summaryrefslogtreecommitdiffstats
path: root/chromium/net/disk_cache/blockfile/sparse_control.cc
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/net/disk_cache/blockfile/sparse_control.cc')
-rw-r--r--chromium/net/disk_cache/blockfile/sparse_control.cc886
1 files changed, 886 insertions, 0 deletions
diff --git a/chromium/net/disk_cache/blockfile/sparse_control.cc b/chromium/net/disk_cache/blockfile/sparse_control.cc
new file mode 100644
index 00000000000..e251d84e7c0
--- /dev/null
+++ b/chromium/net/disk_cache/blockfile/sparse_control.cc
@@ -0,0 +1,886 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "net/disk_cache/blockfile/sparse_control.h"
+
+#include "base/bind.h"
+#include "base/format_macros.h"
+#include "base/logging.h"
+#include "base/message_loop/message_loop.h"
+#include "base/strings/string_util.h"
+#include "base/strings/stringprintf.h"
+#include "base/time/time.h"
+#include "net/base/io_buffer.h"
+#include "net/base/net_errors.h"
+#include "net/disk_cache/blockfile/backend_impl.h"
+#include "net/disk_cache/blockfile/entry_impl.h"
+#include "net/disk_cache/blockfile/file.h"
+#include "net/disk_cache/net_log_parameters.h"
+
+using base::Time;
+
+namespace {
+
+// Stream of the sparse data index.
+const int kSparseIndex = 2;
+
+// Stream of the sparse data.
+const int kSparseData = 1;
+
+// We can have up to 64k children.
+const int kMaxMapSize = 8 * 1024;
+
+// The maximum number of bytes that a child can store.
+const int kMaxEntrySize = 0x100000;
+
+// The size of each data block (tracked by the child allocation bitmap).
+const int kBlockSize = 1024;
+
+// Returns the name of a child entry given the base_name and signature of the
+// parent and the child_id.
+// If the entry is called entry_name, child entries will be named something
+// like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
+// number of the particular child.
+std::string GenerateChildName(const std::string& base_name, int64 signature,
+ int64 child_id) {
+ return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
+ signature, child_id);
+}
+
+// This class deletes the children of a sparse entry.
+class ChildrenDeleter
+ : public base::RefCounted<ChildrenDeleter>,
+ public disk_cache::FileIOCallback {
+ public:
+ ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
+ : backend_(backend->GetWeakPtr()), name_(name), signature_(0) {}
+
+ virtual void OnFileIOComplete(int bytes_copied) OVERRIDE;
+
+ // Two ways of deleting the children: if we have the children map, use Start()
+ // directly, otherwise pass the data address to ReadData().
+ void Start(char* buffer, int len);
+ void ReadData(disk_cache::Addr address, int len);
+
+ private:
+ friend class base::RefCounted<ChildrenDeleter>;
+ virtual ~ChildrenDeleter() {}
+
+ void DeleteChildren();
+
+ base::WeakPtr<disk_cache::BackendImpl> backend_;
+ std::string name_;
+ disk_cache::Bitmap children_map_;
+ int64 signature_;
+ scoped_ptr<char[]> buffer_;
+ DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter);
+};
+
+// This is the callback of the file operation.
+void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
+ char* buffer = buffer_.release();
+ Start(buffer, bytes_copied);
+}
+
+void ChildrenDeleter::Start(char* buffer, int len) {
+ buffer_.reset(buffer);
+ if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
+ return Release();
+
+ // Just copy the information from |buffer|, delete |buffer| and start deleting
+ // the child entries.
+ disk_cache::SparseData* data =
+ reinterpret_cast<disk_cache::SparseData*>(buffer);
+ signature_ = data->header.signature;
+
+ int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
+ children_map_.Resize(num_bits, false);
+ children_map_.SetMap(data->bitmap, num_bits / 32);
+ buffer_.reset();
+
+ DeleteChildren();
+}
+
+void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
+ DCHECK(address.is_block_file());
+ if (!backend_.get())
+ return Release();
+
+ disk_cache::File* file(backend_->File(address));
+ if (!file)
+ return Release();
+
+ size_t file_offset = address.start_block() * address.BlockSize() +
+ disk_cache::kBlockHeaderSize;
+
+ buffer_.reset(new char[len]);
+ bool completed;
+ if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
+ return Release();
+
+ if (completed)
+ OnFileIOComplete(len);
+
+ // And wait until OnFileIOComplete gets called.
