "vp9/encoder/vp9_variance.h"
-
-void variance(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- int w,
- int h,
- unsigned int *sse,
- int *sum) {
- int i, j;
- int diff;
-
- *sum = 0;
- *sse = 0;
-
- for (i = 0; i < h; i++) {
- for (j = 0; j < w; j++) {
- diff = src_ptr[j] - ref_ptr[j];
- *sum += diff;
- *sse += diff * diff;
- }
-
- src_ptr += source_stride;
- ref_ptr += recon_stride;
- }
-}
-
-/****************************************************************************
- *
- * ROUTINE : filter_block2d_bil_first_pass
- *
- * INPUTS : uint8_t *src_ptr : Pointer to source block.
- * uint32_t src_pixels_per_line : Stride of input block.
- * uint32_t pixel_step : Offset between filter input
- * samples (see notes).
- * uint32_t output_height : Input block height.
- * uint32_t output_width : Input block width.
- * int32_t *vp9_filter : Array of 2 bi-linear filter
- * taps.
- *
- * OUTPUTS : int32_t *output_ptr : Pointer to filtered block.
- *
- * RETURNS : void
- *
- * FUNCTION : Applies a 1-D 2-tap bi-linear filter to the source block in
- * either horizontal or vertical direction to produce the
- * filtered output block. Used to implement first-pass
- * of 2-D separable filter.
- *
- * SPECIAL NOTES : Produces int32_t output to retain precision for next pass.
- * Two filter taps should sum to VP9_FILTER_WEIGHT.
- * pixel_step defines whether the filter is applied
- * horizontally (pixel_step=1) or vertically (pixel_step=
- * stride).
- * It defines the offset required to move from one input
- * to the next.
- *
- ****************************************************************************/
-static void var_filter_block2d_bil_first_pass(const uint8_t *src_ptr,
- uint16_t *output_ptr,
- unsigned int src_pixels_per_line,
- int pixel_step,
- unsigned int output_height,
- unsigned int output_width,
- const int16_t *vp9_filter) {
- unsigned int i, j;
-
- for (i = 0; i < output_height; i++) {
- for (j = 0; j < output_width; j++) {
- output_ptr[j] = ROUND_POWER_OF_TWO((int)src_ptr[0] * vp9_filter[0] +
- (int)src_ptr[pixel_step] * vp9_filter[1],
- FILTER_BITS);
-
- src_ptr++;
- }
-
- // Next row...
- src_ptr += src_pixels_per_line - output_width;
- output_ptr += output_width;
- }
-}
-
-/****************************************************************************
- *
- * ROUTINE : filter_block2d_bil_second_pass
- *
- * INPUTS : int32_t *src_ptr : Pointer to source block.
- * uint32_t src_pixels_per_line : Stride of input block.
- * uint32_t pixel_step : Offset between filter input
- * samples (see notes).
- * uint32_t output_height : Input block height.
- * uint32_t output_width : Input block width.
- * int32_t *vp9_filter : Array of 2 bi-linear filter
- * taps.
- *
- * OUTPUTS : uint16_t *output_ptr : Pointer to filtered block.
- *
- * RETURNS : void
- *
- * FUNCTION : Applies a 1-D 2-tap bi-linear filter to the source block in
- * either horizontal or vertical direction to produce the
- * filtered output block. Used to implement second-pass
- * of 2-D separable filter.
- *
- * SPECIAL NOTES : Requires 32-bit input as produced by
- * filter_block2d_bil_first_pass.
- * Two filter taps should sum to VP9_FILTER_WEIGHT.
- * pixel_step defines whether the filter is applied
- * horizontally (pixel_step=1) or vertically (pixel_step=
- * stride).
- * It defines the offset required to move from one input
- * to the next.
- *
- ****************************************************************************/
-static void var_filter_block2d_bil_second_pass(const uint16_t *src_ptr,
- uint8_t *output_ptr,
- unsigned int src_pixels_per_line,
- unsigned int pixel_step,
- unsigned int output_height,
- unsigned int output_width,
- const int16_t *vp9_filter) {
- unsigned int i, j;
-
- for (i = 0; i < output_height; i++) {
- for (j = 0; j < output_width; j++) {
- output_ptr[j] = ROUND_POWER_OF_TWO((int)src_ptr[0] * vp9_filter[0] +
- (int)src_ptr[pixel_step] * vp9_filter[1],
- FILTER_BITS);
- src_ptr++;
- }
-
- src_ptr += src_pixels_per_line - output_width;
- output_ptr += output_width;
- }
-}
-
-unsigned int vp9_get_mb_ss_c(const int16_t *src_ptr) {
- unsigned int i, sum = 0;
-
- for (i = 0; i < 256; i++) {
- sum += (src_ptr[i] * src_ptr[i]);
- }
-
- return sum;
-}
-
-unsigned int vp9_variance64x32_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 64, 32, &var, &avg);
- *sse = var;
- return (var - (((int64_t)avg * avg) >> 11));
-}
-
-unsigned int vp9_sub_pixel_variance64x32_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[65 * 64]; // Temp data buffer used in filtering
- uint8_t temp2[68 * 64];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 33, 64, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 64, 64, 32, 64, vfilter);
-
- return vp9_variance64x32(temp2, 64, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance64x32_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[65 * 64]; // Temp data buffer used in filtering
- uint8_t temp2[68 * 64];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 64 * 64); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 33, 64, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 64, 64, 32, 64, vfilter);
- comp_avg_pred(temp3, second_pred, 64, 32, temp2, 64);
- return vp9_variance64x32(temp3, 64, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_variance32x64_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 32, 64, &var, &avg);
- *sse = var;
- return (var - (((int64_t)avg * avg) >> 11));
-}
-
-unsigned int vp9_sub_pixel_variance32x64_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[65 * 64]; // Temp data buffer used in filtering
- uint8_t temp2[68 * 64];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 65, 32, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 32, 32, 64, 32, vfilter);
-
- return vp9_variance32x64(temp2, 32, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance32x64_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[65 * 64]; // Temp data buffer used in filtering
- uint8_t temp2[68 * 64];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 32 * 64); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 65, 32, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 32, 32, 64, 32, vfilter);
- comp_avg_pred(temp3, second_pred, 32, 64, temp2, 32);
- return vp9_variance32x64(temp3, 32, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_variance32x16_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 32, 16, &var, &avg);
- *sse = var;
- return (var - (((int64_t)avg * avg) >> 9));
-}
-
-unsigned int vp9_sub_pixel_variance32x16_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[33 * 32]; // Temp data buffer used in filtering
- uint8_t temp2[36 * 32];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 17, 32, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 32, 32, 16, 32, vfilter);
-
- return vp9_variance32x16(temp2, 32, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance32x16_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[33 * 32]; // Temp data buffer used in filtering
- uint8_t temp2[36 * 32];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 32 * 16); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 17, 32, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 32, 32, 16, 32, vfilter);
- comp_avg_pred(temp3, second_pred, 32, 16, temp2, 32);
- return vp9_variance32x16(temp3, 32, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_variance16x32_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 16, 32, &var, &avg);
- *sse = var;
- return (var - (((int64_t)avg * avg) >> 9));
-}
-
-unsigned int vp9_sub_pixel_variance16x32_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[33 * 32]; // Temp data buffer used in filtering
- uint8_t temp2[36 * 32];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 33, 16, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 16, 16, 32, 16, vfilter);
-
- return vp9_variance16x32(temp2, 16, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance16x32_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[33 * 32]; // Temp data buffer used in filtering
- uint8_t temp2[36 * 32];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 16 * 32); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 33, 16, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 16, 16, 32, 16, vfilter);
- comp_avg_pred(temp3, second_pred, 16, 32, temp2, 16);
- return vp9_variance16x32(temp3, 16, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_variance64x64_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 64, 64, &var, &avg);
- *sse = var;
- return (var - (((int64_t)avg * avg) >> 12));
-}
-
-unsigned int vp9_variance32x32_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 32, 32, &var, &avg);
- *sse = var;
- return (var - (((int64_t)avg * avg) >> 10));
-}
-
-unsigned int vp9_variance16x16_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 16, 16, &var, &avg);
- *sse = var;
- return (var - (((unsigned int)avg * avg) >> 8));
-}
-
-unsigned int vp9_variance8x16_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 8, 16, &var, &avg);
- *sse = var;
- return (var - (((unsigned int)avg * avg) >> 7));
-}
-
-unsigned int vp9_variance16x8_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 16, 8, &var, &avg);
- *sse = var;
- return (var - (((unsigned int)avg * avg) >> 7));
-}
-
-void vp9_get_sse_sum_8x8_c(const uint8_t *src_ptr, int source_stride,
- const uint8_t *ref_ptr, int ref_stride,
- unsigned int *sse, int *sum) {
- variance(src_ptr, source_stride, ref_ptr, ref_stride, 8, 8, sse, sum);
-}
-
-unsigned int vp9_variance8x8_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 8, 8, &var, &avg);
- *sse = var;
- return (var - (((unsigned int)avg * avg) >> 6));
-}
-
-unsigned int vp9_variance8x4_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 8, 4, &var, &avg);
- *sse = var;
- return (var - (((unsigned int)avg * avg) >> 5));
-}
-
-unsigned int vp9_variance4x8_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 4, 8, &var, &avg);
- *sse = var;
- return (var - (((unsigned int)avg * avg) >> 5));
-}
-
-unsigned int vp9_variance4x4_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 4, 4, &var, &avg);
- *sse = var;
- return (var - (((unsigned int)avg * avg) >> 4));
-}
-
-
-unsigned int vp9_mse16x16_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 16, 16, &var, &avg);
- *sse = var;
- return var;
-}
-
-unsigned int vp9_mse16x8_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 16, 8, &var, &avg);
- *sse = var;
- return var;
-}
-
-unsigned int vp9_mse8x16_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 8, 16, &var, &avg);
- *sse = var;
- return var;
-}
-
-unsigned int vp9_mse8x8_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- unsigned int var;
- int avg;
-
- variance(src_ptr, source_stride, ref_ptr, recon_stride, 8, 8, &var, &avg);
- *sse = var;
- return var;
-}
-
-
-unsigned int vp9_sub_pixel_variance4x4_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint8_t temp2[20 * 16];
- const int16_t *hfilter, *vfilter;
- uint16_t fdata3[5 * 4]; // Temp data buffer used in filtering
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- // First filter 1d Horizontal
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 5, 4, hfilter);
-
- // Now filter Verticaly
- var_filter_block2d_bil_second_pass(fdata3, temp2, 4, 4, 4, 4, vfilter);
-
- return vp9_variance4x4(temp2, 4, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance4x4_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint8_t temp2[20 * 16];
- const int16_t *hfilter, *vfilter;
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 4 * 4); // compound pred buffer
- uint16_t fdata3[5 * 4]; // Temp data buffer used in filtering
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- // First filter 1d Horizontal
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 5, 4, hfilter);
-
- // Now filter Verticaly
- var_filter_block2d_bil_second_pass(fdata3, temp2, 4, 4, 4, 4, vfilter);
- comp_avg_pred(temp3, second_pred, 4, 4, temp2, 4);
- return vp9_variance4x4(temp3, 4, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_variance8x8_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[9 * 8]; // Temp data buffer used in filtering
- uint8_t temp2[20 * 16];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 9, 8, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 8, 8, 8, 8, vfilter);
-
- return vp9_variance8x8(temp2, 8, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance8x8_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[9 * 8]; // Temp data buffer used in filtering
- uint8_t temp2[20 * 16];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 8 * 8); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 9, 8, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 8, 8, 8, 8, vfilter);
- comp_avg_pred(temp3, second_pred, 8, 8, temp2, 8);
- return vp9_variance8x8(temp3, 8, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_variance16x16_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[17 * 16]; // Temp data buffer used in filtering
- uint8_t temp2[20 * 16];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 17, 16, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 16, 16, 16, 16, vfilter);
-
- return vp9_variance16x16(temp2, 16, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance16x16_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[17 * 16];
- uint8_t temp2[20 * 16];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 16 * 16); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 17, 16, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 16, 16, 16, 16, vfilter);
-
- comp_avg_pred(temp3, second_pred, 16, 16, temp2, 16);
- return vp9_variance16x16(temp3, 16, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_variance64x64_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[65 * 64]; // Temp data buffer used in filtering
- uint8_t temp2[68 * 64];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 65, 64, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 64, 64, 64, 64, vfilter);
-
- return vp9_variance64x64(temp2, 64, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance64x64_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[65 * 64]; // Temp data buffer used in filtering
- uint8_t temp2[68 * 64];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 64 * 64); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 65, 64, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 64, 64, 64, 64, vfilter);
- comp_avg_pred(temp3, second_pred, 64, 64, temp2, 64);
- return vp9_variance64x64(temp3, 64, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_variance32x32_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[33 * 32]; // Temp data buffer used in filtering
- uint8_t temp2[36 * 32];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 33, 32, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 32, 32, 32, 32, vfilter);
-
- return vp9_variance32x32(temp2, 32, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance32x32_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[33 * 32]; // Temp data buffer used in filtering
- uint8_t temp2[36 * 32];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 32 * 32); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 33, 32, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 32, 32, 32, 32, vfilter);
- comp_avg_pred(temp3, second_pred, 32, 32, temp2, 32);
- return vp9_variance32x32(temp3, 32, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_variance_halfpixvar16x16_h_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- return vp9_sub_pixel_variance16x16_c(src_ptr, source_stride, 8, 0,
- ref_ptr, recon_stride, sse);
-}
-
-unsigned int vp9_variance_halfpixvar32x32_h_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- return vp9_sub_pixel_variance32x32_c(src_ptr, source_stride, 8, 0,
- ref_ptr, recon_stride, sse);
-}
-
-unsigned int vp9_variance_halfpixvar64x64_h_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- return vp9_sub_pixel_variance64x64_c(src_ptr, source_stride, 8, 0,
- ref_ptr, recon_stride, sse);
-}
-
-unsigned int vp9_variance_halfpixvar16x16_v_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- return vp9_sub_pixel_variance16x16_c(src_ptr, source_stride, 0, 8,
- ref_ptr, recon_stride, sse);
-}
-
-unsigned int vp9_variance_halfpixvar32x32_v_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- return vp9_sub_pixel_variance32x32_c(src_ptr, source_stride, 0, 8,
- ref_ptr, recon_stride, sse);
-}
-
-unsigned int vp9_variance_halfpixvar64x64_v_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- return vp9_sub_pixel_variance64x64_c(src_ptr, source_stride, 0, 8,
- ref_ptr, recon_stride, sse);
-}
-
-unsigned int vp9_variance_halfpixvar16x16_hv_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- return vp9_sub_pixel_variance16x16_c(src_ptr, source_stride, 8, 8,
- ref_ptr, recon_stride, sse);
-}
-
-unsigned int vp9_variance_halfpixvar32x32_hv_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- return vp9_sub_pixel_variance32x32_c(src_ptr, source_stride, 8, 8,
- ref_ptr, recon_stride, sse);
-}
-
-unsigned int vp9_variance_halfpixvar64x64_hv_c(const uint8_t *src_ptr,
- int source_stride,
- const uint8_t *ref_ptr,
- int recon_stride,
- unsigned int *sse) {
- return vp9_sub_pixel_variance64x64_c(src_ptr, source_stride, 8, 8,
- ref_ptr, recon_stride, sse);
-}
-
-unsigned int vp9_sub_pixel_mse16x16_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- vp9_sub_pixel_variance16x16_c(src_ptr, src_pixels_per_line,
- xoffset, yoffset, dst_ptr,
- dst_pixels_per_line, sse);
- return *sse;
-}
-
-unsigned int vp9_sub_pixel_mse32x32_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- vp9_sub_pixel_variance32x32_c(src_ptr, src_pixels_per_line,
- xoffset, yoffset, dst_ptr,
- dst_pixels_per_line, sse);
- return *sse;
-}
-
-unsigned int vp9_sub_pixel_mse64x64_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- vp9_sub_pixel_variance64x64_c(src_ptr, src_pixels_per_line,
- xoffset, yoffset, dst_ptr,
- dst_pixels_per_line, sse);
- return *sse;
-}
-
-unsigned int vp9_sub_pixel_variance16x8_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[16 * 9]; // Temp data buffer used in filtering
- uint8_t temp2[20 * 16];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 9, 16, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 16, 16, 8, 16, vfilter);
-
- return vp9_variance16x8(temp2, 16, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance16x8_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[16 * 9]; // Temp data buffer used in filtering
- uint8_t temp2[20 * 16];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 16 * 8); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 9, 16, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 16, 16, 8, 16, vfilter);
- comp_avg_pred(temp3, second_pred, 16, 8, temp2, 16);
- return vp9_variance16x8(temp3, 16, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_variance8x16_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[9 * 16]; // Temp data buffer used in filtering
- uint8_t temp2[20 * 16];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 17, 8, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 8, 8, 16, 8, vfilter);
-
- return vp9_variance8x16(temp2, 8, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance8x16_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[9 * 16]; // Temp data buffer used in filtering
- uint8_t temp2[20 * 16];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 8 * 16); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 17, 8, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 8, 8, 16, 8, vfilter);
- comp_avg_pred(temp3, second_pred, 8, 16, temp2, 8);
- return vp9_variance8x16(temp3, 8, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_variance8x4_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[8 * 5]; // Temp data buffer used in filtering
- uint8_t temp2[20 * 16];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 5, 8, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 8, 8, 4, 8, vfilter);
-
- return vp9_variance8x4(temp2, 8, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance8x4_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[8 * 5]; // Temp data buffer used in filtering
- uint8_t temp2[20 * 16];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 8 * 4); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 5, 8, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 8, 8, 4, 8, vfilter);
- comp_avg_pred(temp3, second_pred, 8, 4, temp2, 8);
- return vp9_variance8x4(temp3, 8, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_variance4x8_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- uint16_t fdata3[5 * 8]; // Temp data buffer used in filtering
- // FIXME(jingning,rbultje): this temp2 buffer probably doesn't need to be
- // of this big? same issue appears in all other block size settings.
- uint8_t temp2[20 * 16];
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 9, 4, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 4, 4, 8, 4, vfilter);
-
- return vp9_variance4x8(temp2, 4, dst_ptr, dst_pixels_per_line, sse);
-}
-
-unsigned int vp9_sub_pixel_avg_variance4x8_c(const uint8_t *src_ptr,
- int src_pixels_per_line,
- int xoffset,
- int yoffset,
- const uint8_t *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse,
- const uint8_t *second_pred) {
- uint16_t fdata3[5 * 8]; // Temp data buffer used in filtering
- uint8_t temp2[20 * 16];
- DECLARE_ALIGNED_ARRAY(16, uint8_t, temp3, 4 * 8); // compound pred buffer
- const int16_t *hfilter, *vfilter;
-
- hfilter = BILINEAR_FILTERS_2TAP(xoffset);
- vfilter = BILINEAR_FILTERS_2TAP(yoffset);
-
- var_filter_block2d_bil_first_pass(src_ptr, fdata3, src_pixels_per_line,
- 1, 9, 4, hfilter);
- var_filter_block2d_bil_second_pass(fdata3, temp2, 4, 4, 8, 4, vfilter);
- comp_avg_pred(temp3, second_pred, 4, 8, temp2, 4);
- return vp9_variance4x8(temp3, 4, dst_ptr, dst_pixels_per_line, sse);
-}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_write_bit_buffer.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_write_bit_buffer.c
new file mode 100644
index 00000000000..962d0ca5645
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_write_bit_buffer.c
@@ -0,0 +1,34 @@
+/*
+ * Copyright (c) 2013 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vp9/encoder/vp9_write_bit_buffer.h"
+
+size_t vp9_rb_bytes_written(struct vp9_write_bit_buffer *wb) {
+ return wb->bit_offset / CHAR_BIT + (wb->bit_offset % CHAR_BIT > 0);
+}
+
+void vp9_wb_write_bit(struct vp9_write_bit_buffer *wb, int bit) {
+ const int off = (int)wb->bit_offset;
+ const int p = off / CHAR_BIT;
+ const int q = CHAR_BIT - 1 - off % CHAR_BIT;
+ if (q == CHAR_BIT -1) {
+ wb->bit_buffer[p] = bit << q;
+ } else {
+ wb->bit_buffer[p] &= ~(1 << q);
+ wb->bit_buffer[p] |= bit << q;
+ }
+ wb->bit_offset = off + 1;
+}
+
+void vp9_wb_write_literal(struct vp9_write_bit_buffer *wb, int data, int bits) {
+ int bit;
+ for (bit = bits - 1; bit >= 0; bit--)
+ vp9_wb_write_bit(wb, (data >> bit) & 1);
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_write_bit_buffer.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_write_bit_buffer.h
index 6f91cfc85c9..073608d7f9f 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_write_bit_buffer.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_write_bit_buffer.h
@@ -8,41 +8,31 @@
* be found in the AUTHORS file in the root of the source tree.
*/
-#ifndef VP9_BIT_WRITE_BUFFER_H_
-#define VP9_BIT_WRITE_BUFFER_H_
+#ifndef VP9_ENCODER_VP9_WRITE_BIT_BUFFER_H_
+#define VP9_ENCODER_VP9_WRITE_BIT_BUFFER_H_
#include <limits.h>
#include "vpx/vpx_integer.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
+
struct vp9_write_bit_buffer {
uint8_t *bit_buffer;
size_t bit_offset;
};
-static size_t vp9_rb_bytes_written(struct vp9_write_bit_buffer *wb) {
- return wb->bit_offset / CHAR_BIT + (wb->bit_offset % CHAR_BIT > 0);
-}
-
-static void vp9_wb_write_bit(struct vp9_write_bit_buffer *wb, int bit) {
- const int off = wb->bit_offset;
- const int p = off / CHAR_BIT;
- const int q = CHAR_BIT - 1 - off % CHAR_BIT;
- if (q == CHAR_BIT -1) {
- wb->bit_buffer[p] = bit << q;
- } else {
- wb->bit_buffer[p] &= ~(1 << q);
- wb->bit_buffer[p] |= bit << q;
- }
- wb->bit_offset = off + 1;
-}
-
-static void vp9_wb_write_literal(struct vp9_write_bit_buffer *wb,
- int data, int bits) {
- int bit;
- for (bit = bits - 1; bit >= 0; bit--)
- vp9_wb_write_bit(wb, (data >> bit) & 1);
-}
-
-
-#endif // VP9_BIT_WRITE_BUFFER_H_
+size_t vp9_rb_bytes_written(struct vp9_write_bit_buffer *wb);
+
+void vp9_wb_write_bit(struct vp9_write_bit_buffer *wb, int bit);
+
+void vp9_wb_write_literal(struct vp9_write_bit_buffer *wb, int data, int bits);
+
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_WRITE_BIT_BUFFER_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_writer.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_writer.c
new file mode 100644
index 00000000000..8398fc07a4a
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_writer.c
@@ -0,0 +1,35 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include "vp9/encoder/vp9_writer.h"
+#include "vp9/common/vp9_entropy.h"
+
+void vp9_start_encode(vp9_writer *br, uint8_t *source) {
+ br->lowvalue = 0;
+ br->range = 255;
+ br->value = 0;
+ br->count = -24;
+ br->buffer = source;
+ br->pos = 0;
+ vp9_write_bit(br, 0);
+}
+
+void vp9_stop_encode(vp9_writer *br) {
+ int i;
+
+ for (i = 0; i < 32; i++)
+ vp9_write_bit(br, 0);
+
+ // Ensure there's no ambigous collision with any index marker bytes
+ if ((br->buffer[br->pos - 1] & 0xe0) == 0xc0)
+ br->buffer[br->pos++] = 0;
+}
+
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_boolhuff.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_writer.h
index c3f340d1bdf..7f4fa1ef2b8 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_boolhuff.h
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/vp9_writer.h
@@ -8,19 +8,17 @@
* be found in the AUTHORS file in the root of the source tree.
*/
-
-/****************************************************************************
-*
-* Module Title : vp9_boolhuff.h
-*
-* Description : Bool Coder header file.
-*
-****************************************************************************/
-#ifndef VP9_ENCODER_VP9_BOOLHUFF_H_
-#define VP9_ENCODER_VP9_BOOLHUFF_H_
+#ifndef VP9_ENCODER_VP9_WRITER_H_
+#define VP9_ENCODER_VP9_WRITER_H_
#include "vpx_ports/mem.h"
+#include "vp9/common/vp9_prob.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
typedef struct {
unsigned int lowvalue;
unsigned int range;
@@ -31,16 +29,12 @@ typedef struct {
// Variables used to track bit costs without outputing to the bitstream
unsigned int measure_cost;
- unsigned long bit_counter;
+ uint64_t bit_counter;
} vp9_writer;
-extern const unsigned int vp9_prob_cost[256];
-
void vp9_start_encode(vp9_writer *bc, uint8_t *buffer);
void vp9_stop_encode(vp9_writer *bc);
-DECLARE_ALIGNED(16, extern const unsigned char, vp9_norm[256]);
-
static void vp9_write(vp9_writer *br, int bit, int probability) {
unsigned int split;
int count = br->count;
@@ -48,17 +42,6 @@ static void vp9_write(vp9_writer *br, int bit, int probability) {
unsigned int lowvalue = br->lowvalue;
register unsigned int shift;
-#ifdef ENTROPY_STATS
-#if defined(SECTIONBITS_OUTPUT)
-
- if (bit)
- Sectionbits[active_section] += vp9_prob_cost[255 - probability];
- else
- Sectionbits[active_section] += vp9_prob_cost[probability];
-
-#endif
-#endif
-
split = 1 + (((range - 1) * probability) >> 8);
range = split;
@@ -111,5 +94,10 @@ static void vp9_write_literal(vp9_writer *w, int data, int bits) {
vp9_write_bit(w, 1 & (data >> bit));
}
+#define vp9_write_prob(w, v) vp9_write_literal((w), (v), 8)
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
-#endif // VP9_ENCODER_VP9_BOOLHUFF_H_
+#endif // VP9_ENCODER_VP9_WRITER_H_
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct32x32_avx2.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct32x32_avx2.c
new file mode 100644
index 00000000000..9ea22fed2b7
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct32x32_avx2.c
@@ -0,0 +1,2710 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <immintrin.h> // AVX2
+#include "vp9/common/vp9_idct.h" // for cospi constants
+#include "vpx_ports/mem.h"
+
+#define pair256_set_epi16(a, b) \
+ _mm256_set_epi16(b, a, b, a, b, a, b, a, b, a, b, a, b, a, b, a)
+
+#define pair256_set_epi32(a, b) \
+ _mm256_set_epi32(b, a, b, a, b, a, b, a)
+
+
+
+
+#if FDCT32x32_HIGH_PRECISION
+static INLINE __m256i k_madd_epi32_avx2(__m256i a, __m256i b) {
+ __m256i buf0, buf1;
+ buf0 = _mm256_mul_epu32(a, b);
+ a = _mm256_srli_epi64(a, 32);
+ b = _mm256_srli_epi64(b, 32);
+ buf1 = _mm256_mul_epu32(a, b);
+ return _mm256_add_epi64(buf0, buf1);
+}
+
+static INLINE __m256i k_packs_epi64_avx2(__m256i a, __m256i b) {
+ __m256i buf0 = _mm256_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 2, 0));
+ __m256i buf1 = _mm256_shuffle_epi32(b, _MM_SHUFFLE(0, 0, 2, 0));
+ return _mm256_unpacklo_epi64(buf0, buf1);
+}
+#endif
+
+void FDCT32x32_2D_AVX2(const int16_t *input,
+ int16_t *output_org, int stride) {
+ // Calculate pre-multiplied strides
+ const int str1 = stride;
+ const int str2 = 2 * stride;
+ const int str3 = 2 * stride + str1;
+ // We need an intermediate buffer between passes.
+ DECLARE_ALIGNED(32, int16_t, intermediate[32 * 32]);
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m256i k__cospi_p16_p16 = _mm256_set1_epi16(+cospi_16_64);
+ const __m256i k__cospi_p16_m16 = pair256_set_epi16(+cospi_16_64, -cospi_16_64);
+ const __m256i k__cospi_m08_p24 = pair256_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m256i k__cospi_m24_m08 = pair256_set_epi16(-cospi_24_64, -cospi_8_64);
+ const __m256i k__cospi_p24_p08 = pair256_set_epi16(+cospi_24_64, cospi_8_64);
+ const __m256i k__cospi_p12_p20 = pair256_set_epi16(+cospi_12_64, cospi_20_64);
+ const __m256i k__cospi_m20_p12 = pair256_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m256i k__cospi_m04_p28 = pair256_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m256i k__cospi_p28_p04 = pair256_set_epi16(+cospi_28_64, cospi_4_64);
+ const __m256i k__cospi_m28_m04 = pair256_set_epi16(-cospi_28_64, -cospi_4_64);
+ const __m256i k__cospi_m12_m20 = pair256_set_epi16(-cospi_12_64, -cospi_20_64);
+ const __m256i k__cospi_p30_p02 = pair256_set_epi16(+cospi_30_64, cospi_2_64);
+ const __m256i k__cospi_p14_p18 = pair256_set_epi16(+cospi_14_64, cospi_18_64);
+ const __m256i k__cospi_p22_p10 = pair256_set_epi16(+cospi_22_64, cospi_10_64);
+ const __m256i k__cospi_p06_p26 = pair256_set_epi16(+cospi_6_64, cospi_26_64);
+ const __m256i k__cospi_m26_p06 = pair256_set_epi16(-cospi_26_64, cospi_6_64);
+ const __m256i k__cospi_m10_p22 = pair256_set_epi16(-cospi_10_64, cospi_22_64);
+ const __m256i k__cospi_m18_p14 = pair256_set_epi16(-cospi_18_64, cospi_14_64);
+ const __m256i k__cospi_m02_p30 = pair256_set_epi16(-cospi_2_64, cospi_30_64);
+ const __m256i k__cospi_p31_p01 = pair256_set_epi16(+cospi_31_64, cospi_1_64);
+ const __m256i k__cospi_p15_p17 = pair256_set_epi16(+cospi_15_64, cospi_17_64);
+ const __m256i k__cospi_p23_p09 = pair256_set_epi16(+cospi_23_64, cospi_9_64);
+ const __m256i k__cospi_p07_p25 = pair256_set_epi16(+cospi_7_64, cospi_25_64);
+ const __m256i k__cospi_m25_p07 = pair256_set_epi16(-cospi_25_64, cospi_7_64);
+ const __m256i k__cospi_m09_p23 = pair256_set_epi16(-cospi_9_64, cospi_23_64);
+ const __m256i k__cospi_m17_p15 = pair256_set_epi16(-cospi_17_64, cospi_15_64);
+ const __m256i k__cospi_m01_p31 = pair256_set_epi16(-cospi_1_64, cospi_31_64);
+ const __m256i k__cospi_p27_p05 = pair256_set_epi16(+cospi_27_64, cospi_5_64);
+ const __m256i k__cospi_p11_p21 = pair256_set_epi16(+cospi_11_64, cospi_21_64);
+ const __m256i k__cospi_p19_p13 = pair256_set_epi16(+cospi_19_64, cospi_13_64);
+ const __m256i k__cospi_p03_p29 = pair256_set_epi16(+cospi_3_64, cospi_29_64);
+ const __m256i k__cospi_m29_p03 = pair256_set_epi16(-cospi_29_64, cospi_3_64);
+ const __m256i k__cospi_m13_p19 = pair256_set_epi16(-cospi_13_64, cospi_19_64);
+ const __m256i k__cospi_m21_p11 = pair256_set_epi16(-cospi_21_64, cospi_11_64);
+ const __m256i k__cospi_m05_p27 = pair256_set_epi16(-cospi_5_64, cospi_27_64);
+ const __m256i k__DCT_CONST_ROUNDING = _mm256_set1_epi32(DCT_CONST_ROUNDING);
+ const __m256i kZero = _mm256_set1_epi16(0);
+ const __m256i kOne = _mm256_set1_epi16(1);
+ // Do the two transform/transpose passes
+ int pass;
+ for (pass = 0; pass < 2; ++pass) {
+ // We process sixteen columns (transposed rows in second pass) at a time.
+ int column_start;
+ for (column_start = 0; column_start < 32; column_start += 16) {
+ __m256i step1[32];
+ __m256i step2[32];
+ __m256i step3[32];
+ __m256i out[32];
+ // Stage 1
+ // Note: even though all the loads below are aligned, using the aligned
+ // intrinsic make the code slightly slower.
+ if (0 == pass) {
+ const int16_t *in = &input[column_start];
+ // step1[i] = (in[ 0 * stride] + in[(32 - 1) * stride]) << 2;
+ // Note: the next four blocks could be in a loop. That would help the
+ // instruction cache but is actually slower.
+ {
+ const int16_t *ina = in + 0 * str1;
+ const int16_t *inb = in + 31 * str1;
+ __m256i *step1a = &step1[ 0];
+ __m256i *step1b = &step1[31];
+ const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina));
+ const __m256i ina1 = _mm256_loadu_si256((const __m256i *)(ina + str1));
+ const __m256i ina2 = _mm256_loadu_si256((const __m256i *)(ina + str2));
+ const __m256i ina3 = _mm256_loadu_si256((const __m256i *)(ina + str3));
+ const __m256i inb3 = _mm256_loadu_si256((const __m256i *)(inb - str3));
+ const __m256i inb2 = _mm256_loadu_si256((const __m256i *)(inb - str2));
+ const __m256i inb1 = _mm256_loadu_si256((const __m256i *)(inb - str1));
+ const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb));
+ step1a[ 0] = _mm256_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm256_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm256_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm256_add_epi16(ina3, inb3);
+ step1b[-3] = _mm256_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm256_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm256_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm256_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm256_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm256_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm256_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm256_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm256_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm256_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm256_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm256_slli_epi16(step1b[-0], 2);
+ }
+ {
+ const int16_t *ina = in + 4 * str1;
+ const int16_t *inb = in + 27 * str1;
+ __m256i *step1a = &step1[ 4];
+ __m256i *step1b = &step1[27];
+ const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina));
+ const __m256i ina1 = _mm256_loadu_si256((const __m256i *)(ina + str1));
+ const __m256i ina2 = _mm256_loadu_si256((const __m256i *)(ina + str2));
+ const __m256i ina3 = _mm256_loadu_si256((const __m256i *)(ina + str3));
+ const __m256i inb3 = _mm256_loadu_si256((const __m256i *)(inb - str3));
+ const __m256i inb2 = _mm256_loadu_si256((const __m256i *)(inb - str2));
+ const __m256i inb1 = _mm256_loadu_si256((const __m256i *)(inb - str1));
+ const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb));
+ step1a[ 0] = _mm256_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm256_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm256_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm256_add_epi16(ina3, inb3);
+ step1b[-3] = _mm256_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm256_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm256_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm256_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm256_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm256_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm256_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm256_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm256_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm256_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm256_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm256_slli_epi16(step1b[-0], 2);
+ }
+ {
+ const int16_t *ina = in + 8 * str1;
+ const int16_t *inb = in + 23 * str1;
+ __m256i *step1a = &step1[ 8];
+ __m256i *step1b = &step1[23];
+ const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina));
+ const __m256i ina1 = _mm256_loadu_si256((const __m256i *)(ina + str1));
+ const __m256i ina2 = _mm256_loadu_si256((const __m256i *)(ina + str2));
+ const __m256i ina3 = _mm256_loadu_si256((const __m256i *)(ina + str3));
+ const __m256i inb3 = _mm256_loadu_si256((const __m256i *)(inb - str3));
+ const __m256i inb2 = _mm256_loadu_si256((const __m256i *)(inb - str2));
+ const __m256i inb1 = _mm256_loadu_si256((const __m256i *)(inb - str1));
+ const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb));
+ step1a[ 0] = _mm256_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm256_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm256_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm256_add_epi16(ina3, inb3);
+ step1b[-3] = _mm256_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm256_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm256_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm256_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm256_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm256_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm256_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm256_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm256_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm256_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm256_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm256_slli_epi16(step1b[-0], 2);
+ }
+ {
+ const int16_t *ina = in + 12 * str1;
+ const int16_t *inb = in + 19 * str1;
+ __m256i *step1a = &step1[12];
+ __m256i *step1b = &step1[19];
+ const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina));
+ const __m256i ina1 = _mm256_loadu_si256((const __m256i *)(ina + str1));
+ const __m256i ina2 = _mm256_loadu_si256((const __m256i *)(ina + str2));
+ const __m256i ina3 = _mm256_loadu_si256((const __m256i *)(ina + str3));
+ const __m256i inb3 = _mm256_loadu_si256((const __m256i *)(inb - str3));
+ const __m256i inb2 = _mm256_loadu_si256((const __m256i *)(inb - str2));
+ const __m256i inb1 = _mm256_loadu_si256((const __m256i *)(inb - str1));
+ const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb));
+ step1a[ 0] = _mm256_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm256_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm256_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm256_add_epi16(ina3, inb3);
+ step1b[-3] = _mm256_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm256_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm256_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm256_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm256_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm256_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm256_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm256_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm256_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm256_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm256_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm256_slli_epi16(step1b[-0], 2);
+ }
+ } else {
+ int16_t *in = &intermediate[column_start];
+ // step1[i] = in[ 0 * 32] + in[(32 - 1) * 32];
+ // Note: using the same approach as above to have common offset is
+ // counter-productive as all offsets can be calculated at compile
+ // time.
+ // Note: the next four blocks could be in a loop. That would help the
+ // instruction cache but is actually slower.
+ {
+ __m256i in00 = _mm256_loadu_si256((const __m256i *)(in + 0 * 32));
+ __m256i in01 = _mm256_loadu_si256((const __m256i *)(in + 1 * 32));
+ __m256i in02 = _mm256_loadu_si256((const __m256i *)(in + 2 * 32));
+ __m256i in03 = _mm256_loadu_si256((const __m256i *)(in + 3 * 32));
+ __m256i in28 = _mm256_loadu_si256((const __m256i *)(in + 28 * 32));
+ __m256i in29 = _mm256_loadu_si256((const __m256i *)(in + 29 * 32));
+ __m256i in30 = _mm256_loadu_si256((const __m256i *)(in + 30 * 32));
+ __m256i in31 = _mm256_loadu_si256((const __m256i *)(in + 31 * 32));
+ step1[ 0] = _mm256_add_epi16(in00, in31);
+ step1[ 1] = _mm256_add_epi16(in01, in30);
+ step1[ 2] = _mm256_add_epi16(in02, in29);
+ step1[ 3] = _mm256_add_epi16(in03, in28);
+ step1[28] = _mm256_sub_epi16(in03, in28);
+ step1[29] = _mm256_sub_epi16(in02, in29);
+ step1[30] = _mm256_sub_epi16(in01, in30);
+ step1[31] = _mm256_sub_epi16(in00, in31);
+ }
+ {
+ __m256i in04 = _mm256_loadu_si256((const __m256i *)(in + 4 * 32));
+ __m256i in05 = _mm256_loadu_si256((const __m256i *)(in + 5 * 32));
+ __m256i in06 = _mm256_loadu_si256((const __m256i *)(in + 6 * 32));
+ __m256i in07 = _mm256_loadu_si256((const __m256i *)(in + 7 * 32));
+ __m256i in24 = _mm256_loadu_si256((const __m256i *)(in + 24 * 32));
+ __m256i in25 = _mm256_loadu_si256((const __m256i *)(in + 25 * 32));
+ __m256i in26 = _mm256_loadu_si256((const __m256i *)(in + 26 * 32));
+ __m256i in27 = _mm256_loadu_si256((const __m256i *)(in + 27 * 32));
+ step1[ 4] = _mm256_add_epi16(in04, in27);
+ step1[ 5] = _mm256_add_epi16(in05, in26);
+ step1[ 6] = _mm256_add_epi16(in06, in25);
+ step1[ 7] = _mm256_add_epi16(in07, in24);
+ step1[24] = _mm256_sub_epi16(in07, in24);
+ step1[25] = _mm256_sub_epi16(in06, in25);
+ step1[26] = _mm256_sub_epi16(in05, in26);
+ step1[27] = _mm256_sub_epi16(in04, in27);
+ }
+ {
+ __m256i in08 = _mm256_loadu_si256((const __m256i *)(in + 8 * 32));
+ __m256i in09 = _mm256_loadu_si256((const __m256i *)(in + 9 * 32));
+ __m256i in10 = _mm256_loadu_si256((const __m256i *)(in + 10 * 32));
+ __m256i in11 = _mm256_loadu_si256((const __m256i *)(in + 11 * 32));
+ __m256i in20 = _mm256_loadu_si256((const __m256i *)(in + 20 * 32));
+ __m256i in21 = _mm256_loadu_si256((const __m256i *)(in + 21 * 32));
+ __m256i in22 = _mm256_loadu_si256((const __m256i *)(in + 22 * 32));
+ __m256i in23 = _mm256_loadu_si256((const __m256i *)(in + 23 * 32));
+ step1[ 8] = _mm256_add_epi16(in08, in23);
+ step1[ 9] = _mm256_add_epi16(in09, in22);
+ step1[10] = _mm256_add_epi16(in10, in21);
+ step1[11] = _mm256_add_epi16(in11, in20);
+ step1[20] = _mm256_sub_epi16(in11, in20);
+ step1[21] = _mm256_sub_epi16(in10, in21);
+ step1[22] = _mm256_sub_epi16(in09, in22);
+ step1[23] = _mm256_sub_epi16(in08, in23);
+ }
+ {
+ __m256i in12 = _mm256_loadu_si256((const __m256i *)(in + 12 * 32));
+ __m256i in13 = _mm256_loadu_si256((const __m256i *)(in + 13 * 32));
+ __m256i in14 = _mm256_loadu_si256((const __m256i *)(in + 14 * 32));
+ __m256i in15 = _mm256_loadu_si256((const __m256i *)(in + 15 * 32));
+ __m256i in16 = _mm256_loadu_si256((const __m256i *)(in + 16 * 32));
+ __m256i in17 = _mm256_loadu_si256((const __m256i *)(in + 17 * 32));
+ __m256i in18 = _mm256_loadu_si256((const __m256i *)(in + 18 * 32));
+ __m256i in19 = _mm256_loadu_si256((const __m256i *)(in + 19 * 32));
+ step1[12] = _mm256_add_epi16(in12, in19);
+ step1[13] = _mm256_add_epi16(in13, in18);
+ step1[14] = _mm256_add_epi16(in14, in17);
+ step1[15] = _mm256_add_epi16(in15, in16);
+ step1[16] = _mm256_sub_epi16(in15, in16);
+ step1[17] = _mm256_sub_epi16(in14, in17);
+ step1[18] = _mm256_sub_epi16(in13, in18);
+ step1[19] = _mm256_sub_epi16(in12, in19);
+ }
+ }
+ // Stage 2
+ {
+ step2[ 0] = _mm256_add_epi16(step1[0], step1[15]);
+ step2[ 1] = _mm256_add_epi16(step1[1], step1[14]);
+ step2[ 2] = _mm256_add_epi16(step1[2], step1[13]);
+ step2[ 3] = _mm256_add_epi16(step1[3], step1[12]);
+ step2[ 4] = _mm256_add_epi16(step1[4], step1[11]);
+ step2[ 5] = _mm256_add_epi16(step1[5], step1[10]);
+ step2[ 6] = _mm256_add_epi16(step1[6], step1[ 9]);
+ step2[ 7] = _mm256_add_epi16(step1[7], step1[ 8]);
+ step2[ 8] = _mm256_sub_epi16(step1[7], step1[ 8]);
+ step2[ 9] = _mm256_sub_epi16(step1[6], step1[ 9]);
+ step2[10] = _mm256_sub_epi16(step1[5], step1[10]);
+ step2[11] = _mm256_sub_epi16(step1[4], step1[11]);
+ step2[12] = _mm256_sub_epi16(step1[3], step1[12]);
+ step2[13] = _mm256_sub_epi16(step1[2], step1[13]);
+ step2[14] = _mm256_sub_epi16(step1[1], step1[14]);
+ step2[15] = _mm256_sub_epi16(step1[0], step1[15]);
+ }
+ {
+ const __m256i s2_20_0 = _mm256_unpacklo_epi16(step1[27], step1[20]);
+ const __m256i s2_20_1 = _mm256_unpackhi_epi16(step1[27], step1[20]);
+ const __m256i s2_21_0 = _mm256_unpacklo_epi16(step1[26], step1[21]);
+ const __m256i s2_21_1 = _mm256_unpackhi_epi16(step1[26], step1[21]);
+ const __m256i s2_22_0 = _mm256_unpacklo_epi16(step1[25], step1[22]);
+ const __m256i s2_22_1 = _mm256_unpackhi_epi16(step1[25], step1[22]);
+ const __m256i s2_23_0 = _mm256_unpacklo_epi16(step1[24], step1[23]);
+ const __m256i s2_23_1 = _mm256_unpackhi_epi16(step1[24], step1[23]);
+ const __m256i s2_20_2 = _mm256_madd_epi16(s2_20_0, k__cospi_p16_m16);
+ const __m256i s2_20_3 = _mm256_madd_epi16(s2_20_1, k__cospi_p16_m16);
+ const __m256i s2_21_2 = _mm256_madd_epi16(s2_21_0, k__cospi_p16_m16);
+ const __m256i s2_21_3 = _mm256_madd_epi16(s2_21_1, k__cospi_p16_m16);
+ const __m256i s2_22_2 = _mm256_madd_epi16(s2_22_0, k__cospi_p16_m16);
+ const __m256i s2_22_3 = _mm256_madd_epi16(s2_22_1, k__cospi_p16_m16);
+ const __m256i s2_23_2 = _mm256_madd_epi16(s2_23_0, k__cospi_p16_m16);
+ const __m256i s2_23_3 = _mm256_madd_epi16(s2_23_1, k__cospi_p16_m16);
+ const __m256i s2_24_2 = _mm256_madd_epi16(s2_23_0, k__cospi_p16_p16);
+ const __m256i s2_24_3 = _mm256_madd_epi16(s2_23_1, k__cospi_p16_p16);
+ const __m256i s2_25_2 = _mm256_madd_epi16(s2_22_0, k__cospi_p16_p16);
+ const __m256i s2_25_3 = _mm256_madd_epi16(s2_22_1, k__cospi_p16_p16);
+ const __m256i s2_26_2 = _mm256_madd_epi16(s2_21_0, k__cospi_p16_p16);
+ const __m256i s2_26_3 = _mm256_madd_epi16(s2_21_1, k__cospi_p16_p16);
+ const __m256i s2_27_2 = _mm256_madd_epi16(s2_20_0, k__cospi_p16_p16);
+ const __m256i s2_27_3 = _mm256_madd_epi16(s2_20_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m256i s2_20_4 = _mm256_add_epi32(s2_20_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_20_5 = _mm256_add_epi32(s2_20_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_21_4 = _mm256_add_epi32(s2_21_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_21_5 = _mm256_add_epi32(s2_21_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_22_4 = _mm256_add_epi32(s2_22_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_22_5 = _mm256_add_epi32(s2_22_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_23_4 = _mm256_add_epi32(s2_23_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_23_5 = _mm256_add_epi32(s2_23_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_24_4 = _mm256_add_epi32(s2_24_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_24_5 = _mm256_add_epi32(s2_24_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_25_4 = _mm256_add_epi32(s2_25_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_25_5 = _mm256_add_epi32(s2_25_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_26_4 = _mm256_add_epi32(s2_26_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_26_5 = _mm256_add_epi32(s2_26_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_27_4 = _mm256_add_epi32(s2_27_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_27_5 = _mm256_add_epi32(s2_27_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_20_6 = _mm256_srai_epi32(s2_20_4, DCT_CONST_BITS);
+ const __m256i s2_20_7 = _mm256_srai_epi32(s2_20_5, DCT_CONST_BITS);
+ const __m256i s2_21_6 = _mm256_srai_epi32(s2_21_4, DCT_CONST_BITS);
+ const __m256i s2_21_7 = _mm256_srai_epi32(s2_21_5, DCT_CONST_BITS);
+ const __m256i s2_22_6 = _mm256_srai_epi32(s2_22_4, DCT_CONST_BITS);
+ const __m256i s2_22_7 = _mm256_srai_epi32(s2_22_5, DCT_CONST_BITS);
+ const __m256i s2_23_6 = _mm256_srai_epi32(s2_23_4, DCT_CONST_BITS);
+ const __m256i s2_23_7 = _mm256_srai_epi32(s2_23_5, DCT_CONST_BITS);
+ const __m256i s2_24_6 = _mm256_srai_epi32(s2_24_4, DCT_CONST_BITS);
+ const __m256i s2_24_7 = _mm256_srai_epi32(s2_24_5, DCT_CONST_BITS);
+ const __m256i s2_25_6 = _mm256_srai_epi32(s2_25_4, DCT_CONST_BITS);
+ const __m256i s2_25_7 = _mm256_srai_epi32(s2_25_5, DCT_CONST_BITS);
+ const __m256i s2_26_6 = _mm256_srai_epi32(s2_26_4, DCT_CONST_BITS);
+ const __m256i s2_26_7 = _mm256_srai_epi32(s2_26_5, DCT_CONST_BITS);
+ const __m256i s2_27_6 = _mm256_srai_epi32(s2_27_4, DCT_CONST_BITS);
+ const __m256i s2_27_7 = _mm256_srai_epi32(s2_27_5, DCT_CONST_BITS);
+ // Combine
+ step2[20] = _mm256_packs_epi32(s2_20_6, s2_20_7);
+ step2[21] = _mm256_packs_epi32(s2_21_6, s2_21_7);
+ step2[22] = _mm256_packs_epi32(s2_22_6, s2_22_7);
+ step2[23] = _mm256_packs_epi32(s2_23_6, s2_23_7);
+ step2[24] = _mm256_packs_epi32(s2_24_6, s2_24_7);
+ step2[25] = _mm256_packs_epi32(s2_25_6, s2_25_7);
+ step2[26] = _mm256_packs_epi32(s2_26_6, s2_26_7);
+ step2[27] = _mm256_packs_epi32(s2_27_6, s2_27_7);
+ }
+
+#if !FDCT32x32_HIGH_PRECISION
+ // dump the magnitude by half, hence the intermediate values are within
+ // the range of 16 bits.
