summaryrefslogtreecommitdiffstats
path: root/chromium/media/cast/congestion_control/congestion_control.cc
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/media/cast/congestion_control/congestion_control.cc')
-rw-r--r--chromium/media/cast/congestion_control/congestion_control.cc231
1 files changed, 157 insertions, 74 deletions
diff --git a/chromium/media/cast/congestion_control/congestion_control.cc b/chromium/media/cast/congestion_control/congestion_control.cc
index 35687e7477a..d24e0ac3d0f 100644
--- a/chromium/media/cast/congestion_control/congestion_control.cc
+++ b/chromium/media/cast/congestion_control/congestion_control.cc
@@ -2,6 +2,17 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
+// The purpose of this file is determine what bitrate to use for mirroring.
+// Ideally this should be as much as possible, without causing any frames to
+// arrive late.
+
+// The current algorithm is to measure how much bandwidth we've been using
+// recently. We also keep track of how much data has been queued up for sending
+// in a virtual "buffer" (this virtual buffer represents all the buffers between
+// the sender and the receiver, including retransmissions and so forth.)
+// If we estimate that our virtual buffer is mostly empty, we try to use
+// more bandwidth than our recent usage, otherwise we use less.
+
#include "media/cast/congestion_control/congestion_control.h"
#include "base/logging.h"
@@ -11,104 +22,176 @@
namespace media {
namespace cast {
-static const int64 kCongestionControlMinChangeIntervalMs = 10;
-static const int64 kCongestionControlMaxChangeIntervalMs = 100;
+// This means that we *try* to keep our buffer 90% empty.
+// If it is less full, we increase the bandwidth, if it is more
+// we decrease the bandwidth. Making this smaller makes the
+// congestion control more aggressive.
+static const double kTargetEmptyBufferFraction = 0.9;
-// At 10 ms RTT TCP Reno would ramp 1500 * 8 * 100 = 1200 Kbit/s.
-// NACK is sent after a maximum of 10 ms.
-static const int kCongestionControlMaxBitrateIncreasePerMillisecond = 1200;
+// This is the size of our history in frames. Larger values makes the
+// congestion control adapt slower.
+static const size_t kHistorySize = 100;
-static const int64 kMaxElapsedTimeMs = kCongestionControlMaxChangeIntervalMs;
+CongestionControl::FrameStats::FrameStats() : frame_size(0) {
+}
CongestionControl::CongestionControl(base::TickClock* clock,
- float congestion_control_back_off,
uint32 max_bitrate_configured,
uint32 min_bitrate_configured,
- uint32 start_bitrate)
+ size_t max_unacked_frames)
: clock_(clock),
- congestion_control_back_off_(congestion_control_back_off),
max_bitrate_configured_(max_bitrate_configured),
min_bitrate_configured_(min_bitrate_configured),
- bitrate_(start_bitrate) {
- DCHECK_GT(congestion_control_back_off, 0.0f) << "Invalid config";
- DCHECK_LT(congestion_control_back_off, 1.0f) << "Invalid config";
+ last_frame_stats_(static_cast<uint32>(-1)),
+ last_acked_frame_(static_cast<uint32>(-1)),
+ last_encoded_frame_(static_cast<uint32>(-1)),
+ history_size_(max_unacked_frames + kHistorySize),
+ acked_bits_in_history_(0) {
DCHECK_GE(max_bitrate_configured, min_bitrate_configured) << "Invalid config";
- DCHECK_GE(max_bitrate_configured, start_bitrate) << "Invalid config";
- DCHECK_GE(start_bitrate, min_bitrate_configured) << "Invalid config";
+ frame_stats_.resize(2);
+ base::TimeTicks now = clock->NowTicks();
+ frame_stats_[0].ack_time = now;
+ frame_stats_[0].sent_time = now;
+ frame_stats_[1].ack_time = now;
+ DCHECK(!frame_stats_[0].ack_time.is_null());
}
-CongestionControl::~CongestionControl() {
+CongestionControl::~CongestionControl() {}
+
+void CongestionControl::UpdateRtt(base::TimeDelta rtt) {
+ rtt_ = base::TimeDelta::FromSecondsD(
+ (rtt_.InSecondsF() * 7 + rtt.InSecondsF()) / 8);
}
-bool CongestionControl::OnAck(base::TimeDelta rtt, uint32* new_bitrate) {
- base::TimeTicks now = clock_->NowTicks();
+// Calculate how much "dead air" there is between two frames.
