summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/angle/src/compiler/translator/OutputHLSL.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/angle/src/compiler/translator/OutputHLSL.cpp')
-rw-r--r--chromium/third_party/angle/src/compiler/translator/OutputHLSL.cpp4184
1 files changed, 4184 insertions, 0 deletions
diff --git a/chromium/third_party/angle/src/compiler/translator/OutputHLSL.cpp b/chromium/third_party/angle/src/compiler/translator/OutputHLSL.cpp
new file mode 100644
index 00000000000..5520c861b4d
--- /dev/null
+++ b/chromium/third_party/angle/src/compiler/translator/OutputHLSL.cpp
@@ -0,0 +1,4184 @@
+//
+// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/OutputHLSL.h"
+
+#include "common/angleutils.h"
+#include "common/utilities.h"
+#include "common/blocklayout.h"
+#include "compiler/translator/compilerdebug.h"
+#include "compiler/translator/InfoSink.h"
+#include "compiler/translator/DetectDiscontinuity.h"
+#include "compiler/translator/SearchSymbol.h"
+#include "compiler/translator/UnfoldShortCircuit.h"
+#include "compiler/translator/FlagStd140Structs.h"
+#include "compiler/translator/NodeSearch.h"
+#include "compiler/translator/RewriteElseBlocks.h"
+
+#include <algorithm>
+#include <cfloat>
+#include <stdio.h>
+
+namespace sh
+{
+
+TString OutputHLSL::TextureFunction::name() const
+{
+ TString name = "gl_texture";
+
+ if (IsSampler2D(sampler))
+ {
+ name += "2D";
+ }
+ else if (IsSampler3D(sampler))
+ {
+ name += "3D";
+ }
+ else if (IsSamplerCube(sampler))
+ {
+ name += "Cube";
+ }
+ else UNREACHABLE();
+
+ if (proj)
+ {
+ name += "Proj";
+ }
+
+ if (offset)
+ {
+ name += "Offset";
+ }
+
+ switch(method)
+ {
+ case IMPLICIT: break;
+ case BIAS: break; // Extra parameter makes the signature unique
+ case LOD: name += "Lod"; break;
+ case LOD0: name += "Lod0"; break;
+ case LOD0BIAS: name += "Lod0"; break; // Extra parameter makes the signature unique
+ case SIZE: name += "Size"; break;
+ case FETCH: name += "Fetch"; break;
+ case GRAD: name += "Grad"; break;
+ default: UNREACHABLE();
+ }
+
+ return name + "(";
+}
+
+const char *RegisterPrefix(const TType &type)
+{
+ if (IsSampler(type.getBasicType()))
+ {
+ return "s";
+ }
+ else
+ {
+ return "c";
+ }
+}
+
+bool OutputHLSL::TextureFunction::operator<(const TextureFunction &rhs) const
+{
+ if (sampler < rhs.sampler) return true;
+ if (sampler > rhs.sampler) return false;
+
+ if (coords < rhs.coords) return true;
+ if (coords > rhs.coords) return false;
+
+ if (!proj && rhs.proj) return true;
+ if (proj && !rhs.proj) return false;
+
+ if (!offset && rhs.offset) return true;
+ if (offset && !rhs.offset) return false;
+
+ if (method < rhs.method) return true;
+ if (method > rhs.method) return false;
+
+ return false;
+}
+
+OutputHLSL::OutputHLSL(TParseContext &context, const ShBuiltInResources& resources, ShShaderOutput outputType)
+ : TIntermTraverser(true, true, true), mContext(context), mOutputType(outputType)
+{
+ mUnfoldShortCircuit = new UnfoldShortCircuit(context, this);
+ mInsideFunction = false;
+
+ mUsesFragColor = false;
+ mUsesFragData = false;
+ mUsesDepthRange = false;
+ mUsesFragCoord = false;
+ mUsesPointCoord = false;
+ mUsesFrontFacing = false;
+ mUsesPointSize = false;
+ mUsesFragDepth = false;
+ mUsesXor = false;
+ mUsesMod1 = false;
+ mUsesMod2v = false;
+ mUsesMod2f = false;
+ mUsesMod3v = false;
+ mUsesMod3f = false;
+ mUsesMod4v = false;
+ mUsesMod4f = false;
+ mUsesFaceforward1 = false;
+ mUsesFaceforward2 = false;
+ mUsesFaceforward3 = false;
+ mUsesFaceforward4 = false;
+ mUsesAtan2_1 = false;
+ mUsesAtan2_2 = false;
+ mUsesAtan2_3 = false;
+ mUsesAtan2_4 = false;
+ mUsesDiscardRewriting = false;
+ mUsesNestedBreak = false;
+
+ mNumRenderTargets = resources.EXT_draw_buffers ? resources.MaxDrawBuffers : 1;
+
+ mUniqueIndex = 0;
+
+ mContainsLoopDiscontinuity = false;
+ mOutputLod0Function = false;
+ mInsideDiscontinuousLoop = false;
+ mNestedLoopDepth = 0;
+
+ mExcessiveLoopIndex = NULL;
+
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ if (mContext.shaderType == SH_FRAGMENT_SHADER)
+ {
+ mUniformRegister = 3; // Reserve registers for dx_DepthRange, dx_ViewCoords and dx_DepthFront
+ }
+ else
+ {
+ mUniformRegister = 2; // Reserve registers for dx_DepthRange and dx_ViewAdjust
+ }
+ }
+ else
+ {
+ mUniformRegister = 0;
+ }
+
+ mSamplerRegister = 0;
+ mInterfaceBlockRegister = 2; // Reserve registers for the default uniform block and driver constants
+ mPaddingCounter = 0;
+}
+
+OutputHLSL::~OutputHLSL()
+{
+ delete mUnfoldShortCircuit;
+}
+
+void OutputHLSL::output()
+{
+ mContainsLoopDiscontinuity = mContext.shaderType == SH_FRAGMENT_SHADER && containsLoopDiscontinuity(mContext.treeRoot);
+ const std::vector<TIntermTyped*> &flaggedStructs = FlagStd140ValueStructs(mContext.treeRoot);
+ makeFlaggedStructMaps(flaggedStructs);
+
+ // Work around D3D9 bug that would manifest in vertex shaders with selection blocks which
+ // use a vertex attribute as a condition, and some related computation in the else block.
+ if (mOutputType == SH_HLSL9_OUTPUT && mContext.shaderType == SH_VERTEX_SHADER)
+ {
+ RewriteElseBlocks(mContext.treeRoot);
+ }
+
+ mContext.treeRoot->traverse(this); // Output the body first to determine what has to go in the header
+ header();
+
+ mContext.infoSink().obj << mHeader.c_str();
+ mContext.infoSink().obj << mBody.c_str();
+}
+
+void OutputHLSL::makeFlaggedStructMaps(const std::vector<TIntermTyped *> &flaggedStructs)
+{
+ for (unsigned int structIndex = 0; structIndex < flaggedStructs.size(); structIndex++)
+ {
+ TIntermTyped *flaggedNode = flaggedStructs[structIndex];
+
+ // This will mark the necessary block elements as referenced
+ flaggedNode->traverse(this);
+ TString structName(mBody.c_str());
+ mBody.erase();
+
+ mFlaggedStructOriginalNames[flaggedNode] = structName;
+
+ for (size_t pos = structName.find('.'); pos != std::string::npos; pos = structName.find('.'))
+ {
+ structName.erase(pos, 1);
+ }
+
+ mFlaggedStructMappedNames[flaggedNode] = "map" + structName;
+ }
+}
+
+TInfoSinkBase &OutputHLSL::getBodyStream()
+{
+ return mBody;
+}
+
+const std::vector<gl::Uniform> &OutputHLSL::getUniforms()
+{
+ return mActiveUniforms;
+}
+
+const std::vector<gl::InterfaceBlock> &OutputHLSL::getInterfaceBlocks() const
+{
+ return mActiveInterfaceBlocks;
+}
+
+const std::vector<gl::Attribute> &OutputHLSL::getOutputVariables() const
+{
+ return mActiveOutputVariables;
+}
+
+const std::vector<gl::Attribute> &OutputHLSL::getAttributes() const
+{
+ return mActiveAttributes;
+}
+
+const std::vector<gl::Varying> &OutputHLSL::getVaryings() const
+{
+ return mActiveVaryings;
+}
+
+int OutputHLSL::vectorSize(const TType &type) const
+{
+ int elementSize = type.isMatrix() ? type.getCols() : 1;
+ int arraySize = type.isArray() ? type.getArraySize() : 1;
+
+ return elementSize * arraySize;
+}
+
+TString OutputHLSL::interfaceBlockFieldString(const TInterfaceBlock &interfaceBlock, const TField &field)
+{
+ if (interfaceBlock.hasInstanceName())
+ {
+ return interfaceBlock.name() + "." + field.name();
+ }
+ else
+ {
+ return field.name();
+ }
+}
+
+TString OutputHLSL::decoratePrivate(const TString &privateText)
+{
+ return "dx_" + privateText;
+}
+
+TString OutputHLSL::interfaceBlockStructNameString(const TInterfaceBlock &interfaceBlock)
+{
+ return decoratePrivate(interfaceBlock.name()) + "_type";
+}
+
+TString OutputHLSL::interfaceBlockInstanceString(const TInterfaceBlock& interfaceBlock, unsigned int arrayIndex)
+{
+ if (!interfaceBlock.hasInstanceName())
+ {
+ return "";
+ }
+ else if (interfaceBlock.isArray())
+ {
+ return decoratePrivate(interfaceBlock.instanceName()) + "_" + str(arrayIndex);
+ }
+ else
+ {
+ return decorate(interfaceBlock.instanceName());
+ }
+}
+
+TString OutputHLSL::interfaceBlockFieldTypeString(const TField &field, TLayoutBlockStorage blockStorage)
+{
+ const TType &fieldType = *field.type();
+ const TLayoutMatrixPacking matrixPacking = fieldType.getLayoutQualifier().matrixPacking;
+ ASSERT(matrixPacking != EmpUnspecified);
+
+ if (fieldType.isMatrix())
+ {
+ // Use HLSL row-major packing for GLSL column-major matrices
+ const TString &matrixPackString = (matrixPacking == EmpRowMajor ? "column_major" : "row_major");
+ return matrixPackString + " " + typeString(fieldType);
+ }
+ else if (fieldType.getStruct())
+ {
+ // Use HLSL row-major packing for GLSL column-major matrices
+ return structureTypeName(*fieldType.getStruct(), matrixPacking == EmpColumnMajor, blockStorage == EbsStd140);
+ }
+ else
+ {
+ return typeString(fieldType);
+ }
+}
+
+TString OutputHLSL::interfaceBlockFieldString(const TInterfaceBlock &interfaceBlock, TLayoutBlockStorage blockStorage)
+{
+ TString hlsl;
+
+ int elementIndex = 0;
+
+ for (unsigned int typeIndex = 0; typeIndex < interfaceBlock.fields().size(); typeIndex++)
+ {
+ const TField &field = *interfaceBlock.fields()[typeIndex];
+ const TType &fieldType = *field.type();
+
+ if (blockStorage == EbsStd140)
+ {
+ // 2 and 3 component vector types in some cases need pre-padding
+ hlsl += std140PrePaddingString(fieldType, &elementIndex);
+ }
+
+ hlsl += " " + interfaceBlockFieldTypeString(field, blockStorage) +
+ " " + decorate(field.name()) + arrayString(fieldType) + ";\n";
+
+ // must pad out after matrices and arrays, where HLSL usually allows itself room to pack stuff
+ if (blockStorage == EbsStd140)
+ {
+ const bool useHLSLRowMajorPacking = (fieldType.getLayoutQualifier().matrixPacking == EmpColumnMajor);
+ hlsl += std140PostPaddingString(fieldType, useHLSLRowMajorPacking);
+ }
+ }
+
+ return hlsl;
+}
+
+TString OutputHLSL::interfaceBlockStructString(const TInterfaceBlock &interfaceBlock)
+{
+ const TLayoutBlockStorage blockStorage = interfaceBlock.blockStorage();
+
+ return "struct " + interfaceBlockStructNameString(interfaceBlock) + "\n"
+ "{\n" +
+ interfaceBlockFieldString(interfaceBlock, blockStorage) +
+ "};\n\n";
+}
+
+TString OutputHLSL::interfaceBlockString(const TInterfaceBlock &interfaceBlock, unsigned int registerIndex, unsigned int arrayIndex)
+{
+ const TString &arrayIndexString = (arrayIndex != GL_INVALID_INDEX ? decorate(str(arrayIndex)) : "");
+ const TString &blockName = interfaceBlock.name() + arrayIndexString;
+ TString hlsl;
+
+ hlsl += "cbuffer " + blockName + " : register(b" + str(registerIndex) + ")\n"
+ "{\n";
+
+ if (interfaceBlock.hasInstanceName())
+ {
+ hlsl += " " + interfaceBlockStructNameString(interfaceBlock) + " " + interfaceBlockInstanceString(interfaceBlock, arrayIndex) + ";\n";
+ }
+ else
+ {
+ const TLayoutBlockStorage blockStorage = interfaceBlock.blockStorage();
+ hlsl += interfaceBlockFieldString(interfaceBlock, blockStorage);
+ }
+
+ hlsl += "};\n\n";
+
+ return hlsl;
+}
+
+TString OutputHLSL::std140PrePaddingString(const TType &type, int *elementIndex)
+{
+ if (type.getBasicType() == EbtStruct || type.isMatrix() || type.isArray())
+ {
+ // no padding needed, HLSL will align the field to a new register
+ *elementIndex = 0;
+ return "";
+ }
+
+ const GLenum glType = glVariableType(type);
+ const int numComponents = gl::UniformComponentCount(glType);
+
+ if (numComponents >= 4)
+ {
+ // no padding needed, HLSL will align the field to a new register
+ *elementIndex = 0;
+ return "";
+ }
+
+ if (*elementIndex + numComponents > 4)
+ {
+ // no padding needed, HLSL will align the field to a new register
+ *elementIndex = numComponents;
+ return "";
+ }
+
+ TString padding;
+
+ const int alignment = numComponents == 3 ? 4 : numComponents;
+ const int paddingOffset = (*elementIndex % alignment);
+
+ if (paddingOffset != 0)
+ {
+ // padding is neccessary
+ for (int paddingIndex = paddingOffset; paddingIndex < alignment; paddingIndex++)
+ {
+ padding += " float pad_" + str(mPaddingCounter++) + ";\n";
+ }
+
+ *elementIndex += (alignment - paddingOffset);
+ }
+
+ *elementIndex += numComponents;
+ *elementIndex %= 4;
+
+ return padding;
+}
+
+TString OutputHLSL::std140PostPaddingString(const TType &type, bool useHLSLRowMajorPacking)
+{
+ if (!type.isMatrix() && !type.isArray() && type.getBasicType() != EbtStruct)
+ {
+ return "";
+ }
+
+ int numComponents = 0;
+
+ if (type.isMatrix())
+ {
+ // This method can also be called from structureString, which does not use layout qualifiers.
+ // Thus, use the method parameter for determining the matrix packing.
+ //
+ // Note HLSL row major packing corresponds to GL API column-major, and vice-versa, since we
+ // wish to always transpose GL matrices to play well with HLSL's matrix array indexing.