+}
+
+void ChildrenDeleter::DeleteChildren() {
+ int child_id = 0;
+ if (!children_map_.FindNextSetBit(&child_id) || !backend_.get()) {
+ // We are done. Just delete this object.
+ return Release();
+ }
+ std::string child_name = GenerateChildName(name_, signature_, child_id);
+ backend_->SyncDoomEntry(child_name);
+ children_map_.Set(child_id, false);
+
+ // Post a task to delete the next child.
+ base::MessageLoop::current()->PostTask(
+ FROM_HERE, base::Bind(&ChildrenDeleter::DeleteChildren, this));
+}
+
+// Returns the NetLog event type corresponding to a SparseOperation.
+net::NetLog::EventType GetSparseEventType(
+ disk_cache::SparseControl::SparseOperation operation) {
+ switch (operation) {
+ case disk_cache::SparseControl::kReadOperation:
+ return net::NetLog::TYPE_SPARSE_READ;
+ case disk_cache::SparseControl::kWriteOperation:
+ return net::NetLog::TYPE_SPARSE_WRITE;
+ case disk_cache::SparseControl::kGetRangeOperation:
+ return net::NetLog::TYPE_SPARSE_GET_RANGE;
+ default:
+ NOTREACHED();
+ return net::NetLog::TYPE_CANCELLED;
+ }
+}
+
+// Logs the end event for |operation| on a child entry. Range operations log
+// no events for each child they search through.
+void LogChildOperationEnd(const net::BoundNetLog& net_log,
+ disk_cache::SparseControl::SparseOperation operation,
+ int result) {
+ if (net_log.IsLogging()) {
+ net::NetLog::EventType event_type;
+ switch (operation) {
+ case disk_cache::SparseControl::kReadOperation:
+ event_type = net::NetLog::TYPE_SPARSE_READ_CHILD_DATA;
+ break;
+ case disk_cache::SparseControl::kWriteOperation:
+ event_type = net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA;
+ break;
+ case disk_cache::SparseControl::kGetRangeOperation:
+ return;
+ default:
+ NOTREACHED();
+ return;
+ }
+ net_log.EndEventWithNetErrorCode(event_type, result);
+ }
+}
+
+} // namespace.
+
+namespace disk_cache {
+
+SparseControl::SparseControl(EntryImpl* entry)
+ : entry_(entry),
+ child_(NULL),
+ operation_(kNoOperation),
+ pending_(false),
+ finished_(false),
+ init_(false),
+ range_found_(false),
+ abort_(false),
+ child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32),
+ offset_(0),
+ buf_len_(0),
+ child_offset_(0),
+ child_len_(0),
+ result_(0) {
+ memset(&sparse_header_, 0, sizeof(sparse_header_));
+ memset(&child_data_, 0, sizeof(child_data_));
+}
+
+SparseControl::~SparseControl() {
+ if (child_)
+ CloseChild();
+ if (init_)
+ WriteSparseData();
+}
+
+int SparseControl::Init() {
+ DCHECK(!init_);
+
+ // We should not have sparse data for the exposed entry.
+ if (entry_->GetDataSize(kSparseData))
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ // Now see if there is something where we store our data.
+ int rv = net::OK;
+ int data_len = entry_->GetDataSize(kSparseIndex);
+ if (!data_len) {
+ rv = CreateSparseEntry();
+ } else {
+ rv = OpenSparseEntry(data_len);
+ }
+
+ if (rv == net::OK)
+ init_ = true;
+ return rv;
+}
+
+bool SparseControl::CouldBeSparse() const {
+ DCHECK(!init_);
+
+ if (entry_->GetDataSize(kSparseData))
+ return false;
+
+ // We don't verify the data, just see if it could be there.