+ if (1 == pass) {
+ __m256i s3_00_0 = _mm256_cmpgt_epi16(kZero,step2[ 0]);
+ __m256i s3_01_0 = _mm256_cmpgt_epi16(kZero,step2[ 1]);
+ __m256i s3_02_0 = _mm256_cmpgt_epi16(kZero,step2[ 2]);
+ __m256i s3_03_0 = _mm256_cmpgt_epi16(kZero,step2[ 3]);
+ __m256i s3_04_0 = _mm256_cmpgt_epi16(kZero,step2[ 4]);
+ __m256i s3_05_0 = _mm256_cmpgt_epi16(kZero,step2[ 5]);
+ __m256i s3_06_0 = _mm256_cmpgt_epi16(kZero,step2[ 6]);
+ __m256i s3_07_0 = _mm256_cmpgt_epi16(kZero,step2[ 7]);
+ __m256i s2_08_0 = _mm256_cmpgt_epi16(kZero,step2[ 8]);
+ __m256i s2_09_0 = _mm256_cmpgt_epi16(kZero,step2[ 9]);
+ __m256i s3_10_0 = _mm256_cmpgt_epi16(kZero,step2[10]);
+ __m256i s3_11_0 = _mm256_cmpgt_epi16(kZero,step2[11]);
+ __m256i s3_12_0 = _mm256_cmpgt_epi16(kZero,step2[12]);
+ __m256i s3_13_0 = _mm256_cmpgt_epi16(kZero,step2[13]);
+ __m256i s2_14_0 = _mm256_cmpgt_epi16(kZero,step2[14]);
+ __m256i s2_15_0 = _mm256_cmpgt_epi16(kZero,step2[15]);
+ __m256i s3_16_0 = _mm256_cmpgt_epi16(kZero,step1[16]);
+ __m256i s3_17_0 = _mm256_cmpgt_epi16(kZero,step1[17]);
+ __m256i s3_18_0 = _mm256_cmpgt_epi16(kZero,step1[18]);
+ __m256i s3_19_0 = _mm256_cmpgt_epi16(kZero,step1[19]);
+ __m256i s3_20_0 = _mm256_cmpgt_epi16(kZero,step2[20]);
+ __m256i s3_21_0 = _mm256_cmpgt_epi16(kZero,step2[21]);
+ __m256i s3_22_0 = _mm256_cmpgt_epi16(kZero,step2[22]);
+ __m256i s3_23_0 = _mm256_cmpgt_epi16(kZero,step2[23]);
+ __m256i s3_24_0 = _mm256_cmpgt_epi16(kZero,step2[24]);
+ __m256i s3_25_0 = _mm256_cmpgt_epi16(kZero,step2[25]);
+ __m256i s3_26_0 = _mm256_cmpgt_epi16(kZero,step2[26]);
+ __m256i s3_27_0 = _mm256_cmpgt_epi16(kZero,step2[27]);
+ __m256i s3_28_0 = _mm256_cmpgt_epi16(kZero,step1[28]);
+ __m256i s3_29_0 = _mm256_cmpgt_epi16(kZero,step1[29]);
+ __m256i s3_30_0 = _mm256_cmpgt_epi16(kZero,step1[30]);
+ __m256i s3_31_0 = _mm256_cmpgt_epi16(kZero,step1[31]);
+
+ step2[ 0] = _mm256_sub_epi16(step2[ 0], s3_00_0);
+ step2[ 1] = _mm256_sub_epi16(step2[ 1], s3_01_0);
+ step2[ 2] = _mm256_sub_epi16(step2[ 2], s3_02_0);
+ step2[ 3] = _mm256_sub_epi16(step2[ 3], s3_03_0);
+ step2[ 4] = _mm256_sub_epi16(step2[ 4], s3_04_0);
+ step2[ 5] = _mm256_sub_epi16(step2[ 5], s3_05_0);
+ step2[ 6] = _mm256_sub_epi16(step2[ 6], s3_06_0);
+ step2[ 7] = _mm256_sub_epi16(step2[ 7], s3_07_0);
+ step2[ 8] = _mm256_sub_epi16(step2[ 8], s2_08_0);
+ step2[ 9] = _mm256_sub_epi16(step2[ 9], s2_09_0);
+ step2[10] = _mm256_sub_epi16(step2[10], s3_10_0);
+ step2[11] = _mm256_sub_epi16(step2[11], s3_11_0);
+ step2[12] = _mm256_sub_epi16(step2[12], s3_12_0);
+ step2[13] = _mm256_sub_epi16(step2[13], s3_13_0);
+ step2[14] = _mm256_sub_epi16(step2[14], s2_14_0);
+ step2[15] = _mm256_sub_epi16(step2[15], s2_15_0);
+ step1[16] = _mm256_sub_epi16(step1[16], s3_16_0);
+ step1[17] = _mm256_sub_epi16(step1[17], s3_17_0);
+ step1[18] = _mm256_sub_epi16(step1[18], s3_18_0);
+ step1[19] = _mm256_sub_epi16(step1[19], s3_19_0);
+ step2[20] = _mm256_sub_epi16(step2[20], s3_20_0);
+ step2[21] = _mm256_sub_epi16(step2[21], s3_21_0);
+ step2[22] = _mm256_sub_epi16(step2[22], s3_22_0);
+ step2[23] = _mm256_sub_epi16(step2[23], s3_23_0);
+ step2[24] = _mm256_sub_epi16(step2[24], s3_24_0);
+ step2[25] = _mm256_sub_epi16(step2[25], s3_25_0);
+ step2[26] = _mm256_sub_epi16(step2[26], s3_26_0);
+ step2[27] = _mm256_sub_epi16(step2[27], s3_27_0);
+ step1[28] = _mm256_sub_epi16(step1[28], s3_28_0);
+ step1[29] = _mm256_sub_epi16(step1[29], s3_29_0);
+ step1[30] = _mm256_sub_epi16(step1[30], s3_30_0);
+ step1[31] = _mm256_sub_epi16(step1[31], s3_31_0);
+
+ step2[ 0] = _mm256_add_epi16(step2[ 0], kOne);
+ step2[ 1] = _mm256_add_epi16(step2[ 1], kOne);
+ step2[ 2] = _mm256_add_epi16(step2[ 2], kOne);
+ step2[ 3] = _mm256_add_epi16(step2[ 3], kOne);
+ step2[ 4] = _mm256_add_epi16(step2[ 4], kOne);
+ step2[ 5] = _mm256_add_epi16(step2[ 5], kOne);
+ step2[ 6] = _mm256_add_epi16(step2[ 6], kOne);
+ step2[ 7] = _mm256_add_epi16(step2[ 7], kOne);
+ step2[ 8] = _mm256_add_epi16(step2[ 8], kOne);
+ step2[ 9] = _mm256_add_epi16(step2[ 9], kOne);
+ step2[10] = _mm256_add_epi16(step2[10], kOne);
+ step2[11] = _mm256_add_epi16(step2[11], kOne);
+ step2[12] = _mm256_add_epi16(step2[12], kOne);
+ step2[13] = _mm256_add_epi16(step2[13], kOne);
+ step2[14] = _mm256_add_epi16(step2[14], kOne);
+ step2[15] = _mm256_add_epi16(step2[15], kOne);
+ step1[16] = _mm256_add_epi16(step1[16], kOne);
+ step1[17] = _mm256_add_epi16(step1[17], kOne);
+ step1[18] = _mm256_add_epi16(step1[18], kOne);
+ step1[19] = _mm256_add_epi16(step1[19], kOne);
+ step2[20] = _mm256_add_epi16(step2[20], kOne);
+ step2[21] = _mm256_add_epi16(step2[21], kOne);
+ step2[22] = _mm256_add_epi16(step2[22], kOne);
+ step2[23] = _mm256_add_epi16(step2[23], kOne);
+ step2[24] = _mm256_add_epi16(step2[24], kOne);
+ step2[25] = _mm256_add_epi16(step2[25], kOne);
+ step2[26] = _mm256_add_epi16(step2[26], kOne);
+ step2[27] = _mm256_add_epi16(step2[27], kOne);
+ step1[28] = _mm256_add_epi16(step1[28], kOne);
+ step1[29] = _mm256_add_epi16(step1[29], kOne);
+ step1[30] = _mm256_add_epi16(step1[30], kOne);
+ step1[31] = _mm256_add_epi16(step1[31], kOne);
+
+ step2[ 0] = _mm256_srai_epi16(step2[ 0], 2);
+ step2[ 1] = _mm256_srai_epi16(step2[ 1], 2);
+ step2[ 2] = _mm256_srai_epi16(step2[ 2], 2);
+ step2[ 3] = _mm256_srai_epi16(step2[ 3], 2);
+ step2[ 4] = _mm256_srai_epi16(step2[ 4], 2);
+ step2[ 5] = _mm256_srai_epi16(step2[ 5], 2);
+ step2[ 6] = _mm256_srai_epi16(step2[ 6], 2);
+ step2[ 7] = _mm256_srai_epi16(step2[ 7], 2);
+ step2[ 8] = _mm256_srai_epi16(step2[ 8], 2);
+ step2[ 9] = _mm256_srai_epi16(step2[ 9], 2);
+ step2[10] = _mm256_srai_epi16(step2[10], 2);
+ step2[11] = _mm256_srai_epi16(step2[11], 2);
+ step2[12] = _mm256_srai_epi16(step2[12], 2);
+ step2[13] = _mm256_srai_epi16(step2[13], 2);
+ step2[14] = _mm256_srai_epi16(step2[14], 2);
+ step2[15] = _mm256_srai_epi16(step2[15], 2);
+ step1[16] = _mm256_srai_epi16(step1[16], 2);
+ step1[17] = _mm256_srai_epi16(step1[17], 2);
+ step1[18] = _mm256_srai_epi16(step1[18], 2);
+ step1[19] = _mm256_srai_epi16(step1[19], 2);
+ step2[20] = _mm256_srai_epi16(step2[20], 2);
+ step2[21] = _mm256_srai_epi16(step2[21], 2);
+ step2[22] = _mm256_srai_epi16(step2[22], 2);
+ step2[23] = _mm256_srai_epi16(step2[23], 2);
+ step2[24] = _mm256_srai_epi16(step2[24], 2);
+ step2[25] = _mm256_srai_epi16(step2[25], 2);
+ step2[26] = _mm256_srai_epi16(step2[26], 2);
+ step2[27] = _mm256_srai_epi16(step2[27], 2);
+ step1[28] = _mm256_srai_epi16(step1[28], 2);
+ step1[29] = _mm256_srai_epi16(step1[29], 2);
+ step1[30] = _mm256_srai_epi16(step1[30], 2);
+ step1[31] = _mm256_srai_epi16(step1[31], 2);
+ }
+#endif
+
+#if FDCT32x32_HIGH_PRECISION
+ if (pass == 0) {
+#endif
+ // Stage 3
+ {
+ step3[0] = _mm256_add_epi16(step2[(8 - 1)], step2[0]);
+ step3[1] = _mm256_add_epi16(step2[(8 - 2)], step2[1]);
+ step3[2] = _mm256_add_epi16(step2[(8 - 3)], step2[2]);
+ step3[3] = _mm256_add_epi16(step2[(8 - 4)], step2[3]);
+ step3[4] = _mm256_sub_epi16(step2[(8 - 5)], step2[4]);
+ step3[5] = _mm256_sub_epi16(step2[(8 - 6)], step2[5]);
+ step3[6] = _mm256_sub_epi16(step2[(8 - 7)], step2[6]);
+ step3[7] = _mm256_sub_epi16(step2[(8 - 8)], step2[7]);
+ }
+ {
+ const __m256i s3_10_0 = _mm256_unpacklo_epi16(step2[13], step2[10]);
+ const __m256i s3_10_1 = _mm256_unpackhi_epi16(step2[13], step2[10]);
+ const __m256i s3_11_0 = _mm256_unpacklo_epi16(step2[12], step2[11]);
+ const __m256i s3_11_1 = _mm256_unpackhi_epi16(step2[12], step2[11]);
+ const __m256i s3_10_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_m16);
+ const __m256i s3_10_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_m16);
+ const __m256i s3_11_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_m16);
+ const __m256i s3_11_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_m16);
+ const __m256i s3_12_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_p16);
+ const __m256i s3_12_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_p16);
+ const __m256i s3_13_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_p16);
+ const __m256i s3_13_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m256i s3_10_4 = _mm256_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_10_5 = _mm256_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_11_4 = _mm256_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_11_5 = _mm256_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_12_4 = _mm256_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_12_5 = _mm256_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_13_4 = _mm256_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_13_5 = _mm256_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_10_6 = _mm256_srai_epi32(s3_10_4, DCT_CONST_BITS);
+ const __m256i s3_10_7 = _mm256_srai_epi32(s3_10_5, DCT_CONST_BITS);
+ const __m256i s3_11_6 = _mm256_srai_epi32(s3_11_4, DCT_CONST_BITS);
+ const __m256i s3_11_7 = _mm256_srai_epi32(s3_11_5, DCT_CONST_BITS);
+ const __m256i s3_12_6 = _mm256_srai_epi32(s3_12_4, DCT_CONST_BITS);
+ const __m256i s3_12_7 = _mm256_srai_epi32(s3_12_5, DCT_CONST_BITS);
+ const __m256i s3_13_6 = _mm256_srai_epi32(s3_13_4, DCT_CONST_BITS);
+ const __m256i s3_13_7 = _mm256_srai_epi32(s3_13_5, DCT_CONST_BITS);
+ // Combine
+ step3[10] = _mm256_packs_epi32(s3_10_6, s3_10_7);
+ step3[11] = _mm256_packs_epi32(s3_11_6, s3_11_7);
+ step3[12] = _mm256_packs_epi32(s3_12_6, s3_12_7);
+ step3[13] = _mm256_packs_epi32(s3_13_6, s3_13_7);
+ }
+ {
+ step3[16] = _mm256_add_epi16(step2[23], step1[16]);
+ step3[17] = _mm256_add_epi16(step2[22], step1[17]);
+ step3[18] = _mm256_add_epi16(step2[21], step1[18]);
+ step3[19] = _mm256_add_epi16(step2[20], step1[19]);
+ step3[20] = _mm256_sub_epi16(step1[19], step2[20]);
+ step3[21] = _mm256_sub_epi16(step1[18], step2[21]);
+ step3[22] = _mm256_sub_epi16(step1[17], step2[22]);
+ step3[23] = _mm256_sub_epi16(step1[16], step2[23]);
+ step3[24] = _mm256_sub_epi16(step1[31], step2[24]);
+ step3[25] = _mm256_sub_epi16(step1[30], step2[25]);
+ step3[26] = _mm256_sub_epi16(step1[29], step2[26]);
+ step3[27] = _mm256_sub_epi16(step1[28], step2[27]);
+ step3[28] = _mm256_add_epi16(step2[27], step1[28]);
+ step3[29] = _mm256_add_epi16(step2[26], step1[29]);
+ step3[30] = _mm256_add_epi16(step2[25], step1[30]);
+ step3[31] = _mm256_add_epi16(step2[24], step1[31]);
+ }
+
+ // Stage 4
+ {
+ step1[ 0] = _mm256_add_epi16(step3[ 3], step3[ 0]);
+ step1[ 1] = _mm256_add_epi16(step3[ 2], step3[ 1]);
+ step1[ 2] = _mm256_sub_epi16(step3[ 1], step3[ 2]);
+ step1[ 3] = _mm256_sub_epi16(step3[ 0], step3[ 3]);
+ step1[ 8] = _mm256_add_epi16(step3[11], step2[ 8]);
+ step1[ 9] = _mm256_add_epi16(step3[10], step2[ 9]);
+ step1[10] = _mm256_sub_epi16(step2[ 9], step3[10]);
+ step1[11] = _mm256_sub_epi16(step2[ 8], step3[11]);
+ step1[12] = _mm256_sub_epi16(step2[15], step3[12]);
+ step1[13] = _mm256_sub_epi16(step2[14], step3[13]);
+ step1[14] = _mm256_add_epi16(step3[13], step2[14]);
+ step1[15] = _mm256_add_epi16(step3[12], step2[15]);
+ }
+ {
+ const __m256i s1_05_0 = _mm256_unpacklo_epi16(step3[6], step3[5]);
+ const __m256i s1_05_1 = _mm256_unpackhi_epi16(step3[6], step3[5]);
+ const __m256i s1_05_2 = _mm256_madd_epi16(s1_05_0, k__cospi_p16_m16);
+ const __m256i s1_05_3 = _mm256_madd_epi16(s1_05_1, k__cospi_p16_m16);
+ const __m256i s1_06_2 = _mm256_madd_epi16(s1_05_0, k__cospi_p16_p16);
+ const __m256i s1_06_3 = _mm256_madd_epi16(s1_05_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m256i s1_05_4 = _mm256_add_epi32(s1_05_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_05_5 = _mm256_add_epi32(s1_05_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_06_4 = _mm256_add_epi32(s1_06_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_06_5 = _mm256_add_epi32(s1_06_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_05_6 = _mm256_srai_epi32(s1_05_4, DCT_CONST_BITS);
+ const __m256i s1_05_7 = _mm256_srai_epi32(s1_05_5, DCT_CONST_BITS);
+ const __m256i s1_06_6 = _mm256_srai_epi32(s1_06_4, DCT_CONST_BITS);
+ const __m256i s1_06_7 = _mm256_srai_epi32(s1_06_5, DCT_CONST_BITS);
+ // Combine
+ step1[5] = _mm256_packs_epi32(s1_05_6, s1_05_7);
+ step1[6] = _mm256_packs_epi32(s1_06_6, s1_06_7);
+ }
+ {
+ const __m256i s1_18_0 = _mm256_unpacklo_epi16(step3[18], step3[29]);
+ const __m256i s1_18_1 = _mm256_unpackhi_epi16(step3[18], step3[29]);
+ const __m256i s1_19_0 = _mm256_unpacklo_epi16(step3[19], step3[28]);
+ const __m256i s1_19_1 = _mm256_unpackhi_epi16(step3[19], step3[28]);
+ const __m256i s1_20_0 = _mm256_unpacklo_epi16(step3[20], step3[27]);
+ const __m256i s1_20_1 = _mm256_unpackhi_epi16(step3[20], step3[27]);
+ const __m256i s1_21_0 = _mm256_unpacklo_epi16(step3[21], step3[26]);
+ const __m256i s1_21_1 = _mm256_unpackhi_epi16(step3[21], step3[26]);
+ const __m256i s1_18_2 = _mm256_madd_epi16(s1_18_0, k__cospi_m08_p24);
+ const __m256i s1_18_3 = _mm256_madd_epi16(s1_18_1, k__cospi_m08_p24);
+ const __m256i s1_19_2 = _mm256_madd_epi16(s1_19_0, k__cospi_m08_p24);
+ const __m256i s1_19_3 = _mm256_madd_epi16(s1_19_1, k__cospi_m08_p24);
+ const __m256i s1_20_2 = _mm256_madd_epi16(s1_20_0, k__cospi_m24_m08);
+ const __m256i s1_20_3 = _mm256_madd_epi16(s1_20_1, k__cospi_m24_m08);
+ const __m256i s1_21_2 = _mm256_madd_epi16(s1_21_0, k__cospi_m24_m08);
+ const __m256i s1_21_3 = _mm256_madd_epi16(s1_21_1, k__cospi_m24_m08);
+ const __m256i s1_26_2 = _mm256_madd_epi16(s1_21_0, k__cospi_m08_p24);
+ const __m256i s1_26_3 = _mm256_madd_epi16(s1_21_1, k__cospi_m08_p24);
+ const __m256i s1_27_2 = _mm256_madd_epi16(s1_20_0, k__cospi_m08_p24);
+ const __m256i s1_27_3 = _mm256_madd_epi16(s1_20_1, k__cospi_m08_p24);
+ const __m256i s1_28_2 = _mm256_madd_epi16(s1_19_0, k__cospi_p24_p08);
+ const __m256i s1_28_3 = _mm256_madd_epi16(s1_19_1, k__cospi_p24_p08);
+ const __m256i s1_29_2 = _mm256_madd_epi16(s1_18_0, k__cospi_p24_p08);
+ const __m256i s1_29_3 = _mm256_madd_epi16(s1_18_1, k__cospi_p24_p08);
+ // dct_const_round_shift
+ const __m256i s1_18_4 = _mm256_add_epi32(s1_18_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_18_5 = _mm256_add_epi32(s1_18_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_19_4 = _mm256_add_epi32(s1_19_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_19_5 = _mm256_add_epi32(s1_19_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_20_4 = _mm256_add_epi32(s1_20_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_20_5 = _mm256_add_epi32(s1_20_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_21_4 = _mm256_add_epi32(s1_21_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_21_5 = _mm256_add_epi32(s1_21_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_26_4 = _mm256_add_epi32(s1_26_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_26_5 = _mm256_add_epi32(s1_26_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_27_4 = _mm256_add_epi32(s1_27_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_27_5 = _mm256_add_epi32(s1_27_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_28_4 = _mm256_add_epi32(s1_28_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_28_5 = _mm256_add_epi32(s1_28_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_29_4 = _mm256_add_epi32(s1_29_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_29_5 = _mm256_add_epi32(s1_29_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_18_6 = _mm256_srai_epi32(s1_18_4, DCT_CONST_BITS);
+ const __m256i s1_18_7 = _mm256_srai_epi32(s1_18_5, DCT_CONST_BITS);
+ const __m256i s1_19_6 = _mm256_srai_epi32(s1_19_4, DCT_CONST_BITS);
+ const __m256i s1_19_7 = _mm256_srai_epi32(s1_19_5, DCT_CONST_BITS);
+ const __m256i s1_20_6 = _mm256_srai_epi32(s1_20_4, DCT_CONST_BITS);
+ const __m256i s1_20_7 = _mm256_srai_epi32(s1_20_5, DCT_CONST_BITS);
+ const __m256i s1_21_6 = _mm256_srai_epi32(s1_21_4, DCT_CONST_BITS);
+ const __m256i s1_21_7 = _mm256_srai_epi32(s1_21_5, DCT_CONST_BITS);
+ const __m256i s1_26_6 = _mm256_srai_epi32(s1_26_4, DCT_CONST_BITS);
+ const __m256i s1_26_7 = _mm256_srai_epi32(s1_26_5, DCT_CONST_BITS);
+ const __m256i s1_27_6 = _mm256_srai_epi32(s1_27_4, DCT_CONST_BITS);
+ const __m256i s1_27_7 = _mm256_srai_epi32(s1_27_5, DCT_CONST_BITS);
+ const __m256i s1_28_6 = _mm256_srai_epi32(s1_28_4, DCT_CONST_BITS);
+ const __m256i s1_28_7 = _mm256_srai_epi32(s1_28_5, DCT_CONST_BITS);
+ const __m256i s1_29_6 = _mm256_srai_epi32(s1_29_4, DCT_CONST_BITS);
+ const __m256i s1_29_7 = _mm256_srai_epi32(s1_29_5, DCT_CONST_BITS);
+ // Combine
+ step1[18] = _mm256_packs_epi32(s1_18_6, s1_18_7);
+ step1[19] = _mm256_packs_epi32(s1_19_6, s1_19_7);
+ step1[20] = _mm256_packs_epi32(s1_20_6, s1_20_7);
+ step1[21] = _mm256_packs_epi32(s1_21_6, s1_21_7);
+ step1[26] = _mm256_packs_epi32(s1_26_6, s1_26_7);
+ step1[27] = _mm256_packs_epi32(s1_27_6, s1_27_7);
+ step1[28] = _mm256_packs_epi32(s1_28_6, s1_28_7);
+ step1[29] = _mm256_packs_epi32(s1_29_6, s1_29_7);
+ }
+ // Stage 5
+ {
+ step2[4] = _mm256_add_epi16(step1[5], step3[4]);
+ step2[5] = _mm256_sub_epi16(step3[4], step1[5]);
+ step2[6] = _mm256_sub_epi16(step3[7], step1[6]);
+ step2[7] = _mm256_add_epi16(step1[6], step3[7]);
+ }
+ {
+ const __m256i out_00_0 = _mm256_unpacklo_epi16(step1[0], step1[1]);
+ const __m256i out_00_1 = _mm256_unpackhi_epi16(step1[0], step1[1]);
+ const __m256i out_08_0 = _mm256_unpacklo_epi16(step1[2], step1[3]);
+ const __m256i out_08_1 = _mm256_unpackhi_epi16(step1[2], step1[3]);
+ const __m256i out_00_2 = _mm256_madd_epi16(out_00_0, k__cospi_p16_p16);
+ const __m256i out_00_3 = _mm256_madd_epi16(out_00_1, k__cospi_p16_p16);
+ const __m256i out_16_2 = _mm256_madd_epi16(out_00_0, k__cospi_p16_m16);
+ const __m256i out_16_3 = _mm256_madd_epi16(out_00_1, k__cospi_p16_m16);
+ const __m256i out_08_2 = _mm256_madd_epi16(out_08_0, k__cospi_p24_p08);
+ const __m256i out_08_3 = _mm256_madd_epi16(out_08_1, k__cospi_p24_p08);
+ const __m256i out_24_2 = _mm256_madd_epi16(out_08_0, k__cospi_m08_p24);
+ const __m256i out_24_3 = _mm256_madd_epi16(out_08_1, k__cospi_m08_p24);
+ // dct_const_round_shift
+ const __m256i out_00_4 = _mm256_add_epi32(out_00_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_00_5 = _mm256_add_epi32(out_00_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_16_4 = _mm256_add_epi32(out_16_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_16_5 = _mm256_add_epi32(out_16_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_08_4 = _mm256_add_epi32(out_08_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_08_5 = _mm256_add_epi32(out_08_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_24_4 = _mm256_add_epi32(out_24_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_24_5 = _mm256_add_epi32(out_24_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_00_6 = _mm256_srai_epi32(out_00_4, DCT_CONST_BITS);
+ const __m256i out_00_7 = _mm256_srai_epi32(out_00_5, DCT_CONST_BITS);
+ const __m256i out_16_6 = _mm256_srai_epi32(out_16_4, DCT_CONST_BITS);
+ const __m256i out_16_7 = _mm256_srai_epi32(out_16_5, DCT_CONST_BITS);
+ const __m256i out_08_6 = _mm256_srai_epi32(out_08_4, DCT_CONST_BITS);
+ const __m256i out_08_7 = _mm256_srai_epi32(out_08_5, DCT_CONST_BITS);
+ const __m256i out_24_6 = _mm256_srai_epi32(out_24_4, DCT_CONST_BITS);
+ const __m256i out_24_7 = _mm256_srai_epi32(out_24_5, DCT_CONST_BITS);
+ // Combine
+ out[ 0] = _mm256_packs_epi32(out_00_6, out_00_7);
+ out[16] = _mm256_packs_epi32(out_16_6, out_16_7);
+ out[ 8] = _mm256_packs_epi32(out_08_6, out_08_7);
+ out[24] = _mm256_packs_epi32(out_24_6, out_24_7);
+ }
+ {
+ const __m256i s2_09_0 = _mm256_unpacklo_epi16(step1[ 9], step1[14]);
+ const __m256i s2_09_1 = _mm256_unpackhi_epi16(step1[ 9], step1[14]);
+ const __m256i s2_10_0 = _mm256_unpacklo_epi16(step1[10], step1[13]);
+ const __m256i s2_10_1 = _mm256_unpackhi_epi16(step1[10], step1[13]);
+ const __m256i s2_09_2 = _mm256_madd_epi16(s2_09_0, k__cospi_m08_p24);
+ const __m256i s2_09_3 = _mm256_madd_epi16(s2_09_1, k__cospi_m08_p24);
+ const __m256i s2_10_2 = _mm256_madd_epi16(s2_10_0, k__cospi_m24_m08);
+ const __m256i s2_10_3 = _mm256_madd_epi16(s2_10_1, k__cospi_m24_m08);
+ const __m256i s2_13_2 = _mm256_madd_epi16(s2_10_0, k__cospi_m08_p24);
+ const __m256i s2_13_3 = _mm256_madd_epi16(s2_10_1, k__cospi_m08_p24);
+ const __m256i s2_14_2 = _mm256_madd_epi16(s2_09_0, k__cospi_p24_p08);
+ const __m256i s2_14_3 = _mm256_madd_epi16(s2_09_1, k__cospi_p24_p08);
+ // dct_const_round_shift
+ const __m256i s2_09_4 = _mm256_add_epi32(s2_09_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_09_5 = _mm256_add_epi32(s2_09_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_10_4 = _mm256_add_epi32(s2_10_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_10_5 = _mm256_add_epi32(s2_10_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_13_4 = _mm256_add_epi32(s2_13_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_13_5 = _mm256_add_epi32(s2_13_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_14_4 = _mm256_add_epi32(s2_14_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_14_5 = _mm256_add_epi32(s2_14_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_09_6 = _mm256_srai_epi32(s2_09_4, DCT_CONST_BITS);
+ const __m256i s2_09_7 = _mm256_srai_epi32(s2_09_5, DCT_CONST_BITS);
+ const __m256i s2_10_6 = _mm256_srai_epi32(s2_10_4, DCT_CONST_BITS);
+ const __m256i s2_10_7 = _mm256_srai_epi32(s2_10_5, DCT_CONST_BITS);
+ const __m256i s2_13_6 = _mm256_srai_epi32(s2_13_4, DCT_CONST_BITS);
+ const __m256i s2_13_7 = _mm256_srai_epi32(s2_13_5, DCT_CONST_BITS);
+ const __m256i s2_14_6 = _mm256_srai_epi32(s2_14_4, DCT_CONST_BITS);
+ const __m256i s2_14_7 = _mm256_srai_epi32(s2_14_5, DCT_CONST_BITS);
+ // Combine
+ step2[ 9] = _mm256_packs_epi32(s2_09_6, s2_09_7);
+ step2[10] = _mm256_packs_epi32(s2_10_6, s2_10_7);
+ step2[13] = _mm256_packs_epi32(s2_13_6, s2_13_7);
+ step2[14] = _mm256_packs_epi32(s2_14_6, s2_14_7);
+ }
+ {
+ step2[16] = _mm256_add_epi16(step1[19], step3[16]);
+ step2[17] = _mm256_add_epi16(step1[18], step3[17]);
+ step2[18] = _mm256_sub_epi16(step3[17], step1[18]);
+ step2[19] = _mm256_sub_epi16(step3[16], step1[19]);
+ step2[20] = _mm256_sub_epi16(step3[23], step1[20]);
+ step2[21] = _mm256_sub_epi16(step3[22], step1[21]);
+ step2[22] = _mm256_add_epi16(step1[21], step3[22]);
+ step2[23] = _mm256_add_epi16(step1[20], step3[23]);
+ step2[24] = _mm256_add_epi16(step1[27], step3[24]);
+ step2[25] = _mm256_add_epi16(step1[26], step3[25]);
+ step2[26] = _mm256_sub_epi16(step3[25], step1[26]);
+ step2[27] = _mm256_sub_epi16(step3[24], step1[27]);
+ step2[28] = _mm256_sub_epi16(step3[31], step1[28]);
+ step2[29] = _mm256_sub_epi16(step3[30], step1[29]);
+ step2[30] = _mm256_add_epi16(step1[29], step3[30]);
+ step2[31] = _mm256_add_epi16(step1[28], step3[31]);
+ }
+ // Stage 6
+ {
+ const __m256i out_04_0 = _mm256_unpacklo_epi16(step2[4], step2[7]);
+ const __m256i out_04_1 = _mm256_unpackhi_epi16(step2[4], step2[7]);
+ const __m256i out_20_0 = _mm256_unpacklo_epi16(step2[5], step2[6]);
+ const __m256i out_20_1 = _mm256_unpackhi_epi16(step2[5], step2[6]);
+ const __m256i out_12_0 = _mm256_unpacklo_epi16(step2[5], step2[6]);
+ const __m256i out_12_1 = _mm256_unpackhi_epi16(step2[5], step2[6]);
+ const __m256i out_28_0 = _mm256_unpacklo_epi16(step2[4], step2[7]);
+ const __m256i out_28_1 = _mm256_unpackhi_epi16(step2[4], step2[7]);
+ const __m256i out_04_2 = _mm256_madd_epi16(out_04_0, k__cospi_p28_p04);
+ const __m256i out_04_3 = _mm256_madd_epi16(out_04_1, k__cospi_p28_p04);
+ const __m256i out_20_2 = _mm256_madd_epi16(out_20_0, k__cospi_p12_p20);
+ const __m256i out_20_3 = _mm256_madd_epi16(out_20_1, k__cospi_p12_p20);
+ const __m256i out_12_2 = _mm256_madd_epi16(out_12_0, k__cospi_m20_p12);
+ const __m256i out_12_3 = _mm256_madd_epi16(out_12_1, k__cospi_m20_p12);
+ const __m256i out_28_2 = _mm256_madd_epi16(out_28_0, k__cospi_m04_p28);
+ const __m256i out_28_3 = _mm256_madd_epi16(out_28_1, k__cospi_m04_p28);
+ // dct_const_round_shift
+ const __m256i out_04_4 = _mm256_add_epi32(out_04_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_04_5 = _mm256_add_epi32(out_04_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_20_4 = _mm256_add_epi32(out_20_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_20_5 = _mm256_add_epi32(out_20_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_12_4 = _mm256_add_epi32(out_12_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_12_5 = _mm256_add_epi32(out_12_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_28_4 = _mm256_add_epi32(out_28_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_28_5 = _mm256_add_epi32(out_28_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_04_6 = _mm256_srai_epi32(out_04_4, DCT_CONST_BITS);
+ const __m256i out_04_7 = _mm256_srai_epi32(out_04_5, DCT_CONST_BITS);
+ const __m256i out_20_6 = _mm256_srai_epi32(out_20_4, DCT_CONST_BITS);
+ const __m256i out_20_7 = _mm256_srai_epi32(out_20_5, DCT_CONST_BITS);
+ const __m256i out_12_6 = _mm256_srai_epi32(out_12_4, DCT_CONST_BITS);
+ const __m256i out_12_7 = _mm256_srai_epi32(out_12_5, DCT_CONST_BITS);
+ const __m256i out_28_6 = _mm256_srai_epi32(out_28_4, DCT_CONST_BITS);
+ const __m256i out_28_7 = _mm256_srai_epi32(out_28_5, DCT_CONST_BITS);
+ // Combine
+ out[ 4] = _mm256_packs_epi32(out_04_6, out_04_7);
+ out[20] = _mm256_packs_epi32(out_20_6, out_20_7);
+ out[12] = _mm256_packs_epi32(out_12_6, out_12_7);
+ out[28] = _mm256_packs_epi32(out_28_6, out_28_7);
+ }
+ {
+ step3[ 8] = _mm256_add_epi16(step2[ 9], step1[ 8]);
+ step3[ 9] = _mm256_sub_epi16(step1[ 8], step2[ 9]);
+ step3[10] = _mm256_sub_epi16(step1[11], step2[10]);
+ step3[11] = _mm256_add_epi16(step2[10], step1[11]);
+ step3[12] = _mm256_add_epi16(step2[13], step1[12]);
+ step3[13] = _mm256_sub_epi16(step1[12], step2[13]);
+ step3[14] = _mm256_sub_epi16(step1[15], step2[14]);
+ step3[15] = _mm256_add_epi16(step2[14], step1[15]);
+ }
+ {
+ const __m256i s3_17_0 = _mm256_unpacklo_epi16(step2[17], step2[30]);
+ const __m256i s3_17_1 = _mm256_unpackhi_epi16(step2[17], step2[30]);
+ const __m256i s3_18_0 = _mm256_unpacklo_epi16(step2[18], step2[29]);
+ const __m256i s3_18_1 = _mm256_unpackhi_epi16(step2[18], step2[29]);
+ const __m256i s3_21_0 = _mm256_unpacklo_epi16(step2[21], step2[26]);
+ const __m256i s3_21_1 = _mm256_unpackhi_epi16(step2[21], step2[26]);
+ const __m256i s3_22_0 = _mm256_unpacklo_epi16(step2[22], step2[25]);
+ const __m256i s3_22_1 = _mm256_unpackhi_epi16(step2[22], step2[25]);
+ const __m256i s3_17_2 = _mm256_madd_epi16(s3_17_0, k__cospi_m04_p28);
+ const __m256i s3_17_3 = _mm256_madd_epi16(s3_17_1, k__cospi_m04_p28);
+ const __m256i s3_18_2 = _mm256_madd_epi16(s3_18_0, k__cospi_m28_m04);
+ const __m256i s3_18_3 = _mm256_madd_epi16(s3_18_1, k__cospi_m28_m04);
+ const __m256i s3_21_2 = _mm256_madd_epi16(s3_21_0, k__cospi_m20_p12);
+ const __m256i s3_21_3 = _mm256_madd_epi16(s3_21_1, k__cospi_m20_p12);
+ const __m256i s3_22_2 = _mm256_madd_epi16(s3_22_0, k__cospi_m12_m20);
+ const __m256i s3_22_3 = _mm256_madd_epi16(s3_22_1, k__cospi_m12_m20);
+ const __m256i s3_25_2 = _mm256_madd_epi16(s3_22_0, k__cospi_m20_p12);
+ const __m256i s3_25_3 = _mm256_madd_epi16(s3_22_1, k__cospi_m20_p12);
+ const __m256i s3_26_2 = _mm256_madd_epi16(s3_21_0, k__cospi_p12_p20);
+ const __m256i s3_26_3 = _mm256_madd_epi16(s3_21_1, k__cospi_p12_p20);
+ const __m256i s3_29_2 = _mm256_madd_epi16(s3_18_0, k__cospi_m04_p28);
+ const __m256i s3_29_3 = _mm256_madd_epi16(s3_18_1, k__cospi_m04_p28);
+ const __m256i s3_30_2 = _mm256_madd_epi16(s3_17_0, k__cospi_p28_p04);
+ const __m256i s3_30_3 = _mm256_madd_epi16(s3_17_1, k__cospi_p28_p04);
+ // dct_const_round_shift
+ const __m256i s3_17_4 = _mm256_add_epi32(s3_17_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_17_5 = _mm256_add_epi32(s3_17_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_18_4 = _mm256_add_epi32(s3_18_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_18_5 = _mm256_add_epi32(s3_18_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_21_4 = _mm256_add_epi32(s3_21_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_21_5 = _mm256_add_epi32(s3_21_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_22_4 = _mm256_add_epi32(s3_22_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_22_5 = _mm256_add_epi32(s3_22_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_17_6 = _mm256_srai_epi32(s3_17_4, DCT_CONST_BITS);
+ const __m256i s3_17_7 = _mm256_srai_epi32(s3_17_5, DCT_CONST_BITS);
+ const __m256i s3_18_6 = _mm256_srai_epi32(s3_18_4, DCT_CONST_BITS);
+ const __m256i s3_18_7 = _mm256_srai_epi32(s3_18_5, DCT_CONST_BITS);
+ const __m256i s3_21_6 = _mm256_srai_epi32(s3_21_4, DCT_CONST_BITS);
+ const __m256i s3_21_7 = _mm256_srai_epi32(s3_21_5, DCT_CONST_BITS);
+ const __m256i s3_22_6 = _mm256_srai_epi32(s3_22_4, DCT_CONST_BITS);
+ const __m256i s3_22_7 = _mm256_srai_epi32(s3_22_5, DCT_CONST_BITS);
+ const __m256i s3_25_4 = _mm256_add_epi32(s3_25_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_25_5 = _mm256_add_epi32(s3_25_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_26_4 = _mm256_add_epi32(s3_26_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_26_5 = _mm256_add_epi32(s3_26_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_29_4 = _mm256_add_epi32(s3_29_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_29_5 = _mm256_add_epi32(s3_29_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_30_4 = _mm256_add_epi32(s3_30_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_30_5 = _mm256_add_epi32(s3_30_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_25_6 = _mm256_srai_epi32(s3_25_4, DCT_CONST_BITS);
+ const __m256i s3_25_7 = _mm256_srai_epi32(s3_25_5, DCT_CONST_BITS);
+ const __m256i s3_26_6 = _mm256_srai_epi32(s3_26_4, DCT_CONST_BITS);
+ const __m256i s3_26_7 = _mm256_srai_epi32(s3_26_5, DCT_CONST_BITS);
+ const __m256i s3_29_6 = _mm256_srai_epi32(s3_29_4, DCT_CONST_BITS);
+ const __m256i s3_29_7 = _mm256_srai_epi32(s3_29_5, DCT_CONST_BITS);
+ const __m256i s3_30_6 = _mm256_srai_epi32(s3_30_4, DCT_CONST_BITS);
+ const __m256i s3_30_7 = _mm256_srai_epi32(s3_30_5, DCT_CONST_BITS);
+ // Combine
+ step3[17] = _mm256_packs_epi32(s3_17_6, s3_17_7);
+ step3[18] = _mm256_packs_epi32(s3_18_6, s3_18_7);
+ step3[21] = _mm256_packs_epi32(s3_21_6, s3_21_7);
+ step3[22] = _mm256_packs_epi32(s3_22_6, s3_22_7);
+ // Combine
+ step3[25] = _mm256_packs_epi32(s3_25_6, s3_25_7);
+ step3[26] = _mm256_packs_epi32(s3_26_6, s3_26_7);
+ step3[29] = _mm256_packs_epi32(s3_29_6, s3_29_7);
+ step3[30] = _mm256_packs_epi32(s3_30_6, s3_30_7);
+ }
+ // Stage 7
+ {
+ const __m256i out_02_0 = _mm256_unpacklo_epi16(step3[ 8], step3[15]);
+ const __m256i out_02_1 = _mm256_unpackhi_epi16(step3[ 8], step3[15]);
+ const __m256i out_18_0 = _mm256_unpacklo_epi16(step3[ 9], step3[14]);
+ const __m256i out_18_1 = _mm256_unpackhi_epi16(step3[ 9], step3[14]);
+ const __m256i out_10_0 = _mm256_unpacklo_epi16(step3[10], step3[13]);
+ const __m256i out_10_1 = _mm256_unpackhi_epi16(step3[10], step3[13]);
+ const __m256i out_26_0 = _mm256_unpacklo_epi16(step3[11], step3[12]);
+ const __m256i out_26_1 = _mm256_unpackhi_epi16(step3[11], step3[12]);
+ const __m256i out_02_2 = _mm256_madd_epi16(out_02_0, k__cospi_p30_p02);
+ const __m256i out_02_3 = _mm256_madd_epi16(out_02_1, k__cospi_p30_p02);
+ const __m256i out_18_2 = _mm256_madd_epi16(out_18_0, k__cospi_p14_p18);
+ const __m256i out_18_3 = _mm256_madd_epi16(out_18_1, k__cospi_p14_p18);
+ const __m256i out_10_2 = _mm256_madd_epi16(out_10_0, k__cospi_p22_p10);
+ const __m256i out_10_3 = _mm256_madd_epi16(out_10_1, k__cospi_p22_p10);
+ const __m256i out_26_2 = _mm256_madd_epi16(out_26_0, k__cospi_p06_p26);
+ const __m256i out_26_3 = _mm256_madd_epi16(out_26_1, k__cospi_p06_p26);
+ const __m256i out_06_2 = _mm256_madd_epi16(out_26_0, k__cospi_m26_p06);
+ const __m256i out_06_3 = _mm256_madd_epi16(out_26_1, k__cospi_m26_p06);
+ const __m256i out_22_2 = _mm256_madd_epi16(out_10_0, k__cospi_m10_p22);
+ const __m256i out_22_3 = _mm256_madd_epi16(out_10_1, k__cospi_m10_p22);
+ const __m256i out_14_2 = _mm256_madd_epi16(out_18_0, k__cospi_m18_p14);
+ const __m256i out_14_3 = _mm256_madd_epi16(out_18_1, k__cospi_m18_p14);
+ const __m256i out_30_2 = _mm256_madd_epi16(out_02_0, k__cospi_m02_p30);
+ const __m256i out_30_3 = _mm256_madd_epi16(out_02_1, k__cospi_m02_p30);
+ // dct_const_round_shift
+ const __m256i out_02_4 = _mm256_add_epi32(out_02_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_02_5 = _mm256_add_epi32(out_02_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_18_4 = _mm256_add_epi32(out_18_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_18_5 = _mm256_add_epi32(out_18_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_10_4 = _mm256_add_epi32(out_10_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_10_5 = _mm256_add_epi32(out_10_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_26_4 = _mm256_add_epi32(out_26_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_26_5 = _mm256_add_epi32(out_26_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_06_4 = _mm256_add_epi32(out_06_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_06_5 = _mm256_add_epi32(out_06_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_22_4 = _mm256_add_epi32(out_22_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_22_5 = _mm256_add_epi32(out_22_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_14_4 = _mm256_add_epi32(out_14_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_14_5 = _mm256_add_epi32(out_14_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_30_4 = _mm256_add_epi32(out_30_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_30_5 = _mm256_add_epi32(out_30_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_02_6 = _mm256_srai_epi32(out_02_4, DCT_CONST_BITS);
+ const __m256i out_02_7 = _mm256_srai_epi32(out_02_5, DCT_CONST_BITS);
+ const __m256i out_18_6 = _mm256_srai_epi32(out_18_4, DCT_CONST_BITS);
+ const __m256i out_18_7 = _mm256_srai_epi32(out_18_5, DCT_CONST_BITS);
+ const __m256i out_10_6 = _mm256_srai_epi32(out_10_4, DCT_CONST_BITS);
+ const __m256i out_10_7 = _mm256_srai_epi32(out_10_5, DCT_CONST_BITS);
+ const __m256i out_26_6 = _mm256_srai_epi32(out_26_4, DCT_CONST_BITS);
+ const __m256i out_26_7 = _mm256_srai_epi32(out_26_5, DCT_CONST_BITS);
+ const __m256i out_06_6 = _mm256_srai_epi32(out_06_4, DCT_CONST_BITS);
+ const __m256i out_06_7 = _mm256_srai_epi32(out_06_5, DCT_CONST_BITS);
+ const __m256i out_22_6 = _mm256_srai_epi32(out_22_4, DCT_CONST_BITS);
+ const __m256i out_22_7 = _mm256_srai_epi32(out_22_5, DCT_CONST_BITS);
+ const __m256i out_14_6 = _mm256_srai_epi32(out_14_4, DCT_CONST_BITS);
+ const __m256i out_14_7 = _mm256_srai_epi32(out_14_5, DCT_CONST_BITS);
+ const __m256i out_30_6 = _mm256_srai_epi32(out_30_4, DCT_CONST_BITS);
+ const __m256i out_30_7 = _mm256_srai_epi32(out_30_5, DCT_CONST_BITS);
+ // Combine
+ out[ 2] = _mm256_packs_epi32(out_02_6, out_02_7);
+ out[18] = _mm256_packs_epi32(out_18_6, out_18_7);
+ out[10] = _mm256_packs_epi32(out_10_6, out_10_7);
+ out[26] = _mm256_packs_epi32(out_26_6, out_26_7);
+ out[ 6] = _mm256_packs_epi32(out_06_6, out_06_7);
+ out[22] = _mm256_packs_epi32(out_22_6, out_22_7);
+ out[14] = _mm256_packs_epi32(out_14_6, out_14_7);
+ out[30] = _mm256_packs_epi32(out_30_6, out_30_7);
+ }
+ {
+ step1[16] = _mm256_add_epi16(step3[17], step2[16]);
+ step1[17] = _mm256_sub_epi16(step2[16], step3[17]);
+ step1[18] = _mm256_sub_epi16(step2[19], step3[18]);
+ step1[19] = _mm256_add_epi16(step3[18], step2[19]);
+ step1[20] = _mm256_add_epi16(step3[21], step2[20]);
+ step1[21] = _mm256_sub_epi16(step2[20], step3[21]);
+ step1[22] = _mm256_sub_epi16(step2[23], step3[22]);
+ step1[23] = _mm256_add_epi16(step3[22], step2[23]);
+ step1[24] = _mm256_add_epi16(step3[25], step2[24]);
+ step1[25] = _mm256_sub_epi16(step2[24], step3[25]);
+ step1[26] = _mm256_sub_epi16(step2[27], step3[26]);
+ step1[27] = _mm256_add_epi16(step3[26], step2[27]);
+ step1[28] = _mm256_add_epi16(step3[29], step2[28]);
+ step1[29] = _mm256_sub_epi16(step2[28], step3[29]);
+ step1[30] = _mm256_sub_epi16(step2[31], step3[30]);
+ step1[31] = _mm256_add_epi16(step3[30], step2[31]);
+ }
+ // Final stage --- outputs indices are bit-reversed.