+ //
+ const bool isRowMajorMatrix = !useHLSLRowMajorPacking;
+ const GLenum glType = glVariableType(type);
+ numComponents = gl::MatrixComponentCount(glType, isRowMajorMatrix);
+ }
+ else if (type.getStruct())
+ {
+ const TString &structName = structureTypeName(*type.getStruct(), useHLSLRowMajorPacking, true);
+ numComponents = mStd140StructElementIndexes[structName];
+
+ if (numComponents == 0)
+ {
+ return "";
+ }
+ }
+ else
+ {
+ const GLenum glType = glVariableType(type);
+ numComponents = gl::UniformComponentCount(glType);
+ }
+
+ TString padding;
+ for (int paddingOffset = numComponents; paddingOffset < 4; paddingOffset++)
+ {
+ padding += " float pad_" + str(mPaddingCounter++) + ";\n";
+ }
+ return padding;
+}
+
+// Use the same layout for packed and shared
+void setBlockLayout(gl::InterfaceBlock *interfaceBlock, gl::BlockLayoutType newLayout)
+{
+ interfaceBlock->layout = newLayout;
+ interfaceBlock->blockInfo.clear();
+
+ switch (newLayout)
+ {
+ case gl::BLOCKLAYOUT_SHARED:
+ case gl::BLOCKLAYOUT_PACKED:
+ {
+ gl::HLSLBlockEncoder hlslEncoder(&interfaceBlock->blockInfo, gl::HLSLBlockEncoder::ENCODE_PACKED);
+ hlslEncoder.encodeInterfaceBlockFields(interfaceBlock->fields);
+ interfaceBlock->dataSize = hlslEncoder.getBlockSize();
+ }
+ break;
+
+ case gl::BLOCKLAYOUT_STANDARD:
+ {
+ gl::Std140BlockEncoder stdEncoder(&interfaceBlock->blockInfo);
+ stdEncoder.encodeInterfaceBlockFields(interfaceBlock->fields);
+ interfaceBlock->dataSize = stdEncoder.getBlockSize();
+ }
+ break;
+
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+gl::BlockLayoutType convertBlockLayoutType(TLayoutBlockStorage blockStorage)
+{
+ switch (blockStorage)
+ {
+ case EbsPacked: return gl::BLOCKLAYOUT_PACKED;
+ case EbsShared: return gl::BLOCKLAYOUT_SHARED;
+ case EbsStd140: return gl::BLOCKLAYOUT_STANDARD;
+ default: UNREACHABLE(); return gl::BLOCKLAYOUT_SHARED;
+ }
+}
+
+TString OutputHLSL::structInitializerString(int indent, const TStructure &structure, const TString &rhsStructName)
+{
+ TString init;
+
+ TString preIndentString;
+ TString fullIndentString;
+
+ for (int spaces = 0; spaces < (indent * 4); spaces++)
+ {
+ preIndentString += ' ';
+ }
+
+ for (int spaces = 0; spaces < ((indent+1) * 4); spaces++)
+ {
+ fullIndentString += ' ';
+ }
+
+ init += preIndentString + "{\n";
+
+ const TFieldList &fields = structure.fields();
+ for (unsigned int fieldIndex = 0; fieldIndex < fields.size(); fieldIndex++)
+ {
+ const TField &field = *fields[fieldIndex];
+ const TString &fieldName = rhsStructName + "." + decorate(field.name());
+ const TType &fieldType = *field.type();
+
+ if (fieldType.getStruct())
+ {
+ init += structInitializerString(indent + 1, *fieldType.getStruct(), fieldName);
+ }
+ else
+ {
+ init += fullIndentString + fieldName + ",\n";
+ }
+ }
+
+ init += preIndentString + "}" + (indent == 0 ? ";" : ",") + "\n";
+
+ return init;
+}
+
+void OutputHLSL::header()
+{
+ TInfoSinkBase &out = mHeader;
+
+ TString uniforms;
+ TString interfaceBlocks;
+ TString varyings;
+ TString attributes;
+ TString flaggedStructs;
+
+ for (ReferencedSymbols::const_iterator uniformIt = mReferencedUniforms.begin(); uniformIt != mReferencedUniforms.end(); uniformIt++)
+ {
+ const TIntermSymbol &uniform = *uniformIt->second;
+ const TType &type = uniform.getType();
+ const TString &name = uniform.getSymbol();
+
+ int registerIndex = declareUniformAndAssignRegister(type, name);
+
+ if (mOutputType == SH_HLSL11_OUTPUT && IsSampler(type.getBasicType())) // Also declare the texture
+ {
+ uniforms += "uniform " + samplerString(type) + " sampler_" + decorateUniform(name, type) + arrayString(type) +
+ " : register(s" + str(registerIndex) + ");\n";
+
+ uniforms += "uniform " + textureString(type) + " texture_" + decorateUniform(name, type) + arrayString(type) +
+ " : register(t" + str(registerIndex) + ");\n";
+ }
+ else
+ {
+ const TStructure *structure = type.getStruct();
+ const TString &typeName = (structure ? structureTypeName(*structure, false, false) : typeString(type));
+
+ const TString &registerString = TString("register(") + RegisterPrefix(type) + str(registerIndex) + ")";
+
+ uniforms += "uniform " + typeName + " " + decorateUniform(name, type) + arrayString(type) + " : " + registerString + ";\n";
+ }
+ }
+
+ for (ReferencedSymbols::const_iterator interfaceBlockIt = mReferencedInterfaceBlocks.begin(); interfaceBlockIt != mReferencedInterfaceBlocks.end(); interfaceBlockIt++)
+ {
+ const TType &nodeType = interfaceBlockIt->second->getType();
+ const TInterfaceBlock &interfaceBlock = *nodeType.getInterfaceBlock();
+ const TFieldList &fieldList = interfaceBlock.fields();
+
+ unsigned int arraySize = static_cast<unsigned int>(interfaceBlock.arraySize());
+ gl::InterfaceBlock activeBlock(interfaceBlock.name().c_str(), arraySize, mInterfaceBlockRegister);
+ for (unsigned int typeIndex = 0; typeIndex < fieldList.size(); typeIndex++)
+ {
+ const TField &field = *fieldList[typeIndex];
+ const TString &fullUniformName = interfaceBlockFieldString(interfaceBlock, field);
+ declareInterfaceBlockField(*field.type(), fullUniformName, activeBlock.fields);
+ }
+
+ mInterfaceBlockRegister += std::max(1u, arraySize);
+
+ gl::BlockLayoutType blockLayoutType = convertBlockLayoutType(interfaceBlock.blockStorage());
+ setBlockLayout(&activeBlock, blockLayoutType);
+
+ if (interfaceBlock.matrixPacking() == EmpRowMajor)
+ {
+ activeBlock.isRowMajorLayout = true;
+ }
+
+ mActiveInterfaceBlocks.push_back(activeBlock);
+
+ if (interfaceBlock.hasInstanceName())
+ {
+ interfaceBlocks += interfaceBlockStructString(interfaceBlock);
+ }
+
+ if (arraySize > 0)
+ {
+ for (unsigned int arrayIndex = 0; arrayIndex < arraySize; arrayIndex++)
+ {
+ interfaceBlocks += interfaceBlockString(interfaceBlock, activeBlock.registerIndex + arrayIndex, arrayIndex);
+ }
+ }
+ else
+ {
+ interfaceBlocks += interfaceBlockString(interfaceBlock, activeBlock.registerIndex, GL_INVALID_INDEX);
+ }
+ }
+
+ for (std::map<TIntermTyped*, TString>::const_iterator flaggedStructIt = mFlaggedStructMappedNames.begin(); flaggedStructIt != mFlaggedStructMappedNames.end(); flaggedStructIt++)
+ {
+ TIntermTyped *structNode = flaggedStructIt->first;
+ const TString &mappedName = flaggedStructIt->second;
+ const TStructure &structure = *structNode->getType().getStruct();
+ const TString &originalName = mFlaggedStructOriginalNames[structNode];
+
+ flaggedStructs += "static " + decorate(structure.name()) + " " + mappedName + " =\n";
+ flaggedStructs += structInitializerString(0, structure, originalName);
+ flaggedStructs += "\n";
+ }
+
+ for (ReferencedSymbols::const_iterator varying = mReferencedVaryings.begin(); varying != mReferencedVaryings.end(); varying++)
+ {
+ const TType &type = varying->second->getType();
+ const TString &name = varying->second->getSymbol();
+
+ // Program linking depends on this exact format
+ varyings += "static " + interpolationString(type.getQualifier()) + " " + typeString(type) + " " +
+ decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
+
+ declareVaryingToList(type, type.getQualifier(), name, mActiveVaryings);
+ }
+
+ for (ReferencedSymbols::const_iterator attribute = mReferencedAttributes.begin(); attribute != mReferencedAttributes.end(); attribute++)
+ {
+ const TType &type = attribute->second->getType();
+ const TString &name = attribute->second->getSymbol();
+
+ attributes += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
+
+ gl::Attribute attributeVar(glVariableType(type), glVariablePrecision(type), name.c_str(),
+ (unsigned int)type.getArraySize(), type.getLayoutQualifier().location);
+ mActiveAttributes.push_back(attributeVar);
+ }
+
+ for (StructDeclarations::iterator structDeclaration = mStructDeclarations.begin(); structDeclaration != mStructDeclarations.end(); structDeclaration++)
+ {
+ out << *structDeclaration;
+ }
+
+ for (Constructors::iterator constructor = mConstructors.begin(); constructor != mConstructors.end(); constructor++)
+ {
+ out << *constructor;
+ }
+
+ if (mUsesDiscardRewriting)
+ {
+ out << "#define ANGLE_USES_DISCARD_REWRITING" << "\n";
+ }
+
+ if (mUsesNestedBreak)
+ {
+ out << "#define ANGLE_USES_NESTED_BREAK" << "\n";
+ }
+
+ if (mContext.shaderType == SH_FRAGMENT_SHADER)
+ {
+ TExtensionBehavior::const_iterator iter = mContext.extensionBehavior().find("GL_EXT_draw_buffers");
+ const bool usingMRTExtension = (iter != mContext.extensionBehavior().end() && (iter->second == EBhEnable || iter->second == EBhRequire));
+
+ out << "// Varyings\n";
+ out << varyings;
+ out << "\n";
+
+ if (mContext.getShaderVersion() >= 300)
+ {
+ for (ReferencedSymbols::const_iterator outputVariableIt = mReferencedOutputVariables.begin(); outputVariableIt != mReferencedOutputVariables.end(); outputVariableIt++)
+ {
+ const TString &variableName = outputVariableIt->first;
+ const TType &variableType = outputVariableIt->second->getType();
+ const TLayoutQualifier &layoutQualifier = variableType.getLayoutQualifier();
+
+ out << "static " + typeString(variableType) + " out_" + variableName + arrayString(variableType) +
+ " = " + initializer(variableType) + ";\n";
+
+ gl::Attribute outputVar(glVariableType(variableType), glVariablePrecision(variableType), variableName.c_str(),
+ (unsigned int)variableType.getArraySize(), layoutQualifier.location);
+ mActiveOutputVariables.push_back(outputVar);
+ }
+ }
+ else
+ {
+ const unsigned int numColorValues = usingMRTExtension ? mNumRenderTargets : 1;
+
+ out << "static float4 gl_Color[" << numColorValues << "] =\n"
+ "{\n";
+ for (unsigned int i = 0; i < numColorValues; i++)
+ {
+ out << " float4(0, 0, 0, 0)";
+ if (i + 1 != numColorValues)
+ {
+ out << ",";
+ }
+ out << "\n";
+ }
+
+ out << "};\n";
+ }
+
+ if (mUsesFragDepth)
+ {
+ out << "static float gl_Depth = 0.0;\n";
+ }
+
+ if (mUsesFragCoord)
+ {
+ out << "static float4 gl_FragCoord = float4(0, 0, 0, 0);\n";
+ }
+
+ if (mUsesPointCoord)
+ {
+ out << "static float2 gl_PointCoord = float2(0.5, 0.5);\n";
+ }
+
+ if (mUsesFrontFacing)
+ {
+ out << "static bool gl_FrontFacing = false;\n";
+ }
+
+ out << "\n";
+
+ if (mUsesDepthRange)
+ {
+ out << "struct gl_DepthRangeParameters\n"
+ "{\n"
+ " float near;\n"
+ " float far;\n"
+ " float diff;\n"
+ "};\n"
+ "\n";
+ }
+
+ if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "cbuffer DriverConstants : register(b1)\n"
+ "{\n";
+
+ if (mUsesDepthRange)
+ {
+ out << " float3 dx_DepthRange : packoffset(c0);\n";
+ }
+
+ if (mUsesFragCoord)
+ {
+ out << " float4 dx_ViewCoords : packoffset(c1);\n";
+ }
+
+ if (mUsesFragCoord || mUsesFrontFacing)
+ {
+ out << " float3 dx_DepthFront : packoffset(c2);\n";
+ }
+
+ out << "};\n";
+ }
+ else
+ {
+ if (mUsesDepthRange)
+ {
+ out << "uniform float3 dx_DepthRange : register(c0);";
+ }
+
+ if (mUsesFragCoord)
+ {
+ out << "uniform float4 dx_ViewCoords : register(c1);\n";
+ }
+
+ if (mUsesFragCoord || mUsesFrontFacing)
+ {
+ out << "uniform float3 dx_DepthFront : register(c2);\n";
+ }
+ }
+
+ out << "\n";
+
+ if (mUsesDepthRange)
+ {
+ out << "static gl_DepthRangeParameters gl_DepthRange = {dx_DepthRange.x, dx_DepthRange.y, dx_DepthRange.z};\n"
+ "\n";
+ }
+
+ out << uniforms;
+ out << "\n";
+
+ if (!interfaceBlocks.empty())
+ {
+ out << interfaceBlocks;
+ out << "\n";
+
+ if (!flaggedStructs.empty())
+ {
+ out << "// Std140 Structures accessed by value\n";
+ out << "\n";
+ out << flaggedStructs;
+ out << "\n";
+ }
+ }
+
+ if (usingMRTExtension && mNumRenderTargets > 1)
+ {
+ out << "#define GL_USES_MRT\n";
+ }
+
+ if (mUsesFragColor)
+ {
+ out << "#define GL_USES_FRAG_COLOR\n";
+ }
+
+ if (mUsesFragData)
+ {
+ out << "#define GL_USES_FRAG_DATA\n";
+ }
+ }
+ else // Vertex shader
+ {
+ out << "// Attributes\n";
+ out << attributes;
+ out << "\n"
+ "static float4 gl_Position = float4(0, 0, 0, 0);\n";
+
+ if (mUsesPointSize)
+ {
+ out << "static float gl_PointSize = float(1);\n";
+ }
+
+ out << "\n"
+ "// Varyings\n";
+ out << varyings;
+ out << "\n";
+
+ if (mUsesDepthRange)
+ {
+ out << "struct gl_DepthRangeParameters\n"
+ "{\n"
+ " float near;\n"
+ " float far;\n"
+ " float diff;\n"
+ "};\n"
+ "\n";
+ }
+
+ if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ if (mUsesDepthRange)
+ {
+ out << "cbuffer DriverConstants : register(b1)\n"
+ "{\n"
+ " float3 dx_DepthRange : packoffset(c0);\n"
+ "};\n"
+ "\n";
+ }
+ }
+ else
+ {
+ if (mUsesDepthRange)
+ {
+ out << "uniform float3 dx_DepthRange : register(c0);\n";
+ }
+
+ out << "uniform float4 dx_ViewAdjust : register(c1);\n"
+ "\n";