+ return (entry_->GetDataSize(kSparseIndex) != 0);
+}
+
+int SparseControl::StartIO(SparseOperation op, int64 offset, net::IOBuffer* buf,
+ int buf_len, const CompletionCallback& callback) {
+ DCHECK(init_);
+ // We don't support simultaneous IO for sparse data.
+ if (operation_ != kNoOperation)
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ if (offset < 0 || buf_len < 0)
+ return net::ERR_INVALID_ARGUMENT;
+
+ // We only support up to 64 GB.
+ if (static_cast<uint64>(offset) + static_cast<unsigned int>(buf_len) >=
+ GG_UINT64_C(0x1000000000)) {
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+ }
+
+ DCHECK(!user_buf_.get());
+ DCHECK(user_callback_.is_null());
+
+ if (!buf && (op == kReadOperation || op == kWriteOperation))
+ return 0;
+
+ // Copy the operation parameters.
+ operation_ = op;
+ offset_ = offset;
+ user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL;
+ buf_len_ = buf_len;
+ user_callback_ = callback;
+
+ result_ = 0;
+ pending_ = false;
+ finished_ = false;
+ abort_ = false;
+
+ if (entry_->net_log().IsLogging()) {
+ entry_->net_log().BeginEvent(
+ GetSparseEventType(operation_),
+ CreateNetLogSparseOperationCallback(offset_, buf_len_));
+ }
+ DoChildrenIO();
+
+ if (!pending_) {
+ // Everything was done synchronously.
+ operation_ = kNoOperation;
+ user_buf_ = NULL;
+ user_callback_.Reset();
+ return result_;
+ }
+
+ return net::ERR_IO_PENDING;
+}
+
+int SparseControl::GetAvailableRange(int64 offset, int len, int64* start) {
+ DCHECK(init_);
+ // We don't support simultaneous IO for sparse data.
+ if (operation_ != kNoOperation)
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ DCHECK(start);
+
+ range_found_ = false;
+ int result = StartIO(
+ kGetRangeOperation, offset, NULL, len, CompletionCallback());
+ if (range_found_) {
+ *start = offset_;
+ return result;
+ }
+
+ // This is a failure. We want to return a valid start value in any case.
+ *start = offset;
+ return result < 0 ? result : 0; // Don't mask error codes to the caller.
+}
+
+void SparseControl::CancelIO() {
+ if (operation_ == kNoOperation)
+ return;
+ abort_ = true;
+}
+
+int SparseControl::ReadyToUse(const CompletionCallback& callback) {
+ if (!abort_)
+ return net::OK;
+
+ // We'll grab another reference to keep this object alive because we just have
+ // one extra reference due to the pending IO operation itself, but we'll
+ // release that one before invoking user_callback_.
+ entry_->AddRef(); // Balanced in DoAbortCallbacks.
+ abort_callbacks_.push_back(callback);
+ return net::ERR_IO_PENDING;
+}
+
+// Static
+void SparseControl::DeleteChildren(EntryImpl* entry) {
+ DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
+ int data_len = entry->GetDataSize(kSparseIndex);
+ if (data_len < static_cast<int>(sizeof(SparseData)) ||
+ entry->GetDataSize(kSparseData))
+ return;
+
+ int map_len = data_len - sizeof(SparseHeader);
+ if (map_len > kMaxMapSize || map_len % 4)
+ return;
+
+ char* buffer;
+ Addr address;
+ entry->GetData(kSparseIndex, &buffer, &address);
+ if (!buffer && !address.is_initialized())
+ return;
+
+ entry->net_log().AddEvent(net::NetLog::TYPE_SPARSE_DELETE_CHILDREN);
+
+ DCHECK(entry->backend_.get());
+ ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_.get(),
+ entry->GetKey());
+ // The object will self destruct when finished.
+ deleter->AddRef();
+
+ if (buffer) {
+ base::MessageLoop::current()->PostTask(
+ FROM_HERE,
+ base::Bind(&ChildrenDeleter::Start, deleter, buffer, data_len));
+ } else {
+ base::MessageLoop::current()->PostTask(
+ FROM_HERE,
+ base::Bind(&ChildrenDeleter::ReadData, deleter, address, data_len));
+ }
+}
+
+// We are going to start using this entry to store sparse data, so we have to
+// initialize our control info.