+ {
+ const __m256i out_01_0 = _mm256_unpacklo_epi16(step1[16], step1[31]);
+ const __m256i out_01_1 = _mm256_unpackhi_epi16(step1[16], step1[31]);
+ const __m256i out_17_0 = _mm256_unpacklo_epi16(step1[17], step1[30]);
+ const __m256i out_17_1 = _mm256_unpackhi_epi16(step1[17], step1[30]);
+ const __m256i out_09_0 = _mm256_unpacklo_epi16(step1[18], step1[29]);
+ const __m256i out_09_1 = _mm256_unpackhi_epi16(step1[18], step1[29]);
+ const __m256i out_25_0 = _mm256_unpacklo_epi16(step1[19], step1[28]);
+ const __m256i out_25_1 = _mm256_unpackhi_epi16(step1[19], step1[28]);
+ const __m256i out_01_2 = _mm256_madd_epi16(out_01_0, k__cospi_p31_p01);
+ const __m256i out_01_3 = _mm256_madd_epi16(out_01_1, k__cospi_p31_p01);
+ const __m256i out_17_2 = _mm256_madd_epi16(out_17_0, k__cospi_p15_p17);
+ const __m256i out_17_3 = _mm256_madd_epi16(out_17_1, k__cospi_p15_p17);
+ const __m256i out_09_2 = _mm256_madd_epi16(out_09_0, k__cospi_p23_p09);
+ const __m256i out_09_3 = _mm256_madd_epi16(out_09_1, k__cospi_p23_p09);
+ const __m256i out_25_2 = _mm256_madd_epi16(out_25_0, k__cospi_p07_p25);
+ const __m256i out_25_3 = _mm256_madd_epi16(out_25_1, k__cospi_p07_p25);
+ const __m256i out_07_2 = _mm256_madd_epi16(out_25_0, k__cospi_m25_p07);
+ const __m256i out_07_3 = _mm256_madd_epi16(out_25_1, k__cospi_m25_p07);
+ const __m256i out_23_2 = _mm256_madd_epi16(out_09_0, k__cospi_m09_p23);
+ const __m256i out_23_3 = _mm256_madd_epi16(out_09_1, k__cospi_m09_p23);
+ const __m256i out_15_2 = _mm256_madd_epi16(out_17_0, k__cospi_m17_p15);
+ const __m256i out_15_3 = _mm256_madd_epi16(out_17_1, k__cospi_m17_p15);
+ const __m256i out_31_2 = _mm256_madd_epi16(out_01_0, k__cospi_m01_p31);
+ const __m256i out_31_3 = _mm256_madd_epi16(out_01_1, k__cospi_m01_p31);
+ // dct_const_round_shift
+ const __m256i out_01_4 = _mm256_add_epi32(out_01_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_01_5 = _mm256_add_epi32(out_01_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_17_4 = _mm256_add_epi32(out_17_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_17_5 = _mm256_add_epi32(out_17_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_09_4 = _mm256_add_epi32(out_09_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_09_5 = _mm256_add_epi32(out_09_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_25_4 = _mm256_add_epi32(out_25_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_25_5 = _mm256_add_epi32(out_25_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_07_4 = _mm256_add_epi32(out_07_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_07_5 = _mm256_add_epi32(out_07_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_23_4 = _mm256_add_epi32(out_23_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_23_5 = _mm256_add_epi32(out_23_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_15_4 = _mm256_add_epi32(out_15_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_15_5 = _mm256_add_epi32(out_15_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_31_4 = _mm256_add_epi32(out_31_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_31_5 = _mm256_add_epi32(out_31_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_01_6 = _mm256_srai_epi32(out_01_4, DCT_CONST_BITS);
+ const __m256i out_01_7 = _mm256_srai_epi32(out_01_5, DCT_CONST_BITS);
+ const __m256i out_17_6 = _mm256_srai_epi32(out_17_4, DCT_CONST_BITS);
+ const __m256i out_17_7 = _mm256_srai_epi32(out_17_5, DCT_CONST_BITS);
+ const __m256i out_09_6 = _mm256_srai_epi32(out_09_4, DCT_CONST_BITS);
+ const __m256i out_09_7 = _mm256_srai_epi32(out_09_5, DCT_CONST_BITS);
+ const __m256i out_25_6 = _mm256_srai_epi32(out_25_4, DCT_CONST_BITS);
+ const __m256i out_25_7 = _mm256_srai_epi32(out_25_5, DCT_CONST_BITS);
+ const __m256i out_07_6 = _mm256_srai_epi32(out_07_4, DCT_CONST_BITS);
+ const __m256i out_07_7 = _mm256_srai_epi32(out_07_5, DCT_CONST_BITS);
+ const __m256i out_23_6 = _mm256_srai_epi32(out_23_4, DCT_CONST_BITS);
+ const __m256i out_23_7 = _mm256_srai_epi32(out_23_5, DCT_CONST_BITS);
+ const __m256i out_15_6 = _mm256_srai_epi32(out_15_4, DCT_CONST_BITS);
+ const __m256i out_15_7 = _mm256_srai_epi32(out_15_5, DCT_CONST_BITS);
+ const __m256i out_31_6 = _mm256_srai_epi32(out_31_4, DCT_CONST_BITS);
+ const __m256i out_31_7 = _mm256_srai_epi32(out_31_5, DCT_CONST_BITS);
+ // Combine
+ out[ 1] = _mm256_packs_epi32(out_01_6, out_01_7);
+ out[17] = _mm256_packs_epi32(out_17_6, out_17_7);
+ out[ 9] = _mm256_packs_epi32(out_09_6, out_09_7);
+ out[25] = _mm256_packs_epi32(out_25_6, out_25_7);
+ out[ 7] = _mm256_packs_epi32(out_07_6, out_07_7);
+ out[23] = _mm256_packs_epi32(out_23_6, out_23_7);
+ out[15] = _mm256_packs_epi32(out_15_6, out_15_7);
+ out[31] = _mm256_packs_epi32(out_31_6, out_31_7);
+ }
+ {
+ const __m256i out_05_0 = _mm256_unpacklo_epi16(step1[20], step1[27]);
+ const __m256i out_05_1 = _mm256_unpackhi_epi16(step1[20], step1[27]);
+ const __m256i out_21_0 = _mm256_unpacklo_epi16(step1[21], step1[26]);
+ const __m256i out_21_1 = _mm256_unpackhi_epi16(step1[21], step1[26]);
+ const __m256i out_13_0 = _mm256_unpacklo_epi16(step1[22], step1[25]);
+ const __m256i out_13_1 = _mm256_unpackhi_epi16(step1[22], step1[25]);
+ const __m256i out_29_0 = _mm256_unpacklo_epi16(step1[23], step1[24]);
+ const __m256i out_29_1 = _mm256_unpackhi_epi16(step1[23], step1[24]);
+ const __m256i out_05_2 = _mm256_madd_epi16(out_05_0, k__cospi_p27_p05);
+ const __m256i out_05_3 = _mm256_madd_epi16(out_05_1, k__cospi_p27_p05);
+ const __m256i out_21_2 = _mm256_madd_epi16(out_21_0, k__cospi_p11_p21);
+ const __m256i out_21_3 = _mm256_madd_epi16(out_21_1, k__cospi_p11_p21);
+ const __m256i out_13_2 = _mm256_madd_epi16(out_13_0, k__cospi_p19_p13);
+ const __m256i out_13_3 = _mm256_madd_epi16(out_13_1, k__cospi_p19_p13);
+ const __m256i out_29_2 = _mm256_madd_epi16(out_29_0, k__cospi_p03_p29);
+ const __m256i out_29_3 = _mm256_madd_epi16(out_29_1, k__cospi_p03_p29);
+ const __m256i out_03_2 = _mm256_madd_epi16(out_29_0, k__cospi_m29_p03);
+ const __m256i out_03_3 = _mm256_madd_epi16(out_29_1, k__cospi_m29_p03);
+ const __m256i out_19_2 = _mm256_madd_epi16(out_13_0, k__cospi_m13_p19);
+ const __m256i out_19_3 = _mm256_madd_epi16(out_13_1, k__cospi_m13_p19);
+ const __m256i out_11_2 = _mm256_madd_epi16(out_21_0, k__cospi_m21_p11);
+ const __m256i out_11_3 = _mm256_madd_epi16(out_21_1, k__cospi_m21_p11);
+ const __m256i out_27_2 = _mm256_madd_epi16(out_05_0, k__cospi_m05_p27);
+ const __m256i out_27_3 = _mm256_madd_epi16(out_05_1, k__cospi_m05_p27);
+ // dct_const_round_shift
+ const __m256i out_05_4 = _mm256_add_epi32(out_05_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_05_5 = _mm256_add_epi32(out_05_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_21_4 = _mm256_add_epi32(out_21_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_21_5 = _mm256_add_epi32(out_21_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_13_4 = _mm256_add_epi32(out_13_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_13_5 = _mm256_add_epi32(out_13_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_29_4 = _mm256_add_epi32(out_29_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_29_5 = _mm256_add_epi32(out_29_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_03_4 = _mm256_add_epi32(out_03_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_03_5 = _mm256_add_epi32(out_03_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_19_4 = _mm256_add_epi32(out_19_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_19_5 = _mm256_add_epi32(out_19_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_11_4 = _mm256_add_epi32(out_11_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_11_5 = _mm256_add_epi32(out_11_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_27_4 = _mm256_add_epi32(out_27_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_27_5 = _mm256_add_epi32(out_27_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_05_6 = _mm256_srai_epi32(out_05_4, DCT_CONST_BITS);
+ const __m256i out_05_7 = _mm256_srai_epi32(out_05_5, DCT_CONST_BITS);
+ const __m256i out_21_6 = _mm256_srai_epi32(out_21_4, DCT_CONST_BITS);
+ const __m256i out_21_7 = _mm256_srai_epi32(out_21_5, DCT_CONST_BITS);
+ const __m256i out_13_6 = _mm256_srai_epi32(out_13_4, DCT_CONST_BITS);
+ const __m256i out_13_7 = _mm256_srai_epi32(out_13_5, DCT_CONST_BITS);
+ const __m256i out_29_6 = _mm256_srai_epi32(out_29_4, DCT_CONST_BITS);
+ const __m256i out_29_7 = _mm256_srai_epi32(out_29_5, DCT_CONST_BITS);
+ const __m256i out_03_6 = _mm256_srai_epi32(out_03_4, DCT_CONST_BITS);
+ const __m256i out_03_7 = _mm256_srai_epi32(out_03_5, DCT_CONST_BITS);
+ const __m256i out_19_6 = _mm256_srai_epi32(out_19_4, DCT_CONST_BITS);
+ const __m256i out_19_7 = _mm256_srai_epi32(out_19_5, DCT_CONST_BITS);
+ const __m256i out_11_6 = _mm256_srai_epi32(out_11_4, DCT_CONST_BITS);
+ const __m256i out_11_7 = _mm256_srai_epi32(out_11_5, DCT_CONST_BITS);
+ const __m256i out_27_6 = _mm256_srai_epi32(out_27_4, DCT_CONST_BITS);
+ const __m256i out_27_7 = _mm256_srai_epi32(out_27_5, DCT_CONST_BITS);
+ // Combine
+ out[ 5] = _mm256_packs_epi32(out_05_6, out_05_7);
+ out[21] = _mm256_packs_epi32(out_21_6, out_21_7);
+ out[13] = _mm256_packs_epi32(out_13_6, out_13_7);
+ out[29] = _mm256_packs_epi32(out_29_6, out_29_7);
+ out[ 3] = _mm256_packs_epi32(out_03_6, out_03_7);
+ out[19] = _mm256_packs_epi32(out_19_6, out_19_7);
+ out[11] = _mm256_packs_epi32(out_11_6, out_11_7);
+ out[27] = _mm256_packs_epi32(out_27_6, out_27_7);
+ }
+#if FDCT32x32_HIGH_PRECISION
+ } else {
+ __m256i lstep1[64], lstep2[64], lstep3[64];
+ __m256i u[32], v[32], sign[16];
+ const __m256i K32One = _mm256_set_epi32(1, 1, 1, 1, 1, 1, 1, 1);
+ // start using 32-bit operations
+ // stage 3
+ {
+ // expanding to 32-bit length priori to addition operations
+ lstep2[ 0] = _mm256_unpacklo_epi16(step2[ 0], kZero);
+ lstep2[ 1] = _mm256_unpackhi_epi16(step2[ 0], kZero);
+ lstep2[ 2] = _mm256_unpacklo_epi16(step2[ 1], kZero);
+ lstep2[ 3] = _mm256_unpackhi_epi16(step2[ 1], kZero);
+ lstep2[ 4] = _mm256_unpacklo_epi16(step2[ 2], kZero);
+ lstep2[ 5] = _mm256_unpackhi_epi16(step2[ 2], kZero);
+ lstep2[ 6] = _mm256_unpacklo_epi16(step2[ 3], kZero);
+ lstep2[ 7] = _mm256_unpackhi_epi16(step2[ 3], kZero);
+ lstep2[ 8] = _mm256_unpacklo_epi16(step2[ 4], kZero);
+ lstep2[ 9] = _mm256_unpackhi_epi16(step2[ 4], kZero);
+ lstep2[10] = _mm256_unpacklo_epi16(step2[ 5], kZero);
+ lstep2[11] = _mm256_unpackhi_epi16(step2[ 5], kZero);
+ lstep2[12] = _mm256_unpacklo_epi16(step2[ 6], kZero);
+ lstep2[13] = _mm256_unpackhi_epi16(step2[ 6], kZero);
+ lstep2[14] = _mm256_unpacklo_epi16(step2[ 7], kZero);
+ lstep2[15] = _mm256_unpackhi_epi16(step2[ 7], kZero);
+ lstep2[ 0] = _mm256_madd_epi16(lstep2[ 0], kOne);
+ lstep2[ 1] = _mm256_madd_epi16(lstep2[ 1], kOne);
+ lstep2[ 2] = _mm256_madd_epi16(lstep2[ 2], kOne);
+ lstep2[ 3] = _mm256_madd_epi16(lstep2[ 3], kOne);
+ lstep2[ 4] = _mm256_madd_epi16(lstep2[ 4], kOne);
+ lstep2[ 5] = _mm256_madd_epi16(lstep2[ 5], kOne);
+ lstep2[ 6] = _mm256_madd_epi16(lstep2[ 6], kOne);
+ lstep2[ 7] = _mm256_madd_epi16(lstep2[ 7], kOne);
+ lstep2[ 8] = _mm256_madd_epi16(lstep2[ 8], kOne);
+ lstep2[ 9] = _mm256_madd_epi16(lstep2[ 9], kOne);
+ lstep2[10] = _mm256_madd_epi16(lstep2[10], kOne);
+ lstep2[11] = _mm256_madd_epi16(lstep2[11], kOne);
+ lstep2[12] = _mm256_madd_epi16(lstep2[12], kOne);
+ lstep2[13] = _mm256_madd_epi16(lstep2[13], kOne);
+ lstep2[14] = _mm256_madd_epi16(lstep2[14], kOne);
+ lstep2[15] = _mm256_madd_epi16(lstep2[15], kOne);
+
+ lstep3[ 0] = _mm256_add_epi32(lstep2[14], lstep2[ 0]);
+ lstep3[ 1] = _mm256_add_epi32(lstep2[15], lstep2[ 1]);
+ lstep3[ 2] = _mm256_add_epi32(lstep2[12], lstep2[ 2]);
+ lstep3[ 3] = _mm256_add_epi32(lstep2[13], lstep2[ 3]);
+ lstep3[ 4] = _mm256_add_epi32(lstep2[10], lstep2[ 4]);
+ lstep3[ 5] = _mm256_add_epi32(lstep2[11], lstep2[ 5]);
+ lstep3[ 6] = _mm256_add_epi32(lstep2[ 8], lstep2[ 6]);
+ lstep3[ 7] = _mm256_add_epi32(lstep2[ 9], lstep2[ 7]);
+ lstep3[ 8] = _mm256_sub_epi32(lstep2[ 6], lstep2[ 8]);
+ lstep3[ 9] = _mm256_sub_epi32(lstep2[ 7], lstep2[ 9]);
+ lstep3[10] = _mm256_sub_epi32(lstep2[ 4], lstep2[10]);
+ lstep3[11] = _mm256_sub_epi32(lstep2[ 5], lstep2[11]);
+ lstep3[12] = _mm256_sub_epi32(lstep2[ 2], lstep2[12]);
+ lstep3[13] = _mm256_sub_epi32(lstep2[ 3], lstep2[13]);
+ lstep3[14] = _mm256_sub_epi32(lstep2[ 0], lstep2[14]);
+ lstep3[15] = _mm256_sub_epi32(lstep2[ 1], lstep2[15]);
+ }
+ {
+ const __m256i s3_10_0 = _mm256_unpacklo_epi16(step2[13], step2[10]);
+ const __m256i s3_10_1 = _mm256_unpackhi_epi16(step2[13], step2[10]);
+ const __m256i s3_11_0 = _mm256_unpacklo_epi16(step2[12], step2[11]);
+ const __m256i s3_11_1 = _mm256_unpackhi_epi16(step2[12], step2[11]);
+ const __m256i s3_10_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_m16);
+ const __m256i s3_10_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_m16);
+ const __m256i s3_11_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_m16);
+ const __m256i s3_11_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_m16);
+ const __m256i s3_12_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_p16);
+ const __m256i s3_12_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_p16);
+ const __m256i s3_13_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_p16);
+ const __m256i s3_13_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m256i s3_10_4 = _mm256_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_10_5 = _mm256_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_11_4 = _mm256_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_11_5 = _mm256_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_12_4 = _mm256_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_12_5 = _mm256_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_13_4 = _mm256_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_13_5 = _mm256_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING);
+ lstep3[20] = _mm256_srai_epi32(s3_10_4, DCT_CONST_BITS);
+ lstep3[21] = _mm256_srai_epi32(s3_10_5, DCT_CONST_BITS);
+ lstep3[22] = _mm256_srai_epi32(s3_11_4, DCT_CONST_BITS);
+ lstep3[23] = _mm256_srai_epi32(s3_11_5, DCT_CONST_BITS);
+ lstep3[24] = _mm256_srai_epi32(s3_12_4, DCT_CONST_BITS);
+ lstep3[25] = _mm256_srai_epi32(s3_12_5, DCT_CONST_BITS);
+ lstep3[26] = _mm256_srai_epi32(s3_13_4, DCT_CONST_BITS);
+ lstep3[27] = _mm256_srai_epi32(s3_13_5, DCT_CONST_BITS);
+ }
+ {
+ lstep2[40] = _mm256_unpacklo_epi16(step2[20], kZero);
+ lstep2[41] = _mm256_unpackhi_epi16(step2[20], kZero);
+ lstep2[42] = _mm256_unpacklo_epi16(step2[21], kZero);
+ lstep2[43] = _mm256_unpackhi_epi16(step2[21], kZero);
+ lstep2[44] = _mm256_unpacklo_epi16(step2[22], kZero);
+ lstep2[45] = _mm256_unpackhi_epi16(step2[22], kZero);
+ lstep2[46] = _mm256_unpacklo_epi16(step2[23], kZero);
+ lstep2[47] = _mm256_unpackhi_epi16(step2[23], kZero);
+ lstep2[48] = _mm256_unpacklo_epi16(step2[24], kZero);
+ lstep2[49] = _mm256_unpackhi_epi16(step2[24], kZero);
+ lstep2[50] = _mm256_unpacklo_epi16(step2[25], kZero);
+ lstep2[51] = _mm256_unpackhi_epi16(step2[25], kZero);
+ lstep2[52] = _mm256_unpacklo_epi16(step2[26], kZero);
+ lstep2[53] = _mm256_unpackhi_epi16(step2[26], kZero);
+ lstep2[54] = _mm256_unpacklo_epi16(step2[27], kZero);
+ lstep2[55] = _mm256_unpackhi_epi16(step2[27], kZero);
+ lstep2[40] = _mm256_madd_epi16(lstep2[40], kOne);
+ lstep2[41] = _mm256_madd_epi16(lstep2[41], kOne);
+ lstep2[42] = _mm256_madd_epi16(lstep2[42], kOne);
+ lstep2[43] = _mm256_madd_epi16(lstep2[43], kOne);
+ lstep2[44] = _mm256_madd_epi16(lstep2[44], kOne);
+ lstep2[45] = _mm256_madd_epi16(lstep2[45], kOne);
+ lstep2[46] = _mm256_madd_epi16(lstep2[46], kOne);
+ lstep2[47] = _mm256_madd_epi16(lstep2[47], kOne);
+ lstep2[48] = _mm256_madd_epi16(lstep2[48], kOne);
+ lstep2[49] = _mm256_madd_epi16(lstep2[49], kOne);
+ lstep2[50] = _mm256_madd_epi16(lstep2[50], kOne);
+ lstep2[51] = _mm256_madd_epi16(lstep2[51], kOne);
+ lstep2[52] = _mm256_madd_epi16(lstep2[52], kOne);
+ lstep2[53] = _mm256_madd_epi16(lstep2[53], kOne);
+ lstep2[54] = _mm256_madd_epi16(lstep2[54], kOne);
+ lstep2[55] = _mm256_madd_epi16(lstep2[55], kOne);
+
+ lstep1[32] = _mm256_unpacklo_epi16(step1[16], kZero);
+ lstep1[33] = _mm256_unpackhi_epi16(step1[16], kZero);
+ lstep1[34] = _mm256_unpacklo_epi16(step1[17], kZero);
+ lstep1[35] = _mm256_unpackhi_epi16(step1[17], kZero);
+ lstep1[36] = _mm256_unpacklo_epi16(step1[18], kZero);
+ lstep1[37] = _mm256_unpackhi_epi16(step1[18], kZero);
+ lstep1[38] = _mm256_unpacklo_epi16(step1[19], kZero);
+ lstep1[39] = _mm256_unpackhi_epi16(step1[19], kZero);
+ lstep1[56] = _mm256_unpacklo_epi16(step1[28], kZero);
+ lstep1[57] = _mm256_unpackhi_epi16(step1[28], kZero);
+ lstep1[58] = _mm256_unpacklo_epi16(step1[29], kZero);
+ lstep1[59] = _mm256_unpackhi_epi16(step1[29], kZero);
+ lstep1[60] = _mm256_unpacklo_epi16(step1[30], kZero);
+ lstep1[61] = _mm256_unpackhi_epi16(step1[30], kZero);
+ lstep1[62] = _mm256_unpacklo_epi16(step1[31], kZero);
+ lstep1[63] = _mm256_unpackhi_epi16(step1[31], kZero);
+ lstep1[32] = _mm256_madd_epi16(lstep1[32], kOne);
+ lstep1[33] = _mm256_madd_epi16(lstep1[33], kOne);
+ lstep1[34] = _mm256_madd_epi16(lstep1[34], kOne);
+ lstep1[35] = _mm256_madd_epi16(lstep1[35], kOne);
+ lstep1[36] = _mm256_madd_epi16(lstep1[36], kOne);
+ lstep1[37] = _mm256_madd_epi16(lstep1[37], kOne);
+ lstep1[38] = _mm256_madd_epi16(lstep1[38], kOne);
+ lstep1[39] = _mm256_madd_epi16(lstep1[39], kOne);
+ lstep1[56] = _mm256_madd_epi16(lstep1[56], kOne);
+ lstep1[57] = _mm256_madd_epi16(lstep1[57], kOne);
+ lstep1[58] = _mm256_madd_epi16(lstep1[58], kOne);
+ lstep1[59] = _mm256_madd_epi16(lstep1[59], kOne);
+ lstep1[60] = _mm256_madd_epi16(lstep1[60], kOne);
+ lstep1[61] = _mm256_madd_epi16(lstep1[61], kOne);
+ lstep1[62] = _mm256_madd_epi16(lstep1[62], kOne);
+ lstep1[63] = _mm256_madd_epi16(lstep1[63], kOne);
+
+ lstep3[32] = _mm256_add_epi32(lstep2[46], lstep1[32]);
+ lstep3[33] = _mm256_add_epi32(lstep2[47], lstep1[33]);
+
+ lstep3[34] = _mm256_add_epi32(lstep2[44], lstep1[34]);
+ lstep3[35] = _mm256_add_epi32(lstep2[45], lstep1[35]);
+ lstep3[36] = _mm256_add_epi32(lstep2[42], lstep1[36]);
+ lstep3[37] = _mm256_add_epi32(lstep2[43], lstep1[37]);
+ lstep3[38] = _mm256_add_epi32(lstep2[40], lstep1[38]);
+ lstep3[39] = _mm256_add_epi32(lstep2[41], lstep1[39]);
+ lstep3[40] = _mm256_sub_epi32(lstep1[38], lstep2[40]);
+ lstep3[41] = _mm256_sub_epi32(lstep1[39], lstep2[41]);
+ lstep3[42] = _mm256_sub_epi32(lstep1[36], lstep2[42]);
+ lstep3[43] = _mm256_sub_epi32(lstep1[37], lstep2[43]);
+ lstep3[44] = _mm256_sub_epi32(lstep1[34], lstep2[44]);
+ lstep3[45] = _mm256_sub_epi32(lstep1[35], lstep2[45]);
+ lstep3[46] = _mm256_sub_epi32(lstep1[32], lstep2[46]);
+ lstep3[47] = _mm256_sub_epi32(lstep1[33], lstep2[47]);
+ lstep3[48] = _mm256_sub_epi32(lstep1[62], lstep2[48]);
+ lstep3[49] = _mm256_sub_epi32(lstep1[63], lstep2[49]);
+ lstep3[50] = _mm256_sub_epi32(lstep1[60], lstep2[50]);
+ lstep3[51] = _mm256_sub_epi32(lstep1[61], lstep2[51]);
+ lstep3[52] = _mm256_sub_epi32(lstep1[58], lstep2[52]);
+ lstep3[53] = _mm256_sub_epi32(lstep1[59], lstep2[53]);
+ lstep3[54] = _mm256_sub_epi32(lstep1[56], lstep2[54]);
+ lstep3[55] = _mm256_sub_epi32(lstep1[57], lstep2[55]);
+ lstep3[56] = _mm256_add_epi32(lstep2[54], lstep1[56]);
+ lstep3[57] = _mm256_add_epi32(lstep2[55], lstep1[57]);
+ lstep3[58] = _mm256_add_epi32(lstep2[52], lstep1[58]);
+ lstep3[59] = _mm256_add_epi32(lstep2[53], lstep1[59]);
+ lstep3[60] = _mm256_add_epi32(lstep2[50], lstep1[60]);
+ lstep3[61] = _mm256_add_epi32(lstep2[51], lstep1[61]);
+ lstep3[62] = _mm256_add_epi32(lstep2[48], lstep1[62]);
+ lstep3[63] = _mm256_add_epi32(lstep2[49], lstep1[63]);
+ }
+
+ // stage 4
+ {
+ // expanding to 32-bit length priori to addition operations
+ lstep2[16] = _mm256_unpacklo_epi16(step2[ 8], kZero);
+ lstep2[17] = _mm256_unpackhi_epi16(step2[ 8], kZero);
+ lstep2[18] = _mm256_unpacklo_epi16(step2[ 9], kZero);
+ lstep2[19] = _mm256_unpackhi_epi16(step2[ 9], kZero);
+ lstep2[28] = _mm256_unpacklo_epi16(step2[14], kZero);
+ lstep2[29] = _mm256_unpackhi_epi16(step2[14], kZero);
+ lstep2[30] = _mm256_unpacklo_epi16(step2[15], kZero);
+ lstep2[31] = _mm256_unpackhi_epi16(step2[15], kZero);
+ lstep2[16] = _mm256_madd_epi16(lstep2[16], kOne);
+ lstep2[17] = _mm256_madd_epi16(lstep2[17], kOne);
+ lstep2[18] = _mm256_madd_epi16(lstep2[18], kOne);
+ lstep2[19] = _mm256_madd_epi16(lstep2[19], kOne);
+ lstep2[28] = _mm256_madd_epi16(lstep2[28], kOne);
+ lstep2[29] = _mm256_madd_epi16(lstep2[29], kOne);
+ lstep2[30] = _mm256_madd_epi16(lstep2[30], kOne);
+ lstep2[31] = _mm256_madd_epi16(lstep2[31], kOne);
+
+ lstep1[ 0] = _mm256_add_epi32(lstep3[ 6], lstep3[ 0]);
+ lstep1[ 1] = _mm256_add_epi32(lstep3[ 7], lstep3[ 1]);
+ lstep1[ 2] = _mm256_add_epi32(lstep3[ 4], lstep3[ 2]);
+ lstep1[ 3] = _mm256_add_epi32(lstep3[ 5], lstep3[ 3]);
+ lstep1[ 4] = _mm256_sub_epi32(lstep3[ 2], lstep3[ 4]);
+ lstep1[ 5] = _mm256_sub_epi32(lstep3[ 3], lstep3[ 5]);
+ lstep1[ 6] = _mm256_sub_epi32(lstep3[ 0], lstep3[ 6]);
+ lstep1[ 7] = _mm256_sub_epi32(lstep3[ 1], lstep3[ 7]);
+ lstep1[16] = _mm256_add_epi32(lstep3[22], lstep2[16]);
+ lstep1[17] = _mm256_add_epi32(lstep3[23], lstep2[17]);
+ lstep1[18] = _mm256_add_epi32(lstep3[20], lstep2[18]);
+ lstep1[19] = _mm256_add_epi32(lstep3[21], lstep2[19]);
+ lstep1[20] = _mm256_sub_epi32(lstep2[18], lstep3[20]);
+ lstep1[21] = _mm256_sub_epi32(lstep2[19], lstep3[21]);
+ lstep1[22] = _mm256_sub_epi32(lstep2[16], lstep3[22]);
+ lstep1[23] = _mm256_sub_epi32(lstep2[17], lstep3[23]);
+ lstep1[24] = _mm256_sub_epi32(lstep2[30], lstep3[24]);
+ lstep1[25] = _mm256_sub_epi32(lstep2[31], lstep3[25]);
+ lstep1[26] = _mm256_sub_epi32(lstep2[28], lstep3[26]);
+ lstep1[27] = _mm256_sub_epi32(lstep2[29], lstep3[27]);
+ lstep1[28] = _mm256_add_epi32(lstep3[26], lstep2[28]);
+ lstep1[29] = _mm256_add_epi32(lstep3[27], lstep2[29]);
+ lstep1[30] = _mm256_add_epi32(lstep3[24], lstep2[30]);
+ lstep1[31] = _mm256_add_epi32(lstep3[25], lstep2[31]);
+ }
+ {
+ // to be continued...
+ //
+ const __m256i k32_p16_p16 = pair256_set_epi32(cospi_16_64, cospi_16_64);
+ const __m256i k32_p16_m16 = pair256_set_epi32(cospi_16_64, -cospi_16_64);
+
+ u[0] = _mm256_unpacklo_epi32(lstep3[12], lstep3[10]);
+ u[1] = _mm256_unpackhi_epi32(lstep3[12], lstep3[10]);
+ u[2] = _mm256_unpacklo_epi32(lstep3[13], lstep3[11]);
+ u[3] = _mm256_unpackhi_epi32(lstep3[13], lstep3[11]);
+
+ // TODO(jingning): manually inline k_madd_epi32_avx2_ to further hide
+ // instruction latency.
+ v[ 0] = k_madd_epi32_avx2(u[0], k32_p16_m16);
+ v[ 1] = k_madd_epi32_avx2(u[1], k32_p16_m16);
+ v[ 2] = k_madd_epi32_avx2(u[2], k32_p16_m16);
+ v[ 3] = k_madd_epi32_avx2(u[3], k32_p16_m16);
+ v[ 4] = k_madd_epi32_avx2(u[0], k32_p16_p16);
+ v[ 5] = k_madd_epi32_avx2(u[1], k32_p16_p16);
+ v[ 6] = k_madd_epi32_avx2(u[2], k32_p16_p16);
+ v[ 7] = k_madd_epi32_avx2(u[3], k32_p16_p16);
+
+ u[0] = k_packs_epi64_avx2(v[0], v[1]);
+ u[1] = k_packs_epi64_avx2(v[2], v[3]);
+ u[2] = k_packs_epi64_avx2(v[4], v[5]);
+ u[3] = k_packs_epi64_avx2(v[6], v[7]);
+
+ v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+
+ lstep1[10] = _mm256_srai_epi32(v[0], DCT_CONST_BITS);
+ lstep1[11] = _mm256_srai_epi32(v[1], DCT_CONST_BITS);
+ lstep1[12] = _mm256_srai_epi32(v[2], DCT_CONST_BITS);
+ lstep1[13] = _mm256_srai_epi32(v[3], DCT_CONST_BITS);
+ }
+ {
+ const __m256i k32_m08_p24 = pair256_set_epi32(-cospi_8_64, cospi_24_64);
+ const __m256i k32_m24_m08 = pair256_set_epi32(-cospi_24_64, -cospi_8_64);
+ const __m256i k32_p24_p08 = pair256_set_epi32(cospi_24_64, cospi_8_64);
+
+ u[ 0] = _mm256_unpacklo_epi32(lstep3[36], lstep3[58]);
+ u[ 1] = _mm256_unpackhi_epi32(lstep3[36], lstep3[58]);
+ u[ 2] = _mm256_unpacklo_epi32(lstep3[37], lstep3[59]);
+ u[ 3] = _mm256_unpackhi_epi32(lstep3[37], lstep3[59]);
+ u[ 4] = _mm256_unpacklo_epi32(lstep3[38], lstep3[56]);
+ u[ 5] = _mm256_unpackhi_epi32(lstep3[38], lstep3[56]);
+ u[ 6] = _mm256_unpacklo_epi32(lstep3[39], lstep3[57]);
+ u[ 7] = _mm256_unpackhi_epi32(lstep3[39], lstep3[57]);
+ u[ 8] = _mm256_unpacklo_epi32(lstep3[40], lstep3[54]);
+ u[ 9] = _mm256_unpackhi_epi32(lstep3[40], lstep3[54]);
+ u[10] = _mm256_unpacklo_epi32(lstep3[41], lstep3[55]);
+ u[11] = _mm256_unpackhi_epi32(lstep3[41], lstep3[55]);
+ u[12] = _mm256_unpacklo_epi32(lstep3[42], lstep3[52]);
+ u[13] = _mm256_unpackhi_epi32(lstep3[42], lstep3[52]);
+ u[14] = _mm256_unpacklo_epi32(lstep3[43], lstep3[53]);
+ u[15] = _mm256_unpackhi_epi32(lstep3[43], lstep3[53]);
+
+ v[ 0] = k_madd_epi32_avx2(u[ 0], k32_m08_p24);
+ v[ 1] = k_madd_epi32_avx2(u[ 1], k32_m08_p24);
+ v[ 2] = k_madd_epi32_avx2(u[ 2], k32_m08_p24);
+ v[ 3] = k_madd_epi32_avx2(u[ 3], k32_m08_p24);
+ v[ 4] = k_madd_epi32_avx2(u[ 4], k32_m08_p24);
+ v[ 5] = k_madd_epi32_avx2(u[ 5], k32_m08_p24);
+ v[ 6] = k_madd_epi32_avx2(u[ 6], k32_m08_p24);
+ v[ 7] = k_madd_epi32_avx2(u[ 7], k32_m08_p24);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_m24_m08);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_m24_m08);
+ v[10] = k_madd_epi32_avx2(u[10], k32_m24_m08);
+ v[11] = k_madd_epi32_avx2(u[11], k32_m24_m08);
+ v[12] = k_madd_epi32_avx2(u[12], k32_m24_m08);
+ v[13] = k_madd_epi32_avx2(u[13], k32_m24_m08);
+ v[14] = k_madd_epi32_avx2(u[14], k32_m24_m08);
+ v[15] = k_madd_epi32_avx2(u[15], k32_m24_m08);
+ v[16] = k_madd_epi32_avx2(u[12], k32_m08_p24);
+ v[17] = k_madd_epi32_avx2(u[13], k32_m08_p24);
+ v[18] = k_madd_epi32_avx2(u[14], k32_m08_p24);
+ v[19] = k_madd_epi32_avx2(u[15], k32_m08_p24);
+ v[20] = k_madd_epi32_avx2(u[ 8], k32_m08_p24);
+ v[21] = k_madd_epi32_avx2(u[ 9], k32_m08_p24);
+ v[22] = k_madd_epi32_avx2(u[10], k32_m08_p24);
+ v[23] = k_madd_epi32_avx2(u[11], k32_m08_p24);
+ v[24] = k_madd_epi32_avx2(u[ 4], k32_p24_p08);
+ v[25] = k_madd_epi32_avx2(u[ 5], k32_p24_p08);
+ v[26] = k_madd_epi32_avx2(u[ 6], k32_p24_p08);
+ v[27] = k_madd_epi32_avx2(u[ 7], k32_p24_p08);
+ v[28] = k_madd_epi32_avx2(u[ 0], k32_p24_p08);
+ v[29] = k_madd_epi32_avx2(u[ 1], k32_p24_p08);
+ v[30] = k_madd_epi32_avx2(u[ 2], k32_p24_p08);
+ v[31] = k_madd_epi32_avx2(u[ 3], k32_p24_p08);
+
+ u[ 0] = k_packs_epi64_avx2(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64_avx2(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64_avx2(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64_avx2(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64_avx2(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[ 6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[ 7] = k_packs_epi64_avx2(v[14], v[15]);
+ u[ 8] = k_packs_epi64_avx2(v[16], v[17]);
+ u[ 9] = k_packs_epi64_avx2(v[18], v[19]);
+ u[10] = k_packs_epi64_avx2(v[20], v[21]);
+ u[11] = k_packs_epi64_avx2(v[22], v[23]);
+ u[12] = k_packs_epi64_avx2(v[24], v[25]);
+ u[13] = k_packs_epi64_avx2(v[26], v[27]);
+ u[14] = k_packs_epi64_avx2(v[28], v[29]);
+ u[15] = k_packs_epi64_avx2(v[30], v[31]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm256_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm256_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm256_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm256_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm256_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm256_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm256_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm256_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm256_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ lstep1[36] = _mm256_srai_epi32(v[ 0], DCT_CONST_BITS);
+ lstep1[37] = _mm256_srai_epi32(v[ 1], DCT_CONST_BITS);
+ lstep1[38] = _mm256_srai_epi32(v[ 2], DCT_CONST_BITS);
+ lstep1[39] = _mm256_srai_epi32(v[ 3], DCT_CONST_BITS);
+ lstep1[40] = _mm256_srai_epi32(v[ 4], DCT_CONST_BITS);
+ lstep1[41] = _mm256_srai_epi32(v[ 5], DCT_CONST_BITS);
+ lstep1[42] = _mm256_srai_epi32(v[ 6], DCT_CONST_BITS);
+ lstep1[43] = _mm256_srai_epi32(v[ 7], DCT_CONST_BITS);
+ lstep1[52] = _mm256_srai_epi32(v[ 8], DCT_CONST_BITS);
+ lstep1[53] = _mm256_srai_epi32(v[ 9], DCT_CONST_BITS);
+ lstep1[54] = _mm256_srai_epi32(v[10], DCT_CONST_BITS);
+ lstep1[55] = _mm256_srai_epi32(v[11], DCT_CONST_BITS);
+ lstep1[56] = _mm256_srai_epi32(v[12], DCT_CONST_BITS);
+ lstep1[57] = _mm256_srai_epi32(v[13], DCT_CONST_BITS);
+ lstep1[58] = _mm256_srai_epi32(v[14], DCT_CONST_BITS);
+ lstep1[59] = _mm256_srai_epi32(v[15], DCT_CONST_BITS);
+ }
+ // stage 5
+ {
+ lstep2[ 8] = _mm256_add_epi32(lstep1[10], lstep3[ 8]);
+ lstep2[ 9] = _mm256_add_epi32(lstep1[11], lstep3[ 9]);
+ lstep2[10] = _mm256_sub_epi32(lstep3[ 8], lstep1[10]);
+ lstep2[11] = _mm256_sub_epi32(lstep3[ 9], lstep1[11]);
+ lstep2[12] = _mm256_sub_epi32(lstep3[14], lstep1[12]);
+ lstep2[13] = _mm256_sub_epi32(lstep3[15], lstep1[13]);
+ lstep2[14] = _mm256_add_epi32(lstep1[12], lstep3[14]);
+ lstep2[15] = _mm256_add_epi32(lstep1[13], lstep3[15]);
+ }
+ {
+ const __m256i k32_p16_p16 = pair256_set_epi32(cospi_16_64, cospi_16_64);
+ const __m256i k32_p16_m16 = pair256_set_epi32(cospi_16_64, -cospi_16_64);
+ const __m256i k32_p24_p08 = pair256_set_epi32(cospi_24_64, cospi_8_64);
+ const __m256i k32_m08_p24 = pair256_set_epi32(-cospi_8_64, cospi_24_64);
+
+ u[0] = _mm256_unpacklo_epi32(lstep1[0], lstep1[2]);
+ u[1] = _mm256_unpackhi_epi32(lstep1[0], lstep1[2]);
+ u[2] = _mm256_unpacklo_epi32(lstep1[1], lstep1[3]);
+ u[3] = _mm256_unpackhi_epi32(lstep1[1], lstep1[3]);
+ u[4] = _mm256_unpacklo_epi32(lstep1[4], lstep1[6]);
+ u[5] = _mm256_unpackhi_epi32(lstep1[4], lstep1[6]);
+ u[6] = _mm256_unpacklo_epi32(lstep1[5], lstep1[7]);
+ u[7] = _mm256_unpackhi_epi32(lstep1[5], lstep1[7]);
+
+ // TODO(jingning): manually inline k_madd_epi32_avx2_ to further hide
+ // instruction latency.
+ v[ 0] = k_madd_epi32_avx2(u[0], k32_p16_p16);
+ v[ 1] = k_madd_epi32_avx2(u[1], k32_p16_p16);
+ v[ 2] = k_madd_epi32_avx2(u[2], k32_p16_p16);
+ v[ 3] = k_madd_epi32_avx2(u[3], k32_p16_p16);
+ v[ 4] = k_madd_epi32_avx2(u[0], k32_p16_m16);
+ v[ 5] = k_madd_epi32_avx2(u[1], k32_p16_m16);
+ v[ 6] = k_madd_epi32_avx2(u[2], k32_p16_m16);
+ v[ 7] = k_madd_epi32_avx2(u[3], k32_p16_m16);
+ v[ 8] = k_madd_epi32_avx2(u[4], k32_p24_p08);
+ v[ 9] = k_madd_epi32_avx2(u[5], k32_p24_p08);
+ v[10] = k_madd_epi32_avx2(u[6], k32_p24_p08);
+ v[11] = k_madd_epi32_avx2(u[7], k32_p24_p08);
+ v[12] = k_madd_epi32_avx2(u[4], k32_m08_p24);
+ v[13] = k_madd_epi32_avx2(u[5], k32_m08_p24);
+ v[14] = k_madd_epi32_avx2(u[6], k32_m08_p24);
+ v[15] = k_madd_epi32_avx2(u[7], k32_m08_p24);
+
+ u[0] = k_packs_epi64_avx2(v[0], v[1]);
+ u[1] = k_packs_epi64_avx2(v[2], v[3]);
+ u[2] = k_packs_epi64_avx2(v[4], v[5]);
+ u[3] = k_packs_epi64_avx2(v[6], v[7]);
+ u[4] = k_packs_epi64_avx2(v[8], v[9]);
+ u[5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[7] = k_packs_epi64_avx2(v[14], v[15]);
+
+ v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm256_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm256_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm256_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm256_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm256_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm256_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm256_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm256_srai_epi32(v[7], DCT_CONST_BITS);
+
+ sign[0] = _mm256_cmpgt_epi32(kZero,u[0]);
+ sign[1] = _mm256_cmpgt_epi32(kZero,u[1]);
+ sign[2] = _mm256_cmpgt_epi32(kZero,u[2]);
+ sign[3] = _mm256_cmpgt_epi32(kZero,u[3]);
+ sign[4] = _mm256_cmpgt_epi32(kZero,u[4]);
+ sign[5] = _mm256_cmpgt_epi32(kZero,u[5]);
+ sign[6] = _mm256_cmpgt_epi32(kZero,u[6]);
+ sign[7] = _mm256_cmpgt_epi32(kZero,u[7]);
+
+ u[0] = _mm256_sub_epi32(u[0], sign[0]);
+ u[1] = _mm256_sub_epi32(u[1], sign[1]);
+ u[2] = _mm256_sub_epi32(u[2], sign[2]);
+ u[3] = _mm256_sub_epi32(u[3], sign[3]);
+ u[4] = _mm256_sub_epi32(u[4], sign[4]);
+ u[5] = _mm256_sub_epi32(u[5], sign[5]);
+ u[6] = _mm256_sub_epi32(u[6], sign[6]);
+ u[7] = _mm256_sub_epi32(u[7], sign[7]);
+
+ u[0] = _mm256_add_epi32(u[0], K32One);
+ u[1] = _mm256_add_epi32(u[1], K32One);
+ u[2] = _mm256_add_epi32(u[2], K32One);
+ u[3] = _mm256_add_epi32(u[3], K32One);
+ u[4] = _mm256_add_epi32(u[4], K32One);
+ u[5] = _mm256_add_epi32(u[5], K32One);
+ u[6] = _mm256_add_epi32(u[6], K32One);
+ u[7] = _mm256_add_epi32(u[7], K32One);
+
+ u[0] = _mm256_srai_epi32(u[0], 2);
+ u[1] = _mm256_srai_epi32(u[1], 2);
+ u[2] = _mm256_srai_epi32(u[2], 2);
+ u[3] = _mm256_srai_epi32(u[3], 2);
+ u[4] = _mm256_srai_epi32(u[4], 2);
+ u[5] = _mm256_srai_epi32(u[5], 2);
+ u[6] = _mm256_srai_epi32(u[6], 2);
+ u[7] = _mm256_srai_epi32(u[7], 2);
+
+ // Combine
+ out[ 0] = _mm256_packs_epi32(u[0], u[1]);
+ out[16] = _mm256_packs_epi32(u[2], u[3]);
+ out[ 8] = _mm256_packs_epi32(u[4], u[5]);
+ out[24] = _mm256_packs_epi32(u[6], u[7]);
+ }
+ {
+ const __m256i k32_m08_p24 = pair256_set_epi32(-cospi_8_64, cospi_24_64);
+ const __m256i k32_m24_m08 = pair256_set_epi32(-cospi_24_64, -cospi_8_64);
+ const __m256i k32_p24_p08 = pair256_set_epi32(cospi_24_64, cospi_8_64);
+
+ u[0] = _mm256_unpacklo_epi32(lstep1[18], lstep1[28]);
+ u[1] = _mm256_unpackhi_epi32(lstep1[18], lstep1[28]);
+ u[2] = _mm256_unpacklo_epi32(lstep1[19], lstep1[29]);
+ u[3] = _mm256_unpackhi_epi32(lstep1[19], lstep1[29]);
+ u[4] = _mm256_unpacklo_epi32(lstep1[20], lstep1[26]);
+ u[5] = _mm256_unpackhi_epi32(lstep1[20], lstep1[26]);
+ u[6] = _mm256_unpacklo_epi32(lstep1[21], lstep1[27]);
+ u[7] = _mm256_unpackhi_epi32(lstep1[21], lstep1[27]);
+
+ v[0] = k_madd_epi32_avx2(u[0], k32_m08_p24);
+ v[1] = k_madd_epi32_avx2(u[1], k32_m08_p24);
+ v[2] = k_madd_epi32_avx2(u[2], k32_m08_p24);
+ v[3] = k_madd_epi32_avx2(u[3], k32_m08_p24);
+ v[4] = k_madd_epi32_avx2(u[4], k32_m24_m08);
+ v[5] = k_madd_epi32_avx2(u[5], k32_m24_m08);
+ v[6] = k_madd_epi32_avx2(u[6], k32_m24_m08);
+ v[7] = k_madd_epi32_avx2(u[7], k32_m24_m08);
+ v[ 8] = k_madd_epi32_avx2(u[4], k32_m08_p24);
+ v[ 9] = k_madd_epi32_avx2(u[5], k32_m08_p24);
+ v[10] = k_madd_epi32_avx2(u[6], k32_m08_p24);
+ v[11] = k_madd_epi32_avx2(u[7], k32_m08_p24);
+ v[12] = k_madd_epi32_avx2(u[0], k32_p24_p08);
+ v[13] = k_madd_epi32_avx2(u[1], k32_p24_p08);
+ v[14] = k_madd_epi32_avx2(u[2], k32_p24_p08);
+ v[15] = k_madd_epi32_avx2(u[3], k32_p24_p08);
+
+ u[0] = k_packs_epi64_avx2(v[0], v[1]);
+ u[1] = k_packs_epi64_avx2(v[2], v[3]);
+ u[2] = k_packs_epi64_avx2(v[4], v[5]);
+ u[3] = k_packs_epi64_avx2(v[6], v[7]);
+ u[4] = k_packs_epi64_avx2(v[8], v[9]);
+ u[5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[7] = k_packs_epi64_avx2(v[14], v[15]);
+
+ u[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+ lstep2[18] = _mm256_srai_epi32(u[0], DCT_CONST_BITS);
+ lstep2[19] = _mm256_srai_epi32(u[1], DCT_CONST_BITS);
+ lstep2[20] = _mm256_srai_epi32(u[2], DCT_CONST_BITS);
+ lstep2[21] = _mm256_srai_epi32(u[3], DCT_CONST_BITS);
+ lstep2[26] = _mm256_srai_epi32(u[4], DCT_CONST_BITS);
+ lstep2[27] = _mm256_srai_epi32(u[5], DCT_CONST_BITS);
+ lstep2[28] = _mm256_srai_epi32(u[6], DCT_CONST_BITS);
+ lstep2[29] = _mm256_srai_epi32(u[7], DCT_CONST_BITS);
+ }
+ {
+ lstep2[32] = _mm256_add_epi32(lstep1[38], lstep3[32]);
+ lstep2[33] = _mm256_add_epi32(lstep1[39], lstep3[33]);
+ lstep2[34] = _mm256_add_epi32(lstep1[36], lstep3[34]);
+ lstep2[35] = _mm256_add_epi32(lstep1[37], lstep3[35]);
+ lstep2[36] = _mm256_sub_epi32(lstep3[34], lstep1[36]);
+ lstep2[37] = _mm256_sub_epi32(lstep3[35], lstep1[37]);
+ lstep2[38] = _mm256_sub_epi32(lstep3[32], lstep1[38]);
+ lstep2[39] = _mm256_sub_epi32(lstep3[33], lstep1[39]);
+ lstep2[40] = _mm256_sub_epi32(lstep3[46], lstep1[40]);
+ lstep2[41] = _mm256_sub_epi32(lstep3[47], lstep1[41]);
+ lstep2[42] = _mm256_sub_epi32(lstep3[44], lstep1[42]);
+ lstep2[43] = _mm256_sub_epi32(lstep3[45], lstep1[43]);
+ lstep2[44] = _mm256_add_epi32(lstep1[42], lstep3[44]);
+ lstep2[45] = _mm256_add_epi32(lstep1[43], lstep3[45]);
+ lstep2[46] = _mm256_add_epi32(lstep1[40], lstep3[46]);
+ lstep2[47] = _mm256_add_epi32(lstep1[41], lstep3[47]);
+ lstep2[48] = _mm256_add_epi32(lstep1[54], lstep3[48]);
+ lstep2[49] = _mm256_add_epi32(lstep1[55], lstep3[49]);
+ lstep2[50] = _mm256_add_epi32(lstep1[52], lstep3[50]);
+ lstep2[51] = _mm256_add_epi32(lstep1[53], lstep3[51]);
+ lstep2[52] = _mm256_sub_epi32(lstep3[50], lstep1[52]);
+ lstep2[53] = _mm256_sub_epi32(lstep3[51], lstep1[53]);
+ lstep2[54] = _mm256_sub_epi32(lstep3[48], lstep1[54]);
+ lstep2[55] = _mm256_sub_epi32(lstep3[49], lstep1[55]);
+ lstep2[56] = _mm256_sub_epi32(lstep3[62], lstep1[56]);
+ lstep2[57] = _mm256_sub_epi32(lstep3[63], lstep1[57]);
+ lstep2[58] = _mm256_sub_epi32(lstep3[60], lstep1[58]);
+ lstep2[59] = _mm256_sub_epi32(lstep3[61], lstep1[59]);
+ lstep2[60] = _mm256_add_epi32(lstep1[58], lstep3[60]);
+ lstep2[61] = _mm256_add_epi32(lstep1[59], lstep3[61]);
+ lstep2[62] = _mm256_add_epi32(lstep1[56], lstep3[62]);
+ lstep2[63] = _mm256_add_epi32(lstep1[57], lstep3[63]);
+ }
+ // stage 6
+ {
+ const __m256i k32_p28_p04 = pair256_set_epi32(cospi_28_64, cospi_4_64);
+ const __m256i k32_p12_p20 = pair256_set_epi32(cospi_12_64, cospi_20_64);
+ const __m256i k32_m20_p12 = pair256_set_epi32(-cospi_20_64, cospi_12_64);
+ const __m256i k32_m04_p28 = pair256_set_epi32(-cospi_4_64, cospi_28_64);
+
+ u[0] = _mm256_unpacklo_epi32(lstep2[ 8], lstep2[14]);
+ u[1] = _mm256_unpackhi_epi32(lstep2[ 8], lstep2[14]);
+ u[2] = _mm256_unpacklo_epi32(lstep2[ 9], lstep2[15]);
+ u[3] = _mm256_unpackhi_epi32(lstep2[ 9], lstep2[15]);
+ u[4] = _mm256_unpacklo_epi32(lstep2[10], lstep2[12]);
+ u[5] = _mm256_unpackhi_epi32(lstep2[10], lstep2[12]);
+ u[6] = _mm256_unpacklo_epi32(lstep2[11], lstep2[13]);
+ u[7] = _mm256_unpackhi_epi32(lstep2[11], lstep2[13]);
+ u[8] = _mm256_unpacklo_epi32(lstep2[10], lstep2[12]);
+ u[9] = _mm256_unpackhi_epi32(lstep2[10], lstep2[12]);
+ u[10] = _mm256_unpacklo_epi32(lstep2[11], lstep2[13]);
+ u[11] = _mm256_unpackhi_epi32(lstep2[11], lstep2[13]);
+ u[12] = _mm256_unpacklo_epi32(lstep2[ 8], lstep2[14]);
+ u[13] = _mm256_unpackhi_epi32(lstep2[ 8], lstep2[14]);
+ u[14] = _mm256_unpacklo_epi32(lstep2[ 9], lstep2[15]);
+ u[15] = _mm256_unpackhi_epi32(lstep2[ 9], lstep2[15]);
+
+ v[0] = k_madd_epi32_avx2(u[0], k32_p28_p04);
+ v[1] = k_madd_epi32_avx2(u[1], k32_p28_p04);
+ v[2] = k_madd_epi32_avx2(u[2], k32_p28_p04);
+ v[3] = k_madd_epi32_avx2(u[3], k32_p28_p04);
+ v[4] = k_madd_epi32_avx2(u[4], k32_p12_p20);
+ v[5] = k_madd_epi32_avx2(u[5], k32_p12_p20);
+ v[6] = k_madd_epi32_avx2(u[6], k32_p12_p20);
+ v[7] = k_madd_epi32_avx2(u[7], k32_p12_p20);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_m20_p12);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_m20_p12);
+ v[10] = k_madd_epi32_avx2(u[10], k32_m20_p12);
+ v[11] = k_madd_epi32_avx2(u[11], k32_m20_p12);
+ v[12] = k_madd_epi32_avx2(u[12], k32_m04_p28);
+ v[13] = k_madd_epi32_avx2(u[13], k32_m04_p28);
+ v[14] = k_madd_epi32_avx2(u[14], k32_m04_p28);
+ v[15] = k_madd_epi32_avx2(u[15], k32_m04_p28);
+
+ u[0] = k_packs_epi64_avx2(v[0], v[1]);
+ u[1] = k_packs_epi64_avx2(v[2], v[3]);
+ u[2] = k_packs_epi64_avx2(v[4], v[5]);
+ u[3] = k_packs_epi64_avx2(v[6], v[7]);
+ u[4] = k_packs_epi64_avx2(v[8], v[9]);
+ u[5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[7] = k_packs_epi64_avx2(v[14], v[15]);
+