+ }
+
+ if (mUsesDepthRange)
+ {
+ out << "static gl_DepthRangeParameters gl_DepthRange = {dx_DepthRange.x, dx_DepthRange.y, dx_DepthRange.z};\n"
+ "\n";
+ }
+
+ out << uniforms;
+ out << "\n";
+
+ if (!interfaceBlocks.empty())
+ {
+ out << interfaceBlocks;
+ out << "\n";
+
+ if (!flaggedStructs.empty())
+ {
+ out << "// Std140 Structures accessed by value\n";
+ out << "\n";
+ out << flaggedStructs;
+ out << "\n";
+ }
+ }
+ }
+
+ for (TextureFunctionSet::const_iterator textureFunction = mUsesTexture.begin(); textureFunction != mUsesTexture.end(); textureFunction++)
+ {
+ // Return type
+ if (textureFunction->method == TextureFunction::SIZE)
+ {
+ switch(textureFunction->sampler)
+ {
+ case EbtSampler2D: out << "int2 "; break;
+ case EbtSampler3D: out << "int3 "; break;
+ case EbtSamplerCube: out << "int2 "; break;
+ case EbtSampler2DArray: out << "int3 "; break;
+ case EbtISampler2D: out << "int2 "; break;
+ case EbtISampler3D: out << "int3 "; break;
+ case EbtISamplerCube: out << "int2 "; break;
+ case EbtISampler2DArray: out << "int3 "; break;
+ case EbtUSampler2D: out << "int2 "; break;
+ case EbtUSampler3D: out << "int3 "; break;
+ case EbtUSamplerCube: out << "int2 "; break;
+ case EbtUSampler2DArray: out << "int3 "; break;
+ case EbtSampler2DShadow: out << "int2 "; break;
+ case EbtSamplerCubeShadow: out << "int2 "; break;
+ case EbtSampler2DArrayShadow: out << "int3 "; break;
+ default: UNREACHABLE();
+ }
+ }
+ else // Sampling function
+ {
+ switch(textureFunction->sampler)
+ {
+ case EbtSampler2D: out << "float4 "; break;
+ case EbtSampler3D: out << "float4 "; break;
+ case EbtSamplerCube: out << "float4 "; break;
+ case EbtSampler2DArray: out << "float4 "; break;
+ case EbtISampler2D: out << "int4 "; break;
+ case EbtISampler3D: out << "int4 "; break;
+ case EbtISamplerCube: out << "int4 "; break;
+ case EbtISampler2DArray: out << "int4 "; break;
+ case EbtUSampler2D: out << "uint4 "; break;
+ case EbtUSampler3D: out << "uint4 "; break;
+ case EbtUSamplerCube: out << "uint4 "; break;
+ case EbtUSampler2DArray: out << "uint4 "; break;
+ case EbtSampler2DShadow: out << "float "; break;
+ case EbtSamplerCubeShadow: out << "float "; break;
+ case EbtSampler2DArrayShadow: out << "float "; break;
+ default: UNREACHABLE();
+ }
+ }
+
+ // Function name
+ out << textureFunction->name();
+
+ // Argument list
+ int hlslCoords = 4;
+
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ switch(textureFunction->sampler)
+ {
+ case EbtSampler2D: out << "sampler2D s"; hlslCoords = 2; break;
+ case EbtSamplerCube: out << "samplerCUBE s"; hlslCoords = 3; break;
+ default: UNREACHABLE();
+ }
+
+ switch(textureFunction->method)
+ {
+ case TextureFunction::IMPLICIT: break;
+ case TextureFunction::BIAS: hlslCoords = 4; break;
+ case TextureFunction::LOD: hlslCoords = 4; break;
+ case TextureFunction::LOD0: hlslCoords = 4; break;
+ case TextureFunction::LOD0BIAS: hlslCoords = 4; break;
+ default: UNREACHABLE();
+ }
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ switch(textureFunction->sampler)
+ {
+ case EbtSampler2D: out << "Texture2D x, SamplerState s"; hlslCoords = 2; break;
+ case EbtSampler3D: out << "Texture3D x, SamplerState s"; hlslCoords = 3; break;
+ case EbtSamplerCube: out << "TextureCube x, SamplerState s"; hlslCoords = 3; break;
+ case EbtSampler2DArray: out << "Texture2DArray x, SamplerState s"; hlslCoords = 3; break;
+ case EbtISampler2D: out << "Texture2D<int4> x, SamplerState s"; hlslCoords = 2; break;
+ case EbtISampler3D: out << "Texture3D<int4> x, SamplerState s"; hlslCoords = 3; break;
+ case EbtISamplerCube: out << "Texture2DArray<int4> x, SamplerState s"; hlslCoords = 3; break;
+ case EbtISampler2DArray: out << "Texture2DArray<int4> x, SamplerState s"; hlslCoords = 3; break;
+ case EbtUSampler2D: out << "Texture2D<uint4> x, SamplerState s"; hlslCoords = 2; break;
+ case EbtUSampler3D: out << "Texture3D<uint4> x, SamplerState s"; hlslCoords = 3; break;
+ case EbtUSamplerCube: out << "Texture2DArray<uint4> x, SamplerState s"; hlslCoords = 3; break;
+ case EbtUSampler2DArray: out << "Texture2DArray<uint4> x, SamplerState s"; hlslCoords = 3; break;
+ case EbtSampler2DShadow: out << "Texture2D x, SamplerComparisonState s"; hlslCoords = 2; break;
+ case EbtSamplerCubeShadow: out << "TextureCube x, SamplerComparisonState s"; hlslCoords = 3; break;
+ case EbtSampler2DArrayShadow: out << "Texture2DArray x, SamplerComparisonState s"; hlslCoords = 3; break;
+ default: UNREACHABLE();
+ }
+ }
+ else UNREACHABLE();
+
+ if (textureFunction->method == TextureFunction::FETCH) // Integer coordinates
+ {
+ switch(textureFunction->coords)
+ {
+ case 2: out << ", int2 t"; break;
+ case 3: out << ", int3 t"; break;
+ default: UNREACHABLE();
+ }
+ }
+ else // Floating-point coordinates (except textureSize)
+ {
+ switch(textureFunction->coords)
+ {
+ case 1: out << ", int lod"; break; // textureSize()
+ case 2: out << ", float2 t"; break;
+ case 3: out << ", float3 t"; break;
+ case 4: out << ", float4 t"; break;
+ default: UNREACHABLE();
+ }
+ }
+
+ if (textureFunction->method == TextureFunction::GRAD)
+ {
+ switch(textureFunction->sampler)
+ {
+ case EbtSampler2D:
+ case EbtISampler2D:
+ case EbtUSampler2D:
+ case EbtSampler2DArray:
+ case EbtISampler2DArray:
+ case EbtUSampler2DArray:
+ case EbtSampler2DShadow:
+ case EbtSampler2DArrayShadow:
+ out << ", float2 ddx, float2 ddy";
+ break;
+ case EbtSampler3D:
+ case EbtISampler3D:
+ case EbtUSampler3D:
+ case EbtSamplerCube:
+ case EbtISamplerCube:
+ case EbtUSamplerCube:
+ case EbtSamplerCubeShadow:
+ out << ", float3 ddx, float3 ddy";
+ break;
+ default: UNREACHABLE();
+ }
+ }
+
+ switch(textureFunction->method)
+ {
+ case TextureFunction::IMPLICIT: break;
+ case TextureFunction::BIAS: break; // Comes after the offset parameter
+ case TextureFunction::LOD: out << ", float lod"; break;
+ case TextureFunction::LOD0: break;
+ case TextureFunction::LOD0BIAS: break; // Comes after the offset parameter
+ case TextureFunction::SIZE: break;
+ case TextureFunction::FETCH: out << ", int mip"; break;
+ case TextureFunction::GRAD: break;
+ default: UNREACHABLE();
+ }
+
+ if (textureFunction->offset)
+ {
+ switch(textureFunction->sampler)
+ {
+ case EbtSampler2D: out << ", int2 offset"; break;
+ case EbtSampler3D: out << ", int3 offset"; break;
+ case EbtSampler2DArray: out << ", int2 offset"; break;
+ case EbtISampler2D: out << ", int2 offset"; break;
+ case EbtISampler3D: out << ", int3 offset"; break;
+ case EbtISampler2DArray: out << ", int2 offset"; break;
+ case EbtUSampler2D: out << ", int2 offset"; break;
+ case EbtUSampler3D: out << ", int3 offset"; break;
+ case EbtUSampler2DArray: out << ", int2 offset"; break;
+ case EbtSampler2DShadow: out << ", int2 offset"; break;
+ case EbtSampler2DArrayShadow: out << ", int2 offset"; break;
+ default: UNREACHABLE();
+ }
+ }
+
+ if (textureFunction->method == TextureFunction::BIAS ||
+ textureFunction->method == TextureFunction::LOD0BIAS)
+ {
+ out << ", float bias";
+ }
+
+ out << ")\n"
+ "{\n";
+
+ if (textureFunction->method == TextureFunction::SIZE)
+ {
+ if (IsSampler2D(textureFunction->sampler) || IsSamplerCube(textureFunction->sampler))
+ {
+ if (IsSamplerArray(textureFunction->sampler))
+ {
+ out << " uint width; uint height; uint layers; uint numberOfLevels;\n"
+ " x.GetDimensions(lod, width, height, layers, numberOfLevels);\n";
+ }
+ else
+ {
+ out << " uint width; uint height; uint numberOfLevels;\n"
+ " x.GetDimensions(lod, width, height, numberOfLevels);\n";
+ }
+ }
+ else if (IsSampler3D(textureFunction->sampler))
+ {
+ out << " uint width; uint height; uint depth; uint numberOfLevels;\n"
+ " x.GetDimensions(lod, width, height, depth, numberOfLevels);\n";
+ }
+ else UNREACHABLE();
+
+ switch(textureFunction->sampler)
+ {
+ case EbtSampler2D: out << " return int2(width, height);"; break;
+ case EbtSampler3D: out << " return int3(width, height, depth);"; break;
+ case EbtSamplerCube: out << " return int2(width, height);"; break;
+ case EbtSampler2DArray: out << " return int3(width, height, layers);"; break;
+ case EbtISampler2D: out << " return int2(width, height);"; break;
+ case EbtISampler3D: out << " return int3(width, height, depth);"; break;
+ case EbtISamplerCube: out << " return int2(width, height);"; break;
+ case EbtISampler2DArray: out << " return int3(width, height, layers);"; break;
+ case EbtUSampler2D: out << " return int2(width, height);"; break;
+ case EbtUSampler3D: out << " return int3(width, height, depth);"; break;
+ case EbtUSamplerCube: out << " return int2(width, height);"; break;
+ case EbtUSampler2DArray: out << " return int3(width, height, layers);"; break;
+ case EbtSampler2DShadow: out << " return int2(width, height);"; break;
+ case EbtSamplerCubeShadow: out << " return int2(width, height);"; break;
+ case EbtSampler2DArrayShadow: out << " return int3(width, height, layers);"; break;
+ default: UNREACHABLE();
+ }
+ }
+ else
+ {
+ if (IsIntegerSampler(textureFunction->sampler) && IsSamplerCube(textureFunction->sampler))
+ {
+ out << " float width; float height; float layers; float levels;\n";
+
+ out << " uint mip = 0;\n";
+
+ out << " x.GetDimensions(mip, width, height, layers, levels);\n";
+
+ out << " bool xMajor = abs(t.x) > abs(t.y) && abs(t.x) > abs(t.z);\n";
+ out << " bool yMajor = abs(t.y) > abs(t.z) && abs(t.y) > abs(t.x);\n";
+ out << " bool zMajor = abs(t.z) > abs(t.x) && abs(t.z) > abs(t.y);\n";
+ out << " bool negative = (xMajor && t.x < 0.0f) || (yMajor && t.y < 0.0f) || (zMajor && t.z < 0.0f);\n";
+
+ // FACE_POSITIVE_X = 000b
+ // FACE_NEGATIVE_X = 001b
+ // FACE_POSITIVE_Y = 010b
+ // FACE_NEGATIVE_Y = 011b
+ // FACE_POSITIVE_Z = 100b
+ // FACE_NEGATIVE_Z = 101b
+ out << " int face = (int)negative + (int)yMajor * 2 + (int)zMajor * 4;\n";
+
+ out << " float u = xMajor ? -t.z : (yMajor && t.y < 0.0f ? -t.x : t.x);\n";
+ out << " float v = yMajor ? t.z : (negative ? t.y : -t.y);\n";
+ out << " float m = xMajor ? t.x : (yMajor ? t.y : t.z);\n";
+
+ out << " t.x = (u * 0.5f / m) + 0.5f;\n";
+ out << " t.y = (v * 0.5f / m) + 0.5f;\n";
+ }
+ else if (IsIntegerSampler(textureFunction->sampler) &&
+ textureFunction->method != TextureFunction::FETCH)
+ {
+ if (IsSampler2D(textureFunction->sampler))
+ {
+ if (IsSamplerArray(textureFunction->sampler))
+ {
+ out << " float width; float height; float layers; float levels;\n";
+
+ if (textureFunction->method == TextureFunction::LOD0)
+ {
+ out << " uint mip = 0;\n";
+ }
+ else if (textureFunction->method == TextureFunction::LOD0BIAS)
+ {
+ out << " uint mip = bias;\n";
+ }
+ else
+ {
+ if (textureFunction->method == TextureFunction::IMPLICIT ||
+ textureFunction->method == TextureFunction::BIAS)
+ {
+ out << " x.GetDimensions(0, width, height, layers, levels);\n"
+ " float2 tSized = float2(t.x * width, t.y * height);\n"
+ " float dx = length(ddx(tSized));\n"
+ " float dy = length(ddy(tSized));\n"
+ " float lod = log2(max(dx, dy));\n";
+
+ if (textureFunction->method == TextureFunction::BIAS)
+ {
+ out << " lod += bias;\n";
+ }
+ }
+ else if (textureFunction->method == TextureFunction::GRAD)
+ {
+ out << " x.GetDimensions(0, width, height, layers, levels);\n"
+ " float lod = log2(max(length(ddx), length(ddy)));\n";
+ }
+
+ out << " uint mip = uint(min(max(round(lod), 0), levels - 1));\n";
+ }
+
+ out << " x.GetDimensions(mip, width, height, layers, levels);\n";
+ }
+ else
+ {
+ out << " float width; float height; float levels;\n";
+
+ if (textureFunction->method == TextureFunction::LOD0)
+ {
+ out << " uint mip = 0;\n";
+ }
+ else if (textureFunction->method == TextureFunction::LOD0BIAS)
+ {
+ out << " uint mip = bias;\n";
+ }
+ else
+ {
+ if (textureFunction->method == TextureFunction::IMPLICIT ||
+ textureFunction->method == TextureFunction::BIAS)
+ {
+ out << " x.GetDimensions(0, width, height, levels);\n"
+ " float2 tSized = float2(t.x * width, t.y * height);\n"
+ " float dx = length(ddx(tSized));\n"
+ " float dy = length(ddy(tSized));\n"
+ " float lod = log2(max(dx, dy));\n";
+
+ if (textureFunction->method == TextureFunction::BIAS)
+ {
+ out << " lod += bias;\n";
+ }
+ }
+ else if (textureFunction->method == TextureFunction::LOD)
+ {
+ out << " x.GetDimensions(0, width, height, levels);\n";
+ }
+ else if (textureFunction->method == TextureFunction::GRAD)
+ {
+ out << " x.GetDimensions(0, width, height, levels);\n"
+ " float lod = log2(max(length(ddx), length(ddy)));\n";
+ }
+
+ out << " uint mip = uint(min(max(round(lod), 0), levels - 1));\n";