+int SparseControl::CreateSparseEntry() {
+ if (CHILD_ENTRY & entry_->GetEntryFlags())
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ memset(&sparse_header_, 0, sizeof(sparse_header_));
+ sparse_header_.signature = Time::Now().ToInternalValue();
+ sparse_header_.magic = kIndexMagic;
+ sparse_header_.parent_key_len = entry_->GetKey().size();
+ children_map_.Resize(kNumSparseBits, true);
+
+ // Save the header. The bitmap is saved in the destructor.
+ scoped_refptr<net::IOBuffer> buf(
+ new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
+
+ int rv = entry_->WriteData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
+ CompletionCallback(), false);
+ if (rv != sizeof(sparse_header_)) {
+ DLOG(ERROR) << "Unable to save sparse_header_";
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+ }
+
+ entry_->SetEntryFlags(PARENT_ENTRY);
+ return net::OK;
+}
+
+// We are opening an entry from disk. Make sure that our control data is there.
+int SparseControl::OpenSparseEntry(int data_len) {
+ if (data_len < static_cast<int>(sizeof(SparseData)))
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ if (entry_->GetDataSize(kSparseData))
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
+ int map_len = data_len - sizeof(sparse_header_);
+ if (map_len > kMaxMapSize || map_len % 4)
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ scoped_refptr<net::IOBuffer> buf(
+ new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
+
+ // Read header.
+ int rv = entry_->ReadData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
+ CompletionCallback());
+ if (rv != static_cast<int>(sizeof(sparse_header_)))
+ return net::ERR_CACHE_READ_FAILURE;
+
+ // The real validation should be performed by the caller. This is just to
+ // double check.
+ if (sparse_header_.magic != kIndexMagic ||
+ sparse_header_.parent_key_len !=
+ static_cast<int>(entry_->GetKey().size()))
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ // Read the actual bitmap.
+ buf = new net::IOBuffer(map_len);
+ rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf.get(),
+ map_len, CompletionCallback());
+ if (rv != map_len)
+ return net::ERR_CACHE_READ_FAILURE;
+
+ // Grow the bitmap to the current size and copy the bits.
+ children_map_.Resize(map_len * 8, false);
+ children_map_.SetMap(reinterpret_cast<uint32*>(buf->data()), map_len);
+ return net::OK;
+}
+
+bool SparseControl::OpenChild() {
+ DCHECK_GE(result_, 0);
+
+ std::string key = GenerateChildKey();
+ if (child_) {
+ // Keep using the same child or open another one?.
+ if (key == child_->GetKey())
+ return true;
+ CloseChild();
+ }
+
+ // See if we are tracking this child.
+ if (!ChildPresent())
+ return ContinueWithoutChild(key);
+
+ if (!entry_->backend_.get())
+ return false;
+
+ child_ = entry_->backend_->OpenEntryImpl(key);
+ if (!child_)
+ return ContinueWithoutChild(key);
+
+ EntryImpl* child = static_cast<EntryImpl*>(child_);
+ if (!(CHILD_ENTRY & child->GetEntryFlags()) ||
+ child->GetDataSize(kSparseIndex) <
+ static_cast<int>(sizeof(child_data_)))
+ return KillChildAndContinue(key, false);
+
+ scoped_refptr<net::WrappedIOBuffer> buf(
+ new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
+
+ // Read signature.
+ int rv = child_->ReadData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
+ CompletionCallback());
+ if (rv != sizeof(child_data_))
+ return KillChildAndContinue(key, true); // This is a fatal failure.
+
+ if (child_data_.header.signature != sparse_header_.signature ||
+ child_data_.header.magic != kIndexMagic)
+ return KillChildAndContinue(key, false);
+
+ if (child_data_.header.last_block_len < 0 ||
+ child_data_.header.last_block_len > kBlockSize) {
+ // Make sure these values are always within range.
+ child_data_.header.last_block_len = 0;
+ child_data_.header.last_block = -1;
+ }
+
+ return true;
+}
+
+void SparseControl::CloseChild() {
+ scoped_refptr<net::WrappedIOBuffer> buf(
+ new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
+
+ // Save the allocation bitmap before closing the child entry.