+ v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm256_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm256_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm256_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm256_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm256_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm256_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm256_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm256_srai_epi32(v[7], DCT_CONST_BITS);
+
+ sign[0] = _mm256_cmpgt_epi32(kZero,u[0]);
+ sign[1] = _mm256_cmpgt_epi32(kZero,u[1]);
+ sign[2] = _mm256_cmpgt_epi32(kZero,u[2]);
+ sign[3] = _mm256_cmpgt_epi32(kZero,u[3]);
+ sign[4] = _mm256_cmpgt_epi32(kZero,u[4]);
+ sign[5] = _mm256_cmpgt_epi32(kZero,u[5]);
+ sign[6] = _mm256_cmpgt_epi32(kZero,u[6]);
+ sign[7] = _mm256_cmpgt_epi32(kZero,u[7]);
+
+ u[0] = _mm256_sub_epi32(u[0], sign[0]);
+ u[1] = _mm256_sub_epi32(u[1], sign[1]);
+ u[2] = _mm256_sub_epi32(u[2], sign[2]);
+ u[3] = _mm256_sub_epi32(u[3], sign[3]);
+ u[4] = _mm256_sub_epi32(u[4], sign[4]);
+ u[5] = _mm256_sub_epi32(u[5], sign[5]);
+ u[6] = _mm256_sub_epi32(u[6], sign[6]);
+ u[7] = _mm256_sub_epi32(u[7], sign[7]);
+
+ u[0] = _mm256_add_epi32(u[0], K32One);
+ u[1] = _mm256_add_epi32(u[1], K32One);
+ u[2] = _mm256_add_epi32(u[2], K32One);
+ u[3] = _mm256_add_epi32(u[3], K32One);
+ u[4] = _mm256_add_epi32(u[4], K32One);
+ u[5] = _mm256_add_epi32(u[5], K32One);
+ u[6] = _mm256_add_epi32(u[6], K32One);
+ u[7] = _mm256_add_epi32(u[7], K32One);
+
+ u[0] = _mm256_srai_epi32(u[0], 2);
+ u[1] = _mm256_srai_epi32(u[1], 2);
+ u[2] = _mm256_srai_epi32(u[2], 2);
+ u[3] = _mm256_srai_epi32(u[3], 2);
+ u[4] = _mm256_srai_epi32(u[4], 2);
+ u[5] = _mm256_srai_epi32(u[5], 2);
+ u[6] = _mm256_srai_epi32(u[6], 2);
+ u[7] = _mm256_srai_epi32(u[7], 2);
+
+ out[ 4] = _mm256_packs_epi32(u[0], u[1]);
+ out[20] = _mm256_packs_epi32(u[2], u[3]);
+ out[12] = _mm256_packs_epi32(u[4], u[5]);
+ out[28] = _mm256_packs_epi32(u[6], u[7]);
+ }
+ {
+ lstep3[16] = _mm256_add_epi32(lstep2[18], lstep1[16]);
+ lstep3[17] = _mm256_add_epi32(lstep2[19], lstep1[17]);
+ lstep3[18] = _mm256_sub_epi32(lstep1[16], lstep2[18]);
+ lstep3[19] = _mm256_sub_epi32(lstep1[17], lstep2[19]);
+ lstep3[20] = _mm256_sub_epi32(lstep1[22], lstep2[20]);
+ lstep3[21] = _mm256_sub_epi32(lstep1[23], lstep2[21]);
+ lstep3[22] = _mm256_add_epi32(lstep2[20], lstep1[22]);
+ lstep3[23] = _mm256_add_epi32(lstep2[21], lstep1[23]);
+ lstep3[24] = _mm256_add_epi32(lstep2[26], lstep1[24]);
+ lstep3[25] = _mm256_add_epi32(lstep2[27], lstep1[25]);
+ lstep3[26] = _mm256_sub_epi32(lstep1[24], lstep2[26]);
+ lstep3[27] = _mm256_sub_epi32(lstep1[25], lstep2[27]);
+ lstep3[28] = _mm256_sub_epi32(lstep1[30], lstep2[28]);
+ lstep3[29] = _mm256_sub_epi32(lstep1[31], lstep2[29]);
+ lstep3[30] = _mm256_add_epi32(lstep2[28], lstep1[30]);
+ lstep3[31] = _mm256_add_epi32(lstep2[29], lstep1[31]);
+ }
+ {
+ const __m256i k32_m04_p28 = pair256_set_epi32(-cospi_4_64, cospi_28_64);
+ const __m256i k32_m28_m04 = pair256_set_epi32(-cospi_28_64, -cospi_4_64);
+ const __m256i k32_m20_p12 = pair256_set_epi32(-cospi_20_64, cospi_12_64);
+ const __m256i k32_m12_m20 = pair256_set_epi32(-cospi_12_64,
+ -cospi_20_64);
+ const __m256i k32_p12_p20 = pair256_set_epi32(cospi_12_64, cospi_20_64);
+ const __m256i k32_p28_p04 = pair256_set_epi32(cospi_28_64, cospi_4_64);
+
+ u[ 0] = _mm256_unpacklo_epi32(lstep2[34], lstep2[60]);
+ u[ 1] = _mm256_unpackhi_epi32(lstep2[34], lstep2[60]);
+ u[ 2] = _mm256_unpacklo_epi32(lstep2[35], lstep2[61]);
+ u[ 3] = _mm256_unpackhi_epi32(lstep2[35], lstep2[61]);
+ u[ 4] = _mm256_unpacklo_epi32(lstep2[36], lstep2[58]);
+ u[ 5] = _mm256_unpackhi_epi32(lstep2[36], lstep2[58]);
+ u[ 6] = _mm256_unpacklo_epi32(lstep2[37], lstep2[59]);
+ u[ 7] = _mm256_unpackhi_epi32(lstep2[37], lstep2[59]);
+ u[ 8] = _mm256_unpacklo_epi32(lstep2[42], lstep2[52]);
+ u[ 9] = _mm256_unpackhi_epi32(lstep2[42], lstep2[52]);
+ u[10] = _mm256_unpacklo_epi32(lstep2[43], lstep2[53]);
+ u[11] = _mm256_unpackhi_epi32(lstep2[43], lstep2[53]);
+ u[12] = _mm256_unpacklo_epi32(lstep2[44], lstep2[50]);
+ u[13] = _mm256_unpackhi_epi32(lstep2[44], lstep2[50]);
+ u[14] = _mm256_unpacklo_epi32(lstep2[45], lstep2[51]);
+ u[15] = _mm256_unpackhi_epi32(lstep2[45], lstep2[51]);
+
+ v[ 0] = k_madd_epi32_avx2(u[ 0], k32_m04_p28);
+ v[ 1] = k_madd_epi32_avx2(u[ 1], k32_m04_p28);
+ v[ 2] = k_madd_epi32_avx2(u[ 2], k32_m04_p28);
+ v[ 3] = k_madd_epi32_avx2(u[ 3], k32_m04_p28);
+ v[ 4] = k_madd_epi32_avx2(u[ 4], k32_m28_m04);
+ v[ 5] = k_madd_epi32_avx2(u[ 5], k32_m28_m04);
+ v[ 6] = k_madd_epi32_avx2(u[ 6], k32_m28_m04);
+ v[ 7] = k_madd_epi32_avx2(u[ 7], k32_m28_m04);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_m20_p12);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_m20_p12);
+ v[10] = k_madd_epi32_avx2(u[10], k32_m20_p12);
+ v[11] = k_madd_epi32_avx2(u[11], k32_m20_p12);
+ v[12] = k_madd_epi32_avx2(u[12], k32_m12_m20);
+ v[13] = k_madd_epi32_avx2(u[13], k32_m12_m20);
+ v[14] = k_madd_epi32_avx2(u[14], k32_m12_m20);
+ v[15] = k_madd_epi32_avx2(u[15], k32_m12_m20);
+ v[16] = k_madd_epi32_avx2(u[12], k32_m20_p12);
+ v[17] = k_madd_epi32_avx2(u[13], k32_m20_p12);
+ v[18] = k_madd_epi32_avx2(u[14], k32_m20_p12);
+ v[19] = k_madd_epi32_avx2(u[15], k32_m20_p12);
+ v[20] = k_madd_epi32_avx2(u[ 8], k32_p12_p20);
+ v[21] = k_madd_epi32_avx2(u[ 9], k32_p12_p20);
+ v[22] = k_madd_epi32_avx2(u[10], k32_p12_p20);
+ v[23] = k_madd_epi32_avx2(u[11], k32_p12_p20);
+ v[24] = k_madd_epi32_avx2(u[ 4], k32_m04_p28);
+ v[25] = k_madd_epi32_avx2(u[ 5], k32_m04_p28);
+ v[26] = k_madd_epi32_avx2(u[ 6], k32_m04_p28);
+ v[27] = k_madd_epi32_avx2(u[ 7], k32_m04_p28);
+ v[28] = k_madd_epi32_avx2(u[ 0], k32_p28_p04);
+ v[29] = k_madd_epi32_avx2(u[ 1], k32_p28_p04);
+ v[30] = k_madd_epi32_avx2(u[ 2], k32_p28_p04);
+ v[31] = k_madd_epi32_avx2(u[ 3], k32_p28_p04);
+
+ u[ 0] = k_packs_epi64_avx2(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64_avx2(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64_avx2(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64_avx2(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64_avx2(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[ 6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[ 7] = k_packs_epi64_avx2(v[14], v[15]);
+ u[ 8] = k_packs_epi64_avx2(v[16], v[17]);
+ u[ 9] = k_packs_epi64_avx2(v[18], v[19]);
+ u[10] = k_packs_epi64_avx2(v[20], v[21]);
+ u[11] = k_packs_epi64_avx2(v[22], v[23]);
+ u[12] = k_packs_epi64_avx2(v[24], v[25]);
+ u[13] = k_packs_epi64_avx2(v[26], v[27]);
+ u[14] = k_packs_epi64_avx2(v[28], v[29]);
+ u[15] = k_packs_epi64_avx2(v[30], v[31]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm256_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm256_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm256_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm256_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm256_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm256_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm256_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm256_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm256_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ lstep3[34] = _mm256_srai_epi32(v[ 0], DCT_CONST_BITS);
+ lstep3[35] = _mm256_srai_epi32(v[ 1], DCT_CONST_BITS);
+ lstep3[36] = _mm256_srai_epi32(v[ 2], DCT_CONST_BITS);
+ lstep3[37] = _mm256_srai_epi32(v[ 3], DCT_CONST_BITS);
+ lstep3[42] = _mm256_srai_epi32(v[ 4], DCT_CONST_BITS);
+ lstep3[43] = _mm256_srai_epi32(v[ 5], DCT_CONST_BITS);
+ lstep3[44] = _mm256_srai_epi32(v[ 6], DCT_CONST_BITS);
+ lstep3[45] = _mm256_srai_epi32(v[ 7], DCT_CONST_BITS);
+ lstep3[50] = _mm256_srai_epi32(v[ 8], DCT_CONST_BITS);
+ lstep3[51] = _mm256_srai_epi32(v[ 9], DCT_CONST_BITS);
+ lstep3[52] = _mm256_srai_epi32(v[10], DCT_CONST_BITS);
+ lstep3[53] = _mm256_srai_epi32(v[11], DCT_CONST_BITS);
+ lstep3[58] = _mm256_srai_epi32(v[12], DCT_CONST_BITS);
+ lstep3[59] = _mm256_srai_epi32(v[13], DCT_CONST_BITS);
+ lstep3[60] = _mm256_srai_epi32(v[14], DCT_CONST_BITS);
+ lstep3[61] = _mm256_srai_epi32(v[15], DCT_CONST_BITS);
+ }
+ // stage 7
+ {
+ const __m256i k32_p30_p02 = pair256_set_epi32(cospi_30_64, cospi_2_64);
+ const __m256i k32_p14_p18 = pair256_set_epi32(cospi_14_64, cospi_18_64);
+ const __m256i k32_p22_p10 = pair256_set_epi32(cospi_22_64, cospi_10_64);
+ const __m256i k32_p06_p26 = pair256_set_epi32(cospi_6_64, cospi_26_64);
+ const __m256i k32_m26_p06 = pair256_set_epi32(-cospi_26_64, cospi_6_64);
+ const __m256i k32_m10_p22 = pair256_set_epi32(-cospi_10_64, cospi_22_64);
+ const __m256i k32_m18_p14 = pair256_set_epi32(-cospi_18_64, cospi_14_64);
+ const __m256i k32_m02_p30 = pair256_set_epi32(-cospi_2_64, cospi_30_64);
+
+ u[ 0] = _mm256_unpacklo_epi32(lstep3[16], lstep3[30]);
+ u[ 1] = _mm256_unpackhi_epi32(lstep3[16], lstep3[30]);
+ u[ 2] = _mm256_unpacklo_epi32(lstep3[17], lstep3[31]);
+ u[ 3] = _mm256_unpackhi_epi32(lstep3[17], lstep3[31]);
+ u[ 4] = _mm256_unpacklo_epi32(lstep3[18], lstep3[28]);
+ u[ 5] = _mm256_unpackhi_epi32(lstep3[18], lstep3[28]);
+ u[ 6] = _mm256_unpacklo_epi32(lstep3[19], lstep3[29]);
+ u[ 7] = _mm256_unpackhi_epi32(lstep3[19], lstep3[29]);
+ u[ 8] = _mm256_unpacklo_epi32(lstep3[20], lstep3[26]);
+ u[ 9] = _mm256_unpackhi_epi32(lstep3[20], lstep3[26]);
+ u[10] = _mm256_unpacklo_epi32(lstep3[21], lstep3[27]);
+ u[11] = _mm256_unpackhi_epi32(lstep3[21], lstep3[27]);
+ u[12] = _mm256_unpacklo_epi32(lstep3[22], lstep3[24]);
+ u[13] = _mm256_unpackhi_epi32(lstep3[22], lstep3[24]);
+ u[14] = _mm256_unpacklo_epi32(lstep3[23], lstep3[25]);
+ u[15] = _mm256_unpackhi_epi32(lstep3[23], lstep3[25]);
+
+ v[ 0] = k_madd_epi32_avx2(u[ 0], k32_p30_p02);
+ v[ 1] = k_madd_epi32_avx2(u[ 1], k32_p30_p02);
+ v[ 2] = k_madd_epi32_avx2(u[ 2], k32_p30_p02);
+ v[ 3] = k_madd_epi32_avx2(u[ 3], k32_p30_p02);
+ v[ 4] = k_madd_epi32_avx2(u[ 4], k32_p14_p18);
+ v[ 5] = k_madd_epi32_avx2(u[ 5], k32_p14_p18);
+ v[ 6] = k_madd_epi32_avx2(u[ 6], k32_p14_p18);
+ v[ 7] = k_madd_epi32_avx2(u[ 7], k32_p14_p18);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_p22_p10);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_p22_p10);
+ v[10] = k_madd_epi32_avx2(u[10], k32_p22_p10);
+ v[11] = k_madd_epi32_avx2(u[11], k32_p22_p10);
+ v[12] = k_madd_epi32_avx2(u[12], k32_p06_p26);
+ v[13] = k_madd_epi32_avx2(u[13], k32_p06_p26);
+ v[14] = k_madd_epi32_avx2(u[14], k32_p06_p26);
+ v[15] = k_madd_epi32_avx2(u[15], k32_p06_p26);
+ v[16] = k_madd_epi32_avx2(u[12], k32_m26_p06);
+ v[17] = k_madd_epi32_avx2(u[13], k32_m26_p06);
+ v[18] = k_madd_epi32_avx2(u[14], k32_m26_p06);
+ v[19] = k_madd_epi32_avx2(u[15], k32_m26_p06);
+ v[20] = k_madd_epi32_avx2(u[ 8], k32_m10_p22);
+ v[21] = k_madd_epi32_avx2(u[ 9], k32_m10_p22);
+ v[22] = k_madd_epi32_avx2(u[10], k32_m10_p22);
+ v[23] = k_madd_epi32_avx2(u[11], k32_m10_p22);
+ v[24] = k_madd_epi32_avx2(u[ 4], k32_m18_p14);
+ v[25] = k_madd_epi32_avx2(u[ 5], k32_m18_p14);
+ v[26] = k_madd_epi32_avx2(u[ 6], k32_m18_p14);
+ v[27] = k_madd_epi32_avx2(u[ 7], k32_m18_p14);
+ v[28] = k_madd_epi32_avx2(u[ 0], k32_m02_p30);
+ v[29] = k_madd_epi32_avx2(u[ 1], k32_m02_p30);
+ v[30] = k_madd_epi32_avx2(u[ 2], k32_m02_p30);
+ v[31] = k_madd_epi32_avx2(u[ 3], k32_m02_p30);
+
+ u[ 0] = k_packs_epi64_avx2(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64_avx2(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64_avx2(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64_avx2(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64_avx2(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[ 6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[ 7] = k_packs_epi64_avx2(v[14], v[15]);
+ u[ 8] = k_packs_epi64_avx2(v[16], v[17]);
+ u[ 9] = k_packs_epi64_avx2(v[18], v[19]);
+ u[10] = k_packs_epi64_avx2(v[20], v[21]);
+ u[11] = k_packs_epi64_avx2(v[22], v[23]);
+ u[12] = k_packs_epi64_avx2(v[24], v[25]);
+ u[13] = k_packs_epi64_avx2(v[26], v[27]);
+ u[14] = k_packs_epi64_avx2(v[28], v[29]);
+ u[15] = k_packs_epi64_avx2(v[30], v[31]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm256_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm256_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm256_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm256_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm256_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm256_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm256_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm256_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm256_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ u[ 0] = _mm256_srai_epi32(v[ 0], DCT_CONST_BITS);
+ u[ 1] = _mm256_srai_epi32(v[ 1], DCT_CONST_BITS);
+ u[ 2] = _mm256_srai_epi32(v[ 2], DCT_CONST_BITS);
+ u[ 3] = _mm256_srai_epi32(v[ 3], DCT_CONST_BITS);
+ u[ 4] = _mm256_srai_epi32(v[ 4], DCT_CONST_BITS);
+ u[ 5] = _mm256_srai_epi32(v[ 5], DCT_CONST_BITS);
+ u[ 6] = _mm256_srai_epi32(v[ 6], DCT_CONST_BITS);
+ u[ 7] = _mm256_srai_epi32(v[ 7], DCT_CONST_BITS);
+ u[ 8] = _mm256_srai_epi32(v[ 8], DCT_CONST_BITS);
+ u[ 9] = _mm256_srai_epi32(v[ 9], DCT_CONST_BITS);
+ u[10] = _mm256_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm256_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm256_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm256_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm256_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm256_srai_epi32(v[15], DCT_CONST_BITS);
+
+ v[ 0] = _mm256_cmpgt_epi32(kZero,u[ 0]);
+ v[ 1] = _mm256_cmpgt_epi32(kZero,u[ 1]);
+ v[ 2] = _mm256_cmpgt_epi32(kZero,u[ 2]);
+ v[ 3] = _mm256_cmpgt_epi32(kZero,u[ 3]);
+ v[ 4] = _mm256_cmpgt_epi32(kZero,u[ 4]);
+ v[ 5] = _mm256_cmpgt_epi32(kZero,u[ 5]);
+ v[ 6] = _mm256_cmpgt_epi32(kZero,u[ 6]);
+ v[ 7] = _mm256_cmpgt_epi32(kZero,u[ 7]);
+ v[ 8] = _mm256_cmpgt_epi32(kZero,u[ 8]);
+ v[ 9] = _mm256_cmpgt_epi32(kZero,u[ 9]);
+ v[10] = _mm256_cmpgt_epi32(kZero,u[10]);
+ v[11] = _mm256_cmpgt_epi32(kZero,u[11]);
+ v[12] = _mm256_cmpgt_epi32(kZero,u[12]);
+ v[13] = _mm256_cmpgt_epi32(kZero,u[13]);
+ v[14] = _mm256_cmpgt_epi32(kZero,u[14]);
+ v[15] = _mm256_cmpgt_epi32(kZero,u[15]);
+
+ u[ 0] = _mm256_sub_epi32(u[ 0], v[ 0]);
+ u[ 1] = _mm256_sub_epi32(u[ 1], v[ 1]);
+ u[ 2] = _mm256_sub_epi32(u[ 2], v[ 2]);
+ u[ 3] = _mm256_sub_epi32(u[ 3], v[ 3]);
+ u[ 4] = _mm256_sub_epi32(u[ 4], v[ 4]);
+ u[ 5] = _mm256_sub_epi32(u[ 5], v[ 5]);
+ u[ 6] = _mm256_sub_epi32(u[ 6], v[ 6]);
+ u[ 7] = _mm256_sub_epi32(u[ 7], v[ 7]);
+ u[ 8] = _mm256_sub_epi32(u[ 8], v[ 8]);
+ u[ 9] = _mm256_sub_epi32(u[ 9], v[ 9]);
+ u[10] = _mm256_sub_epi32(u[10], v[10]);
+ u[11] = _mm256_sub_epi32(u[11], v[11]);
+ u[12] = _mm256_sub_epi32(u[12], v[12]);
+ u[13] = _mm256_sub_epi32(u[13], v[13]);
+ u[14] = _mm256_sub_epi32(u[14], v[14]);
+ u[15] = _mm256_sub_epi32(u[15], v[15]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], K32One);
+ v[ 1] = _mm256_add_epi32(u[ 1], K32One);
+ v[ 2] = _mm256_add_epi32(u[ 2], K32One);
+ v[ 3] = _mm256_add_epi32(u[ 3], K32One);
+ v[ 4] = _mm256_add_epi32(u[ 4], K32One);
+ v[ 5] = _mm256_add_epi32(u[ 5], K32One);
+ v[ 6] = _mm256_add_epi32(u[ 6], K32One);
+ v[ 7] = _mm256_add_epi32(u[ 7], K32One);
+ v[ 8] = _mm256_add_epi32(u[ 8], K32One);
+ v[ 9] = _mm256_add_epi32(u[ 9], K32One);
+ v[10] = _mm256_add_epi32(u[10], K32One);
+ v[11] = _mm256_add_epi32(u[11], K32One);
+ v[12] = _mm256_add_epi32(u[12], K32One);
+ v[13] = _mm256_add_epi32(u[13], K32One);
+ v[14] = _mm256_add_epi32(u[14], K32One);
+ v[15] = _mm256_add_epi32(u[15], K32One);
+
+ u[ 0] = _mm256_srai_epi32(v[ 0], 2);
+ u[ 1] = _mm256_srai_epi32(v[ 1], 2);
+ u[ 2] = _mm256_srai_epi32(v[ 2], 2);
+ u[ 3] = _mm256_srai_epi32(v[ 3], 2);
+ u[ 4] = _mm256_srai_epi32(v[ 4], 2);
+ u[ 5] = _mm256_srai_epi32(v[ 5], 2);
+ u[ 6] = _mm256_srai_epi32(v[ 6], 2);
+ u[ 7] = _mm256_srai_epi32(v[ 7], 2);
+ u[ 8] = _mm256_srai_epi32(v[ 8], 2);
+ u[ 9] = _mm256_srai_epi32(v[ 9], 2);
+ u[10] = _mm256_srai_epi32(v[10], 2);
+ u[11] = _mm256_srai_epi32(v[11], 2);
+ u[12] = _mm256_srai_epi32(v[12], 2);
+ u[13] = _mm256_srai_epi32(v[13], 2);
+ u[14] = _mm256_srai_epi32(v[14], 2);
+ u[15] = _mm256_srai_epi32(v[15], 2);
+
+ out[ 2] = _mm256_packs_epi32(u[0], u[1]);
+ out[18] = _mm256_packs_epi32(u[2], u[3]);
+ out[10] = _mm256_packs_epi32(u[4], u[5]);
+ out[26] = _mm256_packs_epi32(u[6], u[7]);
+ out[ 6] = _mm256_packs_epi32(u[8], u[9]);
+ out[22] = _mm256_packs_epi32(u[10], u[11]);
+ out[14] = _mm256_packs_epi32(u[12], u[13]);
+ out[30] = _mm256_packs_epi32(u[14], u[15]);
+ }
+ {
+ lstep1[32] = _mm256_add_epi32(lstep3[34], lstep2[32]);
+ lstep1[33] = _mm256_add_epi32(lstep3[35], lstep2[33]);
+ lstep1[34] = _mm256_sub_epi32(lstep2[32], lstep3[34]);
+ lstep1[35] = _mm256_sub_epi32(lstep2[33], lstep3[35]);
+ lstep1[36] = _mm256_sub_epi32(lstep2[38], lstep3[36]);
+ lstep1[37] = _mm256_sub_epi32(lstep2[39], lstep3[37]);
+ lstep1[38] = _mm256_add_epi32(lstep3[36], lstep2[38]);
+ lstep1[39] = _mm256_add_epi32(lstep3[37], lstep2[39]);
+ lstep1[40] = _mm256_add_epi32(lstep3[42], lstep2[40]);
+ lstep1[41] = _mm256_add_epi32(lstep3[43], lstep2[41]);
+ lstep1[42] = _mm256_sub_epi32(lstep2[40], lstep3[42]);
+ lstep1[43] = _mm256_sub_epi32(lstep2[41], lstep3[43]);
+ lstep1[44] = _mm256_sub_epi32(lstep2[46], lstep3[44]);
+ lstep1[45] = _mm256_sub_epi32(lstep2[47], lstep3[45]);
+ lstep1[46] = _mm256_add_epi32(lstep3[44], lstep2[46]);
+ lstep1[47] = _mm256_add_epi32(lstep3[45], lstep2[47]);
+ lstep1[48] = _mm256_add_epi32(lstep3[50], lstep2[48]);
+ lstep1[49] = _mm256_add_epi32(lstep3[51], lstep2[49]);
+ lstep1[50] = _mm256_sub_epi32(lstep2[48], lstep3[50]);
+ lstep1[51] = _mm256_sub_epi32(lstep2[49], lstep3[51]);
+ lstep1[52] = _mm256_sub_epi32(lstep2[54], lstep3[52]);
+ lstep1[53] = _mm256_sub_epi32(lstep2[55], lstep3[53]);
+ lstep1[54] = _mm256_add_epi32(lstep3[52], lstep2[54]);
+ lstep1[55] = _mm256_add_epi32(lstep3[53], lstep2[55]);
+ lstep1[56] = _mm256_add_epi32(lstep3[58], lstep2[56]);
+ lstep1[57] = _mm256_add_epi32(lstep3[59], lstep2[57]);
+ lstep1[58] = _mm256_sub_epi32(lstep2[56], lstep3[58]);
+ lstep1[59] = _mm256_sub_epi32(lstep2[57], lstep3[59]);
+ lstep1[60] = _mm256_sub_epi32(lstep2[62], lstep3[60]);
+ lstep1[61] = _mm256_sub_epi32(lstep2[63], lstep3[61]);
+ lstep1[62] = _mm256_add_epi32(lstep3[60], lstep2[62]);
+ lstep1[63] = _mm256_add_epi32(lstep3[61], lstep2[63]);
+ }
+ // stage 8
+ {
+ const __m256i k32_p31_p01 = pair256_set_epi32(cospi_31_64, cospi_1_64);
+ const __m256i k32_p15_p17 = pair256_set_epi32(cospi_15_64, cospi_17_64);
+ const __m256i k32_p23_p09 = pair256_set_epi32(cospi_23_64, cospi_9_64);
+ const __m256i k32_p07_p25 = pair256_set_epi32(cospi_7_64, cospi_25_64);
+ const __m256i k32_m25_p07 = pair256_set_epi32(-cospi_25_64, cospi_7_64);
+ const __m256i k32_m09_p23 = pair256_set_epi32(-cospi_9_64, cospi_23_64);
+ const __m256i k32_m17_p15 = pair256_set_epi32(-cospi_17_64, cospi_15_64);
+ const __m256i k32_m01_p31 = pair256_set_epi32(-cospi_1_64, cospi_31_64);
+
+ u[ 0] = _mm256_unpacklo_epi32(lstep1[32], lstep1[62]);
+ u[ 1] = _mm256_unpackhi_epi32(lstep1[32], lstep1[62]);
+ u[ 2] = _mm256_unpacklo_epi32(lstep1[33], lstep1[63]);
+ u[ 3] = _mm256_unpackhi_epi32(lstep1[33], lstep1[63]);
+ u[ 4] = _mm256_unpacklo_epi32(lstep1[34], lstep1[60]);
+ u[ 5] = _mm256_unpackhi_epi32(lstep1[34], lstep1[60]);
+ u[ 6] = _mm256_unpacklo_epi32(lstep1[35], lstep1[61]);
+ u[ 7] = _mm256_unpackhi_epi32(lstep1[35], lstep1[61]);
+ u[ 8] = _mm256_unpacklo_epi32(lstep1[36], lstep1[58]);
+ u[ 9] = _mm256_unpackhi_epi32(lstep1[36], lstep1[58]);
+ u[10] = _mm256_unpacklo_epi32(lstep1[37], lstep1[59]);
+ u[11] = _mm256_unpackhi_epi32(lstep1[37], lstep1[59]);
+ u[12] = _mm256_unpacklo_epi32(lstep1[38], lstep1[56]);
+ u[13] = _mm256_unpackhi_epi32(lstep1[38], lstep1[56]);
+ u[14] = _mm256_unpacklo_epi32(lstep1[39], lstep1[57]);
+ u[15] = _mm256_unpackhi_epi32(lstep1[39], lstep1[57]);
+
+ v[ 0] = k_madd_epi32_avx2(u[ 0], k32_p31_p01);
+ v[ 1] = k_madd_epi32_avx2(u[ 1], k32_p31_p01);
+ v[ 2] = k_madd_epi32_avx2(u[ 2], k32_p31_p01);
+ v[ 3] = k_madd_epi32_avx2(u[ 3], k32_p31_p01);
+ v[ 4] = k_madd_epi32_avx2(u[ 4], k32_p15_p17);
+ v[ 5] = k_madd_epi32_avx2(u[ 5], k32_p15_p17);
+ v[ 6] = k_madd_epi32_avx2(u[ 6], k32_p15_p17);
+ v[ 7] = k_madd_epi32_avx2(u[ 7], k32_p15_p17);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_p23_p09);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_p23_p09);
+ v[10] = k_madd_epi32_avx2(u[10], k32_p23_p09);
+ v[11] = k_madd_epi32_avx2(u[11], k32_p23_p09);
+ v[12] = k_madd_epi32_avx2(u[12], k32_p07_p25);
+ v[13] = k_madd_epi32_avx2(u[13], k32_p07_p25);
+ v[14] = k_madd_epi32_avx2(u[14], k32_p07_p25);
+ v[15] = k_madd_epi32_avx2(u[15], k32_p07_p25);
+ v[16] = k_madd_epi32_avx2(u[12], k32_m25_p07);
+ v[17] = k_madd_epi32_avx2(u[13], k32_m25_p07);
+ v[18] = k_madd_epi32_avx2(u[14], k32_m25_p07);
+ v[19] = k_madd_epi32_avx2(u[15], k32_m25_p07);
+ v[20] = k_madd_epi32_avx2(u[ 8], k32_m09_p23);
+ v[21] = k_madd_epi32_avx2(u[ 9], k32_m09_p23);
+ v[22] = k_madd_epi32_avx2(u[10], k32_m09_p23);
+ v[23] = k_madd_epi32_avx2(u[11], k32_m09_p23);
+ v[24] = k_madd_epi32_avx2(u[ 4], k32_m17_p15);
+ v[25] = k_madd_epi32_avx2(u[ 5], k32_m17_p15);
+ v[26] = k_madd_epi32_avx2(u[ 6], k32_m17_p15);
+ v[27] = k_madd_epi32_avx2(u[ 7], k32_m17_p15);
+ v[28] = k_madd_epi32_avx2(u[ 0], k32_m01_p31);
+ v[29] = k_madd_epi32_avx2(u[ 1], k32_m01_p31);
+ v[30] = k_madd_epi32_avx2(u[ 2], k32_m01_p31);
+ v[31] = k_madd_epi32_avx2(u[ 3], k32_m01_p31);
+
+ u[ 0] = k_packs_epi64_avx2(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64_avx2(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64_avx2(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64_avx2(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64_avx2(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[ 6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[ 7] = k_packs_epi64_avx2(v[14], v[15]);
+ u[ 8] = k_packs_epi64_avx2(v[16], v[17]);
+ u[ 9] = k_packs_epi64_avx2(v[18], v[19]);
+ u[10] = k_packs_epi64_avx2(v[20], v[21]);
+ u[11] = k_packs_epi64_avx2(v[22], v[23]);
+ u[12] = k_packs_epi64_avx2(v[24], v[25]);
+ u[13] = k_packs_epi64_avx2(v[26], v[27]);
+ u[14] = k_packs_epi64_avx2(v[28], v[29]);
+ u[15] = k_packs_epi64_avx2(v[30], v[31]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm256_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm256_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm256_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm256_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm256_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm256_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm256_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm256_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm256_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ u[ 0] = _mm256_srai_epi32(v[ 0], DCT_CONST_BITS);
+ u[ 1] = _mm256_srai_epi32(v[ 1], DCT_CONST_BITS);
+ u[ 2] = _mm256_srai_epi32(v[ 2], DCT_CONST_BITS);
+ u[ 3] = _mm256_srai_epi32(v[ 3], DCT_CONST_BITS);
+ u[ 4] = _mm256_srai_epi32(v[ 4], DCT_CONST_BITS);
+ u[ 5] = _mm256_srai_epi32(v[ 5], DCT_CONST_BITS);
+ u[ 6] = _mm256_srai_epi32(v[ 6], DCT_CONST_BITS);
+ u[ 7] = _mm256_srai_epi32(v[ 7], DCT_CONST_BITS);
+ u[ 8] = _mm256_srai_epi32(v[ 8], DCT_CONST_BITS);
+ u[ 9] = _mm256_srai_epi32(v[ 9], DCT_CONST_BITS);
+ u[10] = _mm256_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm256_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm256_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm256_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm256_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm256_srai_epi32(v[15], DCT_CONST_BITS);
+
+ v[ 0] = _mm256_cmpgt_epi32(kZero,u[ 0]);
+ v[ 1] = _mm256_cmpgt_epi32(kZero,u[ 1]);
+ v[ 2] = _mm256_cmpgt_epi32(kZero,u[ 2]);
+ v[ 3] = _mm256_cmpgt_epi32(kZero,u[ 3]);
+ v[ 4] = _mm256_cmpgt_epi32(kZero,u[ 4]);
+ v[ 5] = _mm256_cmpgt_epi32(kZero,u[ 5]);
+ v[ 6] = _mm256_cmpgt_epi32(kZero,u[ 6]);
+ v[ 7] = _mm256_cmpgt_epi32(kZero,u[ 7]);
+ v[ 8] = _mm256_cmpgt_epi32(kZero,u[ 8]);
+ v[ 9] = _mm256_cmpgt_epi32(kZero,u[ 9]);
+ v[10] = _mm256_cmpgt_epi32(kZero,u[10]);
+ v[11] = _mm256_cmpgt_epi32(kZero,u[11]);
+ v[12] = _mm256_cmpgt_epi32(kZero,u[12]);
+ v[13] = _mm256_cmpgt_epi32(kZero,u[13]);
+ v[14] = _mm256_cmpgt_epi32(kZero,u[14]);
+ v[15] = _mm256_cmpgt_epi32(kZero,u[15]);
+
+ u[ 0] = _mm256_sub_epi32(u[ 0], v[ 0]);
+ u[ 1] = _mm256_sub_epi32(u[ 1], v[ 1]);
+ u[ 2] = _mm256_sub_epi32(u[ 2], v[ 2]);
+ u[ 3] = _mm256_sub_epi32(u[ 3], v[ 3]);
+ u[ 4] = _mm256_sub_epi32(u[ 4], v[ 4]);
+ u[ 5] = _mm256_sub_epi32(u[ 5], v[ 5]);
+ u[ 6] = _mm256_sub_epi32(u[ 6], v[ 6]);
+ u[ 7] = _mm256_sub_epi32(u[ 7], v[ 7]);
+ u[ 8] = _mm256_sub_epi32(u[ 8], v[ 8]);
+ u[ 9] = _mm256_sub_epi32(u[ 9], v[ 9]);
+ u[10] = _mm256_sub_epi32(u[10], v[10]);
+ u[11] = _mm256_sub_epi32(u[11], v[11]);
+ u[12] = _mm256_sub_epi32(u[12], v[12]);
+ u[13] = _mm256_sub_epi32(u[13], v[13]);
+ u[14] = _mm256_sub_epi32(u[14], v[14]);
+ u[15] = _mm256_sub_epi32(u[15], v[15]);
+
+ v[0] = _mm256_add_epi32(u[0], K32One);
+ v[1] = _mm256_add_epi32(u[1], K32One);
+ v[2] = _mm256_add_epi32(u[2], K32One);
+ v[3] = _mm256_add_epi32(u[3], K32One);
+ v[4] = _mm256_add_epi32(u[4], K32One);
+ v[5] = _mm256_add_epi32(u[5], K32One);
+ v[6] = _mm256_add_epi32(u[6], K32One);
+ v[7] = _mm256_add_epi32(u[7], K32One);
+ v[8] = _mm256_add_epi32(u[8], K32One);
+ v[9] = _mm256_add_epi32(u[9], K32One);
+ v[10] = _mm256_add_epi32(u[10], K32One);
+ v[11] = _mm256_add_epi32(u[11], K32One);
+ v[12] = _mm256_add_epi32(u[12], K32One);
+ v[13] = _mm256_add_epi32(u[13], K32One);
+ v[14] = _mm256_add_epi32(u[14], K32One);
+ v[15] = _mm256_add_epi32(u[15], K32One);
+
+ u[0] = _mm256_srai_epi32(v[0], 2);
+ u[1] = _mm256_srai_epi32(v[1], 2);
+ u[2] = _mm256_srai_epi32(v[2], 2);
+ u[3] = _mm256_srai_epi32(v[3], 2);
+ u[4] = _mm256_srai_epi32(v[4], 2);
+ u[5] = _mm256_srai_epi32(v[5], 2);
+ u[6] = _mm256_srai_epi32(v[6], 2);
+ u[7] = _mm256_srai_epi32(v[7], 2);
+ u[8] = _mm256_srai_epi32(v[8], 2);
+ u[9] = _mm256_srai_epi32(v[9], 2);
+ u[10] = _mm256_srai_epi32(v[10], 2);
+ u[11] = _mm256_srai_epi32(v[11], 2);
+ u[12] = _mm256_srai_epi32(v[12], 2);
+ u[13] = _mm256_srai_epi32(v[13], 2);
+ u[14] = _mm256_srai_epi32(v[14], 2);
+ u[15] = _mm256_srai_epi32(v[15], 2);
+
+ out[ 1] = _mm256_packs_epi32(u[0], u[1]);
+ out[17] = _mm256_packs_epi32(u[2], u[3]);
+ out[ 9] = _mm256_packs_epi32(u[4], u[5]);
+ out[25] = _mm256_packs_epi32(u[6], u[7]);
+ out[ 7] = _mm256_packs_epi32(u[8], u[9]);
+ out[23] = _mm256_packs_epi32(u[10], u[11]);
+ out[15] = _mm256_packs_epi32(u[12], u[13]);
+ out[31] = _mm256_packs_epi32(u[14], u[15]);
+ }
+ {
+ const __m256i k32_p27_p05 = pair256_set_epi32(cospi_27_64, cospi_5_64);
+ const __m256i k32_p11_p21 = pair256_set_epi32(cospi_11_64, cospi_21_64);
+ const __m256i k32_p19_p13 = pair256_set_epi32(cospi_19_64, cospi_13_64);
+ const __m256i k32_p03_p29 = pair256_set_epi32(cospi_3_64, cospi_29_64);
+ const __m256i k32_m29_p03 = pair256_set_epi32(-cospi_29_64, cospi_3_64);
+ const __m256i k32_m13_p19 = pair256_set_epi32(-cospi_13_64, cospi_19_64);
+ const __m256i k32_m21_p11 = pair256_set_epi32(-cospi_21_64, cospi_11_64);
+ const __m256i k32_m05_p27 = pair256_set_epi32(-cospi_5_64, cospi_27_64);
+
+ u[ 0] = _mm256_unpacklo_epi32(lstep1[40], lstep1[54]);
+ u[ 1] = _mm256_unpackhi_epi32(lstep1[40], lstep1[54]);
+ u[ 2] = _mm256_unpacklo_epi32(lstep1[41], lstep1[55]);
+ u[ 3] = _mm256_unpackhi_epi32(lstep1[41], lstep1[55]);
+ u[ 4] = _mm256_unpacklo_epi32(lstep1[42], lstep1[52]);
+ u[ 5] = _mm256_unpackhi_epi32(lstep1[42], lstep1[52]);
+ u[ 6] = _mm256_unpacklo_epi32(lstep1[43], lstep1[53]);
+ u[ 7] = _mm256_unpackhi_epi32(lstep1[43], lstep1[53]);
+ u[ 8] = _mm256_unpacklo_epi32(lstep1[44], lstep1[50]);
+ u[ 9] = _mm256_unpackhi_epi32(lstep1[44], lstep1[50]);
+ u[10] = _mm256_unpacklo_epi32(lstep1[45], lstep1[51]);
+ u[11] = _mm256_unpackhi_epi32(lstep1[45], lstep1[51]);
+ u[12] = _mm256_unpacklo_epi32(lstep1[46], lstep1[48]);
+ u[13] = _mm256_unpackhi_epi32(lstep1[46], lstep1[48]);
+ u[14] = _mm256_unpacklo_epi32(lstep1[47], lstep1[49]);
+ u[15] = _mm256_unpackhi_epi32(lstep1[47], lstep1[49]);
+
+ v[ 0] = k_madd_epi32_avx2(u[ 0], k32_p27_p05);
+ v[ 1] = k_madd_epi32_avx2(u[ 1], k32_p27_p05);
+ v[ 2] = k_madd_epi32_avx2(u[ 2], k32_p27_p05);
+ v[ 3] = k_madd_epi32_avx2(u[ 3], k32_p27_p05);
+ v[ 4] = k_madd_epi32_avx2(u[ 4], k32_p11_p21);
+ v[ 5] = k_madd_epi32_avx2(u[ 5], k32_p11_p21);
+ v[ 6] = k_madd_epi32_avx2(u[ 6], k32_p11_p21);
+ v[ 7] = k_madd_epi32_avx2(u[ 7], k32_p11_p21);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_p19_p13);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_p19_p13);
+ v[10] = k_madd_epi32_avx2(u[10], k32_p19_p13);
+ v[11] = k_madd_epi32_avx2(u[11], k32_p19_p13);
+ v[12] = k_madd_epi32_avx2(u[12], k32_p03_p29);
+ v[13] = k_madd_epi32_avx2(u[13], k32_p03_p29);
+ v[14] = k_madd_epi32_avx2(u[14], k32_p03_p29);
+ v[15] = k_madd_epi32_avx2(u[15], k32_p03_p29);
+ v[16] = k_madd_epi32_avx2(u[12], k32_m29_p03);
+ v[17] = k_madd_epi32_avx2(u[13], k32_m29_p03);
+ v[18] = k_madd_epi32_avx2(u[14], k32_m29_p03);
+ v[19] = k_madd_epi32_avx2(u[15], k32_m29_p03);
+ v[20] = k_madd_epi32_avx2(u[ 8], k32_m13_p19);
+ v[21] = k_madd_epi32_avx2(u[ 9], k32_m13_p19);
+ v[22] = k_madd_epi32_avx2(u[10], k32_m13_p19);
+ v[23] = k_madd_epi32_avx2(u[11], k32_m13_p19);
+ v[24] = k_madd_epi32_avx2(u[ 4], k32_m21_p11);
+ v[25] = k_madd_epi32_avx2(u[ 5], k32_m21_p11);
+ v[26] = k_madd_epi32_avx2(u[ 6], k32_m21_p11);
+ v[27] = k_madd_epi32_avx2(u[ 7], k32_m21_p11);
+ v[28] = k_madd_epi32_avx2(u[ 0], k32_m05_p27);
+ v[29] = k_madd_epi32_avx2(u[ 1], k32_m05_p27);
+ v[30] = k_madd_epi32_avx2(u[ 2], k32_m05_p27);
+ v[31] = k_madd_epi32_avx2(u[ 3], k32_m05_p27);
+
+ u[ 0] = k_packs_epi64_avx2(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64_avx2(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64_avx2(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64_avx2(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64_avx2(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[ 6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[ 7] = k_packs_epi64_avx2(v[14], v[15]);
+ u[ 8] = k_packs_epi64_avx2(v[16], v[17]);
+ u[ 9] = k_packs_epi64_avx2(v[18], v[19]);
+ u[10] = k_packs_epi64_avx2(v[20], v[21]);
+ u[11] = k_packs_epi64_avx2(v[22], v[23]);
+ u[12] = k_packs_epi64_avx2(v[24], v[25]);
+ u[13] = k_packs_epi64_avx2(v[26], v[27]);
+ u[14] = k_packs_epi64_avx2(v[28], v[29]);
+ u[15] = k_packs_epi64_avx2(v[30], v[31]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm256_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm256_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm256_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm256_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm256_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm256_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm256_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm256_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm256_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ u[ 0] = _mm256_srai_epi32(v[ 0], DCT_CONST_BITS);
+ u[ 1] = _mm256_srai_epi32(v[ 1], DCT_CONST_BITS);
+ u[ 2] = _mm256_srai_epi32(v[ 2], DCT_CONST_BITS);
+ u[ 3] = _mm256_srai_epi32(v[ 3], DCT_CONST_BITS);
+ u[ 4] = _mm256_srai_epi32(v[ 4], DCT_CONST_BITS);
+ u[ 5] = _mm256_srai_epi32(v[ 5], DCT_CONST_BITS);
+ u[ 6] = _mm256_srai_epi32(v[ 6], DCT_CONST_BITS);
+ u[ 7] = _mm256_srai_epi32(v[ 7], DCT_CONST_BITS);
+ u[ 8] = _mm256_srai_epi32(v[ 8], DCT_CONST_BITS);
+ u[ 9] = _mm256_srai_epi32(v[ 9], DCT_CONST_BITS);
+ u[10] = _mm256_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm256_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm256_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm256_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm256_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm256_srai_epi32(v[15], DCT_CONST_BITS);
+
+ v[ 0] = _mm256_cmpgt_epi32(kZero,u[ 0]);
+ v[ 1] = _mm256_cmpgt_epi32(kZero,u[ 1]);
+ v[ 2] = _mm256_cmpgt_epi32(kZero,u[ 2]);
+ v[ 3] = _mm256_cmpgt_epi32(kZero,u[ 3]);
+ v[ 4] = _mm256_cmpgt_epi32(kZero,u[ 4]);
+ v[ 5] = _mm256_cmpgt_epi32(kZero,u[ 5]);
+ v[ 6] = _mm256_cmpgt_epi32(kZero,u[ 6]);
+ v[ 7] = _mm256_cmpgt_epi32(kZero,u[ 7]);
+ v[ 8] = _mm256_cmpgt_epi32(kZero,u[ 8]);
+ v[ 9] = _mm256_cmpgt_epi32(kZero,u[ 9]);
+ v[10] = _mm256_cmpgt_epi32(kZero,u[10]);
+ v[11] = _mm256_cmpgt_epi32(kZero,u[11]);
+ v[12] = _mm256_cmpgt_epi32(kZero,u[12]);
+ v[13] = _mm256_cmpgt_epi32(kZero,u[13]);
+ v[14] = _mm256_cmpgt_epi32(kZero,u[14]);
+ v[15] = _mm256_cmpgt_epi32(kZero,u[15]);
+
+ u[ 0] = _mm256_sub_epi32(u[ 0], v[ 0]);
+ u[ 1] = _mm256_sub_epi32(u[ 1], v[ 1]);
+ u[ 2] = _mm256_sub_epi32(u[ 2], v[ 2]);
+ u[ 3] = _mm256_sub_epi32(u[ 3], v[ 3]);
+ u[ 4] = _mm256_sub_epi32(u[ 4], v[ 4]);
+ u[ 5] = _mm256_sub_epi32(u[ 5], v[ 5]);
+ u[ 6] = _mm256_sub_epi32(u[ 6], v[ 6]);
+ u[ 7] = _mm256_sub_epi32(u[ 7], v[ 7]);
+ u[ 8] = _mm256_sub_epi32(u[ 8], v[ 8]);
+ u[ 9] = _mm256_sub_epi32(u[ 9], v[ 9]);
+ u[10] = _mm256_sub_epi32(u[10], v[10]);
+ u[11] = _mm256_sub_epi32(u[11], v[11]);
+ u[12] = _mm256_sub_epi32(u[12], v[12]);
+ u[13] = _mm256_sub_epi32(u[13], v[13]);
+ u[14] = _mm256_sub_epi32(u[14], v[14]);
+ u[15] = _mm256_sub_epi32(u[15], v[15]);
+
+ v[0] = _mm256_add_epi32(u[0], K32One);
+ v[1] = _mm256_add_epi32(u[1], K32One);
+ v[2] = _mm256_add_epi32(u[2], K32One);
+ v[3] = _mm256_add_epi32(u[3], K32One);
+ v[4] = _mm256_add_epi32(u[4], K32One);
+ v[5] = _mm256_add_epi32(u[5], K32One);
+ v[6] = _mm256_add_epi32(u[6], K32One);
+ v[7] = _mm256_add_epi32(u[7], K32One);
+ v[8] = _mm256_add_epi32(u[8], K32One);
+ v[9] = _mm256_add_epi32(u[9], K32One);
+ v[10] = _mm256_add_epi32(u[10], K32One);
+ v[11] = _mm256_add_epi32(u[11], K32One);
+ v[12] = _mm256_add_epi32(u[12], K32One);
+ v[13] = _mm256_add_epi32(u[13], K32One);
+ v[14] = _mm256_add_epi32(u[14], K32One);
+ v[15] = _mm256_add_epi32(u[15], K32One);
+
+ u[0] = _mm256_srai_epi32(v[0], 2);
+ u[1] = _mm256_srai_epi32(v[1], 2);
+ u[2] = _mm256_srai_epi32(v[2], 2);
+ u[3] = _mm256_srai_epi32(v[3], 2);
+ u[4] = _mm256_srai_epi32(v[4], 2);
+ u[5] = _mm256_srai_epi32(v[5], 2);
+ u[6] = _mm256_srai_epi32(v[6], 2);
+ u[7] = _mm256_srai_epi32(v[7], 2);
+ u[8] = _mm256_srai_epi32(v[8], 2);
+ u[9] = _mm256_srai_epi32(v[9], 2);
+ u[10] = _mm256_srai_epi32(v[10], 2);
+ u[11] = _mm256_srai_epi32(v[11], 2);
+ u[12] = _mm256_srai_epi32(v[12], 2);
+ u[13] = _mm256_srai_epi32(v[13], 2);
+ u[14] = _mm256_srai_epi32(v[14], 2);
+ u[15] = _mm256_srai_epi32(v[15], 2);
+
+ out[ 5] = _mm256_packs_epi32(u[0], u[1]);
+ out[21] = _mm256_packs_epi32(u[2], u[3]);
+ out[13] = _mm256_packs_epi32(u[4], u[5]);
+ out[29] = _mm256_packs_epi32(u[6], u[7]);
+ out[ 3] = _mm256_packs_epi32(u[8], u[9]);
+ out[19] = _mm256_packs_epi32(u[10], u[11]);
+ out[11] = _mm256_packs_epi32(u[12], u[13]);
+ out[27] = _mm256_packs_epi32(u[14], u[15]);
+ }
+ }
+#endif
+ // Transpose the results, do it as four 8x8 transposes.
+ {
+ int transpose_block;
+ int16_t *output_currStep,*output_nextStep;
+ if (0 == pass){
+ output_currStep = &intermediate[column_start * 32];
+ output_nextStep = &intermediate[(column_start + 8) * 32];
+ } else{
+ output_currStep = &output_org[column_start * 32];
+ output_nextStep = &output_org[(column_start + 8) * 32];
+ }
+ for (transpose_block = 0; transpose_block < 4; ++transpose_block) {
+ __m256i *this_out = &out[8 * transpose_block];
+ // 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
+ // 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
+ // 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
+ // 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
+ // 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
+ // 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
+ // 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
+ // 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
+ const __m256i tr0_0 = _mm256_unpacklo_epi16(this_out[0], this_out[1]);
+ const __m256i tr0_1 = _mm256_unpacklo_epi16(this_out[2], this_out[3]);
+ const __m256i tr0_2 = _mm256_unpackhi_epi16(this_out[0], this_out[1]);
+ const __m256i tr0_3 = _mm256_unpackhi_epi16(this_out[2], this_out[3]);
+ const __m256i tr0_4 = _mm256_unpacklo_epi16(this_out[4], this_out[5]);
+ const __m256i tr0_5 = _mm256_unpacklo_epi16(this_out[6], this_out[7]);
+ const __m256i tr0_6 = _mm256_unpackhi_epi16(this_out[4], this_out[5]);
+ const __m256i tr0_7 = _mm256_unpackhi_epi16(this_out[6], this_out[7]);
+ // 00 20 01 21 02 22 03 23 08 28 09 29 10 30 11 31
+ // 40 60 41 61 42 62 43 63 48 68 49 69 50 70 51 71
+ // 04 24 05 25 06 26 07 27 12 32 13 33 14 34 15 35
+ // 44 64 45 65 46 66 47 67 52 72 53 73 54 74 55 75
+ // 80 100 81 101 82 102 83 103 88 108 89 109 90 110 91 101
+ // 120 140 121 141 122 142 123 143 128 148 129 149 130 150 131 151
+ // 84 104 85 105 86 106 87 107 92 112 93 113 94 114 95 115
+ // 124 144 125 145 126 146 127 147 132 152 133 153 134 154 135 155
+
+ const __m256i tr1_0 = _mm256_unpacklo_epi32(tr0_0, tr0_1);
+ const __m256i tr1_1 = _mm256_unpacklo_epi32(tr0_2, tr0_3);
+ const __m256i tr1_2 = _mm256_unpackhi_epi32(tr0_0, tr0_1);
+ const __m256i tr1_3 = _mm256_unpackhi_epi32(tr0_2, tr0_3);
+ const __m256i tr1_4 = _mm256_unpacklo_epi32(tr0_4, tr0_5);
+ const __m256i tr1_5 = _mm256_unpacklo_epi32(tr0_6, tr0_7);
+ const __m256i tr1_6 = _mm256_unpackhi_epi32(tr0_4, tr0_5);
+ const __m256i tr1_7 = _mm256_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 20 40 60 01 21 41 61 08 28 48 68 09 29 49 69
+ // 04 24 44 64 05 25 45 65 12 32 52 72 13 33 53 73
+ // 02 22 42 62 03 23 43 63 10 30 50 70 11 31 51 71
+ // 06 26 46 66 07 27 47 67 14 34 54 74 15 35 55 75
+ // 80 100 120 140 81 101 121 141 88 108 128 148 89 109 129 149
+ // 84 104 124 144 85 105 125 145 92 112 132 152 93 113 133 153
+ // 82 102 122 142 83 103 123 143 90 110 130 150 91 101 131 151
+ // 86 106 126 146 87 107 127 147 94 114 134 154 95 115 135 155
+ __m256i tr2_0 = _mm256_unpacklo_epi64(tr1_0, tr1_4);
+ __m256i tr2_1 = _mm256_unpackhi_epi64(tr1_0, tr1_4);
+ __m256i tr2_2 = _mm256_unpacklo_epi64(tr1_2, tr1_6);
+ __m256i tr2_3 = _mm256_unpackhi_epi64(tr1_2, tr1_6);
+ __m256i tr2_4 = _mm256_unpacklo_epi64(tr1_1, tr1_5);
+ __m256i tr2_5 = _mm256_unpackhi_epi64(tr1_1, tr1_5);
+ __m256i tr2_6 = _mm256_unpacklo_epi64(tr1_3, tr1_7);
+ __m256i tr2_7 = _mm256_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 20 40 60 80 100 120 140 08 28 48 68 88 108 128 148
+ // 01 21 41 61 81 101 121 141 09 29 49 69 89 109 129 149
+ // 02 22 42 62 82 102 122 142 10 30 50 70 90 110 130 150
+ // 03 23 43 63 83 103 123 143 11 31 51 71 91 101 131 151
+ // 04 24 44 64 84 104 124 144 12 32 52 72 92 112 132 152
+ // 05 25 45 65 85 105 125 145 13 33 53 73 93 113 133 153
+ // 06 26 46 66 86 106 126 146 14 34 54 74 94 114 134 154
+ // 07 27 47 67 87 107 127 147 15 35 55 75 95 115 135 155
+ if (0 == pass) {
+ // output[j] = (output[j] + 1 + (output[j] > 0)) >> 2;
+ // TODO(cd): see quality impact of only doing
+ // output[j] = (output[j] + 1) >> 2;
+ // which would remove the code between here ...