+base::TimeDelta CongestionControl::DeadTime(const FrameStats& a,
+ const FrameStats& b) {
+ if (b.sent_time > a.ack_time) {
+ return b.sent_time - a.ack_time;
+ } else {
+ return base::TimeDelta();
+ }
+}
+
+double CongestionControl::CalculateSafeBitrate() {
+ double transmit_time =
+ (GetFrameStats(last_acked_frame_)->ack_time -
+ frame_stats_.front().sent_time - dead_time_in_history_).InSecondsF();
- // First feedback?
- if (time_last_increase_.is_null()) {
- time_last_increase_ = now;
- time_last_decrease_ = now;
- return false;
+ if (acked_bits_in_history_ == 0 || transmit_time <= 0.0) {
+ return min_bitrate_configured_;
}
- // Are we at the max bitrate?
- if (max_bitrate_configured_ == bitrate_) return false;
-
- // Make sure RTT is never less than 1 ms.
- rtt = std::max(rtt, base::TimeDelta::FromMilliseconds(1));
-
- base::TimeDelta elapsed_time = std::min(now - time_last_increase_,
- base::TimeDelta::FromMilliseconds(kMaxElapsedTimeMs));
- base::TimeDelta change_interval = std::max(rtt,
- base::TimeDelta::FromMilliseconds(kCongestionControlMinChangeIntervalMs));
- change_interval = std::min(change_interval,
- base::TimeDelta::FromMilliseconds(kCongestionControlMaxChangeIntervalMs));
-
- // Have enough time have passed?
- if (elapsed_time < change_interval) return false;
-
- time_last_increase_ = now;
-
- // One packet per RTT multiplied by the elapsed time fraction.
- // 1500 * 8 * (1000 / rtt_ms) * (elapsed_time_ms / 1000) =>
- // 1500 * 8 * elapsed_time_ms / rtt_ms.
- uint32 bitrate_increase = (1500 * 8 * elapsed_time.InMilliseconds()) /
- rtt.InMilliseconds();
- uint32 max_bitrate_increase =
- kCongestionControlMaxBitrateIncreasePerMillisecond *
- elapsed_time.InMilliseconds();
- bitrate_increase = std::min(max_bitrate_increase, bitrate_increase);
- *new_bitrate = std::min(bitrate_increase + bitrate_, max_bitrate_configured_);
- bitrate_ = *new_bitrate;
- return true;
+ return acked_bits_in_history_ / std::max(transmit_time, 1E-3);
}
-bool CongestionControl::OnNack(base::TimeDelta rtt, uint32* new_bitrate) {
- base::TimeTicks now = clock_->NowTicks();
+CongestionControl::FrameStats* CongestionControl::GetFrameStats(
+ uint32 frame_id) {
+ int32 offset = static_cast<int32>(frame_id - last_frame_stats_);
+ DCHECK_LT(offset, static_cast<int32>(kHistorySize));
+ if (offset > 0) {
+ frame_stats_.resize(frame_stats_.size() + offset);
+ last_frame_stats_ += offset;
+ offset = 0;
+ }
+ while (frame_stats_.size() > history_size_) {
+ DCHECK_GT(frame_stats_.size(), 1UL);
+ DCHECK(!frame_stats_[0].ack_time.is_null());
+ acked_bits_in_history_ -= frame_stats_[0].frame_size;
+ dead_time_in_history_ -= DeadTime(frame_stats_[0], frame_stats_[1]);
+ DCHECK_GE(acked_bits_in_history_, 0UL);
+ VLOG(2) << "DT: " << dead_time_in_history_.InSecondsF();
+ DCHECK_GE(dead_time_in_history_.InSecondsF(), 0.0);
+ frame_stats_.pop_front();
+ }
+ offset += frame_stats_.size() - 1;
+ if (offset < 0 || offset >= static_cast<int32>(frame_stats_.size())) {
+ return NULL;
+ }
+ return &frame_stats_[offset];
+}
- // First feedback?