+ int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
+ CompletionCallback(), false);
+ if (rv != sizeof(child_data_))
+ DLOG(ERROR) << "Failed to save child data";
+ child_->Release();
+ child_ = NULL;
+}
+
+std::string SparseControl::GenerateChildKey() {
+ return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
+ offset_ >> 20);
+}
+
+// We are deleting the child because something went wrong.
+bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
+ SetChildBit(false);
+ child_->DoomImpl();
+ child_->Release();
+ child_ = NULL;
+ if (fatal) {
+ result_ = net::ERR_CACHE_READ_FAILURE;
+ return false;
+ }
+ return ContinueWithoutChild(key);
+}
+
+// We were not able to open this child; see what we can do.
+bool SparseControl::ContinueWithoutChild(const std::string& key) {
+ if (kReadOperation == operation_)
+ return false;
+ if (kGetRangeOperation == operation_)
+ return true;
+
+ if (!entry_->backend_.get())
+ return false;
+
+ child_ = entry_->backend_->CreateEntryImpl(key);
+ if (!child_) {
+ child_ = NULL;
+ result_ = net::ERR_CACHE_READ_FAILURE;
+ return false;
+ }
+ // Write signature.
+ InitChildData();
+ return true;
+}
+
+bool SparseControl::ChildPresent() {
+ int child_bit = static_cast<int>(offset_ >> 20);
+ if (children_map_.Size() <= child_bit)
+ return false;
+
+ return children_map_.Get(child_bit);
+}
+
+void SparseControl::SetChildBit(bool value) {
+ int child_bit = static_cast<int>(offset_ >> 20);
+
+ // We may have to increase the bitmap of child entries.
+ if (children_map_.Size() <= child_bit)
+ children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
+
+ children_map_.Set(child_bit, value);
+}
+
+void SparseControl::WriteSparseData() {
+ scoped_refptr<net::IOBuffer> buf(new net::WrappedIOBuffer(
+ reinterpret_cast<const char*>(children_map_.GetMap())));
+
+ int len = children_map_.ArraySize() * 4;
+ int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf.get(),
+ len, CompletionCallback(), false);
+ if (rv != len) {
+ DLOG(ERROR) << "Unable to save sparse map";
+ }
+}
+
+bool SparseControl::VerifyRange() {
+ DCHECK_GE(result_, 0);
+
+ child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
+ child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
+
+ // We can write to (or get info from) anywhere in this child.
+ if (operation_ != kReadOperation)
+ return true;
+
+ // Check that there are no holes in this range.
+ int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
+ int start = child_offset_ >> 10;
+ if (child_map_.FindNextBit(&start, last_bit, false)) {
+ // Something is not here.
+ DCHECK_GE(child_data_.header.last_block_len, 0);
+ DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
+ int partial_block_len = PartialBlockLength(start);
+ if (start == child_offset_ >> 10) {
+ // It looks like we don't have anything.
+ if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
+ return false;
+ }
+
+ // We have the first part.
+ child_len_ = (start << 10) - child_offset_;
+ if (partial_block_len) {
+ // We may have a few extra bytes.
+ child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
+ }
+ // There is no need to read more after this one.
+ buf_len_ = child_len_;
+ }
+ return true;
+}
+
+void SparseControl::UpdateRange(int result) {
+ if (result <= 0 || operation_ != kWriteOperation)
+ return;
+
+ DCHECK_GE(child_data_.header.last_block_len, 0);
+ DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
+
+ // Write the bitmap.
+ int first_bit = child_offset_ >> 10;
+ int block_offset = child_offset_ & (kBlockSize - 1);
+ if (block_offset && (child_data_.header.last_block != first_bit ||
+ child_data_.header.last_block_len < block_offset)) {
+ // The first block is not completely filled; ignore it.
+ first_bit++;
+ }
+
+ int last_bit = (child_offset_ + result) >> 10;
+ block_offset = (child_offset_ + result) & (kBlockSize - 1);
+
+ // This condition will hit with the following criteria:
+ // 1. The first byte doesn't follow the last write.
+ // 2. The first byte is in the middle of a block.