+ __m256i tr2_0_0 = _mm256_cmpgt_epi16(tr2_0, kZero);
+ __m256i tr2_1_0 = _mm256_cmpgt_epi16(tr2_1, kZero);
+ __m256i tr2_2_0 = _mm256_cmpgt_epi16(tr2_2, kZero);
+ __m256i tr2_3_0 = _mm256_cmpgt_epi16(tr2_3, kZero);
+ __m256i tr2_4_0 = _mm256_cmpgt_epi16(tr2_4, kZero);
+ __m256i tr2_5_0 = _mm256_cmpgt_epi16(tr2_5, kZero);
+ __m256i tr2_6_0 = _mm256_cmpgt_epi16(tr2_6, kZero);
+ __m256i tr2_7_0 = _mm256_cmpgt_epi16(tr2_7, kZero);
+ tr2_0 = _mm256_sub_epi16(tr2_0, tr2_0_0);
+ tr2_1 = _mm256_sub_epi16(tr2_1, tr2_1_0);
+ tr2_2 = _mm256_sub_epi16(tr2_2, tr2_2_0);
+ tr2_3 = _mm256_sub_epi16(tr2_3, tr2_3_0);
+ tr2_4 = _mm256_sub_epi16(tr2_4, tr2_4_0);
+ tr2_5 = _mm256_sub_epi16(tr2_5, tr2_5_0);
+ tr2_6 = _mm256_sub_epi16(tr2_6, tr2_6_0);
+ tr2_7 = _mm256_sub_epi16(tr2_7, tr2_7_0);
+ // ... and here.
+ // PS: also change code in vp9/encoder/vp9_dct.c
+ tr2_0 = _mm256_add_epi16(tr2_0, kOne);
+ tr2_1 = _mm256_add_epi16(tr2_1, kOne);
+ tr2_2 = _mm256_add_epi16(tr2_2, kOne);
+ tr2_3 = _mm256_add_epi16(tr2_3, kOne);
+ tr2_4 = _mm256_add_epi16(tr2_4, kOne);
+ tr2_5 = _mm256_add_epi16(tr2_5, kOne);
+ tr2_6 = _mm256_add_epi16(tr2_6, kOne);
+ tr2_7 = _mm256_add_epi16(tr2_7, kOne);
+ tr2_0 = _mm256_srai_epi16(tr2_0, 2);
+ tr2_1 = _mm256_srai_epi16(tr2_1, 2);
+ tr2_2 = _mm256_srai_epi16(tr2_2, 2);
+ tr2_3 = _mm256_srai_epi16(tr2_3, 2);
+ tr2_4 = _mm256_srai_epi16(tr2_4, 2);
+ tr2_5 = _mm256_srai_epi16(tr2_5, 2);
+ tr2_6 = _mm256_srai_epi16(tr2_6, 2);
+ tr2_7 = _mm256_srai_epi16(tr2_7, 2);
+ }
+ // Note: even though all these stores are aligned, using the aligned
+ // intrinsic make the code slightly slower.
+ _mm_storeu_si128((__m128i *)(output_currStep + 0 * 32), _mm256_castsi256_si128(tr2_0));
+ _mm_storeu_si128((__m128i *)(output_currStep + 1 * 32), _mm256_castsi256_si128(tr2_1));
+ _mm_storeu_si128((__m128i *)(output_currStep + 2 * 32), _mm256_castsi256_si128(tr2_2));
+ _mm_storeu_si128((__m128i *)(output_currStep + 3 * 32), _mm256_castsi256_si128(tr2_3));
+ _mm_storeu_si128((__m128i *)(output_currStep + 4 * 32), _mm256_castsi256_si128(tr2_4));
+ _mm_storeu_si128((__m128i *)(output_currStep + 5 * 32), _mm256_castsi256_si128(tr2_5));
+ _mm_storeu_si128((__m128i *)(output_currStep + 6 * 32), _mm256_castsi256_si128(tr2_6));
+ _mm_storeu_si128((__m128i *)(output_currStep + 7 * 32), _mm256_castsi256_si128(tr2_7));
+
+ _mm_storeu_si128((__m128i *)(output_nextStep + 0 * 32), _mm256_extractf128_si256(tr2_0,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 1 * 32), _mm256_extractf128_si256(tr2_1,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 2 * 32), _mm256_extractf128_si256(tr2_2,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 3 * 32), _mm256_extractf128_si256(tr2_3,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 4 * 32), _mm256_extractf128_si256(tr2_4,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 5 * 32), _mm256_extractf128_si256(tr2_5,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 6 * 32), _mm256_extractf128_si256(tr2_6,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 7 * 32), _mm256_extractf128_si256(tr2_7,1));
+ // Process next 8x8
+ output_currStep += 8;
+ output_nextStep += 8;
+ }
+ }
+ }
+ }
+} // NOLINT
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct32x32_sse2.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct32x32_sse2.c
index 2d59775cec6..42fdbbdc5ce 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct32x32_sse2.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct32x32_sse2.c
@@ -12,6 +12,9 @@
#include "vp9/common/vp9_idct.h" // for cospi constants
#include "vpx_ports/mem.h"
+#define pair_set_epi32(a, b) \
+ _mm_set_epi32(b, a, b, a)
+
#if FDCT32x32_HIGH_PRECISION
static INLINE __m128i k_madd_epi32(__m128i a, __m128i b) {
__m128i buf0, buf1;
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_avx2.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_avx2.c
new file mode 100644
index 00000000000..b5269ed0303
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_avx2.c
@@ -0,0 +1,2592 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <immintrin.h> // AVX2
+#include "vp9/common/vp9_idct.h" // for cospi constants
+#include "vpx_ports/mem.h"
+
+void vp9_fdct4x4_avx2(const int16_t *input, int16_t *output, int stride) {
+ // The 2D transform is done with two passes which are actually pretty
+ // similar. In the first one, we transform the columns and transpose
+ // the results. In the second one, we transform the rows. To achieve that,
+ // as the first pass results are transposed, we transpose the columns (that
+ // is the transposed rows) and transpose the results (so that it goes back
+ // in normal/row positions).
+ int pass;
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
+ const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
+ const __m128i kOne = _mm_set1_epi16(1);
+ __m128i in0, in1, in2, in3;
+ // Load inputs.
+ {
+ in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
+ in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
+ in2 = _mm_loadl_epi64((const __m128i *)(input + 2 * stride));
+ in3 = _mm_loadl_epi64((const __m128i *)(input + 3 * stride));
+ // x = x << 4
+ in0 = _mm_slli_epi16(in0, 4);
+ in1 = _mm_slli_epi16(in1, 4);
+ in2 = _mm_slli_epi16(in2, 4);
+ in3 = _mm_slli_epi16(in3, 4);
+ // if (i == 0 && input[0]) input[0] += 1;
+ {
+ // The mask will only contain whether the first value is zero, all
+ // other comparison will fail as something shifted by 4 (above << 4)
+ // can never be equal to one. To increment in the non-zero case, we
+ // add the mask and one for the first element:
+ // - if zero, mask = -1, v = v - 1 + 1 = v
+ // - if non-zero, mask = 0, v = v + 0 + 1 = v + 1
+ __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a);
+ in0 = _mm_add_epi16(in0, mask);
+ in0 = _mm_add_epi16(in0, k__nonzero_bias_b);
+ }
+ }
+ // Do the two transform/transpose passes
+ for (pass = 0; pass < 2; ++pass) {
+ // Transform 1/2: Add/subtract
+ const __m128i r0 = _mm_add_epi16(in0, in3);
+ const __m128i r1 = _mm_add_epi16(in1, in2);
+ const __m128i r2 = _mm_sub_epi16(in1, in2);
+ const __m128i r3 = _mm_sub_epi16(in0, in3);
+ // Transform 1/2: Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+ const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ // Combine and transpose
+ const __m128i res0 = _mm_packs_epi32(w0, w2);
+ const __m128i res1 = _mm_packs_epi32(w4, w6);
+ // 00 01 02 03 20 21 22 23
+ // 10 11 12 13 30 31 32 33
+ const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
+ const __m128i tr0_1 = _mm_unpackhi_epi16(res0, res1);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ in0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ in2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ // 00 10 20 30 01 11 21 31 in0 contains 0 followed by 1
+ // 02 12 22 32 03 13 23 33 in2 contains 2 followed by 3
+ if (0 == pass) {
+ // Extract values in the high part for second pass as transform code
+ // only uses the first four values.
+ in1 = _mm_unpackhi_epi64(in0, in0);
+ in3 = _mm_unpackhi_epi64(in2, in2);
+ } else {
+ // Post-condition output and store it (v + 1) >> 2, taking advantage
+ // of the fact 1/3 are stored just after 0/2.
+ __m128i out01 = _mm_add_epi16(in0, kOne);
+ __m128i out23 = _mm_add_epi16(in2, kOne);
+ out01 = _mm_srai_epi16(out01, 2);
+ out23 = _mm_srai_epi16(out23, 2);
+ _mm_storeu_si128((__m128i *)(output + 0 * 4), out01);
+ _mm_storeu_si128((__m128i *)(output + 2 * 4), out23);
+ }
+ }
+}
+
+static INLINE void load_buffer_4x4_avx2(const int16_t *input, __m128i *in,
+ int stride) {
+ const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
+ const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
+ __m128i mask;
+
+ in[0] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
+ in[1] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
+ in[2] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride));
+ in[3] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride));
+
+ in[0] = _mm_slli_epi16(in[0], 4);
+ in[1] = _mm_slli_epi16(in[1], 4);
+ in[2] = _mm_slli_epi16(in[2], 4);
+ in[3] = _mm_slli_epi16(in[3], 4);
+
+ mask = _mm_cmpeq_epi16(in[0], k__nonzero_bias_a);
+ in[0] = _mm_add_epi16(in[0], mask);
+ in[0] = _mm_add_epi16(in[0], k__nonzero_bias_b);
+}
+
+static INLINE void write_buffer_4x4_avx2(int16_t *output, __m128i *res) {
+ const __m128i kOne = _mm_set1_epi16(1);
+ __m128i in01 = _mm_unpacklo_epi64(res[0], res[1]);
+ __m128i in23 = _mm_unpacklo_epi64(res[2], res[3]);
+ __m128i out01 = _mm_add_epi16(in01, kOne);
+ __m128i out23 = _mm_add_epi16(in23, kOne);
+ out01 = _mm_srai_epi16(out01, 2);
+ out23 = _mm_srai_epi16(out23, 2);
+ _mm_store_si128((__m128i *)(output + 0 * 8), out01);
+ _mm_store_si128((__m128i *)(output + 1 * 8), out23);
+}
+
+static INLINE void transpose_4x4_avx2(__m128i *res) {
+ // Combine and transpose
+ // 00 01 02 03 20 21 22 23
+ // 10 11 12 13 30 31 32 33
+ const __m128i tr0_0 = _mm_unpacklo_epi16(res[0], res[1]);
+ const __m128i tr0_1 = _mm_unpackhi_epi16(res[0], res[1]);
+
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ res[0] = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ res[2] = _mm_unpackhi_epi32(tr0_0, tr0_1);
+
+ // 00 10 20 30 01 11 21 31
+ // 02 12 22 32 03 13 23 33
+ // only use the first 4 16-bit integers
+ res[1] = _mm_unpackhi_epi64(res[0], res[0]);
+ res[3] = _mm_unpackhi_epi64(res[2], res[2]);
+}
+
+void fdct4_avx2(__m128i *in) {
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+
+ __m128i u[4], v[4];
+ u[0]=_mm_unpacklo_epi16(in[0], in[1]);
+ u[1]=_mm_unpacklo_epi16(in[3], in[2]);
+
+ v[0] = _mm_add_epi16(u[0], u[1]);
+ v[1] = _mm_sub_epi16(u[0], u[1]);
+
+ u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16); // 0
+ u[1] = _mm_madd_epi16(v[0], k__cospi_p16_m16); // 2
+ u[2] = _mm_madd_epi16(v[1], k__cospi_p08_p24); // 1
+ u[3] = _mm_madd_epi16(v[1], k__cospi_p24_m08); // 3
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+
+ in[0] = _mm_packs_epi32(u[0], u[1]);
+ in[1] = _mm_packs_epi32(u[2], u[3]);
+ transpose_4x4_avx2(in);
+}
+
+void fadst4_avx2(__m128i *in) {
+ const __m128i k__sinpi_p01_p02 = pair_set_epi16(sinpi_1_9, sinpi_2_9);
+ const __m128i k__sinpi_p04_m01 = pair_set_epi16(sinpi_4_9, -sinpi_1_9);
+ const __m128i k__sinpi_p03_p04 = pair_set_epi16(sinpi_3_9, sinpi_4_9);
+ const __m128i k__sinpi_m03_p02 = pair_set_epi16(-sinpi_3_9, sinpi_2_9);
+ const __m128i k__sinpi_p03_p03 = _mm_set1_epi16(sinpi_3_9);
+ const __m128i kZero = _mm_set1_epi16(0);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ __m128i u[8], v[8];
+ __m128i in7 = _mm_add_epi16(in[0], in[1]);
+
+ u[0] = _mm_unpacklo_epi16(in[0], in[1]);
+ u[1] = _mm_unpacklo_epi16(in[2], in[3]);
+ u[2] = _mm_unpacklo_epi16(in7, kZero);
+ u[3] = _mm_unpacklo_epi16(in[2], kZero);
+ u[4] = _mm_unpacklo_epi16(in[3], kZero);
+
+ v[0] = _mm_madd_epi16(u[0], k__sinpi_p01_p02); // s0 + s2
+ v[1] = _mm_madd_epi16(u[1], k__sinpi_p03_p04); // s4 + s5
+ v[2] = _mm_madd_epi16(u[2], k__sinpi_p03_p03); // x1
+ v[3] = _mm_madd_epi16(u[0], k__sinpi_p04_m01); // s1 - s3
+ v[4] = _mm_madd_epi16(u[1], k__sinpi_m03_p02); // -s4 + s6
+ v[5] = _mm_madd_epi16(u[3], k__sinpi_p03_p03); // s4
+ v[6] = _mm_madd_epi16(u[4], k__sinpi_p03_p03);
+
+ u[0] = _mm_add_epi32(v[0], v[1]);
+ u[1] = _mm_sub_epi32(v[2], v[6]);
+ u[2] = _mm_add_epi32(v[3], v[4]);
+ u[3] = _mm_sub_epi32(u[2], u[0]);
+ u[4] = _mm_slli_epi32(v[5], 2);
+ u[5] = _mm_sub_epi32(u[4], v[5]);
+ u[6] = _mm_add_epi32(u[3], u[5]);
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+
+ in[0] = _mm_packs_epi32(u[0], u[2]);
+ in[1] = _mm_packs_epi32(u[1], u[3]);
+ transpose_4x4_avx2(in);
+}
+
+void vp9_fht4x4_avx2(const int16_t *input, int16_t *output,
+ int stride, int tx_type) {
+ __m128i in[4];
+
+ switch (tx_type) {
+ case DCT_DCT:
+ vp9_fdct4x4_avx2(input, output, stride);
+ break;
+ case ADST_DCT:
+ load_buffer_4x4_avx2(input, in, stride);
+ fadst4_avx2(in);
+ fdct4_avx2(in);
+ write_buffer_4x4_avx2(output, in);
+ break;
+ case DCT_ADST:
+ load_buffer_4x4_avx2(input, in, stride);
+ fdct4_avx2(in);
+ fadst4_avx2(in);
+ write_buffer_4x4_avx2(output, in);
+ break;
+ case ADST_ADST:
+ load_buffer_4x4_avx2(input, in, stride);
+ fadst4_avx2(in);
+ fadst4_avx2(in);
+ write_buffer_4x4_avx2(output, in);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+}
+
+void vp9_fdct8x8_avx2(const int16_t *input, int16_t *output, int stride) {
+ int pass;
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ // Load input
+ __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
+ // Pre-condition input (shift by two)
+ in0 = _mm_slli_epi16(in0, 2);
+ in1 = _mm_slli_epi16(in1, 2);
+ in2 = _mm_slli_epi16(in2, 2);
+ in3 = _mm_slli_epi16(in3, 2);
+ in4 = _mm_slli_epi16(in4, 2);
+ in5 = _mm_slli_epi16(in5, 2);
+ in6 = _mm_slli_epi16(in6, 2);
+ in7 = _mm_slli_epi16(in7, 2);
+
+ // We do two passes, first the columns, then the rows. The results of the
+ // first pass are transposed so that the same column code can be reused. The
+ // results of the second pass are also transposed so that the rows (processed
+ // as columns) are put back in row positions.
+ for (pass = 0; pass < 2; pass++) {
+ // To store results of each pass before the transpose.
+ __m128i res0, res1, res2, res3, res4, res5, res6, res7;
+ // Add/subtract
+ const __m128i q0 = _mm_add_epi16(in0, in7);
+ const __m128i q1 = _mm_add_epi16(in1, in6);
+ const __m128i q2 = _mm_add_epi16(in2, in5);
+ const __m128i q3 = _mm_add_epi16(in3, in4);
+ const __m128i q4 = _mm_sub_epi16(in3, in4);
+ const __m128i q5 = _mm_sub_epi16(in2, in5);
+ const __m128i q6 = _mm_sub_epi16(in1, in6);
+ const __m128i q7 = _mm_sub_epi16(in0, in7);
+ // Work on first four results
+ {
+ // Add/subtract
+ const __m128i r0 = _mm_add_epi16(q0, q3);
+ const __m128i r1 = _mm_add_epi16(q1, q2);
+ const __m128i r2 = _mm_sub_epi16(q1, q2);
+ const __m128i r3 = _mm_sub_epi16(q0, q3);
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+ const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+ const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+ const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res0 = _mm_packs_epi32(w0, w1);
+ res4 = _mm_packs_epi32(w2, w3);
+ res2 = _mm_packs_epi32(w4, w5);
+ res6 = _mm_packs_epi32(w6, w7);
+ }
+ // Work on next four results
+ {
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+ const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+ const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
+ const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
+ const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
+ const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
+ const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
+ const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
+ const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
+ const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
+ const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
+ const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
+ const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
+ // Combine
+ const __m128i r0 = _mm_packs_epi32(s0, s1);
+ const __m128i r1 = _mm_packs_epi32(s2, s3);
+ // Add/subtract
+ const __m128i x0 = _mm_add_epi16(q4, r0);
+ const __m128i x1 = _mm_sub_epi16(q4, r0);
+ const __m128i x2 = _mm_sub_epi16(q7, r1);
+ const __m128i x3 = _mm_add_epi16(q7, r1);
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+ const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+ const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+ const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res1 = _mm_packs_epi32(w0, w1);
+ res7 = _mm_packs_epi32(w2, w3);
+ res5 = _mm_packs_epi32(w4, w5);
+ res3 = _mm_packs_epi32(w6, w7);
+ }
+ // Transpose the 8x8.
+ {
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 54 54 55 55 56 56 57 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 21 36
+ // 44 54 64 74 45 55 61 76
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+ in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+ in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+ in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+ in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+ in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+ in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+ in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ }
+ }
+ // Post-condition output and store it
+ {
+ // Post-condition (division by two)
+ // division of two 16 bits signed numbers using shifts
+ // n / 2 = (n - (n >> 15)) >> 1
+ const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
+ const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
+ const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
+ const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
+ const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
+ const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
+ const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
+ const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
+ in0 = _mm_sub_epi16(in0, sign_in0);
+ in1 = _mm_sub_epi16(in1, sign_in1);
+ in2 = _mm_sub_epi16(in2, sign_in2);
+ in3 = _mm_sub_epi16(in3, sign_in3);
+ in4 = _mm_sub_epi16(in4, sign_in4);
+ in5 = _mm_sub_epi16(in5, sign_in5);
+ in6 = _mm_sub_epi16(in6, sign_in6);
+ in7 = _mm_sub_epi16(in7, sign_in7);
+ in0 = _mm_srai_epi16(in0, 1);
+ in1 = _mm_srai_epi16(in1, 1);
+ in2 = _mm_srai_epi16(in2, 1);
+ in3 = _mm_srai_epi16(in3, 1);
+ in4 = _mm_srai_epi16(in4, 1);
+ in5 = _mm_srai_epi16(in5, 1);
+ in6 = _mm_srai_epi16(in6, 1);
+ in7 = _mm_srai_epi16(in7, 1);
+ // store results
+ _mm_store_si128((__m128i *)(output + 0 * 8), in0);
+ _mm_store_si128((__m128i *)(output + 1 * 8), in1);
+ _mm_store_si128((__m128i *)(output + 2 * 8), in2);
+ _mm_store_si128((__m128i *)(output + 3 * 8), in3);
+ _mm_store_si128((__m128i *)(output + 4 * 8), in4);
+ _mm_store_si128((__m128i *)(output + 5 * 8), in5);
+ _mm_store_si128((__m128i *)(output + 6 * 8), in6);
+ _mm_store_si128((__m128i *)(output + 7 * 8), in7);
+ }
+}
+
+// load 8x8 array
+static INLINE void load_buffer_8x8_avx2(const int16_t *input, __m128i *in,
+ int stride) {
+ in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ in[1] = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ in[2] = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ in[3] = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ in[4] = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ in[5] = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ in[6] = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ in[7] = _mm_load_si128((const __m128i *)(input + 7 * stride));
+
+ in[0] = _mm_slli_epi16(in[0], 2);
+ in[1] = _mm_slli_epi16(in[1], 2);
+ in[2] = _mm_slli_epi16(in[2], 2);
+ in[3] = _mm_slli_epi16(in[3], 2);
+ in[4] = _mm_slli_epi16(in[4], 2);
+ in[5] = _mm_slli_epi16(in[5], 2);
+ in[6] = _mm_slli_epi16(in[6], 2);
+ in[7] = _mm_slli_epi16(in[7], 2);
+}
+
+// right shift and rounding
+static INLINE void right_shift_8x8_avx2(__m128i *res, int const bit) {
+ const __m128i kOne = _mm_set1_epi16(1);
+ const int bit_m02 = bit - 2;
+ __m128i sign0 = _mm_srai_epi16(res[0], 15);
+ __m128i sign1 = _mm_srai_epi16(res[1], 15);
+ __m128i sign2 = _mm_srai_epi16(res[2], 15);
+ __m128i sign3 = _mm_srai_epi16(res[3], 15);
+ __m128i sign4 = _mm_srai_epi16(res[4], 15);
+ __m128i sign5 = _mm_srai_epi16(res[5], 15);
+ __m128i sign6 = _mm_srai_epi16(res[6], 15);
+ __m128i sign7 = _mm_srai_epi16(res[7], 15);
+
+ if (bit_m02 >= 0) {
+ __m128i k_const_rounding = _mm_slli_epi16(kOne, bit_m02);
+ res[0] = _mm_add_epi16(res[0], k_const_rounding);
+ res[1] = _mm_add_epi16(res[1], k_const_rounding);
+ res[2] = _mm_add_epi16(res[2], k_const_rounding);
+ res[3] = _mm_add_epi16(res[3], k_const_rounding);
+ res[4] = _mm_add_epi16(res[4], k_const_rounding);
+ res[5] = _mm_add_epi16(res[5], k_const_rounding);
+ res[6] = _mm_add_epi16(res[6], k_const_rounding);
+ res[7] = _mm_add_epi16(res[7], k_const_rounding);
+ }
+
+ res[0] = _mm_sub_epi16(res[0], sign0);
+ res[1] = _mm_sub_epi16(res[1], sign1);
+ res[2] = _mm_sub_epi16(res[2], sign2);
+ res[3] = _mm_sub_epi16(res[3], sign3);
+ res[4] = _mm_sub_epi16(res[4], sign4);
+ res[5] = _mm_sub_epi16(res[5], sign5);
+ res[6] = _mm_sub_epi16(res[6], sign6);
+ res[7] = _mm_sub_epi16(res[7], sign7);
+
+ res[0] = _mm_srai_epi16(res[0], bit);
+ res[1] = _mm_srai_epi16(res[1], bit);
+ res[2] = _mm_srai_epi16(res[2], bit);
+ res[3] = _mm_srai_epi16(res[3], bit);
+ res[4] = _mm_srai_epi16(res[4], bit);
+ res[5] = _mm_srai_epi16(res[5], bit);
+ res[6] = _mm_srai_epi16(res[6], bit);
+ res[7] = _mm_srai_epi16(res[7], bit);
+}
+
+// write 8x8 array
+static INLINE void write_buffer_8x8_avx2(int16_t *output, __m128i *res, int stride) {
+ _mm_store_si128((__m128i *)(output + 0 * stride), res[0]);
+ _mm_store_si128((__m128i *)(output + 1 * stride), res[1]);
+ _mm_store_si128((__m128i *)(output + 2 * stride), res[2]);
+ _mm_store_si128((__m128i *)(output + 3 * stride), res[3]);
+ _mm_store_si128((__m128i *)(output + 4 * stride), res[4]);
+ _mm_store_si128((__m128i *)(output + 5 * stride), res[5]);
+ _mm_store_si128((__m128i *)(output + 6 * stride), res[6]);
+ _mm_store_si128((__m128i *)(output + 7 * stride), res[7]);
+}
+
+// perform in-place transpose
+static INLINE void array_transpose_8x8_avx2(__m128i *in, __m128i *res) {
+ const __m128i tr0_0 = _mm_unpacklo_epi16(in[0], in[1]);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(in[2], in[3]);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(in[0], in[1]);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(in[2], in[3]);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(in[4], in[5]);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(in[6], in[7]);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(in[4], in[5]);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(in[6], in[7]);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 44 54 45 55 46 56 47 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 25 35
+ // 44 54 64 74 45 55 65 75
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ res[0] = _mm_unpacklo_epi64(tr1_0, tr1_1);
+ res[1] = _mm_unpackhi_epi64(tr1_0, tr1_1);
+ res[2] = _mm_unpacklo_epi64(tr1_2, tr1_3);
+ res[3] = _mm_unpackhi_epi64(tr1_2, tr1_3);
+ res[4] = _mm_unpacklo_epi64(tr1_4, tr1_5);
+ res[5] = _mm_unpackhi_epi64(tr1_4, tr1_5);
+ res[6] = _mm_unpacklo_epi64(tr1_6, tr1_7);
+ res[7] = _mm_unpackhi_epi64(tr1_6, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+}
+
+void fdct8_avx2(__m128i *in) {
+ // constants
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ __m128i u0, u1, u2, u3, u4, u5, u6, u7;
+ __m128i v0, v1, v2, v3, v4, v5, v6, v7;
+ __m128i s0, s1, s2, s3, s4, s5, s6, s7;
+
+ // stage 1
+ s0 = _mm_add_epi16(in[0], in[7]);
+ s1 = _mm_add_epi16(in[1], in[6]);
+ s2 = _mm_add_epi16(in[2], in[5]);
+ s3 = _mm_add_epi16(in[3], in[4]);
+ s4 = _mm_sub_epi16(in[3], in[4]);
+ s5 = _mm_sub_epi16(in[2], in[5]);
+ s6 = _mm_sub_epi16(in[1], in[6]);
+ s7 = _mm_sub_epi16(in[0], in[7]);
+
+ u0 = _mm_add_epi16(s0, s3);
+ u1 = _mm_add_epi16(s1, s2);
+ u2 = _mm_sub_epi16(s1, s2);
+ u3 = _mm_sub_epi16(s0, s3);
+ // interleave and perform butterfly multiplication/addition
+ v0 = _mm_unpacklo_epi16(u0, u1);
+ v1 = _mm_unpackhi_epi16(u0, u1);
+ v2 = _mm_unpacklo_epi16(u2, u3);
+ v3 = _mm_unpackhi_epi16(u2, u3);
+
+ u0 = _mm_madd_epi16(v0, k__cospi_p16_p16);
+ u1 = _mm_madd_epi16(v1, k__cospi_p16_p16);
+ u2 = _mm_madd_epi16(v0, k__cospi_p16_m16);
+ u3 = _mm_madd_epi16(v1, k__cospi_p16_m16);
+ u4 = _mm_madd_epi16(v2, k__cospi_p24_p08);
+ u5 = _mm_madd_epi16(v3, k__cospi_p24_p08);
+ u6 = _mm_madd_epi16(v2, k__cospi_m08_p24);
+ u7 = _mm_madd_epi16(v3, k__cospi_m08_p24);
+
+ // shift and rounding
+ v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+
+ u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+
+ in[0] = _mm_packs_epi32(u0, u1);
+ in[2] = _mm_packs_epi32(u4, u5);
+ in[4] = _mm_packs_epi32(u2, u3);
+ in[6] = _mm_packs_epi32(u6, u7);
+
+ // stage 2
+ // interleave and perform butterfly multiplication/addition
+ u0 = _mm_unpacklo_epi16(s6, s5);
+ u1 = _mm_unpackhi_epi16(s6, s5);
+ v0 = _mm_madd_epi16(u0, k__cospi_p16_m16);
+ v1 = _mm_madd_epi16(u1, k__cospi_p16_m16);
+ v2 = _mm_madd_epi16(u0, k__cospi_p16_p16);
+ v3 = _mm_madd_epi16(u1, k__cospi_p16_p16);
+
+ // shift and rounding
+ u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
+ u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
+ u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
+ u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
+
+ v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
+ v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
+ v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
+ v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
+
+ u0 = _mm_packs_epi32(v0, v1);
+ u1 = _mm_packs_epi32(v2, v3);
+
+ // stage 3
+ s0 = _mm_add_epi16(s4, u0);
+ s1 = _mm_sub_epi16(s4, u0);
+ s2 = _mm_sub_epi16(s7, u1);
+ s3 = _mm_add_epi16(s7, u1);
+
+ // stage 4
+ u0 = _mm_unpacklo_epi16(s0, s3);
+ u1 = _mm_unpackhi_epi16(s0, s3);
+ u2 = _mm_unpacklo_epi16(s1, s2);
+ u3 = _mm_unpackhi_epi16(s1, s2);
+
+ v0 = _mm_madd_epi16(u0, k__cospi_p28_p04);
+ v1 = _mm_madd_epi16(u1, k__cospi_p28_p04);
+ v2 = _mm_madd_epi16(u2, k__cospi_p12_p20);
+ v3 = _mm_madd_epi16(u3, k__cospi_p12_p20);
+ v4 = _mm_madd_epi16(u2, k__cospi_m20_p12);
+ v5 = _mm_madd_epi16(u3, k__cospi_m20_p12);
+ v6 = _mm_madd_epi16(u0, k__cospi_m04_p28);
+ v7 = _mm_madd_epi16(u1, k__cospi_m04_p28);
+
+ // shift and rounding
+ u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
+ u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
+ u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
+ u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
+ u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
+ u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
+ u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
+ u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
+
+ v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
+ v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
+ v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
+ v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
+ v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
+ v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
+ v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
+ v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
+
+ in[1] = _mm_packs_epi32(v0, v1);
+ in[3] = _mm_packs_epi32(v4, v5);
+ in[5] = _mm_packs_epi32(v2, v3);
+ in[7] = _mm_packs_epi32(v6, v7);
+
+ // transpose
+ array_transpose_8x8_avx2(in, in);
+}
+
+void fadst8_avx2(__m128i *in) {
+ // Constants
+ const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64);
+ const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64);
+ const __m128i k__cospi_p10_p22 = pair_set_epi16(cospi_10_64, cospi_22_64);
+ const __m128i k__cospi_p22_m10 = pair_set_epi16(cospi_22_64, -cospi_10_64);
+ const __m128i k__cospi_p18_p14 = pair_set_epi16(cospi_18_64, cospi_14_64);
+ const __m128i k__cospi_p14_m18 = pair_set_epi16(cospi_14_64, -cospi_18_64);
+ const __m128i k__cospi_p26_p06 = pair_set_epi16(cospi_26_64, cospi_6_64);
+ const __m128i k__cospi_p06_m26 = pair_set_epi16(cospi_6_64, -cospi_26_64);
+ const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
+ const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__const_0 = _mm_set1_epi16(0);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+
+ __m128i u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15;
+ __m128i v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15;
+ __m128i w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
+ __m128i s0, s1, s2, s3, s4, s5, s6, s7;
+ __m128i in0, in1, in2, in3, in4, in5, in6, in7;
+
+ // properly aligned for butterfly input
+ in0 = in[7];
+ in1 = in[0];
+ in2 = in[5];
+ in3 = in[2];
+ in4 = in[3];
+ in5 = in[4];
+ in6 = in[1];
+ in7 = in[6];
+
+ // column transformation
+ // stage 1
+ // interleave and multiply/add into 32-bit integer
+ s0 = _mm_unpacklo_epi16(in0, in1);
+ s1 = _mm_unpackhi_epi16(in0, in1);
+ s2 = _mm_unpacklo_epi16(in2, in3);
+ s3 = _mm_unpackhi_epi16(in2, in3);
+ s4 = _mm_unpacklo_epi16(in4, in5);
+ s5 = _mm_unpackhi_epi16(in4, in5);
+ s6 = _mm_unpacklo_epi16(in6, in7);
+ s7 = _mm_unpackhi_epi16(in6, in7);
+
+ u0 = _mm_madd_epi16(s0, k__cospi_p02_p30);
+ u1 = _mm_madd_epi16(s1, k__cospi_p02_p30);
+ u2 = _mm_madd_epi16(s0, k__cospi_p30_m02);
+ u3 = _mm_madd_epi16(s1, k__cospi_p30_m02);
+ u4 = _mm_madd_epi16(s2, k__cospi_p10_p22);
+ u5 = _mm_madd_epi16(s3, k__cospi_p10_p22);
+ u6 = _mm_madd_epi16(s2, k__cospi_p22_m10);
+ u7 = _mm_madd_epi16(s3, k__cospi_p22_m10);
+ u8 = _mm_madd_epi16(s4, k__cospi_p18_p14);
+ u9 = _mm_madd_epi16(s5, k__cospi_p18_p14);
+ u10 = _mm_madd_epi16(s4, k__cospi_p14_m18);
+ u11 = _mm_madd_epi16(s5, k__cospi_p14_m18);
+ u12 = _mm_madd_epi16(s6, k__cospi_p26_p06);
+ u13 = _mm_madd_epi16(s7, k__cospi_p26_p06);
+ u14 = _mm_madd_epi16(s6, k__cospi_p06_m26);
+ u15 = _mm_madd_epi16(s7, k__cospi_p06_m26);
+
+ // addition
+ w0 = _mm_add_epi32(u0, u8);
+ w1 = _mm_add_epi32(u1, u9);
+ w2 = _mm_add_epi32(u2, u10);
+ w3 = _mm_add_epi32(u3, u11);
+ w4 = _mm_add_epi32(u4, u12);
+ w5 = _mm_add_epi32(u5, u13);
+ w6 = _mm_add_epi32(u6, u14);
+ w7 = _mm_add_epi32(u7, u15);
+ w8 = _mm_sub_epi32(u0, u8);
+ w9 = _mm_sub_epi32(u1, u9);
+ w10 = _mm_sub_epi32(u2, u10);
+ w11 = _mm_sub_epi32(u3, u11);
+ w12 = _mm_sub_epi32(u4, u12);
+ w13 = _mm_sub_epi32(u5, u13);
+ w14 = _mm_sub_epi32(u6, u14);
+ w15 = _mm_sub_epi32(u7, u15);
+
+ // shift and rounding
+ v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING);
+ v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING);
+ v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING);
+ v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING);
+ v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING);
+ v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING);
+ v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING);
+ v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING);
+ v8 = _mm_add_epi32(w8, k__DCT_CONST_ROUNDING);
+ v9 = _mm_add_epi32(w9, k__DCT_CONST_ROUNDING);
+ v10 = _mm_add_epi32(w10, k__DCT_CONST_ROUNDING);
+ v11 = _mm_add_epi32(w11, k__DCT_CONST_ROUNDING);
+ v12 = _mm_add_epi32(w12, k__DCT_CONST_ROUNDING);
+ v13 = _mm_add_epi32(w13, k__DCT_CONST_ROUNDING);
+ v14 = _mm_add_epi32(w14, k__DCT_CONST_ROUNDING);
+ v15 = _mm_add_epi32(w15, k__DCT_CONST_ROUNDING);
+
+ u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ u8 = _mm_srai_epi32(v8, DCT_CONST_BITS);
+ u9 = _mm_srai_epi32(v9, DCT_CONST_BITS);
+ u10 = _mm_srai_epi32(v10, DCT_CONST_BITS);
+ u11 = _mm_srai_epi32(v11, DCT_CONST_BITS);
+ u12 = _mm_srai_epi32(v12, DCT_CONST_BITS);
+ u13 = _mm_srai_epi32(v13, DCT_CONST_BITS);
+ u14 = _mm_srai_epi32(v14, DCT_CONST_BITS);
+ u15 = _mm_srai_epi32(v15, DCT_CONST_BITS);
+
+ // back to 16-bit and pack 8 integers into __m128i
+ in[0] = _mm_packs_epi32(u0, u1);
+ in[1] = _mm_packs_epi32(u2, u3);
+ in[2] = _mm_packs_epi32(u4, u5);
+ in[3] = _mm_packs_epi32(u6, u7);
+ in[4] = _mm_packs_epi32(u8, u9);
+ in[5] = _mm_packs_epi32(u10, u11);
+ in[6] = _mm_packs_epi32(u12, u13);
+ in[7] = _mm_packs_epi32(u14, u15);
+
+ // stage 2
+ s0 = _mm_add_epi16(in[0], in[2]);
+ s1 = _mm_add_epi16(in[1], in[3]);
+ s2 = _mm_sub_epi16(in[0], in[2]);
+ s3 = _mm_sub_epi16(in[1], in[3]);
+ u0 = _mm_unpacklo_epi16(in[4], in[5]);
+ u1 = _mm_unpackhi_epi16(in[4], in[5]);
+ u2 = _mm_unpacklo_epi16(in[6], in[7]);
+ u3 = _mm_unpackhi_epi16(in[6], in[7]);
+
+ v0 = _mm_madd_epi16(u0, k__cospi_p08_p24);
+ v1 = _mm_madd_epi16(u1, k__cospi_p08_p24);
+ v2 = _mm_madd_epi16(u0, k__cospi_p24_m08);
+ v3 = _mm_madd_epi16(u1, k__cospi_p24_m08);
+ v4 = _mm_madd_epi16(u2, k__cospi_m24_p08);
+ v5 = _mm_madd_epi16(u3, k__cospi_m24_p08);
+ v6 = _mm_madd_epi16(u2, k__cospi_p08_p24);
+ v7 = _mm_madd_epi16(u3, k__cospi_p08_p24);
+
+ w0 = _mm_add_epi32(v0, v4);
+ w1 = _mm_add_epi32(v1, v5);
+ w2 = _mm_add_epi32(v2, v6);
+ w3 = _mm_add_epi32(v3, v7);
+ w4 = _mm_sub_epi32(v0, v4);
+ w5 = _mm_sub_epi32(v1, v5);
+ w6 = _mm_sub_epi32(v2, v6);
+ w7 = _mm_sub_epi32(v3, v7);
+
+ v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING);
+ v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING);
+ v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING);
+ v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING);
+ v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING);
+ v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING);
+ v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING);
+ v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING);
+
+ u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+
+ // back to 16-bit intergers
+ s4 = _mm_packs_epi32(u0, u1);
+ s5 = _mm_packs_epi32(u2, u3);
+ s6 = _mm_packs_epi32(u4, u5);
+ s7 = _mm_packs_epi32(u6, u7);
+
+ // stage 3
+ u0 = _mm_unpacklo_epi16(s2, s3);
+ u1 = _mm_unpackhi_epi16(s2, s3);
+ u2 = _mm_unpacklo_epi16(s6, s7);
+ u3 = _mm_unpackhi_epi16(s6, s7);
+
+ v0 = _mm_madd_epi16(u0, k__cospi_p16_p16);
+ v1 = _mm_madd_epi16(u1, k__cospi_p16_p16);
+ v2 = _mm_madd_epi16(u0, k__cospi_p16_m16);
+ v3 = _mm_madd_epi16(u1, k__cospi_p16_m16);
+ v4 = _mm_madd_epi16(u2, k__cospi_p16_p16);
+ v5 = _mm_madd_epi16(u3, k__cospi_p16_p16);
+ v6 = _mm_madd_epi16(u2, k__cospi_p16_m16);
+ v7 = _mm_madd_epi16(u3, k__cospi_p16_m16);
+
+ u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
+ u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
+ u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
+ u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
+ u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
+ u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
+ u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
+ u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
+
+ v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
+ v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
+ v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
+ v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
+ v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
+ v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
+ v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
+ v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
+
+ s2 = _mm_packs_epi32(v0, v1);
+ s3 = _mm_packs_epi32(v2, v3);
+ s6 = _mm_packs_epi32(v4, v5);
+ s7 = _mm_packs_epi32(v6, v7);
+
+ // FIXME(jingning): do subtract using bit inversion?
+ in[0] = s0;
+ in[1] = _mm_sub_epi16(k__const_0, s4);
+ in[2] = s6;
+ in[3] = _mm_sub_epi16(k__const_0, s2);
+ in[4] = s3;
+ in[5] = _mm_sub_epi16(k__const_0, s7);
+ in[6] = s5;
+ in[7] = _mm_sub_epi16(k__const_0, s1);
+
+ // transpose
+ array_transpose_8x8_avx2(in, in);
+}
+
+void vp9_fht8x8_avx2(const int16_t *input, int16_t *output,
+ int stride, int tx_type) {
+ __m128i in[8];
+
+ switch (tx_type) {
+ case DCT_DCT:
+ vp9_fdct8x8_avx2(input, output, stride);
+ break;
+ case ADST_DCT:
+ load_buffer_8x8_avx2(input, in, stride);
+ fadst8_avx2(in);
+ fdct8_avx2(in);
+ right_shift_8x8_avx2(in, 1);
+ write_buffer_8x8_avx2(output, in, 8);
+ break;
+ case DCT_ADST:
+ load_buffer_8x8_avx2(input, in, stride);
+ fdct8_avx2(in);
+ fadst8_avx2(in);
+ right_shift_8x8_avx2(in, 1);
+ write_buffer_8x8_avx2(output, in, 8);
+ break;
+ case ADST_ADST:
+ load_buffer_8x8_avx2(input, in, stride);
+ fadst8_avx2(in);
+ fadst8_avx2(in);
+ right_shift_8x8_avx2(in, 1);
+ write_buffer_8x8_avx2(output, in, 8);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+}
+
+void vp9_fdct16x16_avx2(const int16_t *input, int16_t *output, int stride) {
+ // The 2D transform is done with two passes which are actually pretty
+ // similar. In the first one, we transform the columns and transpose
+ // the results. In the second one, we transform the rows. To achieve that,
+ // as the first pass results are transposed, we transpose the columns (that
+ // is the transposed rows) and transpose the results (so that it goes back
+ // in normal/row positions).
+ int pass;
+ // We need an intermediate buffer between passes.
+ DECLARE_ALIGNED_ARRAY(16, int16_t, intermediate, 256);
+ const int16_t *in = input;
+ int16_t *out = intermediate;
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m24_m08 = pair_set_epi16(-cospi_24_64, -cospi_8_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
+ const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
+ const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
+ const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
+ const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
+ const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
+ const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
+ const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ const __m128i kOne = _mm_set1_epi16(1);
+ // Do the two transform/transpose passes
+ for (pass = 0; pass < 2; ++pass) {
+ // We process eight columns (transposed rows in second pass) at a time.
+ int column_start;
+ for (column_start = 0; column_start < 16; column_start += 8) {
+ __m128i in00, in01, in02, in03, in04, in05, in06, in07;
+ __m128i in08, in09, in10, in11, in12, in13, in14, in15;
+ __m128i input0, input1, input2, input3, input4, input5, input6, input7;
+ __m128i step1_0, step1_1, step1_2, step1_3;
+ __m128i step1_4, step1_5, step1_6, step1_7;
+ __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6;
+ __m128i step3_0, step3_1, step3_2, step3_3;
+ __m128i step3_4, step3_5, step3_6, step3_7;
+ __m128i res00, res01, res02, res03, res04, res05, res06, res07;
+ __m128i res08, res09, res10, res11, res12, res13, res14, res15;
+ // Load and pre-condition input.
+ if (0 == pass) {
+ in00 = _mm_load_si128((const __m128i *)(in + 0 * stride));
+ in01 = _mm_load_si128((const __m128i *)(in + 1 * stride));
+ in02 = _mm_load_si128((const __m128i *)(in + 2 * stride));
+ in03 = _mm_load_si128((const __m128i *)(in + 3 * stride));
+ in04 = _mm_load_si128((const __m128i *)(in + 4 * stride));
+ in05 = _mm_load_si128((const __m128i *)(in + 5 * stride));
+ in06 = _mm_load_si128((const __m128i *)(in + 6 * stride));
+ in07 = _mm_load_si128((const __m128i *)(in + 7 * stride));
+ in08 = _mm_load_si128((const __m128i *)(in + 8 * stride));
+ in09 = _mm_load_si128((const __m128i *)(in + 9 * stride));
+ in10 = _mm_load_si128((const __m128i *)(in + 10 * stride));
+ in11 = _mm_load_si128((const __m128i *)(in + 11 * stride));
+ in12 = _mm_load_si128((const __m128i *)(in + 12 * stride));
+ in13 = _mm_load_si128((const __m128i *)(in + 13 * stride));
+ in14 = _mm_load_si128((const __m128i *)(in + 14 * stride));
+ in15 = _mm_load_si128((const __m128i *)(in + 15 * stride));
+ // x = x << 2
+ in00 = _mm_slli_epi16(in00, 2);
+ in01 = _mm_slli_epi16(in01, 2);
+ in02 = _mm_slli_epi16(in02, 2);
+ in03 = _mm_slli_epi16(in03, 2);
+ in04 = _mm_slli_epi16(in04, 2);
+ in05 = _mm_slli_epi16(in05, 2);
+ in06 = _mm_slli_epi16(in06, 2);
+ in07 = _mm_slli_epi16(in07, 2);
+ in08 = _mm_slli_epi16(in08, 2);
+ in09 = _mm_slli_epi16(in09, 2);
+ in10 = _mm_slli_epi16(in10, 2);
+ in11 = _mm_slli_epi16(in11, 2);
+ in12 = _mm_slli_epi16(in12, 2);
+ in13 = _mm_slli_epi16(in13, 2);
+ in14 = _mm_slli_epi16(in14, 2);
+ in15 = _mm_slli_epi16(in15, 2);
+ } else {
+ in00 = _mm_load_si128((const __m128i *)(in + 0 * 16));
+ in01 = _mm_load_si128((const __m128i *)(in + 1 * 16));
+ in02 = _mm_load_si128((const __m128i *)(in + 2 * 16));
+ in03 = _mm_load_si128((const __m128i *)(in + 3 * 16));
+ in04 = _mm_load_si128((const __m128i *)(in + 4 * 16));
+ in05 = _mm_load_si128((const __m128i *)(in + 5 * 16));
+ in06 = _mm_load_si128((const __m128i *)(in + 6 * 16));
+ in07 = _mm_load_si128((const __m128i *)(in + 7 * 16));
+ in08 = _mm_load_si128((const __m128i *)(in + 8 * 16));
+ in09 = _mm_load_si128((const __m128i *)(in + 9 * 16));
+ in10 = _mm_load_si128((const __m128i *)(in + 10 * 16));
+ in11 = _mm_load_si128((const __m128i *)(in + 11 * 16));
+ in12 = _mm_load_si128((const __m128i *)(in + 12 * 16));
+ in13 = _mm_load_si128((const __m128i *)(in + 13 * 16));
+ in14 = _mm_load_si128((const __m128i *)(in + 14 * 16));
+ in15 = _mm_load_si128((const __m128i *)(in + 15 * 16));
+ // x = (x + 1) >> 2
+ in00 = _mm_add_epi16(in00, kOne);
+ in01 = _mm_add_epi16(in01, kOne);
+ in02 = _mm_add_epi16(in02, kOne);
+ in03 = _mm_add_epi16(in03, kOne);
+ in04 = _mm_add_epi16(in04, kOne);
+ in05 = _mm_add_epi16(in05, kOne);
+ in06 = _mm_add_epi16(in06, kOne);
+ in07 = _mm_add_epi16(in07, kOne);
+ in08 = _mm_add_epi16(in08, kOne);
+ in09 = _mm_add_epi16(in09, kOne);
+ in10 = _mm_add_epi16(in10, kOne);
+ in11 = _mm_add_epi16(in11, kOne);
+ in12 = _mm_add_epi16(in12, kOne);
+ in13 = _mm_add_epi16(in13, kOne);
+ in14 = _mm_add_epi16(in14, kOne);
+ in15 = _mm_add_epi16(in15, kOne);
+ in00 = _mm_srai_epi16(in00, 2);
+ in01 = _mm_srai_epi16(in01, 2);
+ in02 = _mm_srai_epi16(in02, 2);
+ in03 = _mm_srai_epi16(in03, 2);
+ in04 = _mm_srai_epi16(in04, 2);
+ in05 = _mm_srai_epi16(in05, 2);
+ in06 = _mm_srai_epi16(in06, 2);
+ in07 = _mm_srai_epi16(in07, 2);
+ in08 = _mm_srai_epi16(in08, 2);
+ in09 = _mm_srai_epi16(in09, 2);
+ in10 = _mm_srai_epi16(in10, 2);
+ in11 = _mm_srai_epi16(in11, 2);
+ in12 = _mm_srai_epi16(in12, 2);
+ in13 = _mm_srai_epi16(in13, 2);
+ in14 = _mm_srai_epi16(in14, 2);
+ in15 = _mm_srai_epi16(in15, 2);
+ }
+ in += 8;
+ // Calculate input for the first 8 results.
+ {
+ input0 = _mm_add_epi16(in00, in15);
+ input1 = _mm_add_epi16(in01, in14);
+ input2 = _mm_add_epi16(in02, in13);
+ input3 = _mm_add_epi16(in03, in12);
+ input4 = _mm_add_epi16(in04, in11);
+ input5 = _mm_add_epi16(in05, in10);
+ input6 = _mm_add_epi16(in06, in09);
+ input7 = _mm_add_epi16(in07, in08);
+ }
+ // Calculate input for the next 8 results.