+ }
+
+ out << " x.GetDimensions(mip, width, height, levels);\n";
+ }
+ }
+ else if (IsSampler3D(textureFunction->sampler))
+ {
+ out << " float width; float height; float depth; float levels;\n";
+
+ if (textureFunction->method == TextureFunction::LOD0)
+ {
+ out << " uint mip = 0;\n";
+ }
+ else if (textureFunction->method == TextureFunction::LOD0BIAS)
+ {
+ out << " uint mip = bias;\n";
+ }
+ else
+ {
+ if (textureFunction->method == TextureFunction::IMPLICIT ||
+ textureFunction->method == TextureFunction::BIAS)
+ {
+ out << " x.GetDimensions(0, width, height, depth, levels);\n"
+ " float3 tSized = float3(t.x * width, t.y * height, t.z * depth);\n"
+ " float dx = length(ddx(tSized));\n"
+ " float dy = length(ddy(tSized));\n"
+ " float lod = log2(max(dx, dy));\n";
+
+ if (textureFunction->method == TextureFunction::BIAS)
+ {
+ out << " lod += bias;\n";
+ }
+ }
+ else if (textureFunction->method == TextureFunction::GRAD)
+ {
+ out << " x.GetDimensions(0, width, height, depth, levels);\n"
+ " float lod = log2(max(length(ddx), length(ddy)));\n";
+ }
+
+ out << " uint mip = uint(min(max(round(lod), 0), levels - 1));\n";
+ }
+
+ out << " x.GetDimensions(mip, width, height, depth, levels);\n";
+ }
+ else UNREACHABLE();
+ }
+
+ out << " return ";
+
+ // HLSL intrinsic
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ switch(textureFunction->sampler)
+ {
+ case EbtSampler2D: out << "tex2D"; break;
+ case EbtSamplerCube: out << "texCUBE"; break;
+ default: UNREACHABLE();
+ }
+
+ switch(textureFunction->method)
+ {
+ case TextureFunction::IMPLICIT: out << "(s, "; break;
+ case TextureFunction::BIAS: out << "bias(s, "; break;
+ case TextureFunction::LOD: out << "lod(s, "; break;
+ case TextureFunction::LOD0: out << "lod(s, "; break;
+ case TextureFunction::LOD0BIAS: out << "lod(s, "; break;
+ default: UNREACHABLE();
+ }
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ if (textureFunction->method == TextureFunction::GRAD)
+ {
+ if (IsIntegerSampler(textureFunction->sampler))
+ {
+ out << "x.Load(";
+ }
+ else if (IsShadowSampler(textureFunction->sampler))
+ {
+ out << "x.SampleCmpLevelZero(s, ";
+ }
+ else
+ {
+ out << "x.SampleGrad(s, ";
+ }
+ }
+ else if (IsIntegerSampler(textureFunction->sampler) ||
+ textureFunction->method == TextureFunction::FETCH)
+ {
+ out << "x.Load(";
+ }
+ else if (IsShadowSampler(textureFunction->sampler))
+ {
+ out << "x.SampleCmp(s, ";
+ }
+ else
+ {
+ switch(textureFunction->method)
+ {
+ case TextureFunction::IMPLICIT: out << "x.Sample(s, "; break;
+ case TextureFunction::BIAS: out << "x.SampleBias(s, "; break;
+ case TextureFunction::LOD: out << "x.SampleLevel(s, "; break;
+ case TextureFunction::LOD0: out << "x.SampleLevel(s, "; break;
+ case TextureFunction::LOD0BIAS: out << "x.SampleLevel(s, "; break;
+ default: UNREACHABLE();
+ }
+ }
+ }
+ else UNREACHABLE();
+
+ // Integer sampling requires integer addresses
+ TString addressx = "";
+ TString addressy = "";
+ TString addressz = "";
+ TString close = "";
+
+ if (IsIntegerSampler(textureFunction->sampler) ||
+ textureFunction->method == TextureFunction::FETCH)
+ {
+ switch(hlslCoords)
+ {
+ case 2: out << "int3("; break;
+ case 3: out << "int4("; break;
+ default: UNREACHABLE();
+ }
+
+ // Convert from normalized floating-point to integer
+ if (textureFunction->method != TextureFunction::FETCH)
+ {
+ addressx = "int(floor(width * frac((";
+ addressy = "int(floor(height * frac((";
+
+ if (IsSamplerArray(textureFunction->sampler))
+ {
+ addressz = "int(max(0, min(layers - 1, floor(0.5 + ";
+ }
+ else if (IsSamplerCube(textureFunction->sampler))
+ {
+ addressz = "((((";
+ }
+ else
+ {
+ addressz = "int(floor(depth * frac((";
+ }
+
+ close = "))))";
+ }
+ }
+ else
+ {
+ switch(hlslCoords)
+ {
+ case 2: out << "float2("; break;
+ case 3: out << "float3("; break;
+ case 4: out << "float4("; break;
+ default: UNREACHABLE();
+ }
+ }
+
+ TString proj = ""; // Only used for projected textures
+
+ if (textureFunction->proj)
+ {
+ switch(textureFunction->coords)
+ {
+ case 3: proj = " / t.z"; break;
+ case 4: proj = " / t.w"; break;
+ default: UNREACHABLE();
+ }
+ }
+
+ out << addressx + ("t.x" + proj) + close + ", " + addressy + ("t.y" + proj) + close;
+
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ if (hlslCoords >= 3)
+ {
+ if (textureFunction->coords < 3)
+ {
+ out << ", 0";
+ }
+ else
+ {
+ out << ", t.z" + proj;
+ }
+ }
+
+ if (hlslCoords == 4)
+ {
+ switch(textureFunction->method)
+ {
+ case TextureFunction::BIAS: out << ", bias"; break;
+ case TextureFunction::LOD: out << ", lod"; break;
+ case TextureFunction::LOD0: out << ", 0"; break;
+ case TextureFunction::LOD0BIAS: out << ", bias"; break;
+ default: UNREACHABLE();
+ }
+ }
+
+ out << "));\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ if (hlslCoords >= 3)
+ {
+ if (IsIntegerSampler(textureFunction->sampler) && IsSamplerCube(textureFunction->sampler))
+ {
+ out << ", face";
+ }
+ else
+ {
+ out << ", " + addressz + ("t.z" + proj) + close;
+ }
+ }
+
+ if (textureFunction->method == TextureFunction::GRAD)
+ {
+ if (IsIntegerSampler(textureFunction->sampler))
+ {
+ out << ", mip)";
+ }
+ else if (IsShadowSampler(textureFunction->sampler))
+ {
+ // Compare value
+ switch(textureFunction->coords)
+ {
+ case 3: out << "), t.z"; break;
+ case 4: out << "), t.w"; break;
+ default: UNREACHABLE();
+ }
+ }
+ else
+ {
+ out << "), ddx, ddy";
+ }
+ }
+ else if (IsIntegerSampler(textureFunction->sampler) ||
+ textureFunction->method == TextureFunction::FETCH)
+ {
+ out << ", mip)";
+ }
+ else if (IsShadowSampler(textureFunction->sampler))
+ {
+ // Compare value
+ switch(textureFunction->coords)
+ {
+ case 3: out << "), t.z"; break;
+ case 4: out << "), t.w"; break;
+ default: UNREACHABLE();
+ }
+ }
+ else
+ {
+ switch(textureFunction->method)
+ {
+ case TextureFunction::IMPLICIT: out << ")"; break;
+ case TextureFunction::BIAS: out << "), bias"; break;
+ case TextureFunction::LOD: out << "), lod"; break;
+ case TextureFunction::LOD0: out << "), 0"; break;
+ case TextureFunction::LOD0BIAS: out << "), bias"; break;
+ default: UNREACHABLE();
+ }
+ }
+
+ if (textureFunction->offset)
+ {
+ out << ", offset";
+ }
+
+ out << ");";
+ }
+ else UNREACHABLE();
+ }
+
+ out << "\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesFragCoord)
+ {
+ out << "#define GL_USES_FRAG_COORD\n";
+ }
+
+ if (mUsesPointCoord)
+ {
+ out << "#define GL_USES_POINT_COORD\n";
+ }
+
+ if (mUsesFrontFacing)
+ {
+ out << "#define GL_USES_FRONT_FACING\n";
+ }
+
+ if (mUsesPointSize)
+ {
+ out << "#define GL_USES_POINT_SIZE\n";
+ }
+
+ if (mUsesFragDepth)
+ {
+ out << "#define GL_USES_FRAG_DEPTH\n";
+ }
+
+ if (mUsesDepthRange)
+ {
+ out << "#define GL_USES_DEPTH_RANGE\n";
+ }
+
+ if (mUsesXor)
+ {
+ out << "bool xor(bool p, bool q)\n"
+ "{\n"
+ " return (p || q) && !(p && q);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod1)
+ {
+ out << "float mod(float x, float y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod2v)
+ {
+ out << "float2 mod(float2 x, float2 y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod2f)
+ {
+ out << "float2 mod(float2 x, float y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod3v)
+ {
+ out << "float3 mod(float3 x, float3 y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod3f)
+ {
+ out << "float3 mod(float3 x, float y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod4v)
+ {
+ out << "float4 mod(float4 x, float4 y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod4f)
+ {
+ out << "float4 mod(float4 x, float y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesFaceforward1)
+ {
+ out << "float faceforward(float N, float I, float Nref)\n"
+ "{\n"
+ " if(dot(Nref, I) >= 0)\n"
+ " {\n"
+ " return -N;\n"
+ " }\n"
+ " else\n"
+ " {\n"
+ " return N;\n"
+ " }\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesFaceforward2)
+ {
+ out << "float2 faceforward(float2 N, float2 I, float2 Nref)\n"
+ "{\n"
+ " if(dot(Nref, I) >= 0)\n"
+ " {\n"
+ " return -N;\n"
+ " }\n"
+ " else\n"
+ " {\n"
+ " return N;\n"
+ " }\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesFaceforward3)
+ {
+ out << "float3 faceforward(float3 N, float3 I, float3 Nref)\n"
+ "{\n"
+ " if(dot(Nref, I) >= 0)\n"
+ " {\n"
+ " return -N;\n"
+ " }\n"
+ " else\n"
+ " {\n"
+ " return N;\n"
+ " }\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesFaceforward4)
+ {
+ out << "float4 faceforward(float4 N, float4 I, float4 Nref)\n"
+ "{\n"
+ " if(dot(Nref, I) >= 0)\n"
+ " {\n"
+ " return -N;\n"
+ " }\n"
+ " else\n"
+ " {\n"
+ " return N;\n"
+ " }\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesAtan2_1)
+ {
+ out << "float atanyx(float y, float x)\n"
+ "{\n"
+ " if(x == 0 && y == 0) x = 1;\n" // Avoid producing a NaN
+ " return atan2(y, x);\n"
+ "}\n";
+ }
+
+ if (mUsesAtan2_2)
+ {
+ out << "float2 atanyx(float2 y, float2 x)\n"
+ "{\n"
+ " if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
+ " if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
+ " return float2(atan2(y[0], x[0]), atan2(y[1], x[1]));\n"
+ "}\n";
+ }
+
+ if (mUsesAtan2_3)
+ {
+ out << "float3 atanyx(float3 y, float3 x)\n"
+ "{\n"
+ " if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
+ " if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
+ " if(x[2] == 0 && y[2] == 0) x[2] = 1;\n"
+ " return float3(atan2(y[0], x[0]), atan2(y[1], x[1]), atan2(y[2], x[2]));\n"
+ "}\n";
+ }
+
+ if (mUsesAtan2_4)
+ {
+ out << "float4 atanyx(float4 y, float4 x)\n"
+ "{\n"
+ " if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
+ " if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
+ " if(x[2] == 0 && y[2] == 0) x[2] = 1;\n"
+ " if(x[3] == 0 && y[3] == 0) x[3] = 1;\n"
+ " return float4(atan2(y[0], x[0]), atan2(y[1], x[1]), atan2(y[2], x[2]), atan2(y[3], x[3]));\n"
+ "}\n";
+ }
+}
+
+void OutputHLSL::visitSymbol(TIntermSymbol *node)
+{
+ TInfoSinkBase &out = mBody;
+
+ // Handle accessing std140 structs by value
+ if (mFlaggedStructMappedNames.count(node) > 0)
+ {
+ out << mFlaggedStructMappedNames[node];
+ return;
+ }
+
+ TString name = node->getSymbol();
+
+ if (name == "gl_DepthRange")
+ {
+ mUsesDepthRange = true;
+ out << name;
+ }
+ else
+ {
+ TQualifier qualifier = node->getQualifier();
+
+ if (qualifier == EvqUniform)
+ {
+ const TType& nodeType = node->getType();
+ const TInterfaceBlock* interfaceBlock = nodeType.getInterfaceBlock();
+
+ if (interfaceBlock)
+ {
+ mReferencedInterfaceBlocks[interfaceBlock->name()] = node;
+ }
+ else
+ {
+ mReferencedUniforms[name] = node;
+ }
+
+ out << decorateUniform(name, nodeType);
+ }
+ else if (qualifier == EvqAttribute || qualifier == EvqVertexIn)
+ {
+ mReferencedAttributes[name] = node;
+ out << decorate(name);
+ }
+ else if (isVarying(qualifier))
+ {
+ mReferencedVaryings[name] = node;
+ out << decorate(name);
+ }
+ else if (qualifier == EvqFragmentOut)
+ {
+ mReferencedOutputVariables[name] = node;
+ out << "out_" << name;
+ }
+ else if (qualifier == EvqFragColor)
+ {
+ out << "gl_Color[0]";
+ mUsesFragColor = true;
+ }
+ else if (qualifier == EvqFragData)
+ {
+ out << "gl_Color";
+ mUsesFragData = true;
+ }
+ else if (qualifier == EvqFragCoord)
+ {
+ mUsesFragCoord = true;
+ out << name;
+ }
+ else if (qualifier == EvqPointCoord)
+ {
+ mUsesPointCoord = true;
+ out << name;
+ }
+ else if (qualifier == EvqFrontFacing)
+ {
+ mUsesFrontFacing = true;
+ out << name;
+ }
+ else if (qualifier == EvqPointSize)
+ {
+ mUsesPointSize = true;
+ out << name;
+ }
+ else if (name == "gl_FragDepthEXT")
+ {
+ mUsesFragDepth = true;
+ out << "gl_Depth";
+ }
+ else if (qualifier == EvqInternal)
+ {
+ out << name;
+ }
+ else
+ {
+ out << decorate(name);
+ }
+ }
+}
+
+void OutputHLSL::visitRaw(TIntermRaw *node)
+{
+ mBody << node->getRawText();
+}
+
+bool OutputHLSL::visitBinary(Visit visit, TIntermBinary *node)
+{
+ TInfoSinkBase &out = mBody;
+
+ // Handle accessing std140 structs by value
+ if (mFlaggedStructMappedNames.count(node) > 0)
+ {
+ out << mFlaggedStructMappedNames[node];
+ return false;
+ }
+
+ switch (node->getOp())
+ {
+ case EOpAssign: outputTriplet(visit, "(", " = ", ")"); break;
+ case EOpInitialize:
+ if (visit == PreVisit)
+ {
+ // GLSL allows to write things like "float x = x;" where a new variable x is defined
+ // and the value of an existing variable x is assigned. HLSL uses C semantics (the
+ // new variable is created before the assignment is evaluated), so we need to convert
+ // this to "float t = x, x = t;".