+ // 3. The first byte and the last byte are in the same block.
+ if (first_bit > last_bit)
+ return;
+
+ if (block_offset && !child_map_.Get(last_bit)) {
+ // The last block is not completely filled; save it for later.
+ child_data_.header.last_block = last_bit;
+ child_data_.header.last_block_len = block_offset;
+ } else {
+ child_data_.header.last_block = -1;
+ }
+
+ child_map_.SetRange(first_bit, last_bit, true);
+}
+
+int SparseControl::PartialBlockLength(int block_index) const {
+ if (block_index == child_data_.header.last_block)
+ return child_data_.header.last_block_len;
+
+ // This may be the last stored index.
+ int entry_len = child_->GetDataSize(kSparseData);
+ if (block_index == entry_len >> 10)
+ return entry_len & (kBlockSize - 1);
+
+ // This is really empty.
+ return 0;
+}
+
+void SparseControl::InitChildData() {
+ // We know the real type of child_.
+ EntryImpl* child = static_cast<EntryImpl*>(child_);
+ child->SetEntryFlags(CHILD_ENTRY);
+
+ memset(&child_data_, 0, sizeof(child_data_));
+ child_data_.header = sparse_header_;
+
+ scoped_refptr<net::WrappedIOBuffer> buf(
+ new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
+
+ int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
+ CompletionCallback(), false);
+ if (rv != sizeof(child_data_))
+ DLOG(ERROR) << "Failed to save child data";
+ SetChildBit(true);
+}
+
+void SparseControl::DoChildrenIO() {
+ while (DoChildIO()) continue;
+
+ // Range operations are finished synchronously, often without setting
+ // |finished_| to true.
+ if (kGetRangeOperation == operation_ &&
+ entry_->net_log().IsLogging()) {
+ entry_->net_log().EndEvent(
+ net::NetLog::TYPE_SPARSE_GET_RANGE,
+ CreateNetLogGetAvailableRangeResultCallback(offset_, result_));
+ }
+ if (finished_) {
+ if (kGetRangeOperation != operation_ &&
+ entry_->net_log().IsLogging()) {
+ entry_->net_log().EndEvent(GetSparseEventType(operation_));
+ }
+ if (pending_)
+ DoUserCallback(); // Don't touch this object after this point.
+ }
+}
+
+bool SparseControl::DoChildIO() {
+ finished_ = true;
+ if (!buf_len_ || result_ < 0)
+ return false;
+
+ if (!OpenChild())
+ return false;
+
+ if (!VerifyRange())
+ return false;
+
+ // We have more work to do. Let's not trigger a callback to the caller.
+ finished_ = false;
+ CompletionCallback callback;
+ if (!user_callback_.is_null()) {
+ callback =
+ base::Bind(&SparseControl::OnChildIOCompleted, base::Unretained(this));
+ }
+
+ int rv = 0;
+ switch (operation_) {
+ case kReadOperation:
+ if (entry_->net_log().IsLogging()) {
+ entry_->net_log().BeginEvent(
+ net::NetLog::TYPE_SPARSE_READ_CHILD_DATA,
+ CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
+ child_len_));
+ }
+ rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_.get(),
+ child_len_, callback);
+ break;
+ case kWriteOperation:
+ if (entry_->net_log().IsLogging()) {
+ entry_->net_log().BeginEvent(
+ net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA,
+ CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
+ child_len_));
+ }
+ rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_.get(),
+ child_len_, callback, false);
+ break;
+ case kGetRangeOperation:
+ rv = DoGetAvailableRange();
+ break;
+ default:
+ NOTREACHED();
+ }
+
+ if (rv == net::ERR_IO_PENDING) {
+ if (!pending_) {
+ pending_ = true;
+ // The child will protect himself against closing the entry while IO is in
+ // progress. However, this entry can still be closed, and that would not
+ // be a good thing for us, so we increase the refcount until we're
+ // finished doing sparse stuff.
+ entry_->AddRef(); // Balanced in DoUserCallback.
+ }
+ return false;
+ }
+ if (!rv)
+ return false;
+
+ DoChildIOCompleted(rv);
+ return true;
+}
+
+int SparseControl::DoGetAvailableRange() {
+ if (!child_)
+ return child_len_; // Move on to the next child.