+ {
+ step1_0 = _mm_sub_epi16(in07, in08);
+ step1_1 = _mm_sub_epi16(in06, in09);
+ step1_2 = _mm_sub_epi16(in05, in10);
+ step1_3 = _mm_sub_epi16(in04, in11);
+ step1_4 = _mm_sub_epi16(in03, in12);
+ step1_5 = _mm_sub_epi16(in02, in13);
+ step1_6 = _mm_sub_epi16(in01, in14);
+ step1_7 = _mm_sub_epi16(in00, in15);
+ }
+ // Work on the first eight values; fdct8(input, even_results);
+ {
+ // Add/subtract
+ const __m128i q0 = _mm_add_epi16(input0, input7);
+ const __m128i q1 = _mm_add_epi16(input1, input6);
+ const __m128i q2 = _mm_add_epi16(input2, input5);
+ const __m128i q3 = _mm_add_epi16(input3, input4);
+ const __m128i q4 = _mm_sub_epi16(input3, input4);
+ const __m128i q5 = _mm_sub_epi16(input2, input5);
+ const __m128i q6 = _mm_sub_epi16(input1, input6);
+ const __m128i q7 = _mm_sub_epi16(input0, input7);
+ // Work on first four results
+ {
+ // Add/subtract
+ const __m128i r0 = _mm_add_epi16(q0, q3);
+ const __m128i r1 = _mm_add_epi16(q1, q2);
+ const __m128i r2 = _mm_sub_epi16(q1, q2);
+ const __m128i r3 = _mm_sub_epi16(q0, q3);
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+ const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+ const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+ const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res00 = _mm_packs_epi32(w0, w1);
+ res08 = _mm_packs_epi32(w2, w3);
+ res04 = _mm_packs_epi32(w4, w5);
+ res12 = _mm_packs_epi32(w6, w7);
+ }
+ // Work on next four results
+ {
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+ const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+ const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
+ const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
+ const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
+ const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
+ const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
+ const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
+ const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
+ const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
+ const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
+ const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
+ const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
+ // Combine
+ const __m128i r0 = _mm_packs_epi32(s0, s1);
+ const __m128i r1 = _mm_packs_epi32(s2, s3);
+ // Add/subtract
+ const __m128i x0 = _mm_add_epi16(q4, r0);
+ const __m128i x1 = _mm_sub_epi16(q4, r0);
+ const __m128i x2 = _mm_sub_epi16(q7, r1);
+ const __m128i x3 = _mm_add_epi16(q7, r1);
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+ const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+ const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+ const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res02 = _mm_packs_epi32(w0, w1);
+ res14 = _mm_packs_epi32(w2, w3);
+ res10 = _mm_packs_epi32(w4, w5);
+ res06 = _mm_packs_epi32(w6, w7);
+ }
+ }
+ // Work on the next eight values; step1 -> odd_results
+ {
+ // step 2
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_m16);
+ const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p16_m16);
+ const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p16_m16);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // Combine
+ step2_2 = _mm_packs_epi32(w0, w1);
+ step2_3 = _mm_packs_epi32(w2, w3);
+ }
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
+ const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p16_p16);
+ const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // Combine
+ step2_5 = _mm_packs_epi32(w0, w1);
+ step2_4 = _mm_packs_epi32(w2, w3);
+ }
+ // step 3
+ {
+ step3_0 = _mm_add_epi16(step1_0, step2_3);
+ step3_1 = _mm_add_epi16(step1_1, step2_2);
+ step3_2 = _mm_sub_epi16(step1_1, step2_2);
+ step3_3 = _mm_sub_epi16(step1_0, step2_3);
+ step3_4 = _mm_sub_epi16(step1_7, step2_4);
+ step3_5 = _mm_sub_epi16(step1_6, step2_5);
+ step3_6 = _mm_add_epi16(step1_6, step2_5);
+ step3_7 = _mm_add_epi16(step1_7, step2_4);
+ }
+ // step 4
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
+ const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
+ const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
+ const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m08_p24);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m08_p24);
+ const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m24_m08);
+ const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m24_m08);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // Combine
+ step2_1 = _mm_packs_epi32(w0, w1);
+ step2_2 = _mm_packs_epi32(w2, w3);
+ }
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
+ const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
+ const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
+ const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p24_p08);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p24_p08);
+ const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+ const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m08_p24);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // Combine
+ step2_6 = _mm_packs_epi32(w0, w1);
+ step2_5 = _mm_packs_epi32(w2, w3);
+ }
+ // step 5
+ {
+ step1_0 = _mm_add_epi16(step3_0, step2_1);
+ step1_1 = _mm_sub_epi16(step3_0, step2_1);
+ step1_2 = _mm_sub_epi16(step3_3, step2_2);
+ step1_3 = _mm_add_epi16(step3_3, step2_2);
+ step1_4 = _mm_add_epi16(step3_4, step2_5);
+ step1_5 = _mm_sub_epi16(step3_4, step2_5);
+ step1_6 = _mm_sub_epi16(step3_7, step2_6);
+ step1_7 = _mm_add_epi16(step3_7, step2_6);
+ }
+ // step 6
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p30_p02);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p30_p02);
+ const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p14_p18);
+ const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p14_p18);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // Combine
+ res01 = _mm_packs_epi32(w0, w1);
+ res09 = _mm_packs_epi32(w2, w3);
+ }
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p22_p10);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p22_p10);
+ const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p06_p26);
+ const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p06_p26);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // Combine
+ res05 = _mm_packs_epi32(w0, w1);
+ res13 = _mm_packs_epi32(w2, w3);
+ }
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m10_p22);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m10_p22);
+ const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m26_p06);
+ const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m26_p06);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // Combine
+ res11 = _mm_packs_epi32(w0, w1);
+ res03 = _mm_packs_epi32(w2, w3);
+ }
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m02_p30);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m02_p30);
+ const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m18_p14);
+ const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m18_p14);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // Combine
+ res15 = _mm_packs_epi32(w0, w1);
+ res07 = _mm_packs_epi32(w2, w3);
+ }
+ }
+ // Transpose the results, do it as two 8x8 transposes.
+ {
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ const __m128i tr0_0 = _mm_unpacklo_epi16(res00, res01);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(res02, res03);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(res00, res01);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(res02, res03);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(res04, res05);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(res06, res07);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(res04, res05);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(res06, res07);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 54 54 55 55 56 56 57 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 21 36
+ // 44 54 64 74 45 55 61 76
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ const __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+ const __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+ const __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+ const __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+ const __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+ const __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+ const __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+ const __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ _mm_storeu_si128((__m128i *)(out + 0 * 16), tr2_0);
+ _mm_storeu_si128((__m128i *)(out + 1 * 16), tr2_1);
+ _mm_storeu_si128((__m128i *)(out + 2 * 16), tr2_2);
+ _mm_storeu_si128((__m128i *)(out + 3 * 16), tr2_3);
+ _mm_storeu_si128((__m128i *)(out + 4 * 16), tr2_4);
+ _mm_storeu_si128((__m128i *)(out + 5 * 16), tr2_5);
+ _mm_storeu_si128((__m128i *)(out + 6 * 16), tr2_6);
+ _mm_storeu_si128((__m128i *)(out + 7 * 16), tr2_7);
+ }
+ {
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ const __m128i tr0_0 = _mm_unpacklo_epi16(res08, res09);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(res10, res11);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(res08, res09);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(res10, res11);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(res12, res13);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(res14, res15);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(res12, res13);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(res14, res15);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 54 54 55 55 56 56 57 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 21 36
+ // 44 54 64 74 45 55 61 76
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ const __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+ const __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+ const __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+ const __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+ const __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+ const __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+ const __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+ const __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ // Store results
+ _mm_store_si128((__m128i *)(out + 8 + 0 * 16), tr2_0);
+ _mm_store_si128((__m128i *)(out + 8 + 1 * 16), tr2_1);
+ _mm_store_si128((__m128i *)(out + 8 + 2 * 16), tr2_2);
+ _mm_store_si128((__m128i *)(out + 8 + 3 * 16), tr2_3);
+ _mm_store_si128((__m128i *)(out + 8 + 4 * 16), tr2_4);
+ _mm_store_si128((__m128i *)(out + 8 + 5 * 16), tr2_5);
+ _mm_store_si128((__m128i *)(out + 8 + 6 * 16), tr2_6);
+ _mm_store_si128((__m128i *)(out + 8 + 7 * 16), tr2_7);
+ }
+ out += 8*16;
+ }
+ // Setup in/out for next pass.
+ in = intermediate;
+ out = output;
+ }
+}
+
+static INLINE void load_buffer_16x16_avx2(const int16_t* input, __m128i *in0,
+ __m128i *in1, int stride) {
+ // load first 8 columns
+ load_buffer_8x8_avx2(input, in0, stride);
+ load_buffer_8x8_avx2(input + 8 * stride, in0 + 8, stride);
+
+ input += 8;
+ // load second 8 columns
+ load_buffer_8x8_avx2(input, in1, stride);
+ load_buffer_8x8_avx2(input + 8 * stride, in1 + 8, stride);
+}
+
+static INLINE void write_buffer_16x16_avx2(int16_t *output, __m128i *in0,
+ __m128i *in1, int stride) {
+ // write first 8 columns
+ write_buffer_8x8_avx2(output, in0, stride);
+ write_buffer_8x8_avx2(output + 8 * stride, in0 + 8, stride);
+ // write second 8 columns
+ output += 8;
+ write_buffer_8x8_avx2(output, in1, stride);
+ write_buffer_8x8_avx2(output + 8 * stride, in1 + 8, stride);
+}
+
+static INLINE void array_transpose_16x16_avx2(__m128i *res0, __m128i *res1) {
+ __m128i tbuf[8];
+ array_transpose_8x8_avx2(res0, res0);
+ array_transpose_8x8_avx2(res1, tbuf);
+ array_transpose_8x8_avx2(res0 + 8, res1);
+ array_transpose_8x8_avx2(res1 + 8, res1 + 8);
+
+ res0[8] = tbuf[0];
+ res0[9] = tbuf[1];
+ res0[10] = tbuf[2];
+ res0[11] = tbuf[3];
+ res0[12] = tbuf[4];
+ res0[13] = tbuf[5];
+ res0[14] = tbuf[6];
+ res0[15] = tbuf[7];
+}
+
+static INLINE void right_shift_16x16_avx2(__m128i *res0, __m128i *res1) {
+ // perform rounding operations
+ right_shift_8x8_avx2(res0, 2);
+ right_shift_8x8_avx2(res0 + 8, 2);
+ right_shift_8x8_avx2(res1, 2);
+ right_shift_8x8_avx2(res1 + 8, 2);
+}
+
+void fdct16_8col_avx2(__m128i *in) {
+ // perform 16x16 1-D DCT for 8 columns
+ __m128i i[8], s[8], p[8], t[8], u[16], v[16];
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m24_m08 = pair_set_epi16(-cospi_24_64, -cospi_8_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
+ const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
+ const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
+ const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
+ const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
+ const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
+ const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
+ const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+
+ // stage 1
+ i[0] = _mm_add_epi16(in[0], in[15]);
+ i[1] = _mm_add_epi16(in[1], in[14]);
+ i[2] = _mm_add_epi16(in[2], in[13]);
+ i[3] = _mm_add_epi16(in[3], in[12]);
+ i[4] = _mm_add_epi16(in[4], in[11]);
+ i[5] = _mm_add_epi16(in[5], in[10]);
+ i[6] = _mm_add_epi16(in[6], in[9]);
+ i[7] = _mm_add_epi16(in[7], in[8]);
+
+ s[0] = _mm_sub_epi16(in[7], in[8]);
+ s[1] = _mm_sub_epi16(in[6], in[9]);
+ s[2] = _mm_sub_epi16(in[5], in[10]);
+ s[3] = _mm_sub_epi16(in[4], in[11]);
+ s[4] = _mm_sub_epi16(in[3], in[12]);
+ s[5] = _mm_sub_epi16(in[2], in[13]);
+ s[6] = _mm_sub_epi16(in[1], in[14]);
+ s[7] = _mm_sub_epi16(in[0], in[15]);
+
+ p[0] = _mm_add_epi16(i[0], i[7]);
+ p[1] = _mm_add_epi16(i[1], i[6]);
+ p[2] = _mm_add_epi16(i[2], i[5]);
+ p[3] = _mm_add_epi16(i[3], i[4]);
+ p[4] = _mm_sub_epi16(i[3], i[4]);
+ p[5] = _mm_sub_epi16(i[2], i[5]);
+ p[6] = _mm_sub_epi16(i[1], i[6]);
+ p[7] = _mm_sub_epi16(i[0], i[7]);
+
+ u[0] = _mm_add_epi16(p[0], p[3]);
+ u[1] = _mm_add_epi16(p[1], p[2]);
+ u[2] = _mm_sub_epi16(p[1], p[2]);
+ u[3] = _mm_sub_epi16(p[0], p[3]);
+
+ v[0] = _mm_unpacklo_epi16(u[0], u[1]);
+ v[1] = _mm_unpackhi_epi16(u[0], u[1]);
+ v[2] = _mm_unpacklo_epi16(u[2], u[3]);
+ v[3] = _mm_unpackhi_epi16(u[2], u[3]);
+
+ u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16);
+ u[1] = _mm_madd_epi16(v[1], k__cospi_p16_p16);
+ u[2] = _mm_madd_epi16(v[0], k__cospi_p16_m16);
+ u[3] = _mm_madd_epi16(v[1], k__cospi_p16_m16);
+ u[4] = _mm_madd_epi16(v[2], k__cospi_p24_p08);
+ u[5] = _mm_madd_epi16(v[3], k__cospi_p24_p08);
+ u[6] = _mm_madd_epi16(v[2], k__cospi_m08_p24);
+ u[7] = _mm_madd_epi16(v[3], k__cospi_m08_p24);
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+
+ in[0] = _mm_packs_epi32(u[0], u[1]);
+ in[4] = _mm_packs_epi32(u[4], u[5]);
+ in[8] = _mm_packs_epi32(u[2], u[3]);
+ in[12] = _mm_packs_epi32(u[6], u[7]);
+
+ u[0] = _mm_unpacklo_epi16(p[5], p[6]);
+ u[1] = _mm_unpackhi_epi16(p[5], p[6]);
+ v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16);
+ v[2] = _mm_madd_epi16(u[0], k__cospi_p16_p16);
+ v[3] = _mm_madd_epi16(u[1], k__cospi_p16_p16);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+
+ u[0] = _mm_packs_epi32(v[0], v[1]);
+ u[1] = _mm_packs_epi32(v[2], v[3]);
+
+ t[0] = _mm_add_epi16(p[4], u[0]);
+ t[1] = _mm_sub_epi16(p[4], u[0]);
+ t[2] = _mm_sub_epi16(p[7], u[1]);
+ t[3] = _mm_add_epi16(p[7], u[1]);
+
+ u[0] = _mm_unpacklo_epi16(t[0], t[3]);
+ u[1] = _mm_unpackhi_epi16(t[0], t[3]);
+ u[2] = _mm_unpacklo_epi16(t[1], t[2]);
+ u[3] = _mm_unpackhi_epi16(t[1], t[2]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_p28_p04);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_p28_p04);
+ v[2] = _mm_madd_epi16(u[2], k__cospi_p12_p20);
+ v[3] = _mm_madd_epi16(u[3], k__cospi_p12_p20);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_m20_p12);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_m20_p12);
+ v[6] = _mm_madd_epi16(u[0], k__cospi_m04_p28);
+ v[7] = _mm_madd_epi16(u[1], k__cospi_m04_p28);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+
+ in[2] = _mm_packs_epi32(v[0], v[1]);
+ in[6] = _mm_packs_epi32(v[4], v[5]);
+ in[10] = _mm_packs_epi32(v[2], v[3]);
+ in[14] = _mm_packs_epi32(v[6], v[7]);
+
+ // stage 2
+ u[0] = _mm_unpacklo_epi16(s[2], s[5]);
+ u[1] = _mm_unpackhi_epi16(s[2], s[5]);
+ u[2] = _mm_unpacklo_epi16(s[3], s[4]);
+ u[3] = _mm_unpackhi_epi16(s[3], s[4]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16);
+ v[2] = _mm_madd_epi16(u[2], k__cospi_m16_p16);
+ v[3] = _mm_madd_epi16(u[3], k__cospi_m16_p16);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16);
+ v[6] = _mm_madd_epi16(u[0], k__cospi_p16_p16);
+ v[7] = _mm_madd_epi16(u[1], k__cospi_p16_p16);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+
+ t[2] = _mm_packs_epi32(v[0], v[1]);
+ t[3] = _mm_packs_epi32(v[2], v[3]);
+ t[4] = _mm_packs_epi32(v[4], v[5]);
+ t[5] = _mm_packs_epi32(v[6], v[7]);
+
+ // stage 3
+ p[0] = _mm_add_epi16(s[0], t[3]);
+ p[1] = _mm_add_epi16(s[1], t[2]);
+ p[2] = _mm_sub_epi16(s[1], t[2]);
+ p[3] = _mm_sub_epi16(s[0], t[3]);
+ p[4] = _mm_sub_epi16(s[7], t[4]);
+ p[5] = _mm_sub_epi16(s[6], t[5]);
+ p[6] = _mm_add_epi16(s[6], t[5]);
+ p[7] = _mm_add_epi16(s[7], t[4]);
+
+ // stage 4
+ u[0] = _mm_unpacklo_epi16(p[1], p[6]);
+ u[1] = _mm_unpackhi_epi16(p[1], p[6]);
+ u[2] = _mm_unpacklo_epi16(p[2], p[5]);
+ u[3] = _mm_unpackhi_epi16(p[2], p[5]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_m08_p24);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_m08_p24);
+ v[2] = _mm_madd_epi16(u[2], k__cospi_m24_m08);
+ v[3] = _mm_madd_epi16(u[3], k__cospi_m24_m08);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_m08_p24);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_m08_p24);
+ v[6] = _mm_madd_epi16(u[0], k__cospi_p24_p08);
+ v[7] = _mm_madd_epi16(u[1], k__cospi_p24_p08);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+
+ t[1] = _mm_packs_epi32(v[0], v[1]);
+ t[2] = _mm_packs_epi32(v[2], v[3]);
+ t[5] = _mm_packs_epi32(v[4], v[5]);
+ t[6] = _mm_packs_epi32(v[6], v[7]);
+
+ // stage 5
+ s[0] = _mm_add_epi16(p[0], t[1]);
+ s[1] = _mm_sub_epi16(p[0], t[1]);
+ s[2] = _mm_sub_epi16(p[3], t[2]);
+ s[3] = _mm_add_epi16(p[3], t[2]);
+ s[4] = _mm_add_epi16(p[4], t[5]);
+ s[5] = _mm_sub_epi16(p[4], t[5]);
+ s[6] = _mm_sub_epi16(p[7], t[6]);
+ s[7] = _mm_add_epi16(p[7], t[6]);
+
+ // stage 6
+ u[0] = _mm_unpacklo_epi16(s[0], s[7]);
+ u[1] = _mm_unpackhi_epi16(s[0], s[7]);
+ u[2] = _mm_unpacklo_epi16(s[1], s[6]);
+ u[3] = _mm_unpackhi_epi16(s[1], s[6]);
+ u[4] = _mm_unpacklo_epi16(s[2], s[5]);
+ u[5] = _mm_unpackhi_epi16(s[2], s[5]);
+ u[6] = _mm_unpacklo_epi16(s[3], s[4]);
+ u[7] = _mm_unpackhi_epi16(s[3], s[4]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_p30_p02);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_p30_p02);
+ v[2] = _mm_madd_epi16(u[2], k__cospi_p14_p18);
+ v[3] = _mm_madd_epi16(u[3], k__cospi_p14_p18);
+ v[4] = _mm_madd_epi16(u[4], k__cospi_p22_p10);
+ v[5] = _mm_madd_epi16(u[5], k__cospi_p22_p10);
+ v[6] = _mm_madd_epi16(u[6], k__cospi_p06_p26);
+ v[7] = _mm_madd_epi16(u[7], k__cospi_p06_p26);
+ v[8] = _mm_madd_epi16(u[6], k__cospi_m26_p06);
+ v[9] = _mm_madd_epi16(u[7], k__cospi_m26_p06);
+ v[10] = _mm_madd_epi16(u[4], k__cospi_m10_p22);
+ v[11] = _mm_madd_epi16(u[5], k__cospi_m10_p22);
+ v[12] = _mm_madd_epi16(u[2], k__cospi_m18_p14);
+ v[13] = _mm_madd_epi16(u[3], k__cospi_m18_p14);
+ v[14] = _mm_madd_epi16(u[0], k__cospi_m02_p30);
+ v[15] = _mm_madd_epi16(u[1], k__cospi_m02_p30);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+ u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
+ u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
+ u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
+ u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
+ u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
+ u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
+ u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
+ u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+ v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
+ v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
+ v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
+ v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
+ v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
+ v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
+ v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
+ v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
+
+ in[1] = _mm_packs_epi32(v[0], v[1]);
+ in[9] = _mm_packs_epi32(v[2], v[3]);
+ in[5] = _mm_packs_epi32(v[4], v[5]);
+ in[13] = _mm_packs_epi32(v[6], v[7]);
+ in[3] = _mm_packs_epi32(v[8], v[9]);
+ in[11] = _mm_packs_epi32(v[10], v[11]);
+ in[7] = _mm_packs_epi32(v[12], v[13]);
+ in[15] = _mm_packs_epi32(v[14], v[15]);
+}
+
+void fadst16_8col_avx2(__m128i *in) {
+ // perform 16x16 1-D ADST for 8 columns
+ __m128i s[16], x[16], u[32], v[32];
+ const __m128i k__cospi_p01_p31 = pair_set_epi16(cospi_1_64, cospi_31_64);
+ const __m128i k__cospi_p31_m01 = pair_set_epi16(cospi_31_64, -cospi_1_64);
+ const __m128i k__cospi_p05_p27 = pair_set_epi16(cospi_5_64, cospi_27_64);
+ const __m128i k__cospi_p27_m05 = pair_set_epi16(cospi_27_64, -cospi_5_64);
+ const __m128i k__cospi_p09_p23 = pair_set_epi16(cospi_9_64, cospi_23_64);
+ const __m128i k__cospi_p23_m09 = pair_set_epi16(cospi_23_64, -cospi_9_64);
+ const __m128i k__cospi_p13_p19 = pair_set_epi16(cospi_13_64, cospi_19_64);
+ const __m128i k__cospi_p19_m13 = pair_set_epi16(cospi_19_64, -cospi_13_64);
+ const __m128i k__cospi_p17_p15 = pair_set_epi16(cospi_17_64, cospi_15_64);
+ const __m128i k__cospi_p15_m17 = pair_set_epi16(cospi_15_64, -cospi_17_64);
+ const __m128i k__cospi_p21_p11 = pair_set_epi16(cospi_21_64, cospi_11_64);
+ const __m128i k__cospi_p11_m21 = pair_set_epi16(cospi_11_64, -cospi_21_64);
+ const __m128i k__cospi_p25_p07 = pair_set_epi16(cospi_25_64, cospi_7_64);
+ const __m128i k__cospi_p07_m25 = pair_set_epi16(cospi_7_64, -cospi_25_64);
+ const __m128i k__cospi_p29_p03 = pair_set_epi16(cospi_29_64, cospi_3_64);
+ const __m128i k__cospi_p03_m29 = pair_set_epi16(cospi_3_64, -cospi_29_64);
+ const __m128i k__cospi_p04_p28 = pair_set_epi16(cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p28_m04 = pair_set_epi16(cospi_28_64, -cospi_4_64);
+ const __m128i k__cospi_p20_p12 = pair_set_epi16(cospi_20_64, cospi_12_64);
+ const __m128i k__cospi_p12_m20 = pair_set_epi16(cospi_12_64, -cospi_20_64);
+ const __m128i k__cospi_m28_p04 = pair_set_epi16(-cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m12_p20 = pair_set_epi16(-cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
+ const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m16_m16 = _mm_set1_epi16(-cospi_16_64);
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ const __m128i kZero = _mm_set1_epi16(0);
+
+ u[0] = _mm_unpacklo_epi16(in[15], in[0]);
+ u[1] = _mm_unpackhi_epi16(in[15], in[0]);
+ u[2] = _mm_unpacklo_epi16(in[13], in[2]);
+ u[3] = _mm_unpackhi_epi16(in[13], in[2]);
+ u[4] = _mm_unpacklo_epi16(in[11], in[4]);
+ u[5] = _mm_unpackhi_epi16(in[11], in[4]);
+ u[6] = _mm_unpacklo_epi16(in[9], in[6]);
+ u[7] = _mm_unpackhi_epi16(in[9], in[6]);
+ u[8] = _mm_unpacklo_epi16(in[7], in[8]);
+ u[9] = _mm_unpackhi_epi16(in[7], in[8]);
+ u[10] = _mm_unpacklo_epi16(in[5], in[10]);
+ u[11] = _mm_unpackhi_epi16(in[5], in[10]);
+ u[12] = _mm_unpacklo_epi16(in[3], in[12]);
+ u[13] = _mm_unpackhi_epi16(in[3], in[12]);
+ u[14] = _mm_unpacklo_epi16(in[1], in[14]);
+ u[15] = _mm_unpackhi_epi16(in[1], in[14]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_p01_p31);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_p01_p31);
+ v[2] = _mm_madd_epi16(u[0], k__cospi_p31_m01);
+ v[3] = _mm_madd_epi16(u[1], k__cospi_p31_m01);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_p05_p27);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_p05_p27);
+ v[6] = _mm_madd_epi16(u[2], k__cospi_p27_m05);
+ v[7] = _mm_madd_epi16(u[3], k__cospi_p27_m05);
+ v[8] = _mm_madd_epi16(u[4], k__cospi_p09_p23);
+ v[9] = _mm_madd_epi16(u[5], k__cospi_p09_p23);
+ v[10] = _mm_madd_epi16(u[4], k__cospi_p23_m09);
+ v[11] = _mm_madd_epi16(u[5], k__cospi_p23_m09);
+ v[12] = _mm_madd_epi16(u[6], k__cospi_p13_p19);
+ v[13] = _mm_madd_epi16(u[7], k__cospi_p13_p19);
+ v[14] = _mm_madd_epi16(u[6], k__cospi_p19_m13);
+ v[15] = _mm_madd_epi16(u[7], k__cospi_p19_m13);
+ v[16] = _mm_madd_epi16(u[8], k__cospi_p17_p15);
+ v[17] = _mm_madd_epi16(u[9], k__cospi_p17_p15);
+ v[18] = _mm_madd_epi16(u[8], k__cospi_p15_m17);
+ v[19] = _mm_madd_epi16(u[9], k__cospi_p15_m17);
+ v[20] = _mm_madd_epi16(u[10], k__cospi_p21_p11);
+ v[21] = _mm_madd_epi16(u[11], k__cospi_p21_p11);
+ v[22] = _mm_madd_epi16(u[10], k__cospi_p11_m21);
+ v[23] = _mm_madd_epi16(u[11], k__cospi_p11_m21);
+ v[24] = _mm_madd_epi16(u[12], k__cospi_p25_p07);
+ v[25] = _mm_madd_epi16(u[13], k__cospi_p25_p07);
+ v[26] = _mm_madd_epi16(u[12], k__cospi_p07_m25);
+ v[27] = _mm_madd_epi16(u[13], k__cospi_p07_m25);
+ v[28] = _mm_madd_epi16(u[14], k__cospi_p29_p03);
+ v[29] = _mm_madd_epi16(u[15], k__cospi_p29_p03);
+ v[30] = _mm_madd_epi16(u[14], k__cospi_p03_m29);
+ v[31] = _mm_madd_epi16(u[15], k__cospi_p03_m29);
+
+ u[0] = _mm_add_epi32(v[0], v[16]);
+ u[1] = _mm_add_epi32(v[1], v[17]);
+ u[2] = _mm_add_epi32(v[2], v[18]);
+ u[3] = _mm_add_epi32(v[3], v[19]);
+ u[4] = _mm_add_epi32(v[4], v[20]);
+ u[5] = _mm_add_epi32(v[5], v[21]);
+ u[6] = _mm_add_epi32(v[6], v[22]);
+ u[7] = _mm_add_epi32(v[7], v[23]);
+ u[8] = _mm_add_epi32(v[8], v[24]);
+ u[9] = _mm_add_epi32(v[9], v[25]);
+ u[10] = _mm_add_epi32(v[10], v[26]);
+ u[11] = _mm_add_epi32(v[11], v[27]);
+ u[12] = _mm_add_epi32(v[12], v[28]);
+ u[13] = _mm_add_epi32(v[13], v[29]);
+ u[14] = _mm_add_epi32(v[14], v[30]);
+ u[15] = _mm_add_epi32(v[15], v[31]);
+ u[16] = _mm_sub_epi32(v[0], v[16]);
+ u[17] = _mm_sub_epi32(v[1], v[17]);
+ u[18] = _mm_sub_epi32(v[2], v[18]);
+ u[19] = _mm_sub_epi32(v[3], v[19]);
+ u[20] = _mm_sub_epi32(v[4], v[20]);
+ u[21] = _mm_sub_epi32(v[5], v[21]);
+ u[22] = _mm_sub_epi32(v[6], v[22]);
+ u[23] = _mm_sub_epi32(v[7], v[23]);
+ u[24] = _mm_sub_epi32(v[8], v[24]);
+ u[25] = _mm_sub_epi32(v[9], v[25]);
+ u[26] = _mm_sub_epi32(v[10], v[26]);
+ u[27] = _mm_sub_epi32(v[11], v[27]);
+ u[28] = _mm_sub_epi32(v[12], v[28]);
+ u[29] = _mm_sub_epi32(v[13], v[29]);
+ u[30] = _mm_sub_epi32(v[14], v[30]);
+ u[31] = _mm_sub_epi32(v[15], v[31]);
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+ v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
+ v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+ v[16] = _mm_add_epi32(u[16], k__DCT_CONST_ROUNDING);
+ v[17] = _mm_add_epi32(u[17], k__DCT_CONST_ROUNDING);
+ v[18] = _mm_add_epi32(u[18], k__DCT_CONST_ROUNDING);
+ v[19] = _mm_add_epi32(u[19], k__DCT_CONST_ROUNDING);
+ v[20] = _mm_add_epi32(u[20], k__DCT_CONST_ROUNDING);
+ v[21] = _mm_add_epi32(u[21], k__DCT_CONST_ROUNDING);
+ v[22] = _mm_add_epi32(u[22], k__DCT_CONST_ROUNDING);
+ v[23] = _mm_add_epi32(u[23], k__DCT_CONST_ROUNDING);
+ v[24] = _mm_add_epi32(u[24], k__DCT_CONST_ROUNDING);
+ v[25] = _mm_add_epi32(u[25], k__DCT_CONST_ROUNDING);
+ v[26] = _mm_add_epi32(u[26], k__DCT_CONST_ROUNDING);
+ v[27] = _mm_add_epi32(u[27], k__DCT_CONST_ROUNDING);
+ v[28] = _mm_add_epi32(u[28], k__DCT_CONST_ROUNDING);
+ v[29] = _mm_add_epi32(u[29], k__DCT_CONST_ROUNDING);
+ v[30] = _mm_add_epi32(u[30], k__DCT_CONST_ROUNDING);
+ v[31] = _mm_add_epi32(u[31], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+ u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS);
+ u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS);
+ u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+ u[16] = _mm_srai_epi32(v[16], DCT_CONST_BITS);
+ u[17] = _mm_srai_epi32(v[17], DCT_CONST_BITS);
+ u[18] = _mm_srai_epi32(v[18], DCT_CONST_BITS);
+ u[19] = _mm_srai_epi32(v[19], DCT_CONST_BITS);
+ u[20] = _mm_srai_epi32(v[20], DCT_CONST_BITS);
+ u[21] = _mm_srai_epi32(v[21], DCT_CONST_BITS);
+ u[22] = _mm_srai_epi32(v[22], DCT_CONST_BITS);
+ u[23] = _mm_srai_epi32(v[23], DCT_CONST_BITS);
+ u[24] = _mm_srai_epi32(v[24], DCT_CONST_BITS);
+ u[25] = _mm_srai_epi32(v[25], DCT_CONST_BITS);
+ u[26] = _mm_srai_epi32(v[26], DCT_CONST_BITS);
+ u[27] = _mm_srai_epi32(v[27], DCT_CONST_BITS);
+ u[28] = _mm_srai_epi32(v[28], DCT_CONST_BITS);
+ u[29] = _mm_srai_epi32(v[29], DCT_CONST_BITS);
+ u[30] = _mm_srai_epi32(v[30], DCT_CONST_BITS);
+ u[31] = _mm_srai_epi32(v[31], DCT_CONST_BITS);
+
+ s[0] = _mm_packs_epi32(u[0], u[1]);
+ s[1] = _mm_packs_epi32(u[2], u[3]);
+ s[2] = _mm_packs_epi32(u[4], u[5]);
+ s[3] = _mm_packs_epi32(u[6], u[7]);
+ s[4] = _mm_packs_epi32(u[8], u[9]);
+ s[5] = _mm_packs_epi32(u[10], u[11]);
+ s[6] = _mm_packs_epi32(u[12], u[13]);
+ s[7] = _mm_packs_epi32(u[14], u[15]);
+ s[8] = _mm_packs_epi32(u[16], u[17]);
+ s[9] = _mm_packs_epi32(u[18], u[19]);
+ s[10] = _mm_packs_epi32(u[20], u[21]);
+ s[11] = _mm_packs_epi32(u[22], u[23]);
+ s[12] = _mm_packs_epi32(u[24], u[25]);
+ s[13] = _mm_packs_epi32(u[26], u[27]);
+ s[14] = _mm_packs_epi32(u[28], u[29]);
+ s[15] = _mm_packs_epi32(u[30], u[31]);
+
+ // stage 2
+ u[0] = _mm_unpacklo_epi16(s[8], s[9]);
+ u[1] = _mm_unpackhi_epi16(s[8], s[9]);
+ u[2] = _mm_unpacklo_epi16(s[10], s[11]);
+ u[3] = _mm_unpackhi_epi16(s[10], s[11]);
+ u[4] = _mm_unpacklo_epi16(s[12], s[13]);
+ u[5] = _mm_unpackhi_epi16(s[12], s[13]);
+ u[6] = _mm_unpacklo_epi16(s[14], s[15]);
+ u[7] = _mm_unpackhi_epi16(s[14], s[15]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_p04_p28);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_p04_p28);
+ v[2] = _mm_madd_epi16(u[0], k__cospi_p28_m04);
+ v[3] = _mm_madd_epi16(u[1], k__cospi_p28_m04);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_p20_p12);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_p20_p12);
+ v[6] = _mm_madd_epi16(u[2], k__cospi_p12_m20);
+ v[7] = _mm_madd_epi16(u[3], k__cospi_p12_m20);
+ v[8] = _mm_madd_epi16(u[4], k__cospi_m28_p04);
+ v[9] = _mm_madd_epi16(u[5], k__cospi_m28_p04);
+ v[10] = _mm_madd_epi16(u[4], k__cospi_p04_p28);
+ v[11] = _mm_madd_epi16(u[5], k__cospi_p04_p28);
+ v[12] = _mm_madd_epi16(u[6], k__cospi_m12_p20);
+ v[13] = _mm_madd_epi16(u[7], k__cospi_m12_p20);
+ v[14] = _mm_madd_epi16(u[6], k__cospi_p20_p12);
+ v[15] = _mm_madd_epi16(u[7], k__cospi_p20_p12);
+
+ u[0] = _mm_add_epi32(v[0], v[8]);
+ u[1] = _mm_add_epi32(v[1], v[9]);
+ u[2] = _mm_add_epi32(v[2], v[10]);
+ u[3] = _mm_add_epi32(v[3], v[11]);
+ u[4] = _mm_add_epi32(v[4], v[12]);
+ u[5] = _mm_add_epi32(v[5], v[13]);
+ u[6] = _mm_add_epi32(v[6], v[14]);
+ u[7] = _mm_add_epi32(v[7], v[15]);
+ u[8] = _mm_sub_epi32(v[0], v[8]);
+ u[9] = _mm_sub_epi32(v[1], v[9]);
+ u[10] = _mm_sub_epi32(v[2], v[10]);
+ u[11] = _mm_sub_epi32(v[3], v[11]);
+ u[12] = _mm_sub_epi32(v[4], v[12]);
+ u[13] = _mm_sub_epi32(v[5], v[13]);
+ u[14] = _mm_sub_epi32(v[6], v[14]);
+ u[15] = _mm_sub_epi32(v[7], v[15]);
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+ v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
+ v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+ u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS);
+ u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS);
+ u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+
+ x[0] = _mm_add_epi16(s[0], s[4]);
+ x[1] = _mm_add_epi16(s[1], s[5]);
+ x[2] = _mm_add_epi16(s[2], s[6]);
+ x[3] = _mm_add_epi16(s[3], s[7]);
+ x[4] = _mm_sub_epi16(s[0], s[4]);
+ x[5] = _mm_sub_epi16(s[1], s[5]);
+ x[6] = _mm_sub_epi16(s[2], s[6]);
+ x[7] = _mm_sub_epi16(s[3], s[7]);
+ x[8] = _mm_packs_epi32(u[0], u[1]);
+ x[9] = _mm_packs_epi32(u[2], u[3]);
+ x[10] = _mm_packs_epi32(u[4], u[5]);
+ x[11] = _mm_packs_epi32(u[6], u[7]);
+ x[12] = _mm_packs_epi32(u[8], u[9]);
+ x[13] = _mm_packs_epi32(u[10], u[11]);
+ x[14] = _mm_packs_epi32(u[12], u[13]);
+ x[15] = _mm_packs_epi32(u[14], u[15]);
+
+ // stage 3
+ u[0] = _mm_unpacklo_epi16(x[4], x[5]);
+ u[1] = _mm_unpackhi_epi16(x[4], x[5]);
+ u[2] = _mm_unpacklo_epi16(x[6], x[7]);
+ u[3] = _mm_unpackhi_epi16(x[6], x[7]);
+ u[4] = _mm_unpacklo_epi16(x[12], x[13]);
+ u[5] = _mm_unpackhi_epi16(x[12], x[13]);
+ u[6] = _mm_unpacklo_epi16(x[14], x[15]);
+ u[7] = _mm_unpackhi_epi16(x[14], x[15]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_p08_p24);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_p08_p24);
+ v[2] = _mm_madd_epi16(u[0], k__cospi_p24_m08);
+ v[3] = _mm_madd_epi16(u[1], k__cospi_p24_m08);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_m24_p08);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_m24_p08);
+ v[6] = _mm_madd_epi16(u[2], k__cospi_p08_p24);
+ v[7] = _mm_madd_epi16(u[3], k__cospi_p08_p24);
+ v[8] = _mm_madd_epi16(u[4], k__cospi_p08_p24);
+ v[9] = _mm_madd_epi16(u[5], k__cospi_p08_p24);
+ v[10] = _mm_madd_epi16(u[4], k__cospi_p24_m08);
+ v[11] = _mm_madd_epi16(u[5], k__cospi_p24_m08);
+ v[12] = _mm_madd_epi16(u[6], k__cospi_m24_p08);
+ v[13] = _mm_madd_epi16(u[7], k__cospi_m24_p08);
+ v[14] = _mm_madd_epi16(u[6], k__cospi_p08_p24);
+ v[15] = _mm_madd_epi16(u[7], k__cospi_p08_p24);
+
+ u[0] = _mm_add_epi32(v[0], v[4]);
+ u[1] = _mm_add_epi32(v[1], v[5]);
+ u[2] = _mm_add_epi32(v[2], v[6]);
+ u[3] = _mm_add_epi32(v[3], v[7]);
+ u[4] = _mm_sub_epi32(v[0], v[4]);
+ u[5] = _mm_sub_epi32(v[1], v[5]);
+ u[6] = _mm_sub_epi32(v[2], v[6]);
+ u[7] = _mm_sub_epi32(v[3], v[7]);
+ u[8] = _mm_add_epi32(v[8], v[12]);
+ u[9] = _mm_add_epi32(v[9], v[13]);
+ u[10] = _mm_add_epi32(v[10], v[14]);
+ u[11] = _mm_add_epi32(v[11], v[15]);
+ u[12] = _mm_sub_epi32(v[8], v[12]);
+ u[13] = _mm_sub_epi32(v[9], v[13]);
+ u[14] = _mm_sub_epi32(v[10], v[14]);
+ u[15] = _mm_sub_epi32(v[11], v[15]);
+
+ u[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+ u[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
+ u[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
+ u[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ u[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ u[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ u[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ u[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ u[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+ v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
+ v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
+ v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
+ v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
+ v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
+ v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
+ v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
+ v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
+
+ s[0] = _mm_add_epi16(x[0], x[2]);
+ s[1] = _mm_add_epi16(x[1], x[3]);
+ s[2] = _mm_sub_epi16(x[0], x[2]);
+ s[3] = _mm_sub_epi16(x[1], x[3]);
+ s[4] = _mm_packs_epi32(v[0], v[1]);
+ s[5] = _mm_packs_epi32(v[2], v[3]);
+ s[6] = _mm_packs_epi32(v[4], v[5]);
+ s[7] = _mm_packs_epi32(v[6], v[7]);
+ s[8] = _mm_add_epi16(x[8], x[10]);
+ s[9] = _mm_add_epi16(x[9], x[11]);
+ s[10] = _mm_sub_epi16(x[8], x[10]);
+ s[11] = _mm_sub_epi16(x[9], x[11]);
+ s[12] = _mm_packs_epi32(v[8], v[9]);
+ s[13] = _mm_packs_epi32(v[10], v[11]);
+ s[14] = _mm_packs_epi32(v[12], v[13]);
+ s[15] = _mm_packs_epi32(v[14], v[15]);
+
+ // stage 4
+ u[0] = _mm_unpacklo_epi16(s[2], s[3]);
+ u[1] = _mm_unpackhi_epi16(s[2], s[3]);
+ u[2] = _mm_unpacklo_epi16(s[6], s[7]);
+ u[3] = _mm_unpackhi_epi16(s[6], s[7]);
+ u[4] = _mm_unpacklo_epi16(s[10], s[11]);
+ u[5] = _mm_unpackhi_epi16(s[10], s[11]);
+ u[6] = _mm_unpacklo_epi16(s[14], s[15]);
+ u[7] = _mm_unpackhi_epi16(s[14], s[15]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_m16_m16);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_m16_m16);
+ v[2] = _mm_madd_epi16(u[0], k__cospi_p16_m16);
+ v[3] = _mm_madd_epi16(u[1], k__cospi_p16_m16);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16);
+ v[6] = _mm_madd_epi16(u[2], k__cospi_m16_p16);
+ v[7] = _mm_madd_epi16(u[3], k__cospi_m16_p16);
+ v[8] = _mm_madd_epi16(u[4], k__cospi_p16_p16);
+ v[9] = _mm_madd_epi16(u[5], k__cospi_p16_p16);
+ v[10] = _mm_madd_epi16(u[4], k__cospi_m16_p16);
+ v[11] = _mm_madd_epi16(u[5], k__cospi_m16_p16);
+ v[12] = _mm_madd_epi16(u[6], k__cospi_m16_m16);
+ v[13] = _mm_madd_epi16(u[7], k__cospi_m16_m16);
+ v[14] = _mm_madd_epi16(u[6], k__cospi_p16_m16);
+ v[15] = _mm_madd_epi16(u[7], k__cospi_p16_m16);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+ u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
+ u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
+ u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
+ u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
+ u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
+ u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
+ u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
+ u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+ v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
+ v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
+ v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
+ v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
+ v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
+ v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
+ v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
+ v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
+
+ in[0] = s[0];
+ in[1] = _mm_sub_epi16(kZero, s[8]);
+ in[2] = s[12];
+ in[3] = _mm_sub_epi16(kZero, s[4]);
+ in[4] = _mm_packs_epi32(v[4], v[5]);
+ in[5] = _mm_packs_epi32(v[12], v[13]);
+ in[6] = _mm_packs_epi32(v[8], v[9]);
+ in[7] = _mm_packs_epi32(v[0], v[1]);
+ in[8] = _mm_packs_epi32(v[2], v[3]);
+ in[9] = _mm_packs_epi32(v[10], v[11]);
+ in[10] = _mm_packs_epi32(v[14], v[15]);
+ in[11] = _mm_packs_epi32(v[6], v[7]);
+ in[12] = s[5];
+ in[13] = _mm_sub_epi16(kZero, s[13]);
+ in[14] = s[9];
+ in[15] = _mm_sub_epi16(kZero, s[1]);
+}
+
+void fdct16_avx2(__m128i *in0, __m128i *in1) {
+ fdct16_8col_avx2(in0);
+ fdct16_8col_avx2(in1);
+ array_transpose_16x16_avx2(in0, in1);
+}
+
+void fadst16_avx2(__m128i *in0, __m128i *in1) {
+ fadst16_8col_avx2(in0);
+ fadst16_8col_avx2(in1);
+ array_transpose_16x16_avx2(in0, in1);
+}
+
+void vp9_fht16x16_avx2(const int16_t *input, int16_t *output,
+ int stride, int tx_type) {
+ __m128i in0[16], in1[16];
+
+ switch (tx_type) {
+ case DCT_DCT:
+ vp9_fdct16x16_avx2(input, output, stride);
+ break;
+ case ADST_DCT:
+ load_buffer_16x16_avx2(input, in0, in1, stride);
+ fadst16_avx2(in0, in1);
+ right_shift_16x16_avx2(in0, in1);
+ fdct16_avx2(in0, in1);
+ write_buffer_16x16_avx2(output, in0, in1, 16);
+ break;
+ case DCT_ADST:
+ load_buffer_16x16_avx2(input, in0, in1, stride);
+ fdct16_avx2(in0, in1);
+ right_shift_16x16_avx2(in0, in1);
+ fadst16_avx2(in0, in1);
+ write_buffer_16x16_avx2(output, in0, in1, 16);
+ break;
+ case ADST_ADST:
+ load_buffer_16x16_avx2(input, in0, in1, stride);
+ fadst16_avx2(in0, in1);
+ right_shift_16x16_avx2(in0, in1);
+ fadst16_avx2(in0, in1);
+ write_buffer_16x16_avx2(output, in0, in1, 16);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+}
+
+#define FDCT32x32_2D_AVX2 vp9_fdct32x32_rd_avx2
+#define FDCT32x32_HIGH_PRECISION 0
+#include "vp9/encoder/x86/vp9_dct32x32_avx2.c"
+#undef FDCT32x32_2D_AVX2
+#undef FDCT32x32_HIGH_PRECISION
+
+#define FDCT32x32_2D_AVX2 vp9_fdct32x32_avx2
+#define FDCT32x32_HIGH_PRECISION 1
+#include "vp9/encoder/x86/vp9_dct32x32_avx2.c" // NOLINT
+#undef FDCT32x32_2D_AVX2
+#undef FDCT32x32_HIGH_PRECISION
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_mmx.asm b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_mmx.asm
new file mode 100644
index 00000000000..f71181c5e91
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_mmx.asm
@@ -0,0 +1,70 @@
+;
+; Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+%include "third_party/x86inc/x86inc.asm"
+
+SECTION .text
+
+%macro TRANSFORM_COLS 0
+ paddw m0, m1
+ movq m4, m0
+ psubw m3, m2
+ psubw m4, m3
+ psraw m4, 1
+ movq m5, m4
+ psubw m5, m1 ;b1
+ psubw m4, m2 ;c1
+ psubw m0, m4
+ paddw m3, m5
+ ; m0 a0
+ SWAP 1, 4 ; m1 c1
+ SWAP 2, 3 ; m2 d1
+ SWAP 3, 5 ; m3 b1
+%endmacro
+
+%macro TRANSPOSE_4X4 0
+ movq m4, m0
+ movq m5, m2
+ punpcklwd m4, m1
+ punpckhwd m0, m1
+ punpcklwd m5, m3
+ punpckhwd m2, m3
+ movq m1, m4
+ movq m3, m0
+ punpckldq m1, m5
+ punpckhdq m4, m5
+ punpckldq m3, m2
+ punpckhdq m0, m2
+ SWAP 2, 3, 0, 1, 4
+%endmacro
+
+INIT_MMX mmx
+cglobal fwht4x4, 3, 4, 8, input, output, stride
+ lea r3q, [inputq + strideq*4]
+ movq m0, [inputq] ;a1
+ movq m1, [inputq + strideq*2] ;b1
+ movq m2, [r3q] ;c1
+ movq m3, [r3q + strideq*2] ;d1
+
+ TRANSFORM_COLS
+ TRANSPOSE_4X4
+ TRANSFORM_COLS
+ TRANSPOSE_4X4
+
+ psllw m0, 2
+ psllw m1, 2
+ psllw m2, 2
+ psllw m3, 2
+
+ movq [outputq], m0
+ movq [outputq + 8], m1
+ movq [outputq + 16], m2
+ movq [outputq + 24], m3
+
+ RET
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_sse2.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_sse2.c
index dc115018ec4..68658223858 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_sse2.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_sse2.c
@@ -13,40 +13,82 @@
#include "vpx_ports/mem.h"
void vp9_fdct4x4_sse2(const int16_t *input, int16_t *output, int stride) {
- // The 2D transform is done with two passes which are actually pretty
- // similar. In the first one, we transform the columns and transpose
- // the results. In the second one, we transform the rows. To achieve that,
- // as the first pass results are transposed, we tranpose the columns (that
- // is the transposed rows) and transpose the results (so that it goes back
- // in normal/row positions).
- int pass;
+ // This 2D transform implements 4 vertical 1D transforms followed
+ // by 4 horizontal 1D transforms. The multiplies and adds are as given
+ // by Chen, Smith and Fralick ('77). The commands for moving the data
+ // around have been minimized by hand.
+ // For the purposes of the comments, the 16 inputs are referred to at i0
+ // through iF (in raster order), intermediate variables are a0, b0, c0
+ // through f, and correspond to the in-place computations mapped to input
+ // locations. The outputs, o0 through oF are labeled according to the
+ // output locations.
+
// Constants
- // When we use them, in one case, they are all the same. In all others
- // it's a pair of them that we need to repeat four times. This is done
- // by constructing the 32 bit constant corresponding to that pair.
- const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
- const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
- const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
- const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ // These are the coefficients used for the multiplies.
+ // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64),
+ // where cospi_N_64 = cos(N pi /64)
+ const __m128i k__cospi_A = _mm_setr_epi16(cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_B = _mm_setr_epi16(cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64);
+ const __m128i k__cospi_C = _mm_setr_epi16(cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64,
+ cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64);
+ const __m128i k__cospi_D = _mm_setr_epi16(cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64,
+ cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_E = _mm_setr_epi16(cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64);
+ const __m128i k__cospi_F = _mm_setr_epi16(cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_G = _mm_setr_epi16(cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64,
+ -cospi_8_64, -cospi_24_64,
+ -cospi_8_64, -cospi_24_64);
+ const __m128i k__cospi_H = _mm_setr_epi16(cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64,
+ -cospi_24_64, cospi_8_64,
+ -cospi_24_64, cospi_8_64);
+
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ // This second rounding constant saves doing some extra adds at the end
+ const __m128i k__DCT_CONST_ROUNDING2 = _mm_set1_epi32(DCT_CONST_ROUNDING
+ +(DCT_CONST_ROUNDING << 1));
+ const int DCT_CONST_BITS2 = DCT_CONST_BITS+2;
const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
- const __m128i kOne = _mm_set1_epi16(1);
- __m128i in0, in1, in2, in3;
+ __m128i in0, in1;
+
// Load inputs.
{
in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
- in2 = _mm_loadl_epi64((const __m128i *)(input + 2 * stride));
- in3 = _mm_loadl_epi64((const __m128i *)(input + 3 * stride));
- // x = x << 4
+ in1 = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *)
+ (input + 2 * stride)));
+ in0 = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *)
+ (input + 3 * stride)));
+ // in0 = [i0 i1 i2 i3 iC iD iE iF]
+ // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
+
+
+ // multiply by 16 to give some extra precision
in0 = _mm_slli_epi16(in0, 4);
in1 = _mm_slli_epi16(in1, 4);
- in2 = _mm_slli_epi16(in2, 4);
- in3 = _mm_slli_epi16(in3, 4);
// if (i == 0 && input[0]) input[0] += 1;
+ // add 1 to the upper left pixel if it is non-zero, which helps reduce
+ // the round-trip error
{
- // The mask will only contain wether the first value is zero, all
+ // The mask will only contain whether the first value is zero, all
// other comparison will fail as something shifted by 4 (above << 4)
// can never be equal to one. To increment in the non-zero case, we
// add the mask and one for the first element:
@@ -57,60 +99,119 @@ void vp9_fdct4x4_sse2(const int16_t *input, int16_t *output, int stride) {
in0 = _mm_add_epi16(in0, k__nonzero_bias_b);
}
}
- // Do the two transform/transpose passes
- for (pass = 0; pass < 2; ++pass) {
- // Transform 1/2: Add/substract
- const __m128i r0 = _mm_add_epi16(in0, in3);
- const __m128i r1 = _mm_add_epi16(in1, in2);
- const __m128i r2 = _mm_sub_epi16(in1, in2);
- const __m128i r3 = _mm_sub_epi16(in0, in3);
- // Transform 1/2: Interleave to do the multiply by constants which gets us
- // into 32 bits.
- const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
- const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
- const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
- const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+ // There are 4 total stages, alternating between an add/subtract stage
+ // followed by an multiply-and-add stage.