+
+ TIntermSymbol *symbolNode = node->getLeft()->getAsSymbolNode();
+ TIntermTyped *expression = node->getRight();
+
+ sh::SearchSymbol searchSymbol(symbolNode->getSymbol());
+ expression->traverse(&searchSymbol);
+ bool sameSymbol = searchSymbol.foundMatch();
+
+ if (sameSymbol)
+ {
+ // Type already printed
+ out << "t" + str(mUniqueIndex) + " = ";
+ expression->traverse(this);
+ out << ", ";
+ symbolNode->traverse(this);
+ out << " = t" + str(mUniqueIndex);
+
+ mUniqueIndex++;
+ return false;
+ }
+ }
+ else if (visit == InVisit)
+ {
+ out << " = ";
+ }
+ break;
+ case EOpAddAssign: outputTriplet(visit, "(", " += ", ")"); break;
+ case EOpSubAssign: outputTriplet(visit, "(", " -= ", ")"); break;
+ case EOpMulAssign: outputTriplet(visit, "(", " *= ", ")"); break;
+ case EOpVectorTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break;
+ case EOpMatrixTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break;
+ case EOpVectorTimesMatrixAssign:
+ if (visit == PreVisit)
+ {
+ out << "(";
+ }
+ else if (visit == InVisit)
+ {
+ out << " = mul(";
+ node->getLeft()->traverse(this);
+ out << ", transpose(";
+ }
+ else
+ {
+ out << ")))";
+ }
+ break;
+ case EOpMatrixTimesMatrixAssign:
+ if (visit == PreVisit)
+ {
+ out << "(";
+ }
+ else if (visit == InVisit)
+ {
+ out << " = mul(";
+ node->getLeft()->traverse(this);
+ out << ", ";
+ }
+ else
+ {
+ out << "))";
+ }
+ break;
+ case EOpDivAssign: outputTriplet(visit, "(", " /= ", ")"); break;
+ case EOpIndexDirect:
+ {
+ const TType& leftType = node->getLeft()->getType();
+ if (leftType.isInterfaceBlock())
+ {
+ if (visit == PreVisit)
+ {
+ TInterfaceBlock* interfaceBlock = leftType.getInterfaceBlock();
+ const int arrayIndex = node->getRight()->getAsConstantUnion()->getIConst(0);
+
+ mReferencedInterfaceBlocks[interfaceBlock->instanceName()] = node->getLeft()->getAsSymbolNode();
+ out << interfaceBlockInstanceString(*interfaceBlock, arrayIndex);
+
+ return false;
+ }
+ }
+ else
+ {
+ outputTriplet(visit, "", "[", "]");
+ }
+ }
+ break;
+ case EOpIndexIndirect:
+ // We do not currently support indirect references to interface blocks
+ ASSERT(node->getLeft()->getBasicType() != EbtInterfaceBlock);
+ outputTriplet(visit, "", "[", "]");
+ break;
+ case EOpIndexDirectStruct:
+ if (visit == InVisit)
+ {
+ const TStructure* structure = node->getLeft()->getType().getStruct();
+ const TIntermConstantUnion* index = node->getRight()->getAsConstantUnion();
+ const TField* field = structure->fields()[index->getIConst(0)];
+ out << "." + decorateField(field->name(), *structure);
+
+ return false;
+ }
+ break;
+ case EOpIndexDirectInterfaceBlock:
+ if (visit == InVisit)
+ {
+ const TInterfaceBlock* interfaceBlock = node->getLeft()->getType().getInterfaceBlock();
+ const TIntermConstantUnion* index = node->getRight()->getAsConstantUnion();
+ const TField* field = interfaceBlock->fields()[index->getIConst(0)];
+ out << "." + decorate(field->name());
+
+ return false;
+ }
+ break;
+ case EOpVectorSwizzle:
+ if (visit == InVisit)
+ {
+ out << ".";
+
+ TIntermAggregate *swizzle = node->getRight()->getAsAggregate();
+
+ if (swizzle)
+ {
+ TIntermSequence &sequence = swizzle->getSequence();
+
+ for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
+ {
+ TIntermConstantUnion *element = (*sit)->getAsConstantUnion();
+
+ if (element)
+ {
+ int i = element->getIConst(0);
+
+ switch (i)
+ {
+ case 0: out << "x"; break;
+ case 1: out << "y"; break;
+ case 2: out << "z"; break;
+ case 3: out << "w"; break;
+ default: UNREACHABLE();
+ }
+ }
+ else UNREACHABLE();
+ }
+ }
+ else UNREACHABLE();
+
+ return false; // Fully processed
+ }
+ break;
+ case EOpAdd: outputTriplet(visit, "(", " + ", ")"); break;
+ case EOpSub: outputTriplet(visit, "(", " - ", ")"); break;
+ case EOpMul: outputTriplet(visit, "(", " * ", ")"); break;
+ case EOpDiv: outputTriplet(visit, "(", " / ", ")"); break;
+ case EOpEqual:
+ case EOpNotEqual:
+ if (node->getLeft()->isScalar())
+ {
+ if (node->getOp() == EOpEqual)
+ {
+ outputTriplet(visit, "(", " == ", ")");
+ }
+ else
+ {
+ outputTriplet(visit, "(", " != ", ")");
+ }
+ }
+ else if (node->getLeft()->getBasicType() == EbtStruct)
+ {
+ if (node->getOp() == EOpEqual)
+ {
+ out << "(";
+ }
+ else
+ {
+ out << "!(";
+ }
+
+ const TStructure &structure = *node->getLeft()->getType().getStruct();
+ const TFieldList &fields = structure.fields();
+
+ for (size_t i = 0; i < fields.size(); i++)
+ {
+ const TField *field = fields[i];
+
+ node->getLeft()->traverse(this);
+ out << "." + decorateField(field->name(), structure) + " == ";
+ node->getRight()->traverse(this);
+ out << "." + decorateField(field->name(), structure);
+
+ if (i < fields.size() - 1)
+ {
+ out << " && ";
+ }
+ }
+
+ out << ")";
+
+ return false;
+ }
+ else
+ {
+ ASSERT(node->getLeft()->isMatrix() || node->getLeft()->isVector());
+
+ if (node->getOp() == EOpEqual)
+ {
+ outputTriplet(visit, "all(", " == ", ")");
+ }
+ else
+ {
+ outputTriplet(visit, "!all(", " == ", ")");
+ }
+ }
+ break;
+ case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break;
+ case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break;
+ case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break;
+ case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break;
+ case EOpVectorTimesScalar: outputTriplet(visit, "(", " * ", ")"); break;
+ case EOpMatrixTimesScalar: outputTriplet(visit, "(", " * ", ")"); break;
+ case EOpVectorTimesMatrix: outputTriplet(visit, "mul(", ", transpose(", "))"); break;
+ case EOpMatrixTimesVector: outputTriplet(visit, "mul(transpose(", "), ", ")"); break;
+ case EOpMatrixTimesMatrix: outputTriplet(visit, "transpose(mul(transpose(", "), transpose(", ")))"); break;
+ case EOpLogicalOr:
+ if (node->getRight()->hasSideEffects())
+ {
+ out << "s" << mUnfoldShortCircuit->getNextTemporaryIndex();
+ return false;
+ }
+ else
+ {
+ outputTriplet(visit, "(", " || ", ")");
+ return true;
+ }
+ case EOpLogicalXor:
+ mUsesXor = true;
+ outputTriplet(visit, "xor(", ", ", ")");
+ break;
+ case EOpLogicalAnd:
+ if (node->getRight()->hasSideEffects())
+ {
+ out << "s" << mUnfoldShortCircuit->getNextTemporaryIndex();
+ return false;
+ }
+ else
+ {
+ outputTriplet(visit, "(", " && ", ")");
+ return true;
+ }
+ default: UNREACHABLE();
+ }
+
+ return true;
+}
+
+bool OutputHLSL::visitUnary(Visit visit, TIntermUnary *node)
+{
+ switch (node->getOp())
+ {
+ case EOpNegative: outputTriplet(visit, "(-", "", ")"); break;
+ case EOpVectorLogicalNot: outputTriplet(visit, "(!", "", ")"); break;
+ case EOpLogicalNot: outputTriplet(visit, "(!", "", ")"); break;
+ case EOpPostIncrement: outputTriplet(visit, "(", "", "++)"); break;
+ case EOpPostDecrement: outputTriplet(visit, "(", "", "--)"); break;
+ case EOpPreIncrement: outputTriplet(visit, "(++", "", ")"); break;
+ case EOpPreDecrement: outputTriplet(visit, "(--", "", ")"); break;
+ case EOpConvIntToBool:
+ case EOpConvUIntToBool:
+ case EOpConvFloatToBool:
+ switch (node->getOperand()->getType().getNominalSize())
+ {
+ case 1: outputTriplet(visit, "bool(", "", ")"); break;
+ case 2: outputTriplet(visit, "bool2(", "", ")"); break;
+ case 3: outputTriplet(visit, "bool3(", "", ")"); break;
+ case 4: outputTriplet(visit, "bool4(", "", ")"); break;
+ default: UNREACHABLE();
+ }
+ break;
+ case EOpConvBoolToFloat:
+ case EOpConvIntToFloat:
+ case EOpConvUIntToFloat:
+ switch (node->getOperand()->getType().getNominalSize())
+ {
+ case 1: outputTriplet(visit, "float(", "", ")"); break;
+ case 2: outputTriplet(visit, "float2(", "", ")"); break;
+ case 3: outputTriplet(visit, "float3(", "", ")"); break;
+ case 4: outputTriplet(visit, "float4(", "", ")"); break;
+ default: UNREACHABLE();
+ }
+ break;
+ case EOpConvFloatToInt:
+ case EOpConvBoolToInt:
+ case EOpConvUIntToInt:
+ switch (node->getOperand()->getType().getNominalSize())
+ {
+ case 1: outputTriplet(visit, "int(", "", ")"); break;
+ case 2: outputTriplet(visit, "int2(", "", ")"); break;
+ case 3: outputTriplet(visit, "int3(", "", ")"); break;
+ case 4: outputTriplet(visit, "int4(", "", ")"); break;
+ default: UNREACHABLE();
+ }
+ break;
+ case EOpConvFloatToUInt:
+ case EOpConvBoolToUInt:
+ case EOpConvIntToUInt:
+ switch (node->getOperand()->getType().getNominalSize())
+ {
+ case 1: outputTriplet(visit, "uint(", "", ")"); break;
+ case 2: outputTriplet(visit, "uint2(", "", ")"); break;
+ case 3: outputTriplet(visit, "uint3(", "", ")"); break;
+ case 4: outputTriplet(visit, "uint4(", "", ")"); break;
+ default: UNREACHABLE();
+ }
+ break;
+ case EOpRadians: outputTriplet(visit, "radians(", "", ")"); break;
+ case EOpDegrees: outputTriplet(visit, "degrees(", "", ")"); break;
+ case EOpSin: outputTriplet(visit, "sin(", "", ")"); break;
+ case EOpCos: outputTriplet(visit, "cos(", "", ")"); break;
+ case EOpTan: outputTriplet(visit, "tan(", "", ")"); break;
+ case EOpAsin: outputTriplet(visit, "asin(", "", ")"); break;
+ case EOpAcos: outputTriplet(visit, "acos(", "", ")"); break;
+ case EOpAtan: outputTriplet(visit, "atan(", "", ")"); break;
+ case EOpExp: outputTriplet(visit, "exp(", "", ")"); break;
+ case EOpLog: outputTriplet(visit, "log(", "", ")"); break;
+ case EOpExp2: outputTriplet(visit, "exp2(", "", ")"); break;
+ case EOpLog2: outputTriplet(visit, "log2(", "", ")"); break;
+ case EOpSqrt: outputTriplet(visit, "sqrt(", "", ")"); break;
+ case EOpInverseSqrt: outputTriplet(visit, "rsqrt(", "", ")"); break;
+ case EOpAbs: outputTriplet(visit, "abs(", "", ")"); break;
+ case EOpSign: outputTriplet(visit, "sign(", "", ")"); break;
+ case EOpFloor: outputTriplet(visit, "floor(", "", ")"); break;
+ case EOpCeil: outputTriplet(visit, "ceil(", "", ")"); break;
+ case EOpFract: outputTriplet(visit, "frac(", "", ")"); break;
+ case EOpLength: outputTriplet(visit, "length(", "", ")"); break;
+ case EOpNormalize: outputTriplet(visit, "normalize(", "", ")"); break;
+ case EOpDFdx:
+ if(mInsideDiscontinuousLoop || mOutputLod0Function)
+ {
+ outputTriplet(visit, "(", "", ", 0.0)");
+ }
+ else
+ {
+ outputTriplet(visit, "ddx(", "", ")");
+ }
+ break;
+ case EOpDFdy:
+ if(mInsideDiscontinuousLoop || mOutputLod0Function)
+ {
+ outputTriplet(visit, "(", "", ", 0.0)");
+ }
+ else
+ {
+ outputTriplet(visit, "ddy(", "", ")");
+ }
+ break;
+ case EOpFwidth:
+ if(mInsideDiscontinuousLoop || mOutputLod0Function)
+ {
+ outputTriplet(visit, "(", "", ", 0.0)");
+ }
+ else
+ {
+ outputTriplet(visit, "fwidth(", "", ")");
+ }
+ break;
+ case EOpAny: outputTriplet(visit, "any(", "", ")"); break;
+ case EOpAll: outputTriplet(visit, "all(", "", ")"); break;
+ default: UNREACHABLE();
+ }
+
+ return true;
+}
+
+bool OutputHLSL::visitAggregate(Visit visit, TIntermAggregate *node)
+{
+ TInfoSinkBase &out = mBody;
+
+ switch (node->getOp())
+ {
+ case EOpSequence:
+ {
+ if (mInsideFunction)
+ {
+ outputLineDirective(node->getLine().first_line);
+ out << "{\n";
+ }
+
+ for (TIntermSequence::iterator sit = node->getSequence().begin(); sit != node->getSequence().end(); sit++)
+ {
+ outputLineDirective((*sit)->getLine().first_line);
+
+ traverseStatements(*sit);
+
+ out << ";\n";
+ }
+
+ if (mInsideFunction)
+ {
+ outputLineDirective(node->getLine().last_line);
+ out << "}\n";
+ }
+
+ return false;
+ }
+ case EOpDeclaration:
+ if (visit == PreVisit)
+ {
+ TIntermSequence &sequence = node->getSequence();
+ TIntermTyped *variable = sequence[0]->getAsTyped();
+
+ if (variable && (variable->getQualifier() == EvqTemporary || variable->getQualifier() == EvqGlobal))
+ {
+ if (variable->getType().getStruct())
+ {
+ addConstructor(variable->getType(), structNameString(*variable->getType().getStruct()), NULL);
+ }
+
+ if (!variable->getAsSymbolNode() || variable->getAsSymbolNode()->getSymbol() != "") // Variable declaration
+ {
+ if (!mInsideFunction)
+ {
+ out << "static ";
+ }
+
+ out << typeString(variable->getType()) + " ";
+
+ for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
+ {
+ TIntermSymbol *symbol = (*sit)->getAsSymbolNode();
+
+ if (symbol)
+ {
+ symbol->traverse(this);
+ out << arrayString(symbol->getType());
+ out << " = " + initializer(symbol->getType());
+ }
+ else
+ {
+ (*sit)->traverse(this);
+ }
+
+ if (*sit != sequence.back())
+ {
+ out << ", ";
+ }
+ }
+ }
+ else if (variable->getAsSymbolNode() && variable->getAsSymbolNode()->getSymbol() == "") // Type (struct) declaration
+ {
+ // Already added to constructor map
+ }
+ else UNREACHABLE();
+ }
+ else if (variable && isVaryingOut(variable->getQualifier()))
+ {
+ for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
+ {
+ TIntermSymbol *symbol = (*sit)->getAsSymbolNode();
+
+ if (symbol)
+ {
+ // Vertex (output) varyings which are declared but not written to should still be declared to allow successful linking
+ mReferencedVaryings[symbol->getSymbol()] = symbol;
+ }
+ else
+ {
+ (*sit)->traverse(this);
+ }
+ }
+ }
+
+ return false;
+ }
+ else if (visit == InVisit)
+ {
+ out << ", ";
+ }
+ break;
+ case EOpPrototype:
+ if (visit == PreVisit)
+ {
+ out << typeString(node->getType()) << " " << decorate(node->getName()) << (mOutputLod0Function ? "Lod0(" : "(");
+
+ TIntermSequence &arguments = node->getSequence();
+
+ for (unsigned int i = 0; i < arguments.size(); i++)
+ {
+ TIntermSymbol *symbol = arguments[i]->getAsSymbolNode();
+
+ if (symbol)
+ {
+ out << argumentString(symbol);
+
+ if (i < arguments.size() - 1)
+ {
+ out << ", ";
+ }
+ }
+ else UNREACHABLE();
+ }
+
+ out << ");\n";
+
+ // Also prototype the Lod0 variant if needed
+ if (mContainsLoopDiscontinuity && !mOutputLod0Function)
+ {
+ mOutputLod0Function = true;
+ node->traverse(this);
+ mOutputLod0Function = false;
+ }
+
+ return false;
+ }
+ break;
+ case EOpComma: outputTriplet(visit, "(", ", ", ")"); break;
+ case EOpFunction:
+ {
+ TString name = TFunction::unmangleName(node->getName());
+
+ out << typeString(node->getType()) << " ";
+
+ if (name == "main")
+ {
+ out << "gl_main(";
+ }
+ else
+ {
+ out << decorate(name) << (mOutputLod0Function ? "Lod0(" : "(");
+ }
+
+ TIntermSequence &sequence = node->getSequence();
+ TIntermSequence &arguments = sequence[0]->getAsAggregate()->getSequence();
+
+ for (unsigned int i = 0; i < arguments.size(); i++)
+ {
+ TIntermSymbol *symbol = arguments[i]->getAsSymbolNode();
+
+ if (symbol)
+ {
+ if (symbol->getType().getStruct())
+ {
+ addConstructor(symbol->getType(), structNameString(*symbol->getType().getStruct()), NULL);
+ }
+
+ out << argumentString(symbol);
+
+ if (i < arguments.size() - 1)
+ {
+ out << ", ";
+ }
+ }
+ else UNREACHABLE();
+ }
+
+ out << ")\n"
+ "{\n";
+
+ if (sequence.size() > 1)
+ {
+ mInsideFunction = true;
+ sequence[1]->traverse(this);
+ mInsideFunction = false;
+ }
+
+ out << "}\n";
+
