summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_deque.h
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_deque.h')
-rw-r--r--chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_deque.h1501
1 files changed, 0 insertions, 1501 deletions
diff --git a/chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_deque.h b/chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_deque.h
deleted file mode 100644
index 54dadf2c659..00000000000
--- a/chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_deque.h
+++ /dev/null
@@ -1,1501 +0,0 @@
-// Deque implementation -*- C++ -*-
-
-// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
-//
-// This file is part of the GNU ISO C++ Library. This library is free
-// software; you can redistribute it and/or modify it under the
-// terms of the GNU General Public License as published by the
-// Free Software Foundation; either version 2, or (at your option)
-// any later version.
-
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-
-// You should have received a copy of the GNU General Public License along
-// with this library; see the file COPYING. If not, write to the Free
-// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
-// USA.
-
-// As a special exception, you may use this file as part of a free software
-// library without restriction. Specifically, if other files instantiate
-// templates or use macros or inline functions from this file, or you compile
-// this file and link it with other files to produce an executable, this
-// file does not by itself cause the resulting executable to be covered by
-// the GNU General Public License. This exception does not however
-// invalidate any other reasons why the executable file might be covered by
-// the GNU General Public License.
-
-/*
- *
- * Copyright (c) 1994
- * Hewlett-Packard Company
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Hewlett-Packard Company makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- *
- *
- * Copyright (c) 1997
- * Silicon Graphics Computer Systems, Inc.
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Silicon Graphics makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- */
-
-/** @file stl_deque.h
- * This is an internal header file, included by other library headers.
- * You should not attempt to use it directly.
- */
-
-#ifndef _DEQUE_H
-#define _DEQUE_H 1
-
-#include <bits/concept_check.h>
-#include <bits/stl_iterator_base_types.h>
-#include <bits/stl_iterator_base_funcs.h>
-
-namespace _GLIBCXX_STD
-{
- /**
- * @if maint
- * @brief This function controls the size of memory nodes.
- * @param size The size of an element.
- * @return The number (not byte size) of elements per node.
- *
- * This function started off as a compiler kludge from SGI, but seems to
- * be a useful wrapper around a repeated constant expression. The '512' is
- * tuneable (and no other code needs to change), but no investigation has
- * been done since inheriting the SGI code.
- * @endif
- */
- inline size_t
- __deque_buf_size(size_t __size)
- { return __size < 512 ? size_t(512 / __size) : size_t(1); }
-
-
- /**
- * @brief A deque::iterator.
- *
- * Quite a bit of intelligence here. Much of the functionality of deque is
- * actually passed off to this class. A deque holds two of these internally,
- * marking its valid range. Access to elements is done as offsets of either
- * of those two, relying on operator overloading in this class.
- *
- * @if maint
- * All the functions are op overloads except for _M_set_node.
- * @endif
- */
- template<typename _Tp, typename _Ref, typename _Ptr>
- struct _Deque_iterator
- {
- typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
- typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
-
- static size_t _S_buffer_size()
- { return __deque_buf_size(sizeof(_Tp)); }
-
- typedef random_access_iterator_tag iterator_category;
- typedef _Tp value_type;
- typedef _Ptr pointer;
- typedef _Ref reference;
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef _Tp** _Map_pointer;
- typedef _Deque_iterator _Self;
-
- _Tp* _M_cur;
- _Tp* _M_first;
- _Tp* _M_last;
- _Map_pointer _M_node;
-
- _Deque_iterator(_Tp* __x, _Map_pointer __y)
- : _M_cur(__x), _M_first(*__y),
- _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
-
- _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
-
- _Deque_iterator(const iterator& __x)
- : _M_cur(__x._M_cur), _M_first(__x._M_first),
- _M_last(__x._M_last), _M_node(__x._M_node) {}
-
- reference
- operator*() const
- { return *_M_cur; }
-
- pointer
- operator->() const
- { return _M_cur; }
-
- _Self&
- operator++()
- {
- ++_M_cur;
- if (_M_cur == _M_last)
- {
- _M_set_node(_M_node + 1);
- _M_cur = _M_first;
- }
- return *this;
- }
-
- _Self
- operator++(int)
- {
- _Self __tmp = *this;
- ++*this;
- return __tmp;
- }
-
- _Self&
- operator--()
- {
- if (_M_cur == _M_first)
- {
- _M_set_node(_M_node - 1);
- _M_cur = _M_last;
- }
- --_M_cur;
- return *this;
- }
-
- _Self
- operator--(int)
- {
- _Self __tmp = *this;
- --*this;
- return __tmp;
- }
-
- _Self&
- operator+=(difference_type __n)
- {
- const difference_type __offset = __n + (_M_cur - _M_first);
- if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
- _M_cur += __n;
- else
- {
- const difference_type __node_offset =
- __offset > 0 ? __offset / difference_type(_S_buffer_size())
- : -difference_type((-__offset - 1)
- / _S_buffer_size()) - 1;
- _M_set_node(_M_node + __node_offset);
- _M_cur = _M_first + (__offset - __node_offset
- * difference_type(_S_buffer_size()));
- }
- return *this;
- }
-
- _Self
- operator+(difference_type __n) const
- {
- _Self __tmp = *this;
- return __tmp += __n;
- }
-
- _Self&
- operator-=(difference_type __n)
- { return *this += -__n; }
-
- _Self
- operator-(difference_type __n) const
- {
- _Self __tmp = *this;
- return __tmp -= __n;
- }
-
- reference
- operator[](difference_type __n) const
- { return *(*this + __n); }
-
- /** @if maint
- * Prepares to traverse new_node. Sets everything except _M_cur, which
- * should therefore be set by the caller immediately afterwards, based on
- * _M_first and _M_last.