+ {
+ // Stage 1: Add/subtract
+
+ // in0 = [i0 i1 i2 i3 iC iD iE iF]
+ // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
+ const __m128i r0 = _mm_unpacklo_epi16(in0, in1);
+ const __m128i r1 = _mm_unpackhi_epi16(in0, in1);
+ // r0 = [i0 i4 i1 i5 i2 i6 i3 i7]
+ // r1 = [iC i8 iD i9 iE iA iF iB]
+ const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4);
+ const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4);
+ // r2 = [i0 i4 i1 i5 i3 i7 i2 i6]
+ // r3 = [iC i8 iD i9 iF iB iE iA]
+
+ const __m128i t0 = _mm_add_epi16(r2, r3);
+ const __m128i t1 = _mm_sub_epi16(r2, r3);
+ // t0 = [a0 a4 a1 a5 a3 a7 a2 a6]
+ // t1 = [aC a8 aD a9 aF aB aE aA]
+
+ // Stage 2: multiply by constants (which gets us into 32 bits).
+ // The constants needed here are:
+ // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16]
+ // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16]
+ // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08]
+ // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24]
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D);
+ // Then add and right-shift to get back to 16-bit range
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
- const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
- const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
- const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
- const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
- // Combine and transpose
- const __m128i res0 = _mm_packs_epi32(w0, w2);
- const __m128i res1 = _mm_packs_epi32(w4, w6);
- // 00 01 02 03 20 21 22 23
- // 10 11 12 13 30 31 32 33
- const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
- const __m128i tr0_1 = _mm_unpackhi_epi16(res0, res1);
- // 00 10 01 11 02 12 03 13
- // 20 30 21 31 22 32 23 33
- in0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
- in2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
- // 00 10 20 30 01 11 21 31 in0 contains 0 followed by 1
- // 02 12 22 32 03 13 23 33 in2 contains 2 followed by 3
- if (0 == pass) {
- // Extract values in the high part for second pass as transform code
- // only uses the first four values.
- in1 = _mm_unpackhi_epi64(in0, in0);
- in3 = _mm_unpackhi_epi64(in2, in2);
- } else {
- // Post-condition output and store it (v + 1) >> 2, taking advantage
- // of the fact 1/3 are stored just after 0/2.
- __m128i out01 = _mm_add_epi16(in0, kOne);
- __m128i out23 = _mm_add_epi16(in2, kOne);
- out01 = _mm_srai_epi16(out01, 2);
- out23 = _mm_srai_epi16(out23, 2);
- _mm_storeu_si128((__m128i *)(output + 0 * 4), out01);
- _mm_storeu_si128((__m128i *)(output + 2 * 4), out23);
- }
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // w0 = [b0 b1 b7 b6]
+ // w1 = [b8 b9 bF bE]
+ // w2 = [b4 b5 b3 b2]
+ // w3 = [bC bD bB bA]
+ const __m128i x0 = _mm_packs_epi32(w0, w1);
+ const __m128i x1 = _mm_packs_epi32(w2, w3);
+ // x0 = [b0 b1 b7 b6 b8 b9 bF bE]
+ // x1 = [b4 b5 b3 b2 bC bD bB bA]
+ in0 = _mm_shuffle_epi32(x0, 0xD8);
+ in1 = _mm_shuffle_epi32(x1, 0x8D);
+ // in0 = [b0 b1 b8 b9 b7 b6 bF bE]
+ // in1 = [b3 b2 bB bA b4 b5 bC bD]
+ }
+ {
+ // vertical DCTs finished. Now we do the horizontal DCTs.
+ // Stage 3: Add/subtract
+
+ const __m128i t0 = _mm_add_epi16(in0, in1);
+ const __m128i t1 = _mm_sub_epi16(in0, in1);
+ // t0 = [c0 c1 c8 c9 c4 c5 cC cD]
+ // t1 = [c3 c2 cB cA -c7 -c6 -cF -cE]
+
+ // Stage 4: multiply by constants (which gets us into 32 bits).
+ // The constants needed here are:
+ // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16]
+ // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16]
+ // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24]
+ // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08]
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E);
+ const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F);
+ const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H);
+ // Then add and right-shift to get back to 16-bit range
+ // but this combines the final right-shift as well to save operations
+ // This unusual rounding operations is to maintain bit-accurate
+ // compatibility with the c version of this function which has two
+ // rounding steps in a row.
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2);
+ // w0 = [o0 o4 o8 oC]
+ // w1 = [o2 o6 oA oE]
+ // w2 = [o1 o5 o9 oD]
+ // w3 = [o3 o7 oB oF]
+ // remember the o's are numbered according to the correct output location
+ const __m128i x0 = _mm_packs_epi32(w0, w1);
+ const __m128i x1 = _mm_packs_epi32(w2, w3);
+ // x0 = [o0 o4 o8 oC o2 o6 oA oE]
+ // x1 = [o1 o5 o9 oD o3 o7 oB oF]
+ const __m128i y0 = _mm_unpacklo_epi16(x0, x1);
+ const __m128i y1 = _mm_unpackhi_epi16(x0, x1);
+ // y0 = [o0 o1 o4 o5 o8 o9 oC oD]
+ // y1 = [o2 o3 o6 o7 oA oB oE oF]
+ in0 = _mm_unpacklo_epi32(y0, y1);
+ // in0 = [o0 o1 o2 o3 o4 o5 o6 o7]
+ in1 = _mm_unpackhi_epi32(y0, y1);
+ // in1 = [o8 o9 oA oB oC oD oE oF]
+ }
+ // Post-condition (v + 1) >> 2 is now incorporated into previous
+ // add and right-shift commands. Only 2 store instructions needed
+ // because we are using the fact that 1/3 are stored just after 0/2.
+ {
+ _mm_storeu_si128((__m128i *)(output + 0 * 4), in0);
+ _mm_storeu_si128((__m128i *)(output + 2 * 4), in1);
}
}
+
static INLINE void load_buffer_4x4(const int16_t *input, __m128i *in,
int stride) {
const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
@@ -163,7 +264,7 @@ static INLINE void transpose_4x4(__m128i *res) {
res[3] = _mm_unpackhi_epi64(res[2], res[2]);
}
-void fdct4_1d_sse2(__m128i *in) {
+void fdct4_sse2(__m128i *in) {
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
@@ -196,7 +297,7 @@ void fdct4_1d_sse2(__m128i *in) {
transpose_4x4(in);
}
-void fadst4_1d_sse2(__m128i *in) {
+void fadst4_sse2(__m128i *in) {
const __m128i k__sinpi_p01_p02 = pair_set_epi16(sinpi_1_9, sinpi_2_9);
const __m128i k__sinpi_p04_m01 = pair_set_epi16(sinpi_4_9, -sinpi_1_9);
const __m128i k__sinpi_p03_p04 = pair_set_epi16(sinpi_3_9, sinpi_4_9);
@@ -206,12 +307,12 @@ void fadst4_1d_sse2(__m128i *in) {
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i u[8], v[8];
__m128i in7 = _mm_add_epi16(in[0], in[1]);
- in7 = _mm_sub_epi16(in7, in[3]);
u[0] = _mm_unpacklo_epi16(in[0], in[1]);
u[1] = _mm_unpacklo_epi16(in[2], in[3]);
u[2] = _mm_unpacklo_epi16(in7, kZero);
u[3] = _mm_unpacklo_epi16(in[2], kZero);
+ u[4] = _mm_unpacklo_epi16(in[3], kZero);
v[0] = _mm_madd_epi16(u[0], k__sinpi_p01_p02); // s0 + s2
v[1] = _mm_madd_epi16(u[1], k__sinpi_p03_p04); // s4 + s5
@@ -219,9 +320,10 @@ void fadst4_1d_sse2(__m128i *in) {
v[3] = _mm_madd_epi16(u[0], k__sinpi_p04_m01); // s1 - s3
v[4] = _mm_madd_epi16(u[1], k__sinpi_m03_p02); // -s4 + s6
v[5] = _mm_madd_epi16(u[3], k__sinpi_p03_p03); // s4
+ v[6] = _mm_madd_epi16(u[4], k__sinpi_p03_p03);
u[0] = _mm_add_epi32(v[0], v[1]);
- u[1] = v[2];
+ u[1] = _mm_sub_epi32(v[2], v[6]);
u[2] = _mm_add_epi32(v[3], v[4]);
u[3] = _mm_sub_epi32(u[2], u[0]);
u[4] = _mm_slli_epi32(v[5], 2);
@@ -243,32 +345,36 @@ void fadst4_1d_sse2(__m128i *in) {
transpose_4x4(in);
}
-void vp9_short_fht4x4_sse2(const int16_t *input, int16_t *output,
- int stride, int tx_type) {
+void vp9_fht4x4_sse2(const int16_t *input, int16_t *output,
+ int stride, int tx_type) {
__m128i in[4];
- load_buffer_4x4(input, in, stride);
+
switch (tx_type) {
- case 0: // DCT_DCT
- fdct4_1d_sse2(in);
- fdct4_1d_sse2(in);
+ case DCT_DCT:
+ vp9_fdct4x4_sse2(input, output, stride);
break;
- case 1: // ADST_DCT
- fadst4_1d_sse2(in);
- fdct4_1d_sse2(in);
+ case ADST_DCT:
+ load_buffer_4x4(input, in, stride);
+ fadst4_sse2(in);
+ fdct4_sse2(in);
+ write_buffer_4x4(output, in);
break;
- case 2: // DCT_ADST
- fdct4_1d_sse2(in);
- fadst4_1d_sse2(in);
+ case DCT_ADST:
+ load_buffer_4x4(input, in, stride);
+ fdct4_sse2(in);
+ fadst4_sse2(in);
+ write_buffer_4x4(output, in);
break;
- case 3: // ADST_ADST
- fadst4_1d_sse2(in);
- fadst4_1d_sse2(in);
- break;
- default:
- assert(0);
+ case ADST_ADST:
+ load_buffer_4x4(input, in, stride);
+ fadst4_sse2(in);
+ fadst4_sse2(in);
+ write_buffer_4x4(output, in);
break;
+ default:
+ assert(0);
+ break;
}
- write_buffer_4x4(output, in);
}
void vp9_fdct8x8_sse2(const int16_t *input, int16_t *output, int stride) {
@@ -312,7 +418,7 @@ void vp9_fdct8x8_sse2(const int16_t *input, int16_t *output, int stride) {
for (pass = 0; pass < 2; pass++) {
// To store results of each pass before the transpose.
__m128i res0, res1, res2, res3, res4, res5, res6, res7;
- // Add/substract
+ // Add/subtract
const __m128i q0 = _mm_add_epi16(in0, in7);
const __m128i q1 = _mm_add_epi16(in1, in6);
const __m128i q2 = _mm_add_epi16(in2, in5);
@@ -323,7 +429,7 @@ void vp9_fdct8x8_sse2(const int16_t *input, int16_t *output, int stride) {
const __m128i q7 = _mm_sub_epi16(in0, in7);
// Work on first four results
{
- // Add/substract
+ // Add/subtract
const __m128i r0 = _mm_add_epi16(q0, q3);
const __m128i r1 = _mm_add_epi16(q1, q2);
const __m128i r2 = _mm_sub_epi16(q1, q2);
@@ -385,7 +491,7 @@ void vp9_fdct8x8_sse2(const int16_t *input, int16_t *output, int stride) {
// Combine
const __m128i r0 = _mm_packs_epi32(s0, s1);
const __m128i r1 = _mm_packs_epi32(s2, s3);
- // Add/substract
+ // Add/subtract
const __m128i x0 = _mm_add_epi16(q4, r0);
const __m128i x1 = _mm_sub_epi16(q4, r0);
const __m128i x2 = _mm_sub_epi16(q7, r1);
@@ -657,7 +763,7 @@ static INLINE void array_transpose_8x8(__m128i *in, __m128i *res) {
// 07 17 27 37 47 57 67 77
}
-void fdct8_1d_sse2(__m128i *in) {
+void fdct8_sse2(__m128i *in) {
// constants
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
@@ -797,7 +903,7 @@ void fdct8_1d_sse2(__m128i *in) {
array_transpose_8x8(in, in);
}
-void fadst8_1d_sse2(__m128i *in) {
+void fadst8_sse2(__m128i *in) {
// Constants
const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64);
const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64);
@@ -1027,40 +1133,46 @@ void fadst8_1d_sse2(__m128i *in) {
array_transpose_8x8(in, in);
}
-void vp9_short_fht8x8_sse2(const int16_t *input, int16_t *output,
- int stride, int tx_type) {
+void vp9_fht8x8_sse2(const int16_t *input, int16_t *output,
+ int stride, int tx_type) {
__m128i in[8];
- load_buffer_8x8(input, in, stride);
+
switch (tx_type) {
- case 0: // DCT_DCT
- fdct8_1d_sse2(in);
- fdct8_1d_sse2(in);
+ case DCT_DCT:
+ vp9_fdct8x8_sse2(input, output, stride);
break;
- case 1: // ADST_DCT
- fadst8_1d_sse2(in);
- fdct8_1d_sse2(in);
+ case ADST_DCT:
+ load_buffer_8x8(input, in, stride);
+ fadst8_sse2(in);
+ fdct8_sse2(in);
+ right_shift_8x8(in, 1);
+ write_buffer_8x8(output, in, 8);
break;
- case 2: // DCT_ADST
- fdct8_1d_sse2(in);
- fadst8_1d_sse2(in);
+ case DCT_ADST:
+ load_buffer_8x8(input, in, stride);
+ fdct8_sse2(in);
+ fadst8_sse2(in);
+ right_shift_8x8(in, 1);
+ write_buffer_8x8(output, in, 8);
break;
- case 3: // ADST_ADST
- fadst8_1d_sse2(in);
- fadst8_1d_sse2(in);
+ case ADST_ADST:
+ load_buffer_8x8(input, in, stride);
+ fadst8_sse2(in);
+ fadst8_sse2(in);
+ right_shift_8x8(in, 1);
+ write_buffer_8x8(output, in, 8);
break;
default:
assert(0);
break;
}
- right_shift_8x8(in, 1);
- write_buffer_8x8(output, in, 8);
}
void vp9_fdct16x16_sse2(const int16_t *input, int16_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
- // as the first pass results are transposed, we tranpose the columns (that
+ // as the first pass results are transposed, we transpose the columns (that
// is the transposed rows) and transpose the results (so that it goes back
// in normal/row positions).
int pass;
@@ -1215,9 +1327,9 @@ void vp9_fdct16x16_sse2(const int16_t *input, int16_t *output, int stride) {
step1_6 = _mm_sub_epi16(in01, in14);
step1_7 = _mm_sub_epi16(in00, in15);
}
- // Work on the first eight values; fdct8_1d(input, even_results);
+ // Work on the first eight values; fdct8(input, even_results);
{
- // Add/substract
+ // Add/subtract
const __m128i q0 = _mm_add_epi16(input0, input7);
const __m128i q1 = _mm_add_epi16(input1, input6);
const __m128i q2 = _mm_add_epi16(input2, input5);
@@ -1228,7 +1340,7 @@ void vp9_fdct16x16_sse2(const int16_t *input, int16_t *output, int stride) {
const __m128i q7 = _mm_sub_epi16(input0, input7);
// Work on first four results
{
- // Add/substract
+ // Add/subtract
const __m128i r0 = _mm_add_epi16(q0, q3);
const __m128i r1 = _mm_add_epi16(q1, q2);
const __m128i r2 = _mm_sub_epi16(q1, q2);
@@ -1292,7 +1404,7 @@ void vp9_fdct16x16_sse2(const int16_t *input, int16_t *output, int stride) {
// Combine
const __m128i r0 = _mm_packs_epi32(s0, s1);
const __m128i r1 = _mm_packs_epi32(s2, s3);
- // Add/substract
+ // Add/subtract
const __m128i x0 = _mm_add_epi16(q4, r0);
const __m128i x1 = _mm_sub_epi16(q4, r0);
const __m128i x2 = _mm_sub_epi16(q7, r1);
@@ -1729,7 +1841,7 @@ static INLINE void right_shift_16x16(__m128i *res0, __m128i *res1) {
right_shift_8x8(res1 + 8, 2);
}
-void fdct16_1d_8col(__m128i *in) {
+void fdct16_8col(__m128i *in) {
// perform 16x16 1-D DCT for 8 columns
__m128i i[8], s[8], p[8], t[8], u[16], v[16];
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
@@ -2051,7 +2163,7 @@ void fdct16_1d_8col(__m128i *in) {
in[15] = _mm_packs_epi32(v[14], v[15]);
}
-void fadst16_1d_8col(__m128i *in) {
+void fadst16_8col(__m128i *in) {
// perform 16x16 1-D ADST for 8 columns
__m128i s[16], x[16], u[32], v[32];
const __m128i k__cospi_p01_p31 = pair_set_epi16(cospi_1_64, cospi_31_64);
@@ -2521,48 +2633,51 @@ void fadst16_1d_8col(__m128i *in) {
in[15] = _mm_sub_epi16(kZero, s[1]);
}
-void fdct16_1d_sse2(__m128i *in0, __m128i *in1) {
- fdct16_1d_8col(in0);
- fdct16_1d_8col(in1);
+void fdct16_sse2(__m128i *in0, __m128i *in1) {
+ fdct16_8col(in0);
+ fdct16_8col(in1);
array_transpose_16x16(in0, in1);
}
-void fadst16_1d_sse2(__m128i *in0, __m128i *in1) {
- fadst16_1d_8col(in0);
- fadst16_1d_8col(in1);
+void fadst16_sse2(__m128i *in0, __m128i *in1) {
+ fadst16_8col(in0);
+ fadst16_8col(in1);
array_transpose_16x16(in0, in1);
}
-void vp9_short_fht16x16_sse2(const int16_t *input, int16_t *output,
- int stride, int tx_type) {
+void vp9_fht16x16_sse2(const int16_t *input, int16_t *output,
+ int stride, int tx_type) {
__m128i in0[16], in1[16];
- load_buffer_16x16(input, in0, in1, stride);
+
switch (tx_type) {
- case 0: // DCT_DCT
- fdct16_1d_sse2(in0, in1);
- right_shift_16x16(in0, in1);
- fdct16_1d_sse2(in0, in1);
+ case DCT_DCT:
+ vp9_fdct16x16_sse2(input, output, stride);
break;
- case 1: // ADST_DCT
- fadst16_1d_sse2(in0, in1);
+ case ADST_DCT:
+ load_buffer_16x16(input, in0, in1, stride);
+ fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
- fdct16_1d_sse2(in0, in1);
+ fdct16_sse2(in0, in1);
+ write_buffer_16x16(output, in0, in1, 16);
break;
- case 2: // DCT_ADST
- fdct16_1d_sse2(in0, in1);
+ case DCT_ADST:
+ load_buffer_16x16(input, in0, in1, stride);
+ fdct16_sse2(in0, in1);
right_shift_16x16(in0, in1);
- fadst16_1d_sse2(in0, in1);
+ fadst16_sse2(in0, in1);
+ write_buffer_16x16(output, in0, in1, 16);
break;
- case 3: // ADST_ADST
- fadst16_1d_sse2(in0, in1);
+ case ADST_ADST:
+ load_buffer_16x16(input, in0, in1, stride);
+ fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
- fadst16_1d_sse2(in0, in1);
+ fadst16_sse2(in0, in1);
+ write_buffer_16x16(output, in0, in1, 16);
break;
default:
assert(0);
break;
}
- write_buffer_16x16(output, in0, in1, 16);
}
#define FDCT32x32_2D vp9_fdct32x32_rd_sse2
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_ssse3.asm b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_ssse3.asm
new file mode 100644
index 00000000000..8723a71140e
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_dct_ssse3.asm
@@ -0,0 +1,174 @@
+;
+; Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+%include "third_party/x86inc/x86inc.asm"
+
+; This file provides SSSE3 version of the forward transformation. Part
+; of the macro definitions are originally derived from the ffmpeg project.
+; The current version applies to x86 64-bit only.
+
+SECTION_RODATA
+
+pw_11585x2: times 8 dw 23170
+pd_8192: times 4 dd 8192
+
+%macro TRANSFORM_COEFFS 2
+pw_%1_%2: dw %1, %2, %1, %2, %1, %2, %1, %2
+pw_%2_m%1: dw %2, -%1, %2, -%1, %2, -%1, %2, -%1
+%endmacro
+
+TRANSFORM_COEFFS 15137, 6270
+TRANSFORM_COEFFS 16069, 3196
+TRANSFORM_COEFFS 9102, 13623
+
+SECTION .text
+
+%if ARCH_X86_64
+%macro SUM_SUB 3
+ psubw m%3, m%1, m%2
+ paddw m%1, m%2
+ SWAP %2, %3
+%endmacro
+
+; butterfly operation
+%macro MUL_ADD_2X 6 ; dst1, dst2, src, round, coefs1, coefs2
+ pmaddwd m%1, m%3, %5
+ pmaddwd m%2, m%3, %6
+ paddd m%1, %4
+ paddd m%2, %4
+ psrad m%1, 14
+ psrad m%2, 14
+%endmacro
+
+%macro BUTTERFLY_4X 7 ; dst1, dst2, coef1, coef2, round, tmp1, tmp2
+ punpckhwd m%6, m%2, m%1
+ MUL_ADD_2X %7, %6, %6, %5, [pw_%4_%3], [pw_%3_m%4]
+ punpcklwd m%2, m%1
+ MUL_ADD_2X %1, %2, %2, %5, [pw_%4_%3], [pw_%3_m%4]
+ packssdw m%1, m%7
+ packssdw m%2, m%6
+%endmacro
+
+; matrix transpose
+%macro INTERLEAVE_2X 4
+ punpckh%1 m%4, m%2, m%3
+ punpckl%1 m%2, m%3
+ SWAP %3, %4
+%endmacro
+
+%macro TRANSPOSE8X8 9
+ INTERLEAVE_2X wd, %1, %2, %9
+ INTERLEAVE_2X wd, %3, %4, %9
+ INTERLEAVE_2X wd, %5, %6, %9
+ INTERLEAVE_2X wd, %7, %8, %9
+
+ INTERLEAVE_2X dq, %1, %3, %9
+ INTERLEAVE_2X dq, %2, %4, %9
+ INTERLEAVE_2X dq, %5, %7, %9
+ INTERLEAVE_2X dq, %6, %8, %9
+
+ INTERLEAVE_2X qdq, %1, %5, %9
+ INTERLEAVE_2X qdq, %3, %7, %9
+ INTERLEAVE_2X qdq, %2, %6, %9
+ INTERLEAVE_2X qdq, %4, %8, %9
+
+ SWAP %2, %5
+ SWAP %4, %7
+%endmacro
+
+; 1D forward 8x8 DCT transform
+%macro FDCT8_1D 0
+ SUM_SUB 0, 7, 9
+ SUM_SUB 1, 6, 9
+ SUM_SUB 2, 5, 9
+ SUM_SUB 3, 4, 9
+
+ SUM_SUB 0, 3, 9
+ SUM_SUB 1, 2, 9
+ SUM_SUB 6, 5, 9
+ SUM_SUB 0, 1, 9
+
+ BUTTERFLY_4X 2, 3, 6270, 15137, m8, 9, 10
+
+ pmulhrsw m6, m12
+ pmulhrsw m5, m12
+ pmulhrsw m0, m12
+ pmulhrsw m1, m12
+
+ SUM_SUB 4, 5, 9
+ SUM_SUB 7, 6, 9
+ BUTTERFLY_4X 4, 7, 3196, 16069, m8, 9, 10
+ BUTTERFLY_4X 5, 6, 13623, 9102, m8, 9, 10
+ SWAP 1, 4
+ SWAP 3, 6
+%endmacro
+
+%macro DIVIDE_ROUND_2X 4 ; dst1, dst2, tmp1, tmp2
+ psraw m%3, m%1, 15
+ psraw m%4, m%2, 15
+ psubw m%1, m%3
+ psubw m%2, m%4
+ psraw m%1, 1
+ psraw m%2, 1
+%endmacro
+
+INIT_XMM ssse3
+cglobal fdct8x8, 3, 5, 13, input, output, stride
+
+ mova m8, [pd_8192]
+ mova m12, [pw_11585x2]
+ pxor m11, m11
+
+ lea r3, [2 * strideq]
+ lea r4, [4 * strideq]
+ mova m0, [inputq]
+ mova m1, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m2, [inputq]
+ mova m3, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m4, [inputq]
+ mova m5, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m6, [inputq]
+ mova m7, [inputq + r3]
+
+ ; left shift by 2 to increase forward transformation precision
+ psllw m0, 2
+ psllw m1, 2
+ psllw m2, 2
+ psllw m3, 2
+ psllw m4, 2
+ psllw m5, 2
+ psllw m6, 2
+ psllw m7, 2
+
+ ; column transform
+ FDCT8_1D
+ TRANSPOSE8X8 0, 1, 2, 3, 4, 5, 6, 7, 9
+
+ FDCT8_1D
+ TRANSPOSE8X8 0, 1, 2, 3, 4, 5, 6, 7, 9
+
+ DIVIDE_ROUND_2X 0, 1, 9, 10
+ DIVIDE_ROUND_2X 2, 3, 9, 10
+ DIVIDE_ROUND_2X 4, 5, 9, 10
+ DIVIDE_ROUND_2X 6, 7, 9, 10
+
+ mova [outputq + 0], m0
+ mova [outputq + 16], m1
+ mova [outputq + 32], m2
+ mova [outputq + 48], m3
+ mova [outputq + 64], m4
+ mova [outputq + 80], m5
+ mova [outputq + 96], m6
+ mova [outputq + 112], m7
+
+ RET
+%endif
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_error_intrin_avx2.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_error_intrin_avx2.c
new file mode 100644
index 00000000000..c67490fad34
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_error_intrin_avx2.c
@@ -0,0 +1,72 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Usee of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <immintrin.h> // AVX2
+#include "vpx/vpx_integer.h"
+
+
+int64_t vp9_block_error_avx2(const int16_t *coeff,
+ const int16_t *dqcoeff,
+ intptr_t block_size,
+ int64_t *ssz) {
+ __m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg;
+ __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
+ __m256i sse_reg_64hi, ssz_reg_64hi;
+ __m128i sse_reg128, ssz_reg128;
+ int64_t sse;
+ int i;
+ const __m256i zero_reg = _mm256_set1_epi16(0);
+
+ // init sse and ssz registerd to zero
+ sse_reg = _mm256_set1_epi16(0);
+ ssz_reg = _mm256_set1_epi16(0);
+
+ for (i = 0 ; i < block_size ; i+= 16) {
+ // load 32 bytes from coeff and dqcoeff
+ coeff_reg = _mm256_loadu_si256((const __m256i *)(coeff + i));
+ dqcoeff_reg = _mm256_loadu_si256((const __m256i *)(dqcoeff + i));
+ // dqcoeff - coeff
+ dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg);
+ // madd (dqcoeff - coeff)
+ dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg);
+ // madd coeff
+ coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg);
+ // expand each double word of madd (dqcoeff - coeff) to quad word
+ exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
+ exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg);
+ // expand each double word of madd (coeff) to quad word
+ exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
+ exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg);
+ // add each quad word of madd (dqcoeff - coeff) and madd (coeff)
+ sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
+ ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
+ sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
+ ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
+ }
+ // save the higher 64 bit of each 128 bit lane
+ sse_reg_64hi = _mm256_srli_si256(sse_reg, 8);
+ ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8);
+ // add the higher 64 bit to the low 64 bit
+ sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi);
+ ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi);
+
+ // add each 64 bit from each of the 128 bit lane of the 256 bit
+ sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg),
+ _mm256_extractf128_si256(sse_reg, 1));
+
+ ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg),
+ _mm256_extractf128_si256(ssz_reg, 1));
+
+ // store the results
+ _mm_storel_epi64((__m128i*)(&sse), sse_reg128);
+
+ _mm_storel_epi64((__m128i*)(ssz), ssz_reg128);
+ return sse;
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_mcomp_x86.h b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_mcomp_x86.h
deleted file mode 100644
index ca80b8bff6b..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_mcomp_x86.h
+++ /dev/null
@@ -1,40 +0,0 @@
-/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-
-#ifndef VP9_ENCODER_X86_VP9_MCOMP_X86_H_
-#define VP9_ENCODER_X86_VP9_MCOMP_X86_H_
-
-#if HAVE_SSE3
-#if !CONFIG_RUNTIME_CPU_DETECT
-
-#undef vp9_search_full_search
-#define vp9_search_full_search vp9_full_search_sadx3
-
-#undef vp9_search_refining_search
-#define vp9_search_refining_search vp9_refining_search_sadx4
-
-#undef vp9_search_diamond_search
-#define vp9_search_diamond_search vp9_diamond_search_sadx4
-
-#endif
-#endif
-
-#if HAVE_SSE4_1
-#if !CONFIG_RUNTIME_CPU_DETECT
-
-#undef vp9_search_full_search
-#define vp9_search_full_search vp9_full_search_sadx8
-
-#endif
-#endif
-
-#endif
-
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_quantize_ssse3.asm b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_quantize_ssse3.asm
index db306603b5f..48ccef8ccfb 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_quantize_ssse3.asm
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_quantize_ssse3.asm
@@ -188,7 +188,8 @@ cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, zbin, round, quant, \
pmaxsw m8, m7
pshuflw m7, m8, 0x1
pmaxsw m8, m7
- pextrw [r2], m8, 0
+ pextrw r6, m8, 0
+ mov [r2], r6
RET
; skip-block, i.e. just write all zeroes
@@ -214,5 +215,5 @@ cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, zbin, round, quant, \
%endmacro
INIT_XMM ssse3
-QUANTIZE_FN b, 6
+QUANTIZE_FN b, 7
QUANTIZE_FN b_32x32, 7
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_sad4d_intrin_avx2.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_sad4d_intrin_avx2.c
new file mode 100644
index 00000000000..f31b176e569
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_sad4d_intrin_avx2.c
@@ -0,0 +1,167 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#include <immintrin.h> // AVX2
+#include "vpx/vpx_integer.h"
+
+void vp9_sad32x32x4d_avx2(uint8_t *src,
+ int src_stride,
+ uint8_t *ref[4],
+ int ref_stride,
+ unsigned int res[4]) {
+ __m256i src_reg, ref0_reg, ref1_reg, ref2_reg, ref3_reg;
+ __m256i sum_ref0, sum_ref1, sum_ref2, sum_ref3;
+ __m256i sum_mlow, sum_mhigh;
+ int i;
+ uint8_t *ref0, *ref1, *ref2, *ref3;
+
+ ref0 = ref[0];
+ ref1 = ref[1];
+ ref2 = ref[2];
+ ref3 = ref[3];
+ sum_ref0 = _mm256_set1_epi16(0);
+ sum_ref1 = _mm256_set1_epi16(0);
+ sum_ref2 = _mm256_set1_epi16(0);
+ sum_ref3 = _mm256_set1_epi16(0);
+ for (i = 0; i < 32 ; i++) {
+ // load src and all refs
+ src_reg = _mm256_load_si256((__m256i *)(src));
+ ref0_reg = _mm256_loadu_si256((__m256i *) (ref0));
+ ref1_reg = _mm256_loadu_si256((__m256i *) (ref1));
+ ref2_reg = _mm256_loadu_si256((__m256i *) (ref2));
+ ref3_reg = _mm256_loadu_si256((__m256i *) (ref3));
+ // sum of the absolute differences between every ref-i to src
+ ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg);
+ ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg);
+ ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg);
+ ref3_reg = _mm256_sad_epu8(ref3_reg, src_reg);
+ // sum every ref-i
+ sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg);
+ sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg);
+ sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg);
+ sum_ref3 = _mm256_add_epi32(sum_ref3, ref3_reg);
+
+ src+= src_stride;
+ ref0+= ref_stride;
+ ref1+= ref_stride;
+ ref2+= ref_stride;
+ ref3+= ref_stride;
+ }
+ {
+ __m128i sum;
+ // in sum_ref-i the result is saved in the first 4 bytes
+ // the other 4 bytes are zeroed.
+ // sum_ref1 and sum_ref3 are shifted left by 4 bytes
+ sum_ref1 = _mm256_slli_si256(sum_ref1, 4);
+ sum_ref3 = _mm256_slli_si256(sum_ref3, 4);
+
+ // merge sum_ref0 and sum_ref1 also sum_ref2 and sum_ref3
+ sum_ref0 = _mm256_or_si256(sum_ref0, sum_ref1);
+ sum_ref2 = _mm256_or_si256(sum_ref2, sum_ref3);
+
+ // merge every 64 bit from each sum_ref-i
+ sum_mlow = _mm256_unpacklo_epi64(sum_ref0, sum_ref2);
+ sum_mhigh = _mm256_unpackhi_epi64(sum_ref0, sum_ref2);
+
+ // add the low 64 bit to the high 64 bit
+ sum_mlow = _mm256_add_epi32(sum_mlow, sum_mhigh);
+
+ // add the low 128 bit to the high 128 bit
+ sum = _mm_add_epi32(_mm256_castsi256_si128(sum_mlow),
+ _mm256_extractf128_si256(sum_mlow, 1));
+
+ _mm_storeu_si128((__m128i *)(res), sum);
+ }
+}
+
+void vp9_sad64x64x4d_avx2(uint8_t *src,
+ int src_stride,
+ uint8_t *ref[4],
+ int ref_stride,
+ unsigned int res[4]) {
+ __m256i src_reg, srcnext_reg, ref0_reg, ref0next_reg;
+ __m256i ref1_reg, ref1next_reg, ref2_reg, ref2next_reg;
+ __m256i ref3_reg, ref3next_reg;
+ __m256i sum_ref0, sum_ref1, sum_ref2, sum_ref3;
+ __m256i sum_mlow, sum_mhigh;
+ int i;
+ uint8_t *ref0, *ref1, *ref2, *ref3;
+
+ ref0 = ref[0];
+ ref1 = ref[1];
+ ref2 = ref[2];
+ ref3 = ref[3];
+ sum_ref0 = _mm256_set1_epi16(0);
+ sum_ref1 = _mm256_set1_epi16(0);
+ sum_ref2 = _mm256_set1_epi16(0);
+ sum_ref3 = _mm256_set1_epi16(0);
+ for (i = 0; i < 64 ; i++) {
+ // load 64 bytes from src and all refs
+ src_reg = _mm256_load_si256((__m256i *)(src));
+ srcnext_reg = _mm256_load_si256((__m256i *)(src + 32));
+ ref0_reg = _mm256_loadu_si256((__m256i *) (ref0));
+ ref0next_reg = _mm256_loadu_si256((__m256i *) (ref0 + 32));
+ ref1_reg = _mm256_loadu_si256((__m256i *) (ref1));
+ ref1next_reg = _mm256_loadu_si256((__m256i *) (ref1 + 32));
+ ref2_reg = _mm256_loadu_si256((__m256i *) (ref2));
+ ref2next_reg = _mm256_loadu_si256((__m256i *) (ref2 + 32));
+ ref3_reg = _mm256_loadu_si256((__m256i *) (ref3));
+ ref3next_reg = _mm256_loadu_si256((__m256i *) (ref3 + 32));
+ // sum of the absolute differences between every ref-i to src
+ ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg);
+ ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg);
+ ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg);
+ ref3_reg = _mm256_sad_epu8(ref3_reg, src_reg);
+ ref0next_reg = _mm256_sad_epu8(ref0next_reg, srcnext_reg);
+ ref1next_reg = _mm256_sad_epu8(ref1next_reg, srcnext_reg);
+ ref2next_reg = _mm256_sad_epu8(ref2next_reg, srcnext_reg);
+ ref3next_reg = _mm256_sad_epu8(ref3next_reg, srcnext_reg);
+
+ // sum every ref-i
+ sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg);
+ sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg);
+ sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg);
+ sum_ref3 = _mm256_add_epi32(sum_ref3, ref3_reg);
+ sum_ref0 = _mm256_add_epi32(sum_ref0, ref0next_reg);
+ sum_ref1 = _mm256_add_epi32(sum_ref1, ref1next_reg);
+ sum_ref2 = _mm256_add_epi32(sum_ref2, ref2next_reg);
+ sum_ref3 = _mm256_add_epi32(sum_ref3, ref3next_reg);
+ src+= src_stride;
+ ref0+= ref_stride;
+ ref1+= ref_stride;
+ ref2+= ref_stride;
+ ref3+= ref_stride;
+ }
+ {
+ __m128i sum;
+
+ // in sum_ref-i the result is saved in the first 4 bytes
+ // the other 4 bytes are zeroed.
+ // sum_ref1 and sum_ref3 are shifted left by 4 bytes
+ sum_ref1 = _mm256_slli_si256(sum_ref1, 4);
+ sum_ref3 = _mm256_slli_si256(sum_ref3, 4);
+
+ // merge sum_ref0 and sum_ref1 also sum_ref2 and sum_ref3
+ sum_ref0 = _mm256_or_si256(sum_ref0, sum_ref1);
+ sum_ref2 = _mm256_or_si256(sum_ref2, sum_ref3);
+
+ // merge every 64 bit from each sum_ref-i
+ sum_mlow = _mm256_unpacklo_epi64(sum_ref0, sum_ref2);
+ sum_mhigh = _mm256_unpackhi_epi64(sum_ref0, sum_ref2);
+
+ // add the low 64 bit to the high 64 bit
+ sum_mlow = _mm256_add_epi32(sum_mlow, sum_mhigh);
+
+ // add the low 128 bit to the high 128 bit
+ sum = _mm_add_epi32(_mm256_castsi256_si128(sum_mlow),
+ _mm256_extractf128_si256(sum_mlow, 1));
+
+ _mm_storeu_si128((__m128i *)(res), sum);
+ }
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance.asm b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance.asm
index 533456b77d8..1a9e4e8b6bd 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance.asm
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance.asm
@@ -118,6 +118,14 @@ SECTION .text
RET
%endmacro
+%macro INC_SRC_BY_SRC_STRIDE 0
+%if ARCH_X86=1 && CONFIG_PIC=1
+ add srcq, src_stridemp
+%else
+ add srcq, src_strideq
+%endif
+%endmacro
+
%macro SUBPEL_VARIANCE 1-2 0 ; W
%if cpuflag(ssse3)
%define bilin_filter_m bilin_filter_m_ssse3
@@ -129,41 +137,85 @@ SECTION .text
; FIXME(rbultje) only bilinear filters use >8 registers, and ssse3 only uses
; 11, not 13, if the registers are ordered correctly. May make a minor speed
; difference on Win64
-%ifdef PIC
-%if %2 == 1 ; avg
-cglobal sub_pixel_avg_variance%1xh, 9, 10, 13, src, src_stride, \
- x_offset, y_offset, \
- dst, dst_stride, \
- sec, sec_stride, height, sse
-%define sec_str sec_strideq
-%else
-cglobal sub_pixel_variance%1xh, 7, 8, 13, src, src_stride, x_offset, y_offset, \
- dst, dst_stride, height, sse
-%endif
-%define h heightd
-%define bilin_filter sseq
-%else
-%if %2 == 1 ; avg
-cglobal sub_pixel_avg_variance%1xh, 7 + 2 * ARCH_X86_64, \
- 7 + 2 * ARCH_X86_64, 13, src, src_stride, \
- x_offset, y_offset, \
- dst, dst_stride, \
- sec, sec_stride, \
- height, sse
-%if ARCH_X86_64
-%define h heightd
-%define sec_str sec_strideq
-%else
-%define h dword heightm
-%define sec_str sec_stridemp
-%endif
+
+%ifdef PIC ; 64bit PIC
+ %if %2 == 1 ; avg
+ cglobal sub_pixel_avg_variance%1xh, 9, 10, 13, src, src_stride, \
+ x_offset, y_offset, \
+ dst, dst_stride, \
+ sec, sec_stride, height, sse
+ %define sec_str sec_strideq
+ %else
+ cglobal sub_pixel_variance%1xh, 7, 8, 13, src, src_stride, x_offset, \
+ y_offset, dst, dst_stride, height, sse
+ %endif
+ %define h heightd
+ %define bilin_filter sseq
%else
-cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, y_offset, \
- dst, dst_stride, height, sse
-%define h heightd
-%endif
-%define bilin_filter bilin_filter_m
+ %if ARCH_X86=1 && CONFIG_PIC=1
+ %if %2 == 1 ; avg
+ cglobal sub_pixel_avg_variance%1xh, 7, 7, 13, src, src_stride, \
+ x_offset, y_offset, \
+ dst, dst_stride, \
+ sec, sec_stride, \
+ height, sse, g_bilin_filter, g_pw_8
+ %define h dword heightm
+ %define sec_str sec_stridemp
+
+ ;Store bilin_filter and pw_8 location in stack
+ GET_GOT eax
+ add esp, 4 ; restore esp
+
+ lea ecx, [GLOBAL(bilin_filter_m)]
+ mov g_bilin_filterm, ecx
+
+ lea ecx, [GLOBAL(pw_8)]
+ mov g_pw_8m, ecx
+
+ LOAD_IF_USED 0, 1 ; load eax, ecx back
+ %else
+ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, \
+ y_offset, dst, dst_stride, height, sse, \
+ g_bilin_filter, g_pw_8
+ %define h heightd
+
+ ;Store bilin_filter and pw_8 location in stack
+ GET_GOT eax
+ add esp, 4 ; restore esp
+
+ lea ecx, [GLOBAL(bilin_filter_m)]
+ mov g_bilin_filterm, ecx
+
+ lea ecx, [GLOBAL(pw_8)]
+ mov g_pw_8m, ecx
+
+ LOAD_IF_USED 0, 1 ; load eax, ecx back
+ %endif
+ %else
+ %if %2 == 1 ; avg
+ cglobal sub_pixel_avg_variance%1xh, 7 + 2 * ARCH_X86_64, \
+ 7 + 2 * ARCH_X86_64, 13, src, src_stride, \
+ x_offset, y_offset, \
+ dst, dst_stride, \
+ sec, sec_stride, \
+ height, sse
+ %if ARCH_X86_64
+ %define h heightd
+ %define sec_str sec_strideq
+ %else
+ %define h dword heightm
+ %define sec_str sec_stridemp
+ %endif
+ %else
+ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, \
+ y_offset, dst, dst_stride, height, sse
+ %define h heightd
+ %endif
+
+ %define bilin_filter bilin_filter_m
+ %endif
%endif
+
ASSERT %1 <= 16 ; m6 overflows if w > 16
pxor m6, m6 ; sum
pxor m7, m7 ; sse
@@ -329,11 +381,22 @@ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, y_offset, \
%define filter_y_b m9
%define filter_rnd m10
%else ; x86-32 or mmx
+%if ARCH_X86=1 && CONFIG_PIC=1
+; x_offset == 0, reuse x_offset reg
+%define tempq x_offsetq
+ add y_offsetq, g_bilin_filterm
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
+%else
add y_offsetq, bilin_filter
%define filter_y_a [y_offsetq]
%define filter_y_b [y_offsetq+16]
%define filter_rnd [pw_8]
%endif
+%endif
+
.x_zero_y_other_loop:
%if %1 == 16
movu m0, [srcq]
@@ -615,12 +678,23 @@ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, y_offset, \
%define filter_y_a m8
%define filter_y_b m9
%define filter_rnd m10
+%else ;x86_32
+%if ARCH_X86=1 && CONFIG_PIC=1
+; x_offset == 0.5. We can reuse x_offset reg
+%define tempq x_offsetq
+ add y_offsetq, g_bilin_filterm
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
%else
add y_offsetq, bilin_filter
%define filter_y_a [y_offsetq]
%define filter_y_b [y_offsetq+16]
%define filter_rnd [pw_8]
%endif
+%endif
+
%if %1 == 16
movu m0, [srcq]
movu m3, [srcq+1]
@@ -752,12 +826,23 @@ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, y_offset, \
%define filter_x_a m8
%define filter_x_b m9
%define filter_rnd m10
+%else ; x86-32
+%if ARCH_X86=1 && CONFIG_PIC=1
+;y_offset == 0. We can reuse y_offset reg.
+%define tempq y_offsetq
+ add x_offsetq, g_bilin_filterm
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
%else
add x_offsetq, bilin_filter
%define filter_x_a [x_offsetq]
%define filter_x_b [x_offsetq+16]
%define filter_rnd [pw_8]
%endif
+%endif
+
.x_other_y_zero_loop:
%if %1 == 16
movu m0, [srcq]
@@ -873,12 +958,23 @@ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, y_offset, \
%define filter_x_a m8
%define filter_x_b m9
%define filter_rnd m10
+%else ; x86-32
+%if ARCH_X86=1 && CONFIG_PIC=1
+; y_offset == 0.5. We can reuse y_offset reg.
+%define tempq y_offsetq
+ add x_offsetq, g_bilin_filterm
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
%else
add x_offsetq, bilin_filter
%define filter_x_a [x_offsetq]
%define filter_x_b [x_offsetq+16]
%define filter_rnd [pw_8]
%endif
+%endif
+
%if %1 == 16
movu m0, [srcq]
movu m1, [srcq+1]
@@ -1057,6 +1153,21 @@ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, y_offset, \
%define filter_y_a m10
%define filter_y_b m11
%define filter_rnd m12
+%else ; x86-32
+%if ARCH_X86=1 && CONFIG_PIC=1
+; In this case, there is NO unused register. Used src_stride register. Later,
+; src_stride has to be loaded from stack when it is needed.
+%define tempq src_strideq
+ mov tempq, g_bilin_filterm
+ add x_offsetq, tempq
+ add y_offsetq, tempq
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
%else
add x_offsetq, bilin_filter
add y_offsetq, bilin_filter
@@ -1066,6 +1177,8 @@ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, y_offset, \
%define filter_y_b [y_offsetq+16]
%define filter_rnd [pw_8]
%endif
+%endif
+
; x_offset == bilin interpolation && y_offset == bilin interpolation
%if %1 == 16
movu m0, [srcq]
@@ -1093,7 +1206,9 @@ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, y_offset, \
%endif
psraw m0, 4
psraw m2, 4
- add srcq, src_strideq
+
+ INC_SRC_BY_SRC_STRIDE
+
packuswb m0, m2
.x_other_y_other_loop:
%if cpuflag(ssse3)
@@ -1163,7 +1278,7 @@ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, y_offset, \
SUM_SSE m0, m1, m2, m3, m6, m7
mova m0, m4
- add srcq, src_strideq
+ INC_SRC_BY_SRC_STRIDE
add dstq, dst_strideq
%else ; %1 < 16
movh m0, [srcq]
@@ -1184,12 +1299,17 @@ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, y_offset, \
%if cpuflag(ssse3)
packuswb m0, m0
%endif
- add srcq, src_strideq
+
+ INC_SRC_BY_SRC_STRIDE
+
.x_other_y_other_loop:
movh m2, [srcq]
movh m1, [srcq+1]
- movh m4, [srcq+src_strideq]
- movh m3, [srcq+src_strideq+1]
+
+ INC_SRC_BY_SRC_STRIDE
+ movh m4, [srcq]
+ movh m3, [srcq+1]
+
%if cpuflag(ssse3)
punpcklbw m2, m1
punpcklbw m4, m3
@@ -1253,7 +1373,7 @@ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, y_offset, \
SUM_SSE m0, m1, m2, m3, m6, m7
mova m0, m4
- lea srcq, [srcq+src_strideq*2]
+ INC_SRC_BY_SRC_STRIDE
lea dstq, [dstq+dst_strideq*2]
%endif
%if %2 == 1 ; avg
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_intrin_avx2.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_intrin_avx2.c
new file mode 100644
index 00000000000..34ed1867f61
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_intrin_avx2.c
@@ -0,0 +1,539 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <immintrin.h> // AVX2
+#include "vpx_ports/mem.h"
+#include "vp9/encoder/vp9_variance.h"
+
+DECLARE_ALIGNED(32, static const uint8_t, bilinear_filters_avx2[512]) = {
+ 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0,
+ 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0,
+ 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1,
+ 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1,
+ 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2,
+ 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2,
+ 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3,
+ 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3,
+ 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4,
+ 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4,
+ 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5,
+ 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5,
+ 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6,
+ 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6,
+ 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7,
+ 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9,
+ 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9,
+ 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10,
+ 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10,
+ 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11,
+ 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11,
+ 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12,
+ 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12,
+ 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13,
+ 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13,
+ 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14,
+ 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14,
+ 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15,
+ 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15
+};
+
+#define FILTER_SRC(filter) \
+ /* filter the source */ \
+ exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); \
+ exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); \
+ \
+ /* add 8 to source */ \
+ exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); \
+ exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); \
+ \
+ /* divide source by 16 */ \
+ exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); \
+ exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
+
+#define MERGE_WITH_SRC(src_reg, reg) \
+ exp_src_lo = _mm256_unpacklo_epi8(src_reg, reg); \
+ exp_src_hi = _mm256_unpackhi_epi8(src_reg, reg);
+
+#define LOAD_SRC_DST \
+ /* load source and destination */ \
+ src_reg = _mm256_loadu_si256((__m256i const *) (src)); \
+ dst_reg = _mm256_load_si256((__m256i const *) (dst));
+
+#define AVG_NEXT_SRC(src_reg, size_stride) \
+ src_next_reg = _mm256_loadu_si256((__m256i const *) \
+ (src + size_stride)); \
+ /* average between current and next stride source */ \
+ src_reg = _mm256_avg_epu8(src_reg, src_next_reg);
+
+#define MERGE_NEXT_SRC(src_reg, size_stride) \
+ src_next_reg = _mm256_loadu_si256((__m256i const *) \
+ (src + size_stride)); \
+ MERGE_WITH_SRC(src_reg, src_next_reg)
+
+#define CALC_SUM_SSE_INSIDE_LOOP \
+ /* expand each byte to 2 bytes */ \
+ exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); \
+ exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); \
+ /* source - dest */ \
+ exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); \
+ exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); \
+ /* caculate sum */ \
+ sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); \
+ exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); \
+ sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); \
+ exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); \
+ /* calculate sse */ \
+ sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); \
+ sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
+
+// final calculation to sum and sse
+#define CALC_SUM_AND_SSE \
+ res_cmp = _mm256_cmpgt_epi16(zero_reg, sum_reg); \
+ sse_reg_hi = _mm256_srli_si256(sse_reg, 8); \
+ sum_reg_lo = _mm256_unpacklo_epi16(sum_reg, res_cmp); \
+ sum_reg_hi = _mm256_unpackhi_epi16(sum_reg, res_cmp); \
+ sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \
+ sum_reg = _mm256_add_epi32(sum_reg_lo, sum_reg_hi); \
+ \
+ sse_reg_hi = _mm256_srli_si256(sse_reg, 4); \
+ sum_reg_hi = _mm256_srli_si256(sum_reg, 8); \
+ \
+ sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \
+ sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \
+ *((int*)sse)= _mm_cvtsi128_si32(_mm256_castsi256_si128(sse_reg)) + \
+ _mm_cvtsi128_si32(_mm256_extractf128_si256(sse_reg, 1)); \
+ sum_reg_hi = _mm256_srli_si256(sum_reg, 4); \
+ sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \
+ sum = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_reg)) + \
+ _mm_cvtsi128_si32(_mm256_extractf128_si256(sum_reg, 1));
+
+
+unsigned int vp9_sub_pixel_variance32xh_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ int height,
+ unsigned int *sse) {
+ __m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi;
+ __m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi;
+ __m256i zero_reg;
+ int i, sum;
+ sum_reg = _mm256_set1_epi16(0);
+ sse_reg = _mm256_set1_epi16(0);
+ zero_reg = _mm256_set1_epi16(0);
+
+ // x_offset = 0 and y_offset = 0
+ if (x_offset == 0) {
+ if (y_offset == 0) {
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ // expend each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = 0 and y_offset = 8
+ } else if (y_offset == 8) {
+ __m256i src_next_reg;
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, src_stride)
+ // expend each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = 0 and y_offset = bilin interpolation
+ } else {
+ __m256i filter, pw8, src_next_reg;
+
+ y_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, src_stride)
+ FILTER_SRC(filter)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ }
+ // x_offset = 8 and y_offset = 0
+ } else if (x_offset == 8) {
+ if (y_offset == 0) {
+ __m256i src_next_reg;
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ // expand each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = 8 and y_offset = 8
+ } else if (y_offset == 8) {
+ __m256i src_next_reg, src_avg;
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ AVG_NEXT_SRC(src_reg, 1)
+ for (i = 0; i < height ; i++) {
+ src_avg = src_reg;
+ src+= src_stride;
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ // average between previous average to current average
+ src_avg = _mm256_avg_epu8(src_avg, src_reg);
+ // expand each byte to 2 bytes
+ MERGE_WITH_SRC(src_avg, zero_reg)
+ // save current source average
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ // x_offset = 8 and y_offset = bilin interpolation
+ } else {
+ __m256i filter, pw8, src_next_reg, src_avg;
+ y_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ AVG_NEXT_SRC(src_reg, 1)
+ for (i = 0; i < height ; i++) {
+ // save current source average
+ src_avg = src_reg;
+ src+= src_stride;
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ MERGE_WITH_SRC(src_avg, src_reg)
+ FILTER_SRC(filter)
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ }
+ // x_offset = bilin interpolation and y_offset = 0
+ } else {
+ if (y_offset == 0) {
+ __m256i filter, pw8, src_next_reg;
+ x_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ pw8 = _mm256_set1_epi16(8);
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = bilin interpolation and y_offset = 8
+ } else if (y_offset == 8) {
+ __m256i filter, pw8, src_next_reg, src_pack;
+ x_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ pw8 = _mm256_set1_epi16(8);
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ // convert each 16 bit to 8 bit to each low and high lane source
+ src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ for (i = 0; i < height ; i++) {
+ src+= src_stride;
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ // average between previous pack to the current
+ src_pack = _mm256_avg_epu8(src_pack, src_reg);
+ MERGE_WITH_SRC(src_pack, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src_pack = src_reg;
+ dst+= dst_stride;
+ }
+ // x_offset = bilin interpolation and y_offset = bilin interpolation
+ } else {
+ __m256i xfilter, yfilter, pw8, src_next_reg, src_pack;
+ x_offset <<= 5;
+ xfilter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ y_offset <<= 5;
+ yfilter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ MERGE_NEXT_SRC(src_reg, 1)
+
+ FILTER_SRC(xfilter)
+ // convert each 16 bit to 8 bit to each low and high lane source
+ src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ for (i = 0; i < height ; i++) {
+ src+= src_stride;
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(xfilter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ // merge previous pack to current pack source
+ MERGE_WITH_SRC(src_pack, src_reg)
+ // filter the source
+ FILTER_SRC(yfilter)
+ src_pack = src_reg;
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ }
+ }
+ CALC_SUM_AND_SSE
+ return sum;
+}
+
+unsigned int vp9_sub_pixel_avg_variance32xh_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ const uint8_t *sec,
+ int sec_stride,
+ int height,
+ unsigned int *sse) {
+ __m256i sec_reg;
+ __m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi;
+ __m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi;
+ __m256i zero_reg;
+ int i, sum;
+ sum_reg = _mm256_set1_epi16(0);
+ sse_reg = _mm256_set1_epi16(0);
+ zero_reg = _mm256_set1_epi16(0);
+
+ // x_offset = 0 and y_offset = 0
+ if (x_offset == 0) {
+ if (y_offset == 0) {
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ sec_reg = _mm256_load_si256((__m256i const *) (sec));
+ src_reg = _mm256_avg_epu8(src_reg, sec_reg);
+ sec+= sec_stride;
+ // expend each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ } else if (y_offset == 8) {
+ __m256i src_next_reg;
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, src_stride)
+ sec_reg = _mm256_load_si256((__m256i const *) (sec));
+ src_reg = _mm256_avg_epu8(src_reg, sec_reg);
+ sec+= sec_stride;
+ // expend each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = 0 and y_offset = bilin interpolation
+ } else {
+ __m256i filter, pw8, src_next_reg;
+
+ y_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, src_stride)
+ FILTER_SRC(filter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ sec_reg = _mm256_load_si256((__m256i const *) (sec));
+ src_reg = _mm256_avg_epu8(src_reg, sec_reg);
+ sec+= sec_stride;
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ }
+ // x_offset = 8 and y_offset = 0
+ } else if (x_offset == 8) {
+ if (y_offset == 0) {
+ __m256i src_next_reg;
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ sec_reg = _mm256_load_si256((__m256i const *) (sec));
+ src_reg = _mm256_avg_epu8(src_reg, sec_reg);
+ sec+= sec_stride;
+ // expand each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = 8 and y_offset = 8
+ } else if (y_offset == 8) {
+ __m256i src_next_reg, src_avg;
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ AVG_NEXT_SRC(src_reg, 1)
+ for (i = 0; i < height ; i++) {
+ // save current source average
+ src_avg = src_reg;
+ src+= src_stride;
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ // average between previous average to current average
+ src_avg = _mm256_avg_epu8(src_avg, src_reg);
+ sec_reg = _mm256_load_si256((__m256i const *) (sec));
+ src_avg = _mm256_avg_epu8(src_avg, sec_reg);
+ sec+= sec_stride;
+ // expand each byte to 2 bytes
+ MERGE_WITH_SRC(src_avg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ // x_offset = 8 and y_offset = bilin interpolation
+ } else {
+ __m256i filter, pw8, src_next_reg, src_avg;
+ y_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ AVG_NEXT_SRC(src_reg, 1)
+ for (i = 0; i < height ; i++) {
+ // save current source average
+ src_avg = src_reg;
+ src+= src_stride;
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ MERGE_WITH_SRC(src_avg, src_reg)
+ FILTER_SRC(filter)
+ src_avg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ sec_reg = _mm256_load_si256((__m256i const *) (sec));
+ src_avg = _mm256_avg_epu8(src_avg, sec_reg);
+ // expand each byte to 2 bytes
+ MERGE_WITH_SRC(src_avg, zero_reg)
+ sec+= sec_stride;
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ }
+ // x_offset = bilin interpolation and y_offset = 0
+ } else {
+ if (y_offset == 0) {
+ __m256i filter, pw8, src_next_reg;
+ x_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ pw8 = _mm256_set1_epi16(8);
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ sec_reg = _mm256_load_si256((__m256i const *) (sec));
+ src_reg = _mm256_avg_epu8(src_reg, sec_reg);
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ sec+= sec_stride;
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = bilin interpolation and y_offset = 8
+ } else if (y_offset == 8) {
+ __m256i filter, pw8, src_next_reg, src_pack;
+ x_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ pw8 = _mm256_set1_epi16(8);
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ // convert each 16 bit to 8 bit to each low and high lane source
+ src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ for (i = 0; i < height ; i++) {
+ src+= src_stride;
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ // average between previous pack to the current
+ src_pack = _mm256_avg_epu8(src_pack, src_reg);
+ sec_reg = _mm256_load_si256((__m256i const *) (sec));
+ src_pack = _mm256_avg_epu8(src_pack, sec_reg);
+ sec+= sec_stride;
+ MERGE_WITH_SRC(src_pack, zero_reg)
+ src_pack = src_reg;
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ // x_offset = bilin interpolation and y_offset = bilin interpolation
+ } else {
+ __m256i xfilter, yfilter, pw8, src_next_reg, src_pack;
+ x_offset <<= 5;
+ xfilter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ y_offset <<= 5;
+ yfilter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ MERGE_NEXT_SRC(src_reg, 1)
+
+ FILTER_SRC(xfilter)
+ // convert each 16 bit to 8 bit to each low and high lane source
+ src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ for (i = 0; i < height ; i++) {
+ src+= src_stride;
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(xfilter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ // merge previous pack to current pack source
+ MERGE_WITH_SRC(src_pack, src_reg)
+ // filter the source
+ FILTER_SRC(yfilter)
+ src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ sec_reg = _mm256_load_si256((__m256i const *) (sec));
+ src_pack = _mm256_avg_epu8(src_pack, sec_reg);
+ MERGE_WITH_SRC(src_pack, zero_reg)
+ src_pack = src_reg;
+ sec+= sec_stride;
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ }
+ }
+ CALC_SUM_AND_SSE
+ return sum;
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_sse2.asm b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_sse2.asm
deleted file mode 100644
index 2ecc23e5594..00000000000
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_sse2.asm
+++ /dev/null
@@ -1,337 +0,0 @@
-;
-; Copyright (c) 2010 The WebM project authors. All Rights Reserved.