+
+ // Check that there are no holes in this range.
+ int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
+ int start = child_offset_ >> 10;
+ int partial_start_bytes = PartialBlockLength(start);
+ int found = start;
+ int bits_found = child_map_.FindBits(&found, last_bit, true);
+
+ // We don't care if there is a partial block in the middle of the range.
+ int block_offset = child_offset_ & (kBlockSize - 1);
+ if (!bits_found && partial_start_bytes <= block_offset)
+ return child_len_;
+
+ // We are done. Just break the loop and reset result_ to our real result.
+ range_found_ = true;
+
+ // found now points to the first 1. Lets see if we have zeros before it.
+ int empty_start = std::max((found << 10) - child_offset_, 0);
+
+ int bytes_found = bits_found << 10;
+ bytes_found += PartialBlockLength(found + bits_found);
+
+ if (start == found)
+ bytes_found -= block_offset;
+
+ // If the user is searching past the end of this child, bits_found is the
+ // right result; otherwise, we have some empty space at the start of this
+ // query that we have to subtract from the range that we searched.
+ result_ = std::min(bytes_found, child_len_ - empty_start);
+
+ if (!bits_found) {
+ result_ = std::min(partial_start_bytes - block_offset, child_len_);
+ empty_start = 0;
+ }
+
+ // Only update offset_ when this query found zeros at the start.
+ if (empty_start)
+ offset_ += empty_start;
+
+ // This will actually break the loop.
+ buf_len_ = 0;
+ return 0;
+}
+
+void SparseControl::DoChildIOCompleted(int result) {
+ LogChildOperationEnd(entry_->net_log(), operation_, result);
+ if (result < 0) {
+ // We fail the whole operation if we encounter an error.
+ result_ = result;
+ return;
+ }
+
+ UpdateRange(result);
+
+ result_ += result;
+ offset_ += result;
+ buf_len_ -= result;
+
+ // We'll be reusing the user provided buffer for the next chunk.
+ if (buf_len_ && user_buf_.get())
+ user_buf_->DidConsume(result);
+}
+
+void SparseControl::OnChildIOCompleted(int result) {
+ DCHECK_NE(net::ERR_IO_PENDING, result);
+ DoChildIOCompleted(result);
+
+ if (abort_) {
+ // We'll return the current result of the operation, which may be less than
+ // the bytes to read or write, but the user cancelled the operation.
+ abort_ = false;
+ if (entry_->net_log().IsLogging()) {
+ entry_->net_log().AddEvent(net::NetLog::TYPE_CANCELLED);
+ entry_->net_log().EndEvent(GetSparseEventType(operation_));
+ }
+ // We have an indirect reference to this object for every callback so if
+ // there is only one callback, we may delete this object before reaching
+ // DoAbortCallbacks.
+ bool has_abort_callbacks = !abort_callbacks_.empty();
+ DoUserCallback();
+ if (has_abort_callbacks)
+ DoAbortCallbacks();
+ return;
+ }
+
+ // We are running a callback from the message loop. It's time to restart what
+ // we were doing before.
+ DoChildrenIO();
+}
+
+void SparseControl::DoUserCallback() {
+ DCHECK(!user_callback_.is_null());
+ CompletionCallback cb = user_callback_;
+ user_callback_.Reset();
+ user_buf_ = NULL;
+ pending_ = false;
+ operation_ = kNoOperation;
+ int rv = result_;
+ entry_->Release(); // Don't touch object after this line.
+ cb.Run(rv);
+}
+
+void SparseControl::DoAbortCallbacks() {
+ for (size_t i = 0; i < abort_callbacks_.size(); i++) {
+ // Releasing all references to entry_ may result in the destruction of this
+ // object so we should not be touching it after the last Release().
+ CompletionCallback cb = abort_callbacks_[i];
+ if (i == abort_callbacks_.size() - 1)
+ abort_callbacks_.clear();
+
+ entry_->Release(); // Don't touch object after this line.
+ cb.Run(net::OK);
+ }
+}
+
+} // namespace disk_cache