+ if (mContainsLoopDiscontinuity && !mOutputLod0Function)
+ {
+ if (name != "main")
+ {
+ mOutputLod0Function = true;
+ node->traverse(this);
+ mOutputLod0Function = false;
+ }
+ }
+
+ return false;
+ }
+ break;
+ case EOpFunctionCall:
+ {
+ TString name = TFunction::unmangleName(node->getName());
+ bool lod0 = mInsideDiscontinuousLoop || mOutputLod0Function;
+ TIntermSequence &arguments = node->getSequence();
+
+ if (node->isUserDefined())
+ {
+ out << decorate(name) << (lod0 ? "Lod0(" : "(");
+ }
+ else
+ {
+ TBasicType samplerType = arguments[0]->getAsTyped()->getType().getBasicType();
+
+ TextureFunction textureFunction;
+ textureFunction.sampler = samplerType;
+ textureFunction.coords = arguments[1]->getAsTyped()->getNominalSize();
+ textureFunction.method = TextureFunction::IMPLICIT;
+ textureFunction.proj = false;
+ textureFunction.offset = false;
+
+ if (name == "texture2D" || name == "textureCube" || name == "texture")
+ {
+ textureFunction.method = TextureFunction::IMPLICIT;
+ }
+ else if (name == "texture2DProj" || name == "textureProj")
+ {
+ textureFunction.method = TextureFunction::IMPLICIT;
+ textureFunction.proj = true;
+ }
+ else if (name == "texture2DLod" || name == "textureCubeLod" || name == "textureLod" ||
+ name == "texture2DLodEXT" || name == "textureCubeLodEXT")
+ {
+ textureFunction.method = TextureFunction::LOD;
+ }
+ else if (name == "texture2DProjLod" || name == "textureProjLod" || name == "texture2DProjLodEXT")
+ {
+ textureFunction.method = TextureFunction::LOD;
+ textureFunction.proj = true;
+ }
+ else if (name == "textureSize")
+ {
+ textureFunction.method = TextureFunction::SIZE;
+ }
+ else if (name == "textureOffset")
+ {
+ textureFunction.method = TextureFunction::IMPLICIT;
+ textureFunction.offset = true;
+ }
+ else if (name == "textureProjOffset")
+ {
+ textureFunction.method = TextureFunction::IMPLICIT;
+ textureFunction.offset = true;
+ textureFunction.proj = true;
+ }
+ else if (name == "textureLodOffset")
+ {
+ textureFunction.method = TextureFunction::LOD;
+ textureFunction.offset = true;
+ }
+ else if (name == "textureProjLodOffset")
+ {
+ textureFunction.method = TextureFunction::LOD;
+ textureFunction.proj = true;
+ textureFunction.offset = true;
+ }
+ else if (name == "texelFetch")
+ {
+ textureFunction.method = TextureFunction::FETCH;
+ }
+ else if (name == "texelFetchOffset")
+ {
+ textureFunction.method = TextureFunction::FETCH;
+ textureFunction.offset = true;
+ }
+ else if (name == "textureGrad" || name == "texture2DGradEXT")
+ {
+ textureFunction.method = TextureFunction::GRAD;
+ }
+ else if (name == "textureGradOffset")
+ {
+ textureFunction.method = TextureFunction::GRAD;
+ textureFunction.offset = true;
+ }
+ else if (name == "textureProjGrad" || name == "texture2DProjGradEXT" || name == "textureCubeGradEXT")
+ {
+ textureFunction.method = TextureFunction::GRAD;
+ textureFunction.proj = true;
+ }
+ else if (name == "textureProjGradOffset")
+ {
+ textureFunction.method = TextureFunction::GRAD;
+ textureFunction.proj = true;
+ textureFunction.offset = true;
+ }
+ else UNREACHABLE();
+
+ if (textureFunction.method == TextureFunction::IMPLICIT) // Could require lod 0 or have a bias argument
+ {
+ unsigned int mandatoryArgumentCount = 2; // All functions have sampler and coordinate arguments
+
+ if (textureFunction.offset)
+ {
+ mandatoryArgumentCount++;
+ }
+
+ bool bias = (arguments.size() > mandatoryArgumentCount); // Bias argument is optional
+
+ if (lod0 || mContext.shaderType == SH_VERTEX_SHADER)
+ {
+ if (bias)
+ {
+ textureFunction.method = TextureFunction::LOD0BIAS;
+ }
+ else
+ {
+ textureFunction.method = TextureFunction::LOD0;
+ }
+ }
+ else if (bias)
+ {
+ textureFunction.method = TextureFunction::BIAS;
+ }
+ }
+
+ mUsesTexture.insert(textureFunction);
+
+ out << textureFunction.name();
+ }
+
+ for (TIntermSequence::iterator arg = arguments.begin(); arg != arguments.end(); arg++)
+ {
+ if (mOutputType == SH_HLSL11_OUTPUT && IsSampler((*arg)->getAsTyped()->getBasicType()))
+ {
+ out << "texture_";
+ (*arg)->traverse(this);
+ out << ", sampler_";
+ }
+
+ (*arg)->traverse(this);
+
+ if (arg < arguments.end() - 1)
+ {
+ out << ", ";
+ }
+ }
+
+ out << ")";
+
+ return false;
+ }
+ break;
+ case EOpParameters: outputTriplet(visit, "(", ", ", ")\n{\n"); break;
+ case EOpConstructFloat:
+ addConstructor(node->getType(), "vec1", &node->getSequence());
+ outputTriplet(visit, "vec1(", "", ")");
+ break;
+ case EOpConstructVec2:
+ addConstructor(node->getType(), "vec2", &node->getSequence());
+ outputTriplet(visit, "vec2(", ", ", ")");
+ break;
+ case EOpConstructVec3:
+ addConstructor(node->getType(), "vec3", &node->getSequence());
+ outputTriplet(visit, "vec3(", ", ", ")");
+ break;
+ case EOpConstructVec4:
+ addConstructor(node->getType(), "vec4", &node->getSequence());
+ outputTriplet(visit, "vec4(", ", ", ")");
+ break;
+ case EOpConstructBool:
+ addConstructor(node->getType(), "bvec1", &node->getSequence());
+ outputTriplet(visit, "bvec1(", "", ")");
+ break;
+ case EOpConstructBVec2:
+ addConstructor(node->getType(), "bvec2", &node->getSequence());
+ outputTriplet(visit, "bvec2(", ", ", ")");
+ break;
+ case EOpConstructBVec3:
+ addConstructor(node->getType(), "bvec3", &node->getSequence());
+ outputTriplet(visit, "bvec3(", ", ", ")");
+ break;
+ case EOpConstructBVec4:
+ addConstructor(node->getType(), "bvec4", &node->getSequence());
+ outputTriplet(visit, "bvec4(", ", ", ")");
+ break;
+ case EOpConstructInt:
+ addConstructor(node->getType(), "ivec1", &node->getSequence());
+ outputTriplet(visit, "ivec1(", "", ")");
+ break;
+ case EOpConstructIVec2:
+ addConstructor(node->getType(), "ivec2", &node->getSequence());
+ outputTriplet(visit, "ivec2(", ", ", ")");
+ break;
+ case EOpConstructIVec3:
+ addConstructor(node->getType(), "ivec3", &node->getSequence());
+ outputTriplet(visit, "ivec3(", ", ", ")");
+ break;
+ case EOpConstructIVec4:
+ addConstructor(node->getType(), "ivec4", &node->getSequence());
+ outputTriplet(visit, "ivec4(", ", ", ")");
+ break;
+ case EOpConstructUInt:
+ addConstructor(node->getType(), "uvec1", &node->getSequence());
+ outputTriplet(visit, "uvec1(", "", ")");
+ break;
+ case EOpConstructUVec2:
+ addConstructor(node->getType(), "uvec2", &node->getSequence());
+ outputTriplet(visit, "uvec2(", ", ", ")");
+ break;
+ case EOpConstructUVec3:
+ addConstructor(node->getType(), "uvec3", &node->getSequence());
+ outputTriplet(visit, "uvec3(", ", ", ")");
+ break;
+ case EOpConstructUVec4:
+ addConstructor(node->getType(), "uvec4", &node->getSequence());
+ outputTriplet(visit, "uvec4(", ", ", ")");
+ break;
+ case EOpConstructMat2:
+ addConstructor(node->getType(), "mat2", &node->getSequence());
+ outputTriplet(visit, "mat2(", ", ", ")");
+ break;
+ case EOpConstructMat3:
+ addConstructor(node->getType(), "mat3", &node->getSequence());
+ outputTriplet(visit, "mat3(", ", ", ")");
+ break;
+ case EOpConstructMat4:
+ addConstructor(node->getType(), "mat4", &node->getSequence());
+ outputTriplet(visit, "mat4(", ", ", ")");
+ break;
+ case EOpConstructStruct:
+ {
+ const TString &structName = structNameString(*node->getType().getStruct());
+ addConstructor(node->getType(), structName, &node->getSequence());
+ outputTriplet(visit, structName + "_ctor(", ", ", ")");
+ }
+ break;
+ case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break;
+ case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break;
+ case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break;
+ case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break;
+ case EOpVectorEqual: outputTriplet(visit, "(", " == ", ")"); break;
+ case EOpVectorNotEqual: outputTriplet(visit, "(", " != ", ")"); break;
+ case EOpMod:
+ {
+ // We need to look at the number of components in both arguments
+ const int modValue = node->getSequence()[0]->getAsTyped()->getNominalSize() * 10
+ + node->getSequence()[1]->getAsTyped()->getNominalSize();
+ switch (modValue)
+ {
+ case 11: mUsesMod1 = true; break;
+ case 22: mUsesMod2v = true; break;
+ case 21: mUsesMod2f = true; break;
+ case 33: mUsesMod3v = true; break;
+ case 31: mUsesMod3f = true; break;
+ case 44: mUsesMod4v = true; break;
+ case 41: mUsesMod4f = true; break;
+ default: UNREACHABLE();
+ }
+
+ outputTriplet(visit, "mod(", ", ", ")");
+ }
+ break;
+ case EOpPow: outputTriplet(visit, "pow(", ", ", ")"); break;
+ case EOpAtan:
+ ASSERT(node->getSequence().size() == 2); // atan(x) is a unary operator
+ switch (node->getSequence()[0]->getAsTyped()->getNominalSize())
+ {
+ case 1: mUsesAtan2_1 = true; break;
+ case 2: mUsesAtan2_2 = true; break;
+ case 3: mUsesAtan2_3 = true; break;
+ case 4: mUsesAtan2_4 = true; break;
+ default: UNREACHABLE();
+ }
+ outputTriplet(visit, "atanyx(", ", ", ")");
+ break;
+ case EOpMin: outputTriplet(visit, "min(", ", ", ")"); break;
+ case EOpMax: outputTriplet(visit, "max(", ", ", ")"); break;
+ case EOpClamp: outputTriplet(visit, "clamp(", ", ", ")"); break;
+ case EOpMix: outputTriplet(visit, "lerp(", ", ", ")"); break;
+ case EOpStep: outputTriplet(visit, "step(", ", ", ")"); break;
+ case EOpSmoothStep: outputTriplet(visit, "smoothstep(", ", ", ")"); break;
+ case EOpDistance: outputTriplet(visit, "distance(", ", ", ")"); break;
+ case EOpDot: outputTriplet(visit, "dot(", ", ", ")"); break;
+ case EOpCross: outputTriplet(visit, "cross(", ", ", ")"); break;
+ case EOpFaceForward:
+ {
+ switch (node->getSequence()[0]->getAsTyped()->getNominalSize()) // Number of components in the first argument
+ {
+ case 1: mUsesFaceforward1 = true; break;
+ case 2: mUsesFaceforward2 = true; break;
+ case 3: mUsesFaceforward3 = true; break;
+ case 4: mUsesFaceforward4 = true; break;
+ default: UNREACHABLE();
+ }
+
+ outputTriplet(visit, "faceforward(", ", ", ")");
+ }
+ break;
+ case EOpReflect: outputTriplet(visit, "reflect(", ", ", ")"); break;
+ case EOpRefract: outputTriplet(visit, "refract(", ", ", ")"); break;
+ case EOpMul: outputTriplet(visit, "(", " * ", ")"); break;
+ default: UNREACHABLE();
+ }
+
+ return true;
+}
+
+bool OutputHLSL::visitSelection(Visit visit, TIntermSelection *node)
+{
+ TInfoSinkBase &out = mBody;
+
+ if (node->usesTernaryOperator())
+ {
+ out << "s" << mUnfoldShortCircuit->getNextTemporaryIndex();
+ }
+ else // if/else statement
+ {
+ mUnfoldShortCircuit->traverse(node->getCondition());
+
+ out << "if (";
+
+ node->getCondition()->traverse(this);
+
+ out << ")\n";
+
+ outputLineDirective(node->getLine().first_line);
+ out << "{\n";
+
+ bool discard = false;
+
+ if (node->getTrueBlock())
+ {
+ traverseStatements(node->getTrueBlock());
+
+ // Detect true discard
+ discard = (discard || FindDiscard::search(node->getTrueBlock()));
+ }
+
+ outputLineDirective(node->getLine().first_line);
+ out << ";\n}\n";
+
+ if (node->getFalseBlock())
+ {
+ out << "else\n";
+
+ outputLineDirective(node->getFalseBlock()->getLine().first_line);
+ out << "{\n";
+
+ outputLineDirective(node->getFalseBlock()->getLine().first_line);
+ traverseStatements(node->getFalseBlock());
+
+ outputLineDirective(node->getFalseBlock()->getLine().first_line);
+ out << ";\n}\n";
+
+ // Detect false discard
+ discard = (discard || FindDiscard::search(node->getFalseBlock()));
+ }
+
+ // ANGLE issue 486: Detect problematic conditional discard
+ if (discard && FindSideEffectRewriting::search(node))
+ {
+ mUsesDiscardRewriting = true;
+ }
+ }
+
+ return false;
+}
+
+void OutputHLSL::visitConstantUnion(TIntermConstantUnion *node)
+{
+ writeConstantUnion(node->getType(), node->getUnionArrayPointer());
+}
+
+bool OutputHLSL::visitLoop(Visit visit, TIntermLoop *node)
+{
+ mNestedLoopDepth++;
+
+ bool wasDiscontinuous = mInsideDiscontinuousLoop;
+
+ if (mContainsLoopDiscontinuity && !mInsideDiscontinuousLoop)
+ {
+ mInsideDiscontinuousLoop = containsLoopDiscontinuity(node);
+ }
+
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ if (handleExcessiveLoop(node))
+ {
+ mInsideDiscontinuousLoop = wasDiscontinuous;
+ mNestedLoopDepth--;
+
+ return false;
+ }
+ }
+
+ TInfoSinkBase &out = mBody;
+
+ if (node->getType() == ELoopDoWhile)
+ {
+ out << "{do\n";
+
+ outputLineDirective(node->getLine().first_line);
+ out << "{\n";
+ }
+ else
+ {
+ out << "{for(";
+
+ if (node->getInit())
+ {
+ node->getInit()->traverse(this);
+ }
+
+ out << "; ";
+
+ if (node->getCondition())
+ {
+ node->getCondition()->traverse(this);
+ }
+
+ out << "; ";
+
+ if (node->getExpression())
+ {
+ node->getExpression()->traverse(this);
+ }
+
+ out << ")\n";
+
+ outputLineDirective(node->getLine().first_line);
+ out << "{\n";
+ }
+
+ if (node->getBody())
+ {
+ traverseStatements(node->getBody());
+ }
+
+ outputLineDirective(node->getLine().first_line);
+ out << ";}\n";
+
+ if (node->getType() == ELoopDoWhile)
+ {
+ outputLineDirective(node->getCondition()->getLine().first_line);
+ out << "while(\n";
+
+ node->getCondition()->traverse(this);
+
+ out << ");";
+ }
+
+ out << "}\n";
+
+ mInsideDiscontinuousLoop = wasDiscontinuous;
+ mNestedLoopDepth--;
+
+ return false;
+}
+
+bool OutputHLSL::visitBranch(Visit visit, TIntermBranch *node)
+{
+ TInfoSinkBase &out = mBody;
+
+ switch (node->getFlowOp())
+ {
+ case EOpKill:
+ outputTriplet(visit, "discard;\n", "", "");
+ break;
+ case EOpBreak:
+ if (visit == PreVisit)
+ {
+ if (mNestedLoopDepth > 1)
+ {
+ mUsesNestedBreak = true;
+ }
+
+ if (mExcessiveLoopIndex)
+ {
+ out << "{Break";
+ mExcessiveLoopIndex->traverse(this);
+ out << " = true; break;}\n";
+ }
+ else
+ {
+ out << "break;\n";
+ }
+ }
+ break;
+ case EOpContinue: outputTriplet(visit, "continue;\n", "", ""); break;
+ case EOpReturn:
+ if (visit == PreVisit)
+ {
+ if (node->getExpression())
+ {
+ out << "return ";
+ }
+ else
+ {
+ out << "return;\n";
+ }
+ }
+ else if (visit == PostVisit)
+ {
+ if (node->getExpression())
+ {
+ out << ";\n";
+ }
+ }
+ break;
+ default: UNREACHABLE();
+ }
+
+ return true;
+}
+
+void OutputHLSL::traverseStatements(TIntermNode *node)
+{
+ if (isSingleStatement(node))
+ {
+ mUnfoldShortCircuit->traverse(node);
+ }
+
+ node->traverse(this);
+}
+
+bool OutputHLSL::isSingleStatement(TIntermNode *node)
+{
+ TIntermAggregate *aggregate = node->getAsAggregate();
+
+ if (aggregate)
+ {
+ if (aggregate->getOp() == EOpSequence)
+ {
+ return false;
+ }
+ else
+ {
+ for (TIntermSequence::iterator sit = aggregate->getSequence().begin(); sit != aggregate->getSequence().end(); sit++)
+ {
+ if (!isSingleStatement(*sit))
+ {
+ return false;
+ }
+ }
+
+ return true;
+ }
+ }
+
+ return true;
+}
+
+// Handle loops with more than 254 iterations (unsupported by D3D9) by splitting them
+// (The D3D documentation says 255 iterations, but the compiler complains at anything more than 254).