- if (time_last_decrease_.is_null()) {
- time_last_increase_ = now;
- time_last_decrease_ = now;
- return false;
+void CongestionControl::AckFrame(uint32 frame_id, base::TimeTicks when) {
+ FrameStats* frame_stats = GetFrameStats(last_acked_frame_);
+ while (IsNewerFrameId(frame_id, last_acked_frame_)) {
+ FrameStats* last_frame_stats = frame_stats;
+ last_acked_frame_++;
+ frame_stats = GetFrameStats(last_acked_frame_);
+ DCHECK(frame_stats);
+ frame_stats->ack_time = when;
+ acked_bits_in_history_ += frame_stats->frame_size;
+ dead_time_in_history_ += DeadTime(*last_frame_stats, *frame_stats);
}
- base::TimeDelta elapsed_time = std::min(now - time_last_decrease_,
- base::TimeDelta::FromMilliseconds(kMaxElapsedTimeMs));
- base::TimeDelta change_interval = std::max(rtt,
- base::TimeDelta::FromMilliseconds(kCongestionControlMinChangeIntervalMs));
- change_interval = std::min(change_interval,
- base::TimeDelta::FromMilliseconds(kCongestionControlMaxChangeIntervalMs));
+}
- // Have enough time have passed?
- if (elapsed_time < change_interval) return false;
+void CongestionControl::SendFrameToTransport(uint32 frame_id,
+ size_t frame_size,
+ base::TimeTicks when) {
+ last_encoded_frame_ = frame_id;
+ FrameStats* frame_stats = GetFrameStats(frame_id);
+ DCHECK(frame_stats);
+ frame_stats->frame_size = frame_size;
+ frame_stats->sent_time = when;
+}
- time_last_decrease_ = now;
- time_last_increase_ = now;
+base::TimeTicks CongestionControl::EstimatedAckTime(uint32 frame_id,
+ double bitrate) {
+ FrameStats* frame_stats = GetFrameStats(frame_id);
+ DCHECK(frame_stats);
+ if (frame_stats->ack_time.is_null()) {
+ DCHECK(frame_stats->frame_size) << "frame_id: " << frame_id;
+ base::TimeTicks ret = EstimatedSendingTime(frame_id, bitrate);
+ ret += base::TimeDelta::FromSecondsD(frame_stats->frame_size / bitrate);
+ ret += rtt_;
+ base::TimeTicks now = clock_->NowTicks();
+ if (ret < now) {
+ // This is a little counter-intuitive, but it seems to work.
+ // Basically, when we estimate that the ACK should have already happened,
+ // we figure out how long ago it should have happened and guess that the
+ // ACK will happen half of that time in the future. This will cause some
+ // over-estimation when acks are late, which is actually what we want.
+ return now + (now - ret) / 2;
+ } else {
+ return ret;
+ }
+ } else {
+ return frame_stats->ack_time;
+ }
+}
- *new_bitrate = std::max(
- static_cast<uint32>(bitrate_ * congestion_control_back_off_),
- min_bitrate_configured_);
+base::TimeTicks CongestionControl::EstimatedSendingTime(uint32 frame_id,
+ double bitrate) {
+ FrameStats* frame_stats = GetFrameStats(frame_id);
+ DCHECK(frame_stats);
+ base::TimeTicks ret = EstimatedAckTime(frame_id - 1, bitrate) - rtt_;
+ if (frame_stats->sent_time.is_null()) {
+ // Not sent yet, but we can't start sending it in the past.
+ return std::max(ret, clock_->NowTicks());
+ } else {
+ return std::max(ret, frame_stats->sent_time);
+ }
+}
- bitrate_ = *new_bitrate;
- return true;
+uint32 CongestionControl::GetBitrate(base::TimeTicks playout_time,
+ base::TimeDelta playout_delay) {
+ double safe_bitrate = CalculateSafeBitrate();
+ // Estimate when we might start sending the next frame.
+ base::TimeDelta time_to_catch_up =
+ playout_time -
+ EstimatedSendingTime(last_encoded_frame_ + 1, safe_bitrate);
+
+ double empty_buffer_fraction =
+ time_to_catch_up.InSecondsF() / playout_delay.InSecondsF();
+ empty_buffer_fraction = std::min(empty_buffer_fraction, 1.0);
+ empty_buffer_fraction = std::max(empty_buffer_fraction, 0.0);
+
+ uint32 bits_per_second = static_cast<uint32>(
+ safe_bitrate * empty_buffer_fraction / kTargetEmptyBufferFraction);
+ VLOG(3) << " FBR:" << (bits_per_second / 1E6)
+ << " EBF:" << empty_buffer_fraction
+ << " SBR:" << (safe_bitrate / 1E6);
+ bits_per_second = std::max(bits_per_second, min_bitrate_configured_);
+ bits_per_second = std::min(bits_per_second, max_bitrate_configured_);
+ return bits_per_second;
}
} // namespace cast