-;
-; Use of this source code is governed by a BSD-style license
-; that can be found in the LICENSE file in the root of the source
-; tree. An additional intellectual property rights grant can be found
-; in the file PATENTS. All contributing project authors may
-; be found in the AUTHORS file in the root of the source tree.
-;
-
-%include "vpx_ports/x86_abi_support.asm"
-
-;void vp9_half_horiz_vert_variance16x_h_sse2
-;(
-; unsigned char *ref_ptr,
-; int ref_pixels_per_line,
-; unsigned char *src_ptr,
-; int src_pixels_per_line,
-; unsigned int Height,
-; int *sum,
-; unsigned int *sumsquared
-;)
-global sym(vp9_half_horiz_vert_variance16x_h_sse2) PRIVATE
-sym(vp9_half_horiz_vert_variance16x_h_sse2):
- push rbp
- mov rbp, rsp
- SHADOW_ARGS_TO_STACK 7
- SAVE_XMM 7
- GET_GOT rbx
- push rsi
- push rdi
- ; end prolog
-
- pxor xmm6, xmm6 ; error accumulator
- pxor xmm7, xmm7 ; sse eaccumulator
- mov rsi, arg(0) ;ref_ptr ;
-
- mov rdi, arg(2) ;src_ptr ;
- movsxd rcx, dword ptr arg(4) ;Height ;
- movsxd rax, dword ptr arg(1) ;ref_pixels_per_line
- movsxd rdx, dword ptr arg(3) ;src_pixels_per_line
-
- pxor xmm0, xmm0 ;
-
- movdqu xmm5, XMMWORD PTR [rsi]
- movdqu xmm3, XMMWORD PTR [rsi+1]
- pavgb xmm5, xmm3 ; xmm5 = avg(xmm1,xmm3) horizontal line 1
-
- lea rsi, [rsi + rax]
-
-.half_horiz_vert_variance16x_h_1:
- movdqu xmm1, XMMWORD PTR [rsi] ;
- movdqu xmm2, XMMWORD PTR [rsi+1] ;
- pavgb xmm1, xmm2 ; xmm1 = avg(xmm1,xmm3) horizontal line i+1
-
- pavgb xmm5, xmm1 ; xmm = vertical average of the above
-
- movdqa xmm4, xmm5
- punpcklbw xmm5, xmm0 ; xmm5 = words of above
- punpckhbw xmm4, xmm0
-
- movq xmm3, QWORD PTR [rdi] ; xmm3 = d0,d1,d2..d7
- punpcklbw xmm3, xmm0 ; xmm3 = words of above
- psubw xmm5, xmm3 ; xmm5 -= xmm3
-
- movq xmm3, QWORD PTR [rdi+8]
- punpcklbw xmm3, xmm0
- psubw xmm4, xmm3
-
- paddw xmm6, xmm5 ; xmm6 += accumulated column differences
- paddw xmm6, xmm4
- pmaddwd xmm5, xmm5 ; xmm5 *= xmm5
- pmaddwd xmm4, xmm4
- paddd xmm7, xmm5 ; xmm7 += accumulated square column differences
- paddd xmm7, xmm4
-
- movdqa xmm5, xmm1 ; save xmm1 for use on the next row
-
- lea rsi, [rsi + rax]
- lea rdi, [rdi + rdx]
-
- sub rcx, 1 ;
- jnz .half_horiz_vert_variance16x_h_1 ;
-
- pxor xmm1, xmm1
- pxor xmm5, xmm5
-
- punpcklwd xmm0, xmm6
- punpckhwd xmm1, xmm6
- psrad xmm0, 16
- psrad xmm1, 16
- paddd xmm0, xmm1
- movdqa xmm1, xmm0
-
- movdqa xmm6, xmm7
- punpckldq xmm6, xmm5
- punpckhdq xmm7, xmm5
- paddd xmm6, xmm7
-
- punpckldq xmm0, xmm5
- punpckhdq xmm1, xmm5
- paddd xmm0, xmm1
-
- movdqa xmm7, xmm6
- movdqa xmm1, xmm0
-
- psrldq xmm7, 8
- psrldq xmm1, 8
-
- paddd xmm6, xmm7
- paddd xmm0, xmm1
-
- mov rsi, arg(5) ;[Sum]
- mov rdi, arg(6) ;[SSE]
-
- movd [rsi], xmm0
- movd [rdi], xmm6
-
- ; begin epilog
- pop rdi
- pop rsi
- RESTORE_GOT
- RESTORE_XMM
- UNSHADOW_ARGS
- pop rbp
- ret
-
-;void vp9_half_vert_variance16x_h_sse2
-;(
-; unsigned char *ref_ptr,
-; int ref_pixels_per_line,
-; unsigned char *src_ptr,
-; int src_pixels_per_line,
-; unsigned int Height,
-; int *sum,
-; unsigned int *sumsquared
-;)
-global sym(vp9_half_vert_variance16x_h_sse2) PRIVATE
-sym(vp9_half_vert_variance16x_h_sse2):
- push rbp
- mov rbp, rsp
- SHADOW_ARGS_TO_STACK 7
- SAVE_XMM 7
- GET_GOT rbx
- push rsi
- push rdi
- ; end prolog
-
- pxor xmm6, xmm6 ; error accumulator
- pxor xmm7, xmm7 ; sse eaccumulator
- mov rsi, arg(0) ;ref_ptr
-
- mov rdi, arg(2) ;src_ptr
- movsxd rcx, dword ptr arg(4) ;Height
- movsxd rax, dword ptr arg(1) ;ref_pixels_per_line
- movsxd rdx, dword ptr arg(3) ;src_pixels_per_line
-
- movdqu xmm5, XMMWORD PTR [rsi]
- lea rsi, [rsi + rax ]
- pxor xmm0, xmm0
-
-.half_vert_variance16x_h_1:
- movdqu xmm3, XMMWORD PTR [rsi]
-
- pavgb xmm5, xmm3 ; xmm5 = avg(xmm1,xmm3)
- movdqa xmm4, xmm5
- punpcklbw xmm5, xmm0
- punpckhbw xmm4, xmm0
-
- movq xmm2, QWORD PTR [rdi]
- punpcklbw xmm2, xmm0
- psubw xmm5, xmm2
- movq xmm2, QWORD PTR [rdi+8]
- punpcklbw xmm2, xmm0
- psubw xmm4, xmm2
-
- paddw xmm6, xmm5 ; xmm6 += accumulated column differences
- paddw xmm6, xmm4
- pmaddwd xmm5, xmm5 ; xmm5 *= xmm5
- pmaddwd xmm4, xmm4
- paddd xmm7, xmm5 ; xmm7 += accumulated square column differences
- paddd xmm7, xmm4
-
- movdqa xmm5, xmm3
-
- lea rsi, [rsi + rax]
- lea rdi, [rdi + rdx]
-
- sub rcx, 1
- jnz .half_vert_variance16x_h_1
-
- pxor xmm1, xmm1
- pxor xmm5, xmm5
-
- punpcklwd xmm0, xmm6
- punpckhwd xmm1, xmm6
- psrad xmm0, 16
- psrad xmm1, 16
- paddd xmm0, xmm1
- movdqa xmm1, xmm0
-
- movdqa xmm6, xmm7
- punpckldq xmm6, xmm5
- punpckhdq xmm7, xmm5
- paddd xmm6, xmm7
-
- punpckldq xmm0, xmm5
- punpckhdq xmm1, xmm5
- paddd xmm0, xmm1
-
- movdqa xmm7, xmm6
- movdqa xmm1, xmm0
-
- psrldq xmm7, 8
- psrldq xmm1, 8
-
- paddd xmm6, xmm7
- paddd xmm0, xmm1
-
- mov rsi, arg(5) ;[Sum]
- mov rdi, arg(6) ;[SSE]
-
- movd [rsi], xmm0
- movd [rdi], xmm6
-
- ; begin epilog
- pop rdi
- pop rsi
- RESTORE_GOT
- RESTORE_XMM
- UNSHADOW_ARGS
- pop rbp
- ret
-
-;void vp9_half_horiz_variance16x_h_sse2
-;(
-; unsigned char *ref_ptr,
-; int ref_pixels_per_line,
-; unsigned char *src_ptr,
-; int src_pixels_per_line,
-; unsigned int Height,
-; int *sum,
-; unsigned int *sumsquared
-;)
-global sym(vp9_half_horiz_variance16x_h_sse2) PRIVATE
-sym(vp9_half_horiz_variance16x_h_sse2):
- push rbp
- mov rbp, rsp
- SHADOW_ARGS_TO_STACK 7
- SAVE_XMM 7
- GET_GOT rbx
- push rsi
- push rdi
- ; end prolog
-
- pxor xmm6, xmm6 ; error accumulator
- pxor xmm7, xmm7 ; sse eaccumulator
- mov rsi, arg(0) ;ref_ptr ;
-
- mov rdi, arg(2) ;src_ptr ;
- movsxd rcx, dword ptr arg(4) ;Height ;
- movsxd rax, dword ptr arg(1) ;ref_pixels_per_line
- movsxd rdx, dword ptr arg(3) ;src_pixels_per_line
-
- pxor xmm0, xmm0 ;
-
-.half_horiz_variance16x_h_1:
- movdqu xmm5, XMMWORD PTR [rsi] ; xmm5 = s0,s1,s2..s15
- movdqu xmm3, XMMWORD PTR [rsi+1] ; xmm3 = s1,s2,s3..s16
-
- pavgb xmm5, xmm3 ; xmm5 = avg(xmm1,xmm3)
- movdqa xmm1, xmm5
- punpcklbw xmm5, xmm0 ; xmm5 = words of above
- punpckhbw xmm1, xmm0
-
- movq xmm3, QWORD PTR [rdi] ; xmm3 = d0,d1,d2..d7
- punpcklbw xmm3, xmm0 ; xmm3 = words of above
- movq xmm2, QWORD PTR [rdi+8]
- punpcklbw xmm2, xmm0
-
- psubw xmm5, xmm3 ; xmm5 -= xmm3
- psubw xmm1, xmm2
- paddw xmm6, xmm5 ; xmm6 += accumulated column differences
- paddw xmm6, xmm1
- pmaddwd xmm5, xmm5 ; xmm5 *= xmm5
- pmaddwd xmm1, xmm1
- paddd xmm7, xmm5 ; xmm7 += accumulated square column differences
- paddd xmm7, xmm1
-
- lea rsi, [rsi + rax]
- lea rdi, [rdi + rdx]
-
- sub rcx, 1 ;
- jnz .half_horiz_variance16x_h_1 ;
-
- pxor xmm1, xmm1
- pxor xmm5, xmm5
-
- punpcklwd xmm0, xmm6
- punpckhwd xmm1, xmm6
- psrad xmm0, 16
- psrad xmm1, 16
- paddd xmm0, xmm1
- movdqa xmm1, xmm0
-
- movdqa xmm6, xmm7
- punpckldq xmm6, xmm5
- punpckhdq xmm7, xmm5
- paddd xmm6, xmm7
-
- punpckldq xmm0, xmm5
- punpckhdq xmm1, xmm5
- paddd xmm0, xmm1
-
- movdqa xmm7, xmm6
- movdqa xmm1, xmm0
-
- psrldq xmm7, 8
- psrldq xmm1, 8
-
- paddd xmm6, xmm7
- paddd xmm0, xmm1
-
- mov rsi, arg(5) ;[Sum]
- mov rdi, arg(6) ;[SSE]
-
- movd [rsi], xmm0
- movd [rdi], xmm6
-
- ; begin epilog
- pop rdi
- pop rsi
- RESTORE_GOT
- RESTORE_XMM
- UNSHADOW_ARGS
- pop rbp
- ret
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_avx2.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_avx2.c
new file mode 100644
index 00000000000..835c519576e
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_avx2.c
@@ -0,0 +1,268 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#include "./vpx_config.h"
+
+#include "vp9/encoder/vp9_variance.h"
+#include "vp9/common/vp9_pragmas.h"
+#include "vpx_ports/mem.h"
+
+typedef void (*get_var_avx2) (
+ const unsigned char *src_ptr,
+ int source_stride,
+ const unsigned char *ref_ptr,
+ int recon_stride,
+ unsigned int *SSE,
+ int *Sum
+);
+
+void vp9_get16x16var_avx2
+(
+ const unsigned char *src_ptr,
+ int source_stride,
+ const unsigned char *ref_ptr,
+ int recon_stride,
+ unsigned int *SSE,
+ int *Sum
+);
+
+void vp9_get32x32var_avx2
+(
+ const unsigned char *src_ptr,
+ int source_stride,
+ const unsigned char *ref_ptr,
+ int recon_stride,
+ unsigned int *SSE,
+ int *Sum
+);
+
+unsigned int vp9_sub_pixel_variance32xh_avx2
+(
+ const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ int height,
+ unsigned int *sse
+);
+
+unsigned int vp9_sub_pixel_avg_variance32xh_avx2
+(
+ const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ const uint8_t *sec,
+ int sec_stride,
+ int height,
+ unsigned int *sseptr
+);
+
+static void variance_avx2(const unsigned char *src_ptr, int source_stride,
+ const unsigned char *ref_ptr, int recon_stride,
+ int w, int h, unsigned int *sse, int *sum,
+ get_var_avx2 var_fn, int block_size) {
+ unsigned int sse0;
+ int sum0;
+ int i, j;
+
+ *sse = 0;
+ *sum = 0;
+
+ for (i = 0; i < h; i += 16) {
+ for (j = 0; j < w; j += block_size) {
+ // processing 16 rows horizontally each call
+ var_fn(src_ptr + source_stride * i + j, source_stride,
+ ref_ptr + recon_stride * i + j, recon_stride, &sse0, &sum0);
+ *sse += sse0;
+ *sum += sum0;
+ }
+ }
+}
+
+unsigned int vp9_variance16x16_avx2
+(
+ const unsigned char *src_ptr,
+ int source_stride,
+ const unsigned char *ref_ptr,
+ int recon_stride,
+ unsigned int *sse) {
+ unsigned int var;
+ int avg;
+
+ variance_avx2(src_ptr, source_stride, ref_ptr, recon_stride, 16, 16,
+ &var, &avg, vp9_get16x16var_avx2, 16);
+ *sse = var;
+ return (var - (((unsigned int)avg * avg) >> 8));
+}
+
+unsigned int vp9_mse16x16_avx2(
+ const unsigned char *src_ptr,
+ int source_stride,
+ const unsigned char *ref_ptr,
+ int recon_stride,
+ unsigned int *sse) {
+ unsigned int sse0;
+ int sum0;
+ vp9_get16x16var_avx2(src_ptr, source_stride, ref_ptr, recon_stride, &sse0,
+ &sum0);
+ *sse = sse0;
+ return sse0;
+}
+
+unsigned int vp9_variance32x32_avx2(const uint8_t *src_ptr,
+ int source_stride,
+ const uint8_t *ref_ptr,
+ int recon_stride,
+ unsigned int *sse) {
+ unsigned int var;
+ int avg;
+
+ // processing 32 elements vertically in parallel
+ variance_avx2(src_ptr, source_stride, ref_ptr, recon_stride, 32, 32,
+ &var, &avg, vp9_get32x32var_avx2, 32);
+ *sse = var;
+ return (var - (((int64_t)avg * avg) >> 10));
+}
+
+unsigned int vp9_variance32x16_avx2(const uint8_t *src_ptr,
+ int source_stride,
+ const uint8_t *ref_ptr,
+ int recon_stride,
+ unsigned int *sse) {
+ unsigned int var;
+ int avg;
+
+ // processing 32 elements vertically in parallel
+ variance_avx2(src_ptr, source_stride, ref_ptr, recon_stride, 32, 16,
+ &var, &avg, vp9_get32x32var_avx2, 32);
+ *sse = var;
+ return (var - (((int64_t)avg * avg) >> 9));
+}
+
+
+unsigned int vp9_variance64x64_avx2(const uint8_t *src_ptr,
+ int source_stride,
+ const uint8_t *ref_ptr,
+ int recon_stride,
+ unsigned int *sse) {
+ unsigned int var;
+ int avg;
+
+ // processing 32 elements vertically in parallel
+ variance_avx2(src_ptr, source_stride, ref_ptr, recon_stride, 64, 64,
+ &var, &avg, vp9_get32x32var_avx2, 32);
+ *sse = var;
+ return (var - (((int64_t)avg * avg) >> 12));
+}
+
+unsigned int vp9_variance64x32_avx2(const uint8_t *src_ptr,
+ int source_stride,
+ const uint8_t *ref_ptr,
+ int recon_stride,
+ unsigned int *sse) {
+ unsigned int var;
+ int avg;
+
+ // processing 32 elements vertically in parallel
+ variance_avx2(src_ptr, source_stride, ref_ptr, recon_stride, 64, 32,
+ &var, &avg, vp9_get32x32var_avx2, 32);
+
+ *sse = var;
+ return (var - (((int64_t)avg * avg) >> 11));
+}
+
+unsigned int vp9_sub_pixel_variance64x64_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sse_ptr) {
+ // processing 32 elements in parallel
+ unsigned int sse;
+ int se = vp9_sub_pixel_variance32xh_avx2(src, src_stride, x_offset,
+ y_offset, dst, dst_stride,
+ 64, &sse);
+ // processing the next 32 elements in parallel
+ unsigned int sse2;
+ int se2 = vp9_sub_pixel_variance32xh_avx2(src + 32, src_stride,
+ x_offset, y_offset,
+ dst + 32, dst_stride,
+ 64, &sse2);
+ se += se2;
+ sse += sse2;
+ *sse_ptr = sse;
+ return sse - (((int64_t)se * se) >> 12);
+}
+
+unsigned int vp9_sub_pixel_variance32x32_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sse_ptr) {
+ // processing 32 element in parallel
+ unsigned int sse;
+ int se = vp9_sub_pixel_variance32xh_avx2(src, src_stride, x_offset,
+ y_offset, dst, dst_stride,
+ 32, &sse);
+ *sse_ptr = sse;
+ return sse - (((int64_t)se * se) >> 10);
+}
+
+unsigned int vp9_sub_pixel_avg_variance64x64_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sseptr,
+ const uint8_t *sec) {
+ // processing 32 elements in parallel
+ unsigned int sse;
+
+ int se = vp9_sub_pixel_avg_variance32xh_avx2(src, src_stride, x_offset,
+ y_offset, dst, dst_stride,
+ sec, 64, 64, &sse);
+ unsigned int sse2;
+ // processing the next 32 elements in parallel
+ int se2 = vp9_sub_pixel_avg_variance32xh_avx2(src + 32, src_stride, x_offset,
+ y_offset, dst + 32, dst_stride,
+ sec + 32, 64, 64, &sse2);
+ se += se2;
+ sse += sse2;
+ *sseptr = sse;
+
+ return sse - (((int64_t)se * se) >> 12);
+}
+
+unsigned int vp9_sub_pixel_avg_variance32x32_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sseptr,
+ const uint8_t *sec) {
+ // processing 32 element in parallel
+ unsigned int sse;
+ int se = vp9_sub_pixel_avg_variance32xh_avx2(src, src_stride, x_offset,
+ y_offset, dst, dst_stride,
+ sec, 32, 32, &sse);
+ *sseptr = sse;
+ return sse - (((int64_t)se * se) >> 10);
+}
+
+
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_impl_intrin_avx2.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_impl_intrin_avx2.c
new file mode 100644
index 00000000000..f9923280a34
--- /dev/null
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_impl_intrin_avx2.c
@@ -0,0 +1,213 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <immintrin.h> // AVX2
+
+void vp9_get16x16var_avx2(const unsigned char *src_ptr,
+ int source_stride,
+ const unsigned char *ref_ptr,
+ int recon_stride,
+ unsigned int *SSE,
+ int *Sum) {
+ __m256i src, src_expand_low, src_expand_high, ref, ref_expand_low;
+ __m256i ref_expand_high, madd_low, madd_high;
+ unsigned int i, src_2strides, ref_2strides;
+ __m256i zero_reg = _mm256_set1_epi16(0);
+ __m256i sum_ref_src = _mm256_set1_epi16(0);
+ __m256i madd_ref_src = _mm256_set1_epi16(0);
+
+ // processing two strides in a 256 bit register reducing the number
+ // of loop stride by half (comparing to the sse2 code)
+ src_2strides = source_stride << 1;
+ ref_2strides = recon_stride << 1;
+ for (i = 0; i < 8; i++) {
+ src = _mm256_castsi128_si256(
+ _mm_loadu_si128((__m128i const *) (src_ptr)));
+ src = _mm256_inserti128_si256(src,
+ _mm_loadu_si128((__m128i const *)(src_ptr+source_stride)), 1);
+
+ ref =_mm256_castsi128_si256(
+ _mm_loadu_si128((__m128i const *) (ref_ptr)));
+ ref = _mm256_inserti128_si256(ref,
+ _mm_loadu_si128((__m128i const *)(ref_ptr+recon_stride)), 1);
+
+ // expanding to 16 bit each lane
+ src_expand_low = _mm256_unpacklo_epi8(src, zero_reg);
+ src_expand_high = _mm256_unpackhi_epi8(src, zero_reg);
+
+ ref_expand_low = _mm256_unpacklo_epi8(ref, zero_reg);
+ ref_expand_high = _mm256_unpackhi_epi8(ref, zero_reg);
+
+ // src-ref
+ src_expand_low = _mm256_sub_epi16(src_expand_low, ref_expand_low);
+ src_expand_high = _mm256_sub_epi16(src_expand_high, ref_expand_high);
+
+ // madd low (src - ref)
+ madd_low = _mm256_madd_epi16(src_expand_low, src_expand_low);
+
+ // add high to low
+ src_expand_low = _mm256_add_epi16(src_expand_low, src_expand_high);
+
+ // madd high (src - ref)
+ madd_high = _mm256_madd_epi16(src_expand_high, src_expand_high);
+
+ sum_ref_src = _mm256_add_epi16(sum_ref_src, src_expand_low);
+
+ // add high to low
+ madd_ref_src = _mm256_add_epi32(madd_ref_src,
+ _mm256_add_epi32(madd_low, madd_high));
+
+ src_ptr+= src_2strides;
+ ref_ptr+= ref_2strides;
+ }
+
+ {
+ __m128i sum_res, madd_res;
+ __m128i expand_sum_low, expand_sum_high, expand_sum;
+ __m128i expand_madd_low, expand_madd_high, expand_madd;
+ __m128i ex_expand_sum_low, ex_expand_sum_high, ex_expand_sum;
+
+ // extract the low lane and add it to the high lane
+ sum_res = _mm_add_epi16(_mm256_castsi256_si128(sum_ref_src),
+ _mm256_extractf128_si256(sum_ref_src, 1));
+
+ madd_res = _mm_add_epi32(_mm256_castsi256_si128(madd_ref_src),
+ _mm256_extractf128_si256(madd_ref_src, 1));
+
+ // padding each 2 bytes with another 2 zeroed bytes
+ expand_sum_low = _mm_unpacklo_epi16(_mm256_castsi256_si128(zero_reg),
+ sum_res);
+ expand_sum_high = _mm_unpackhi_epi16(_mm256_castsi256_si128(zero_reg),
+ sum_res);
+
+ // shifting the sign 16 bits right
+ expand_sum_low = _mm_srai_epi32(expand_sum_low, 16);
+ expand_sum_high = _mm_srai_epi32(expand_sum_high, 16);
+
+ expand_sum = _mm_add_epi32(expand_sum_low, expand_sum_high);
+
+ // expand each 32 bits of the madd result to 64 bits
+ expand_madd_low = _mm_unpacklo_epi32(madd_res,
+ _mm256_castsi256_si128(zero_reg));
+ expand_madd_high = _mm_unpackhi_epi32(madd_res,
+ _mm256_castsi256_si128(zero_reg));
+
+ expand_madd = _mm_add_epi32(expand_madd_low, expand_madd_high);
+
+ ex_expand_sum_low = _mm_unpacklo_epi32(expand_sum,
+ _mm256_castsi256_si128(zero_reg));
+ ex_expand_sum_high = _mm_unpackhi_epi32(expand_sum,
+ _mm256_castsi256_si128(zero_reg));
+
+ ex_expand_sum = _mm_add_epi32(ex_expand_sum_low, ex_expand_sum_high);
+
+ // shift 8 bytes eight
+ madd_res = _mm_srli_si128(expand_madd, 8);
+ sum_res = _mm_srli_si128(ex_expand_sum, 8);
+
+ madd_res = _mm_add_epi32(madd_res, expand_madd);
+ sum_res = _mm_add_epi32(sum_res, ex_expand_sum);
+
+ *((int*)SSE)= _mm_cvtsi128_si32(madd_res);
+
+ *((int*)Sum)= _mm_cvtsi128_si32(sum_res);
+ }
+}
+
+void vp9_get32x32var_avx2(const unsigned char *src_ptr,
+ int source_stride,
+ const unsigned char *ref_ptr,
+ int recon_stride,
+ unsigned int *SSE,
+ int *Sum) {
+ __m256i src, src_expand_low, src_expand_high, ref, ref_expand_low;
+ __m256i ref_expand_high, madd_low, madd_high;
+ unsigned int i;
+ __m256i zero_reg = _mm256_set1_epi16(0);
+ __m256i sum_ref_src = _mm256_set1_epi16(0);
+ __m256i madd_ref_src = _mm256_set1_epi16(0);
+
+ // processing 32 elements in parallel
+ for (i = 0; i < 16; i++) {
+ src = _mm256_loadu_si256((__m256i const *) (src_ptr));
+
+ ref = _mm256_loadu_si256((__m256i const *) (ref_ptr));
+
+ // expanding to 16 bit each lane
+ src_expand_low = _mm256_unpacklo_epi8(src, zero_reg);
+ src_expand_high = _mm256_unpackhi_epi8(src, zero_reg);
+
+ ref_expand_low = _mm256_unpacklo_epi8(ref, zero_reg);
+ ref_expand_high = _mm256_unpackhi_epi8(ref, zero_reg);
+
+ // src-ref
+ src_expand_low = _mm256_sub_epi16(src_expand_low, ref_expand_low);
+ src_expand_high = _mm256_sub_epi16(src_expand_high, ref_expand_high);
+
+ // madd low (src - ref)
+ madd_low = _mm256_madd_epi16(src_expand_low, src_expand_low);
+
+ // add high to low
+ src_expand_low = _mm256_add_epi16(src_expand_low, src_expand_high);
+
+ // madd high (src - ref)
+ madd_high = _mm256_madd_epi16(src_expand_high, src_expand_high);
+
+ sum_ref_src = _mm256_add_epi16(sum_ref_src, src_expand_low);
+
+ // add high to low
+ madd_ref_src = _mm256_add_epi32(madd_ref_src,
+ _mm256_add_epi32(madd_low, madd_high));
+
+ src_ptr+= source_stride;
+ ref_ptr+= recon_stride;
+ }
+
+ {
+ __m256i expand_sum_low, expand_sum_high, expand_sum;
+ __m256i expand_madd_low, expand_madd_high, expand_madd;
+ __m256i ex_expand_sum_low, ex_expand_sum_high, ex_expand_sum;
+
+ // padding each 2 bytes with another 2 zeroed bytes
+ expand_sum_low = _mm256_unpacklo_epi16(zero_reg, sum_ref_src);
+ expand_sum_high = _mm256_unpackhi_epi16(zero_reg, sum_ref_src);
+
+ // shifting the sign 16 bits right
+ expand_sum_low = _mm256_srai_epi32(expand_sum_low, 16);
+ expand_sum_high = _mm256_srai_epi32(expand_sum_high, 16);
+
+ expand_sum = _mm256_add_epi32(expand_sum_low, expand_sum_high);
+
+ // expand each 32 bits of the madd result to 64 bits
+ expand_madd_low = _mm256_unpacklo_epi32(madd_ref_src, zero_reg);
+ expand_madd_high = _mm256_unpackhi_epi32(madd_ref_src, zero_reg);
+
+ expand_madd = _mm256_add_epi32(expand_madd_low, expand_madd_high);
+
+ ex_expand_sum_low = _mm256_unpacklo_epi32(expand_sum, zero_reg);
+ ex_expand_sum_high = _mm256_unpackhi_epi32(expand_sum, zero_reg);
+
+ ex_expand_sum = _mm256_add_epi32(ex_expand_sum_low, ex_expand_sum_high);
+
+ // shift 8 bytes eight
+ madd_ref_src = _mm256_srli_si256(expand_madd, 8);
+ sum_ref_src = _mm256_srli_si256(ex_expand_sum, 8);
+
+ madd_ref_src = _mm256_add_epi32(madd_ref_src, expand_madd);
+ sum_ref_src = _mm256_add_epi32(sum_ref_src, ex_expand_sum);
+
+ // extract the low lane and the high lane and add the results
+ *((int*)SSE)= _mm_cvtsi128_si32(_mm256_castsi256_si128(madd_ref_src)) +
+ _mm_cvtsi128_si32(_mm256_extractf128_si256(madd_ref_src, 1));
+
+ *((int*)Sum)= _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_ref_src)) +
+ _mm_cvtsi128_si32(_mm256_extractf128_si256(sum_ref_src, 1));
+ }
+}
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_impl_sse2.asm b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_impl_sse2.asm
index 2c50881340d..4830412788e 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_impl_sse2.asm
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_impl_sse2.asm
@@ -398,337 +398,4 @@ sym(vp9_get8x8var_sse2):
pop rbp
ret
-;void vp9_half_horiz_vert_variance8x_h_sse2
-;(
-; unsigned char *ref_ptr,
-; int ref_pixels_per_line,
-; unsigned char *src_ptr,
-; int src_pixels_per_line,
-; unsigned int Height,
-; int *sum,
-; unsigned int *sumsquared
-;)
-global sym(vp9_half_horiz_vert_variance8x_h_sse2) PRIVATE
-sym(vp9_half_horiz_vert_variance8x_h_sse2):
- push rbp
- mov rbp, rsp
- SHADOW_ARGS_TO_STACK 7
- SAVE_XMM 7
- GET_GOT rbx
- push rsi
- push rdi
- ; end prolog
-
-%if ABI_IS_32BIT=0
- movsxd r8, dword ptr arg(1) ;ref_pixels_per_line
- movsxd r9, dword ptr arg(3) ;src_pixels_per_line
-%endif
-
- pxor xmm6, xmm6 ; error accumulator
- pxor xmm7, xmm7 ; sse eaccumulator
- mov rsi, arg(0) ;ref_ptr ;
-
- mov rdi, arg(2) ;src_ptr ;
- movsxd rcx, dword ptr arg(4) ;Height ;
- movsxd rax, dword ptr arg(1) ;ref_pixels_per_line
-
- pxor xmm0, xmm0 ;
-
- movq xmm5, QWORD PTR [rsi] ; xmm5 = s0,s1,s2..s8
- movq xmm3, QWORD PTR [rsi+1] ; xmm3 = s1,s2,s3..s9
- pavgb xmm5, xmm3 ; xmm5 = avg(xmm1,xmm3) horizontal line 1
-
-%if ABI_IS_32BIT
- add rsi, dword ptr arg(1) ;ref_pixels_per_line ; next source
-%else
- add rsi, r8
-%endif
-
-.half_horiz_vert_variance8x_h_1:
-
- movq xmm1, QWORD PTR [rsi] ;
- movq xmm2, QWORD PTR [rsi+1] ;
- pavgb xmm1, xmm2 ; xmm1 = avg(xmm1,xmm3) horizontal line i+1
-
- pavgb xmm5, xmm1 ; xmm = vertical average of the above
- punpcklbw xmm5, xmm0 ; xmm5 = words of above
-
- movq xmm3, QWORD PTR [rdi] ; xmm3 = d0,d1,d2..d8
- punpcklbw xmm3, xmm0 ; xmm3 = words of above
-
- psubw xmm5, xmm3 ; xmm5 -= xmm3
- paddw xmm6, xmm5 ; xmm6 += accumulated column differences
- pmaddwd xmm5, xmm5 ; xmm5 *= xmm5
- paddd xmm7, xmm5 ; xmm7 += accumulated square column differences
-
- movdqa xmm5, xmm1 ; save xmm1 for use on the next row
-
-%if ABI_IS_32BIT
- add esi, dword ptr arg(1) ;ref_pixels_per_line ; next source
- add edi, dword ptr arg(3) ;src_pixels_per_line ; next destination
-%else
- add rsi, r8
- add rdi, r9
-%endif
-
- sub rcx, 1 ;
- jnz .half_horiz_vert_variance8x_h_1 ;
-
- movdq2q mm6, xmm6 ;
- movdq2q mm7, xmm7 ;
-
- psrldq xmm6, 8
- psrldq xmm7, 8
-
- movdq2q mm2, xmm6
- movdq2q mm3, xmm7
-
- paddw mm6, mm2
- paddd mm7, mm3
-
- pxor mm3, mm3 ;
- pxor mm2, mm2 ;
-
- punpcklwd mm2, mm6 ;
- punpckhwd mm3, mm6 ;
-
- paddd mm2, mm3 ;
- movq mm6, mm2 ;
-
- psrlq mm6, 32 ;
- paddd mm2, mm6 ;
-
- psrad mm2, 16 ;
- movq mm4, mm7 ;
-
- psrlq mm4, 32 ;
- paddd mm4, mm7 ;
-
- mov rsi, arg(5) ; sum
- mov rdi, arg(6) ; sumsquared
-
- movd [rsi], mm2 ;
- movd [rdi], mm4 ;
-
-
- ; begin epilog
- pop rdi
- pop rsi
- RESTORE_GOT
- RESTORE_XMM
- UNSHADOW_ARGS
- pop rbp
- ret
-
-;void vp9_half_vert_variance8x_h_sse2
-;(
-; unsigned char *ref_ptr,
-; int ref_pixels_per_line,
-; unsigned char *src_ptr,
-; int src_pixels_per_line,
-; unsigned int Height,
-; int *sum,
-; unsigned int *sumsquared
-;)
-global sym(vp9_half_vert_variance8x_h_sse2) PRIVATE
-sym(vp9_half_vert_variance8x_h_sse2):
- push rbp
- mov rbp, rsp
- SHADOW_ARGS_TO_STACK 7
- SAVE_XMM 7
- GET_GOT rbx
- push rsi
- push rdi
- ; end prolog
-
-%if ABI_IS_32BIT=0
- movsxd r8, dword ptr arg(1) ;ref_pixels_per_line
- movsxd r9, dword ptr arg(3) ;src_pixels_per_line
-%endif
-
- pxor xmm6, xmm6 ; error accumulator
- pxor xmm7, xmm7 ; sse eaccumulator
- mov rsi, arg(0) ;ref_ptr ;
-
- mov rdi, arg(2) ;src_ptr ;
- movsxd rcx, dword ptr arg(4) ;Height ;
- movsxd rax, dword ptr arg(1) ;ref_pixels_per_line
-
- pxor xmm0, xmm0 ;
-.half_vert_variance8x_h_1:
- movq xmm5, QWORD PTR [rsi] ; xmm5 = s0,s1,s2..s8
- movq xmm3, QWORD PTR [rsi+rax] ; xmm3 = s1,s2,s3..s9
-
- pavgb xmm5, xmm3 ; xmm5 = avg(xmm1,xmm3)
- punpcklbw xmm5, xmm0 ; xmm5 = words of above
-
- movq xmm3, QWORD PTR [rdi] ; xmm3 = d0,d1,d2..d8
- punpcklbw xmm3, xmm0 ; xmm3 = words of above
-
- psubw xmm5, xmm3 ; xmm5 -= xmm3
- paddw xmm6, xmm5 ; xmm6 += accumulated column differences
- pmaddwd xmm5, xmm5 ; xmm5 *= xmm5
- paddd xmm7, xmm5 ; xmm7 += accumulated square column differences
-
-%if ABI_IS_32BIT
- add esi, dword ptr arg(1) ;ref_pixels_per_line ; next source
- add edi, dword ptr arg(3) ;src_pixels_per_line ; next destination
-%else
- add rsi, r8
- add rdi, r9
-%endif
- sub rcx, 1 ;
- jnz .half_vert_variance8x_h_1 ;
-
- movdq2q mm6, xmm6 ;
- movdq2q mm7, xmm7 ;
-
- psrldq xmm6, 8
- psrldq xmm7, 8
-
- movdq2q mm2, xmm6
- movdq2q mm3, xmm7
-
- paddw mm6, mm2
- paddd mm7, mm3
-
- pxor mm3, mm3 ;
- pxor mm2, mm2 ;
-
- punpcklwd mm2, mm6 ;
- punpckhwd mm3, mm6 ;
-
- paddd mm2, mm3 ;
- movq mm6, mm2 ;
-
- psrlq mm6, 32 ;
- paddd mm2, mm6 ;
-
- psrad mm2, 16 ;
- movq mm4, mm7 ;
-
- psrlq mm4, 32 ;
- paddd mm4, mm7 ;
-
- mov rsi, arg(5) ; sum
- mov rdi, arg(6) ; sumsquared
-
- movd [rsi], mm2 ;
- movd [rdi], mm4 ;
-
-
- ; begin epilog
- pop rdi
- pop rsi
- RESTORE_GOT
- RESTORE_XMM
- UNSHADOW_ARGS
- pop rbp
- ret
-
-
-;void vp9_half_horiz_variance8x_h_sse2
-;(
-; unsigned char *ref_ptr,
-; int ref_pixels_per_line,
-; unsigned char *src_ptr,
-; int src_pixels_per_line,
-; unsigned int Height,
-; int *sum,
-; unsigned int *sumsquared
-;)
-global sym(vp9_half_horiz_variance8x_h_sse2) PRIVATE
-sym(vp9_half_horiz_variance8x_h_sse2):
- push rbp
- mov rbp, rsp
- SHADOW_ARGS_TO_STACK 7
- SAVE_XMM 7
- GET_GOT rbx
- push rsi
- push rdi
- ; end prolog
-
-%if ABI_IS_32BIT=0
- movsxd r8, dword ptr arg(1) ;ref_pixels_per_line
- movsxd r9, dword ptr arg(3) ;src_pixels_per_line
-%endif
-
- pxor xmm6, xmm6 ; error accumulator
- pxor xmm7, xmm7 ; sse eaccumulator
- mov rsi, arg(0) ;ref_ptr ;
-
- mov rdi, arg(2) ;src_ptr ;
- movsxd rcx, dword ptr arg(4) ;Height ;
-
- pxor xmm0, xmm0 ;
-.half_horiz_variance8x_h_1:
- movq xmm5, QWORD PTR [rsi] ; xmm5 = s0,s1,s2..s8
- movq xmm3, QWORD PTR [rsi+1] ; xmm3 = s1,s2,s3..s9
-
- pavgb xmm5, xmm3 ; xmm5 = avg(xmm1,xmm3)
- punpcklbw xmm5, xmm0 ; xmm5 = words of above
-
- movq xmm3, QWORD PTR [rdi] ; xmm3 = d0,d1,d2..d8
- punpcklbw xmm3, xmm0 ; xmm3 = words of above
-
- psubw xmm5, xmm3 ; xmm5 -= xmm3
- paddw xmm6, xmm5 ; xmm6 += accumulated column differences
- pmaddwd xmm5, xmm5 ; xmm5 *= xmm5
- paddd xmm7, xmm5 ; xmm7 += accumulated square column differences
-
-%if ABI_IS_32BIT
- add esi, dword ptr arg(1) ;ref_pixels_per_line ; next source
- add edi, dword ptr arg(3) ;src_pixels_per_line ; next destination
-%else
- add rsi, r8
- add rdi, r9
-%endif
- sub rcx, 1 ;
- jnz .half_horiz_variance8x_h_1 ;
-
- movdq2q mm6, xmm6 ;
- movdq2q mm7, xmm7 ;
-
- psrldq xmm6, 8
- psrldq xmm7, 8
-
- movdq2q mm2, xmm6
- movdq2q mm3, xmm7
-
- paddw mm6, mm2
- paddd mm7, mm3
-
- pxor mm3, mm3 ;
- pxor mm2, mm2 ;
-
- punpcklwd mm2, mm6 ;
- punpckhwd mm3, mm6 ;
-
- paddd mm2, mm3 ;
- movq mm6, mm2 ;
-
- psrlq mm6, 32 ;
- paddd mm2, mm6 ;
-
- psrad mm2, 16 ;
- movq mm4, mm7 ;
-
- psrlq mm4, 32 ;
- paddd mm4, mm7 ;
-
- mov rsi, arg(5) ; sum
- mov rdi, arg(6) ; sumsquared
-
- movd [rsi], mm2 ;
- movd [rdi], mm4 ;
-
-
- ; begin epilog
- pop rdi
- pop rsi
- RESTORE_GOT
- RESTORE_XMM
- UNSHADOW_ARGS
- pop rbp
- ret
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_mmx.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_mmx.c
index a3d011401dd..c4d17fc0f74 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_mmx.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_mmx.c
@@ -13,7 +13,6 @@
#include "vp9/common/vp9_pragmas.h"
#include "vpx_ports/mem.h"
-extern unsigned int vp9_get_mb_ss_mmx(const int16_t *src_ptr);
extern unsigned int vp9_get8x8var_mmx
(
const unsigned char *src_ptr,
diff --git a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_sse2.c b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_sse2.c
index 79e42c4cd4a..41f225922e4 100644
--- a/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_sse2.c
+++ b/chromium/third_party/libvpx/source/libvpx/vp9/encoder/x86/vp9_variance_sse2.c
@@ -24,10 +24,6 @@ extern unsigned int vp9_get4x4var_mmx
int *Sum
);
-unsigned int vp9_get_mb_ss_sse2
-(
- const int16_t *src_ptr
-);
unsigned int vp9_get16x16var_sse2
(
const unsigned char *src_ptr,
@@ -46,66 +42,6 @@ unsigned int vp9_get8x8var_sse2
unsigned int *SSE,
int *Sum
);
-void vp9_half_horiz_vert_variance8x_h_sse2
-(
- const unsigned char *ref_ptr,
- int ref_pixels_per_line,
- const unsigned char *src_ptr,
- int src_pixels_per_line,
- unsigned int Height,
- int *sum,
- unsigned int *sumsquared
-);
-void vp9_half_horiz_vert_variance16x_h_sse2
-(
- const unsigned char *ref_ptr,
- int ref_pixels_per_line,
- const unsigned char *src_ptr,
- int src_pixels_per_line,
- unsigned int Height,
- int *sum,
- unsigned int *sumsquared
-);
-void vp9_half_horiz_variance8x_h_sse2
-(
- const unsigned char *ref_ptr,
- int ref_pixels_per_line,
- const unsigned char *src_ptr,
- int src_pixels_per_line,
- unsigned int Height,
- int *sum,
- unsigned int *sumsquared
-);
-void vp9_half_horiz_variance16x_h_sse2
-(
- const unsigned char *ref_ptr,
- int ref_pixels_per_line,
- const unsigned char *src_ptr,
- int src_pixels_per_line,
- unsigned int Height,
- int *sum,
- unsigned int *sumsquared
-);
-void vp9_half_vert_variance8x_h_sse2
-(
- const unsigned char *ref_ptr,
- int ref_pixels_per_line,
- const unsigned char *src_ptr,
- int src_pixels_per_line,
- unsigned int Height,
- int *sum,
- unsigned int *sumsquared
-);
-void vp9_half_vert_variance16x_h_sse2
-(
- const unsigned char *ref_ptr,
- int ref_pixels_per_line,
- const unsigned char *src_ptr,
- int src_pixels_per_line,
- unsigned int Height,
- int *sum,
- unsigned int *sumsquared
-);
typedef unsigned int (*get_var_sse2) (
const unsigned char *src_ptr,
@@ -498,58 +434,3 @@ FNS(ssse3, ssse3);
#undef FNS
#undef FN
-
-unsigned int vp9_variance_halfpixvar16x16_h_sse2(
- const unsigned char *src_ptr,
- int src_pixels_per_line,
- const unsigned char *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- int xsum0;
- unsigned int xxsum0;
-
- vp9_half_horiz_variance16x_h_sse2(
- src_ptr, src_pixels_per_line,
- dst_ptr, dst_pixels_per_line, 16,
- &xsum0, &xxsum0);
-
- *sse = xxsum0;
- return (xxsum0 - (((unsigned int)xsum0 * xsum0) >> 8));
-}
-
-
-unsigned int vp9_variance_halfpixvar16x16_v_sse2(
- const unsigned char *src_ptr,
- int src_pixels_per_line,
- const unsigned char *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- int xsum0;
- unsigned int xxsum0;
- vp9_half_vert_variance16x_h_sse2(
- src_ptr, src_pixels_per_line,
- dst_ptr, dst_pixels_per_line, 16,
- &xsum0, &xxsum0);
-
- *sse = xxsum0;
- return (xxsum0 - (((unsigned int)xsum0 * xsum0) >> 8));
-}
-
-
-unsigned int vp9_variance_halfpixvar16x16_hv_sse2(
- const unsigned char *src_ptr,
- int src_pixels_per_line,
- const unsigned char *dst_ptr,
- int dst_pixels_per_line,
- unsigned int *sse) {
- int xsum0;
- unsigned int xxsum0;
-
- vp9_half_horiz_vert_variance16x_h_sse2(
- src_ptr, src_pixels_per_line,
- dst_ptr, dst_pixels_per_line, 16,
- &xsum0, &xxsum0);
-
- *sse = xxsum0;
- return (xxsum0 - (((unsigned int)xsum0 * xsum0) >> 8));
-}