+bool OutputHLSL::handleExcessiveLoop(TIntermLoop *node)
+{
+ const int MAX_LOOP_ITERATIONS = 254;
+ TInfoSinkBase &out = mBody;
+
+ // Parse loops of the form:
+ // for(int index = initial; index [comparator] limit; index += increment)
+ TIntermSymbol *index = NULL;
+ TOperator comparator = EOpNull;
+ int initial = 0;
+ int limit = 0;
+ int increment = 0;
+
+ // Parse index name and intial value
+ if (node->getInit())
+ {
+ TIntermAggregate *init = node->getInit()->getAsAggregate();
+
+ if (init)
+ {
+ TIntermSequence &sequence = init->getSequence();
+ TIntermTyped *variable = sequence[0]->getAsTyped();
+
+ if (variable && variable->getQualifier() == EvqTemporary)
+ {
+ TIntermBinary *assign = variable->getAsBinaryNode();
+
+ if (assign->getOp() == EOpInitialize)
+ {
+ TIntermSymbol *symbol = assign->getLeft()->getAsSymbolNode();
+ TIntermConstantUnion *constant = assign->getRight()->getAsConstantUnion();
+
+ if (symbol && constant)
+ {
+ if (constant->getBasicType() == EbtInt && constant->isScalar())
+ {
+ index = symbol;
+ initial = constant->getIConst(0);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Parse comparator and limit value
+ if (index != NULL && node->getCondition())
+ {
+ TIntermBinary *test = node->getCondition()->getAsBinaryNode();
+
+ if (test && test->getLeft()->getAsSymbolNode()->getId() == index->getId())
+ {
+ TIntermConstantUnion *constant = test->getRight()->getAsConstantUnion();
+
+ if (constant)
+ {
+ if (constant->getBasicType() == EbtInt && constant->isScalar())
+ {
+ comparator = test->getOp();
+ limit = constant->getIConst(0);
+ }
+ }
+ }
+ }
+
+ // Parse increment
+ if (index != NULL && comparator != EOpNull && node->getExpression())
+ {
+ TIntermBinary *binaryTerminal = node->getExpression()->getAsBinaryNode();
+ TIntermUnary *unaryTerminal = node->getExpression()->getAsUnaryNode();
+
+ if (binaryTerminal)
+ {
+ TOperator op = binaryTerminal->getOp();
+ TIntermConstantUnion *constant = binaryTerminal->getRight()->getAsConstantUnion();
+
+ if (constant)
+ {
+ if (constant->getBasicType() == EbtInt && constant->isScalar())
+ {
+ int value = constant->getIConst(0);
+
+ switch (op)
+ {
+ case EOpAddAssign: increment = value; break;
+ case EOpSubAssign: increment = -value; break;
+ default: UNIMPLEMENTED();
+ }
+ }
+ }
+ }
+ else if (unaryTerminal)
+ {
+ TOperator op = unaryTerminal->getOp();
+
+ switch (op)
+ {
+ case EOpPostIncrement: increment = 1; break;
+ case EOpPostDecrement: increment = -1; break;
+ case EOpPreIncrement: increment = 1; break;
+ case EOpPreDecrement: increment = -1; break;
+ default: UNIMPLEMENTED();
+ }
+ }
+ }
+
+ if (index != NULL && comparator != EOpNull && increment != 0)
+ {
+ if (comparator == EOpLessThanEqual)
+ {
+ comparator = EOpLessThan;
+ limit += 1;
+ }
+
+ if (comparator == EOpLessThan)
+ {
+ int iterations = (limit - initial) / increment;
+
+ if (iterations <= MAX_LOOP_ITERATIONS)
+ {
+ return false; // Not an excessive loop
+ }
+
+ TIntermSymbol *restoreIndex = mExcessiveLoopIndex;
+ mExcessiveLoopIndex = index;
+
+ out << "{int ";
+ index->traverse(this);
+ out << ";\n"
+ "bool Break";
+ index->traverse(this);
+ out << " = false;\n";
+
+ bool firstLoopFragment = true;
+
+ while (iterations > 0)
+ {
+ int clampedLimit = initial + increment * std::min(MAX_LOOP_ITERATIONS, iterations);
+
+ if (!firstLoopFragment)
+ {
+ out << "if (!Break";
+ index->traverse(this);
+ out << ") {\n";
+ }
+
+ if (iterations <= MAX_LOOP_ITERATIONS) // Last loop fragment
+ {
+ mExcessiveLoopIndex = NULL; // Stops setting the Break flag
+ }
+
+ // for(int index = initial; index < clampedLimit; index += increment)
+
+ out << "for(";
+ index->traverse(this);
+ out << " = ";
+ out << initial;
+
+ out << "; ";
+ index->traverse(this);
+ out << " < ";
+ out << clampedLimit;
+
+ out << "; ";
+ index->traverse(this);
+ out << " += ";
+ out << increment;
+ out << ")\n";
+
+ outputLineDirective(node->getLine().first_line);
+ out << "{\n";
+
+ if (node->getBody())
+ {
+ node->getBody()->traverse(this);
+ }
+
+ outputLineDirective(node->getLine().first_line);
+ out << ";}\n";
+
+ if (!firstLoopFragment)
+ {
+ out << "}\n";
+ }
+
+ firstLoopFragment = false;
+
+ initial += MAX_LOOP_ITERATIONS * increment;
+ iterations -= MAX_LOOP_ITERATIONS;
+ }
+
+ out << "}";
+
+ mExcessiveLoopIndex = restoreIndex;
+
+ return true;
+ }
+ else UNIMPLEMENTED();
+ }
+
+ return false; // Not handled as an excessive loop
+}
+
+void OutputHLSL::outputTriplet(Visit visit, const TString &preString, const TString &inString, const TString &postString)
+{
+ TInfoSinkBase &out = mBody;
+
+ if (visit == PreVisit)
+ {
+ out << preString;
+ }
+ else if (visit == InVisit)
+ {
+ out << inString;
+ }
+ else if (visit == PostVisit)
+ {
+ out << postString;
+ }
+}
+
+void OutputHLSL::outputLineDirective(int line)
+{
+ if ((mContext.compileOptions & SH_LINE_DIRECTIVES) && (line > 0))
+ {
+ mBody << "\n";
+ mBody << "#line " << line;
+
+ if (mContext.sourcePath)
+ {
+ mBody << " \"" << mContext.sourcePath << "\"";
+ }
+
+ mBody << "\n";
+ }
+}
+
+TString OutputHLSL::argumentString(const TIntermSymbol *symbol)
+{
+ TQualifier qualifier = symbol->getQualifier();
+ const TType &type = symbol->getType();
+ TString name = symbol->getSymbol();
+
+ if (name.empty()) // HLSL demands named arguments, also for prototypes
+ {
+ name = "x" + str(mUniqueIndex++);
+ }
+ else
+ {
+ name = decorate(name);
+ }
+
+ if (mOutputType == SH_HLSL11_OUTPUT && IsSampler(type.getBasicType()))
+ {
+ return qualifierString(qualifier) + " " + textureString(type) + " texture_" + name + arrayString(type) + ", " +
+ qualifierString(qualifier) + " " + samplerString(type) + " sampler_" + name + arrayString(type);
+ }
+
+ return qualifierString(qualifier) + " " + typeString(type) + " " + name + arrayString(type);
+}
+
+TString OutputHLSL::interpolationString(TQualifier qualifier)
+{
+ switch(qualifier)
+ {
+ case EvqVaryingIn: return "";
+ case EvqFragmentIn: return "";
+ case EvqInvariantVaryingIn: return "";
+ case EvqSmoothIn: return "linear";
+ case EvqFlatIn: return "nointerpolation";
+ case EvqCentroidIn: return "centroid";
+ case EvqVaryingOut: return "";
+ case EvqVertexOut: return "";
+ case EvqInvariantVaryingOut: return "";
+ case EvqSmoothOut: return "linear";
+ case EvqFlatOut: return "nointerpolation";
+ case EvqCentroidOut: return "centroid";
+ default: UNREACHABLE();
+ }
+
+ return "";
+}
+
+TString OutputHLSL::qualifierString(TQualifier qualifier)
+{
+ switch(qualifier)
+ {
+ case EvqIn: return "in";
+ case EvqOut: return "inout"; // 'out' results in an HLSL error if not all fields are written, for GLSL it's undefined
+ case EvqInOut: return "inout";
+ case EvqConstReadOnly: return "const";
+ default: UNREACHABLE();
+ }
+
+ return "";
+}
+
+TString OutputHLSL::typeString(const TType &type)
+{
+ const TStructure* structure = type.getStruct();
+ if (structure)
+ {
+ const TString& typeName = structure->name();
+ if (typeName != "")
+ {
+ return structNameString(*type.getStruct());
+ }
+ else // Nameless structure, define in place
+ {
+ return structureString(*structure, false, false);
+ }
+ }
+ else if (type.isMatrix())
+ {
+ int cols = type.getCols();
+ int rows = type.getRows();
+ return "float" + str(cols) + "x" + str(rows);
+ }
+ else
+ {
+ switch (type.getBasicType())
+ {
+ case EbtFloat:
+ switch (type.getNominalSize())
+ {
+ case 1: return "float";
+ case 2: return "float2";
+ case 3: return "float3";
+ case 4: return "float4";
+ }
+ case EbtInt:
+ switch (type.getNominalSize())
+ {
+ case 1: return "int";
+ case 2: return "int2";
+ case 3: return "int3";
+ case 4: return "int4";
+ }
+ case EbtUInt:
+ switch (type.getNominalSize())
+ {
+ case 1: return "uint";
+ case 2: return "uint2";
+ case 3: return "uint3";
+ case 4: return "uint4";
+ }
+ case EbtBool:
+ switch (type.getNominalSize())
+ {
+ case 1: return "bool";
+ case 2: return "bool2";
+ case 3: return "bool3";
+ case 4: return "bool4";
+ }
+ case EbtVoid:
+ return "void";
+ case EbtSampler2D:
+ case EbtISampler2D:
+ case EbtUSampler2D:
+ case EbtSampler2DArray:
+ case EbtISampler2DArray:
+ case EbtUSampler2DArray:
+ return "sampler2D";
+ case EbtSamplerCube:
+ case EbtISamplerCube:
+ case EbtUSamplerCube:
+ return "samplerCUBE";
+ case EbtSamplerExternalOES:
+ return "sampler2D";
+ default:
+ break;
+ }
+ }
+
+ UNREACHABLE();
+ return "<unknown type>";
+}
+
+TString OutputHLSL::textureString(const TType &type)
+{
+ switch (type.getBasicType())
+ {
+ case EbtSampler2D: return "Texture2D";
+ case EbtSamplerCube: return "TextureCube";
+ case EbtSamplerExternalOES: return "Texture2D";
+ case EbtSampler2DArray: return "Texture2DArray";
+ case EbtSampler3D: return "Texture3D";
+ case EbtISampler2D: return "Texture2D<int4>";
+ case EbtISampler3D: return "Texture3D<int4>";
+ case EbtISamplerCube: return "Texture2DArray<int4>";
+ case EbtISampler2DArray: return "Texture2DArray<int4>";
+ case EbtUSampler2D: return "Texture2D<uint4>";
+ case EbtUSampler3D: return "Texture3D<uint4>";
+ case EbtUSamplerCube: return "Texture2DArray<uint4>";
+ case EbtUSampler2DArray: return "Texture2DArray<uint4>";
+ case EbtSampler2DShadow: return "Texture2D";
+ case EbtSamplerCubeShadow: return "TextureCube";
+ case EbtSampler2DArrayShadow: return "Texture2DArray";
+ default: UNREACHABLE();
+ }
+
+ return "<unknown texture type>";
+}
+
+TString OutputHLSL::samplerString(const TType &type)
+{
+ if (IsShadowSampler(type.getBasicType()))
+ {
+ return "SamplerComparisonState";
+ }
+ else
+ {
+ return "SamplerState";
+ }
+}
+
+TString OutputHLSL::arrayString(const TType &type)
+{
+ if (!type.isArray())
+ {
+ return "";
+ }
+
+ return "[" + str(type.getArraySize()) + "]";
+}
+
+TString OutputHLSL::initializer(const TType &type)
+{
+ TString string;
+
+ size_t size = type.getObjectSize();
+ for (size_t component = 0; component < size; component++)
+ {
+ string += "0";
+
+ if (component + 1 < size)
+ {
+ string += ", ";
+ }
+ }
+
+ return "{" + string + "}";
+}
+
+TString OutputHLSL::structureString(const TStructure &structure, bool useHLSLRowMajorPacking, bool useStd140Packing)
+{
+ const TFieldList &fields = structure.fields();
+ const bool isNameless = (structure.name() == "");
+ const TString &structName = structureTypeName(structure, useHLSLRowMajorPacking, useStd140Packing);
+ const TString declareString = (isNameless ? "struct" : "struct " + structName);
+
+ TString string;
+ string += declareString + "\n"
+ "{\n";
+
+ int elementIndex = 0;
+
+ for (unsigned int i = 0; i < fields.size(); i++)
+ {
+ const TField &field = *fields[i];
+ const TType &fieldType = *field.type();
+ const TStructure *fieldStruct = fieldType.getStruct();
+ const TString &fieldTypeString = fieldStruct ? structureTypeName(*fieldStruct, useHLSLRowMajorPacking, useStd140Packing) : typeString(fieldType);
+
+ if (useStd140Packing)
+ {
+ string += std140PrePaddingString(*field.type(), &elementIndex);
+ }
+
+ string += " " + fieldTypeString + " " + decorateField(field.name(), structure) + arrayString(fieldType) + ";\n";
+
+ if (useStd140Packing)
+ {
+ string += std140PostPaddingString(*field.type(), useHLSLRowMajorPacking);
+ }
+ }
+
+ // Nameless structs do not finish with a semicolon and newline, to leave room for an instance variable
+ string += (isNameless ? "} " : "};\n");
+
+ // Add remaining element index to the global map, for use with nested structs in standard layouts
+ if (useStd140Packing)
+ {
+ mStd140StructElementIndexes[structName] = elementIndex;
+ }
+
+ return string;
+}
+
+TString OutputHLSL::structureTypeName(const TStructure &structure, bool useHLSLRowMajorPacking, bool useStd140Packing)
+{
+ if (structure.name() == "")
+ {
+ return "";
+ }
+
+ TString prefix = "";
+
+ // Structs packed with row-major matrices in HLSL are prefixed with "rm"
+ // GLSL column-major maps to HLSL row-major, and the converse is true
+
+ if (useStd140Packing)
+ {
+ prefix += "std";
+ }
+
+ if (useHLSLRowMajorPacking)
+ {
+ if (prefix != "") prefix += "_";
+ prefix += "rm";
+ }
+
+ return prefix + structNameString(structure);
+}
+
+void OutputHLSL::addConstructor(const TType &type, const TString &name, const TIntermSequence *parameters)
+{
+ if (name == "")
+ {
+ return; // Nameless structures don't have constructors
+ }
+
+ if (type.getStruct() && mStructNames.find(name) != mStructNames.end())
+ {
+ return; // Already added
+ }
+
+ TType ctorType = type;
+ ctorType.clearArrayness();
+ ctorType.setPrecision(EbpHigh);
+ ctorType.setQualifier(EvqTemporary);
+
+ typedef std::vector<TType> ParameterArray;
+ ParameterArray ctorParameters;
+
+ const TStructure* structure = type.getStruct();
+ if (structure)
+ {
+ mStructNames.insert(name);
+
+ const TString &structString = structureString(*structure, false, false);
+
+ if (std::find(mStructDeclarations.begin(), mStructDeclarations.end(), structString) == mStructDeclarations.end())
+ {
+ // Add row-major packed struct for interface blocks
+ TString rowMajorString = "#pragma pack_matrix(row_major)\n" +
+ structureString(*structure, true, false) +
+ "#pragma pack_matrix(column_major)\n";
+
+ TString std140String = structureString(*structure, false, true);
+ TString std140RowMajorString = "#pragma pack_matrix(row_major)\n" +
+ structureString(*structure, true, true) +
+ "#pragma pack_matrix(column_major)\n";
+
+ mStructDeclarations.push_back(structString);
+ mStructDeclarations.push_back(rowMajorString);
+ mStructDeclarations.push_back(std140String);
+ mStructDeclarations.push_back(std140RowMajorString);
+ }
+
+ const TFieldList &fields = structure->fields();
+ for (unsigned int i = 0; i < fields.size(); i++)
+ {
+ ctorParameters.push_back(*fields[i]->type());
+ }
+ }
+ else if (parameters)
+ {
+ for (TIntermSequence::const_iterator parameter = parameters->begin(); parameter != parameters->end(); parameter++)
+ {
+ ctorParameters.push_back((*parameter)->getAsTyped()->getType());
+ }
+ }
+ else UNREACHABLE();
+
+ TString constructor;
+
+ if (ctorType.getStruct())
+ {
+ constructor += name + " " + name + "_ctor(";
+ }
+ else // Built-in type
+ {
+ constructor += typeString(ctorType) + " " + name + "(";
+ }
+
+ for (unsigned int parameter = 0; parameter < ctorParameters.size(); parameter++)
+ {
+ const TType &type = ctorParameters[parameter];
+
+ constructor += typeString(type) + " x" + str(parameter) + arrayString(type);
+
+ if (parameter < ctorParameters.size() - 1)
+ {
+ constructor += ", ";
+ }
+ }
+
+ constructor += ")\n"
+ "{\n";
+
+ if (ctorType.getStruct())
+ {
+ constructor += " " + name + " structure = {";
+ }
+ else
+ {
+ constructor += " return " + typeString(ctorType) + "(";
+ }
+
+ if (ctorType.isMatrix() && ctorParameters.size() == 1)
+ {
+ int rows = ctorType.getRows();
+ int cols = ctorType.getCols();
+ const TType &parameter = ctorParameters[0];
+
+ if (parameter.isScalar())
+ {
+ for (int row = 0; row < rows; row++)
+ {
+ for (int col = 0; col < cols; col++)
+ {
+ constructor += TString((row == col) ? "x0" : "0.0");
+
+ if (row < rows - 1 || col < cols - 1)
+ {
+ constructor += ", ";
+ }
+ }
+ }
+ }
+ else if (parameter.isMatrix())
+ {
+ for (int row = 0; row < rows; row++)
+ {
+ for (int col = 0; col < cols; col++)
+ {
+ if (row < parameter.getRows() && col < parameter.getCols())
+ {
+ constructor += TString("x0") + "[" + str(row) + "]" + "[" + str(col) + "]";
+ }
+ else
+ {
+ constructor += TString((row == col) ? "1.0" : "0.0");
+ }
+
+ if (row < rows - 1 || col < cols - 1)
+ {
+ constructor += ", ";
+ }
+ }
+ }
+ }
+ else UNREACHABLE();
+ }
+ else
+ {
+ size_t remainingComponents = ctorType.getObjectSize();
+ size_t parameterIndex = 0;
+
+ while (remainingComponents > 0)
+ {
+ const TType &parameter = ctorParameters[parameterIndex];
+ const size_t parameterSize = parameter.getObjectSize();
+ bool moreParameters = parameterIndex + 1 < ctorParameters.size();
+
+ constructor += "x" + str(parameterIndex);
+
+ if (parameter.isScalar())
+ {
+ remainingComponents -= parameter.getObjectSize();
+ }
+ else if (parameter.isVector())
+ {
+ if (remainingComponents == parameterSize || moreParameters)
+ {
+ ASSERT(parameterSize <= remainingComponents);
+ remainingComponents -= parameterSize;
+ }
+ else if (remainingComponents < static_cast<size_t>(parameter.getNominalSize()))
+ {
+ switch (remainingComponents)
+ {
+ case 1: constructor += ".x"; break;
+ case 2: constructor += ".xy"; break;
+ case 3: constructor += ".xyz"; break;
+ case 4: constructor += ".xyzw"; break;
+ default: UNREACHABLE();
+ }
+
+ remainingComponents = 0;
+ }
+ else UNREACHABLE();
+ }
+ else if (parameter.isMatrix() || parameter.getStruct())
+ {
+ ASSERT(remainingComponents == parameterSize || moreParameters);
+ ASSERT(parameterSize <= remainingComponents);
+
+ remainingComponents -= parameterSize;
+ }
+ else UNREACHABLE();
+
+ if (moreParameters)
+ {
+ parameterIndex++;
+ }
+
+ if (remainingComponents)
+ {
+ constructor += ", ";
+ }
+ }
+ }
+
+ if (ctorType.getStruct())
+ {
+ constructor += "};\n"
+ " return structure;\n"
+ "}\n";
+ }
+ else
+ {
+ constructor += ");\n"
+ "}\n";
+ }
+
+ mConstructors.insert(constructor);
+}
+
+const ConstantUnion *OutputHLSL::writeConstantUnion(const TType &type, const ConstantUnion *constUnion)
+{
+ TInfoSinkBase &out = mBody;
+
+ const TStructure* structure = type.getStruct();
+ if (structure)
+ {
+ out << structNameString(*structure) + "_ctor(";
+
+ const TFieldList& fields = structure->fields();
+
+ for (size_t i = 0; i < fields.size(); i++)
+ {
+ const TType *fieldType = fields[i]->type();
+
+ constUnion = writeConstantUnion(*fieldType, constUnion);
+
+ if (i != fields.size() - 1)
+ {
+ out << ", ";
+ }
+ }
+
+ out << ")";
+ }
+ else
+ {
+ size_t size = type.getObjectSize();
+ bool writeType = size > 1;
+
+ if (writeType)
+ {
+ out << typeString(type) << "(";
+ }
+
+ for (size_t i = 0; i < size; i++, constUnion++)
+ {
+ switch (constUnion->getType())
+ {
+ case EbtFloat: out << std::min(FLT_MAX, std::max(-FLT_MAX, constUnion->getFConst())); break;
+ case EbtInt: out << constUnion->getIConst(); break;
+ case EbtUInt: out << constUnion->getUConst(); break;
+ case EbtBool: out << constUnion->getBConst(); break;
+ default: UNREACHABLE();
+ }
+
+ if (i != size - 1)
+ {
+ out << ", ";
+ }
+ }
+
+ if (writeType)
+ {
+ out << ")";
+ }
+ }
+
+ return constUnion;
+}
+
+TString OutputHLSL::structNameString(const TStructure &structure)
+{
+ if (structure.name().empty())
+ {
+ return "";
+ }
+
+ return "ss_" + str(structure.uniqueId()) + structure.name();
+}
+
+TString OutputHLSL::decorate(const TString &string)
+{
+ if (string.compare(0, 3, "gl_") != 0 && string.compare(0, 3, "dx_") != 0)
+ {
+ return "_" + string;
+ }
+
+ return string;
+}
+
+TString OutputHLSL::decorateUniform(const TString &string, const TType &type)
+{
+ if (type.getBasicType() == EbtSamplerExternalOES)
+ {
+ return "ex_" + string;
+ }
+
+ return decorate(string);
+}
+
+TString OutputHLSL::decorateField(const TString &string, const TStructure &structure)
+{
+ if (structure.name().compare(0, 3, "gl_") != 0)
+ {
+ return decorate(string);
+ }
+
+ return string;
+}
+
+void OutputHLSL::declareInterfaceBlockField(const TType &type, const TString &name, std::vector<gl::InterfaceBlockField>& output)
+{
+ const TStructure *structure = type.getStruct();
+
+ if (!structure)
+ {
+ const bool isRowMajorMatrix = (type.isMatrix() && type.getLayoutQualifier().matrixPacking == EmpRowMajor);
+ gl::InterfaceBlockField field(glVariableType(type), glVariablePrecision(type), name.c_str(),
+ (unsigned int)type.getArraySize(), isRowMajorMatrix);
+ output.push_back(field);
+ }
+ else
+ {
+ gl::InterfaceBlockField structField(GL_STRUCT_ANGLEX, GL_NONE, name.c_str(), (unsigned int)type.getArraySize(), false);
+
+ const TFieldList &fields = structure->fields();
+
+ for (size_t fieldIndex = 0; fieldIndex < fields.size(); fieldIndex++)
+ {
+ TField *field = fields[fieldIndex];
+ TType *fieldType = field->type();
+
+ // make sure to copy matrix packing information
+ fieldType->setLayoutQualifier(type.getLayoutQualifier());
+
+ declareInterfaceBlockField(*fieldType, field->name(), structField.fields);
+ }
+
+ output.push_back(structField);
+ }
+}
+
+gl::Uniform OutputHLSL::declareUniformToList(const TType &type, const TString &name, int registerIndex, std::vector<gl::Uniform>& output)
+{
+ const TStructure *structure = type.getStruct();
+
+ if (!structure)
+ {
+ gl::Uniform uniform(glVariableType(type), glVariablePrecision(type), name.c_str(),
+ (unsigned int)type.getArraySize(), (unsigned int)registerIndex, 0);
+ output.push_back(uniform);
+
+ return uniform;
+ }
+ else
+ {
+ gl::Uniform structUniform(GL_STRUCT_ANGLEX, GL_NONE, name.c_str(), (unsigned int)type.getArraySize(),
+ (unsigned int)registerIndex, GL_INVALID_INDEX);
+
+ const TFieldList &fields = structure->fields();
+
+ for (size_t fieldIndex = 0; fieldIndex < fields.size(); fieldIndex++)
+ {
+ TField *field = fields[fieldIndex];
+ TType *fieldType = field->type();
+
+ declareUniformToList(*fieldType, field->name(), GL_INVALID_INDEX, structUniform.fields);
+ }
+
+ // assign register offset information -- this will override the information in any sub-structures.
+ HLSLVariableGetRegisterInfo(registerIndex, &structUniform, mOutputType);
+
+ output.push_back(structUniform);
+
+ return structUniform;
+ }
+}
+
+gl::InterpolationType getInterpolationType(TQualifier qualifier)
+{
+ switch (qualifier)
+ {
+ case EvqFlatIn:
+ case EvqFlatOut:
+ return gl::INTERPOLATION_FLAT;
+
+ case EvqSmoothIn:
+ case EvqSmoothOut:
+ case EvqVertexOut:
+ case EvqFragmentIn:
+ case EvqVaryingIn:
+ case EvqVaryingOut:
+ return gl::INTERPOLATION_SMOOTH;
+
+ case EvqCentroidIn:
+ case EvqCentroidOut:
+ return gl::INTERPOLATION_CENTROID;
+
+ default: UNREACHABLE();
+ return gl::INTERPOLATION_SMOOTH;
+ }
+}
+
+void OutputHLSL::declareVaryingToList(const TType &type, TQualifier baseTypeQualifier, const TString &name, std::vector<gl::Varying>& fieldsOut)
+{
+ const TStructure *structure = type.getStruct();
+
+ gl::InterpolationType interpolation = getInterpolationType(baseTypeQualifier);
+ if (!structure)
+ {
+ gl::Varying varying(glVariableType(type), glVariablePrecision(type), name.c_str(), (unsigned int)type.getArraySize(), interpolation);
+ fieldsOut.push_back(varying);
+ }
+ else
+ {
+ gl::Varying structVarying(GL_STRUCT_ANGLEX, GL_NONE, name.c_str(), (unsigned int)type.getArraySize(), interpolation);
+ const TFieldList &fields = structure->fields();
+
+ structVarying.structName = structure->name().c_str();
+
+ for (size_t fieldIndex = 0; fieldIndex < fields.size(); fieldIndex++)
+ {
+ const TField &field = *fields[fieldIndex];
+ declareVaryingToList(*field.type(), baseTypeQualifier, field.name(), structVarying.fields);
+ }
+
+ fieldsOut.push_back(structVarying);
+ }
+}
+
+int OutputHLSL::declareUniformAndAssignRegister(const TType &type, const TString &name)
+{
+ int registerIndex = (IsSampler(type.getBasicType()) ? mSamplerRegister : mUniformRegister);
+
+ const gl::Uniform &uniform = declareUniformToList(type, name, registerIndex, mActiveUniforms);
+
+ if (IsSampler(type.getBasicType()))
+ {
+ mSamplerRegister += gl::HLSLVariableRegisterCount(uniform, mOutputType);
+ }
+ else
+ {
+ mUniformRegister += gl::HLSLVariableRegisterCount(uniform, mOutputType);
+ }
+
+ return registerIndex;
+}
+
+GLenum OutputHLSL::glVariableType(const TType &type)
+{
+ if (type.getBasicType() == EbtFloat)
+ {
+ if (type.isScalar())
+ {
+ return GL_FLOAT;
+ }
+ else if (type.isVector())
+ {
+ switch(type.getNominalSize())
+ {
+ case 2: return GL_FLOAT_VEC2;
+ case 3: return GL_FLOAT_VEC3;
+ case 4: return GL_FLOAT_VEC4;
+ default: UNREACHABLE();
+ }
+ }
+ else if (type.isMatrix())
+ {
+ switch (type.getCols())
+ {
+ case 2:
+ switch(type.getRows())
+ {
+ case 2: return GL_FLOAT_MAT2;
+ case 3: return GL_FLOAT_MAT2x3;
+ case 4: return GL_FLOAT_MAT2x4;
+ default: UNREACHABLE();
+ }
+
+ case 3:
+ switch(type.getRows())
+ {
+ case 2: return GL_FLOAT_MAT3x2;
+ case 3: return GL_FLOAT_MAT3;
+ case 4: return GL_FLOAT_MAT3x4;
+ default: UNREACHABLE();
+ }
+
+ case 4:
+ switch(type.getRows())
+ {
+ case 2: return GL_FLOAT_MAT4x2;
+ case 3: return GL_FLOAT_MAT4x3;
+ case 4: return GL_FLOAT_MAT4;
+ default: UNREACHABLE();
+ }
+
+ default: UNREACHABLE();
+ }
+ }
+ else UNREACHABLE();
+ }
+ else if (type.getBasicType() == EbtInt)
+ {
+ if (type.isScalar())
+ {
+ return GL_INT;
+ }
+ else if (type.isVector())
+ {
+ switch(type.getNominalSize())
+ {
+ case 2: return GL_INT_VEC2;
+ case 3: return GL_INT_VEC3;
+ case 4: return GL_INT_VEC4;
+ default: UNREACHABLE();
+ }
+ }
+ else UNREACHABLE();
+ }
+ else if (type.getBasicType() == EbtUInt)
+ {
+ if (type.isScalar())
+ {
+ return GL_UNSIGNED_INT;
+ }
+ else if (type.isVector())
+ {
+ switch(type.getNominalSize())
+ {
+ case 2: return GL_UNSIGNED_INT_VEC2;
+ case 3: return GL_UNSIGNED_INT_VEC3;
+ case 4: return GL_UNSIGNED_INT_VEC4;
+ default: UNREACHABLE();
+ }
+ }
+ else UNREACHABLE();
+ }
+ else if (type.getBasicType() == EbtBool)
+ {
+ if (type.isScalar())
+ {
+ return GL_BOOL;
+ }
+ else if (type.isVector())
+ {
+ switch(type.getNominalSize())
+ {
+ case 2: return GL_BOOL_VEC2;
+ case 3: return GL_BOOL_VEC3;
+ case 4: return GL_BOOL_VEC4;
+ default: UNREACHABLE();
+ }
+ }
+ else UNREACHABLE();
+ }
+
+ switch(type.getBasicType())
+ {
+ case EbtSampler2D: return GL_SAMPLER_2D;
+ case EbtSampler3D: return GL_SAMPLER_3D;
+ case EbtSamplerCube: return GL_SAMPLER_CUBE;
+ case EbtSampler2DArray: return GL_SAMPLER_2D_ARRAY;
+ case EbtISampler2D: return GL_INT_SAMPLER_2D;
+ case EbtISampler3D: return GL_INT_SAMPLER_3D;
+ case EbtISamplerCube: return GL_INT_SAMPLER_CUBE;
+ case EbtISampler2DArray: return GL_INT_SAMPLER_2D_ARRAY;
+ case EbtUSampler2D: return GL_UNSIGNED_INT_SAMPLER_2D;
+ case EbtUSampler3D: return GL_UNSIGNED_INT_SAMPLER_3D;
+ case EbtUSamplerCube: return GL_UNSIGNED_INT_SAMPLER_CUBE;
+ case EbtUSampler2DArray: return GL_UNSIGNED_INT_SAMPLER_2D_ARRAY;
+ case EbtSampler2DShadow: return GL_SAMPLER_2D_SHADOW;
+ case EbtSamplerCubeShadow: return GL_SAMPLER_CUBE_SHADOW;
+ case EbtSampler2DArrayShadow: return GL_SAMPLER_2D_ARRAY_SHADOW;
+ default: UNREACHABLE();
+ }
+
+ return GL_NONE;
+}
+
+GLenum OutputHLSL::glVariablePrecision(const TType &type)
+{
+ if (type.getBasicType() == EbtFloat)
+ {
+ switch (type.getPrecision())
+ {
+ case EbpHigh: return GL_HIGH_FLOAT;
+ case EbpMedium: return GL_MEDIUM_FLOAT;
+ case EbpLow: return GL_LOW_FLOAT;
+ case EbpUndefined:
+ // Should be defined as the default precision by the parser
+ default: UNREACHABLE();
+ }
+ }
+ else if (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt)
+ {
+ switch (type.getPrecision())
+ {
+ case EbpHigh: return GL_HIGH_INT;
+ case EbpMedium: return GL_MEDIUM_INT;
+ case EbpLow: return GL_LOW_INT;
+ case EbpUndefined:
+ // Should be defined as the default precision by the parser
+ default: UNREACHABLE();
+ }
+ }
+
+ // Other types (boolean, sampler) don't have a precision
+ return GL_NONE;
+}
+
+bool OutputHLSL::isVaryingOut(TQualifier qualifier)
+{
+ switch(qualifier)
+ {
+ case EvqVaryingOut:
+ case EvqInvariantVaryingOut:
+ case EvqSmoothOut:
+ case EvqFlatOut:
+ case EvqCentroidOut:
+ case EvqVertexOut:
+ return true;
+
+ default: break;
+ }
+
+ return false;
+}
+
+bool OutputHLSL::isVaryingIn(TQualifier qualifier)
+{
+ switch(qualifier)
+ {
+ case EvqVaryingIn:
+ case EvqInvariantVaryingIn:
+ case EvqSmoothIn:
+ case EvqFlatIn:
+ case EvqCentroidIn:
+ case EvqFragmentIn:
+ return true;
+
+ default: break;
+ }
+
+ return false;
+}
+
+bool OutputHLSL::isVarying(TQualifier qualifier)
+{
+ return isVaryingIn(qualifier) || isVaryingOut(qualifier);
+}
+
+}