- * @endif
- */
- void
- _M_set_node(_Map_pointer __new_node)
- {
- _M_node = __new_node;
- _M_first = *__new_node;
- _M_last = _M_first + difference_type(_S_buffer_size());
- }
- };
-
- // Note: we also provide overloads whose operands are of the same type in
- // order to avoid ambiguous overload resolution when std::rel_ops operators
- // are in scope (for additional details, see libstdc++/3628)
- template<typename _Tp, typename _Ref, typename _Ptr>
- inline bool
- operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
- { return __x._M_cur == __y._M_cur; }
-
- template<typename _Tp, typename _RefL, typename _PtrL,
- typename _RefR, typename _PtrR>
- inline bool
- operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
- { return __x._M_cur == __y._M_cur; }
-
- template<typename _Tp, typename _Ref, typename _Ptr>
- inline bool
- operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
- { return !(__x == __y); }
-
- template<typename _Tp, typename _RefL, typename _PtrL,
- typename _RefR, typename _PtrR>
- inline bool
- operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
- { return !(__x == __y); }
-
- template<typename _Tp, typename _Ref, typename _Ptr>
- inline bool
- operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
- { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
- : (__x._M_node < __y._M_node); }
-
- template<typename _Tp, typename _RefL, typename _PtrL,
- typename _RefR, typename _PtrR>
- inline bool
- operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
- { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
- : (__x._M_node < __y._M_node); }
-
- template<typename _Tp, typename _Ref, typename _Ptr>
- inline bool
- operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
- { return __y < __x; }
-
- template<typename _Tp, typename _RefL, typename _PtrL,
- typename _RefR, typename _PtrR>
- inline bool
- operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
- { return __y < __x; }
-
- template<typename _Tp, typename _Ref, typename _Ptr>
- inline bool
- operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
- { return !(__y < __x); }
-
- template<typename _Tp, typename _RefL, typename _PtrL,
- typename _RefR, typename _PtrR>
- inline bool
- operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
- { return !(__y < __x); }
-
- template<typename _Tp, typename _Ref, typename _Ptr>
- inline bool
- operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
- { return !(__x < __y); }
-
- template<typename _Tp, typename _RefL, typename _PtrL,
- typename _RefR, typename _PtrR>
- inline bool
- operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
- { return !(__x < __y); }
-
- // _GLIBCXX_RESOLVE_LIB_DEFECTS
- // According to the resolution of DR179 not only the various comparison
- // operators but also operator- must accept mixed iterator/const_iterator
- // parameters.
- template<typename _Tp, typename _RefL, typename _PtrL,
- typename _RefR, typename _PtrR>
- inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
- operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
- {
- return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
- (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
- * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
- + (__y._M_last - __y._M_cur);
- }
-
- template<typename _Tp, typename _Ref, typename _Ptr>
- inline _Deque_iterator<_Tp, _Ref, _Ptr>
- operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
- { return __x + __n; }
-
- /**
- * @if maint
- * Deque base class. This class provides the unified face for %deque's
- * allocation. This class's constructor and destructor allocate and
- * deallocate (but do not initialize) storage. This makes %exception
- * safety easier.
- *
- * Nothing in this class ever constructs or destroys an actual Tp element.
- * (Deque handles that itself.) Only/All memory management is performed
- * here.
- * @endif
- */
- template<typename _Tp, typename _Alloc>
- class _Deque_base
- {
- public:
- typedef _Alloc allocator_type;
-
- allocator_type
- get_allocator() const
- { return *static_cast<const _Alloc*>(&this->_M_impl); }
-
- typedef _Deque_iterator<_Tp,_Tp&,_Tp*> iterator;
- typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
-
- _Deque_base(const allocator_type& __a, size_t __num_elements)
- : _M_impl(__a)
- { _M_initialize_map(__num_elements); }
-
- _Deque_base(const allocator_type& __a)
- : _M_impl(__a)
- { }
-
- ~_Deque_base();
-
- protected:
- //This struct encapsulates the implementation of the std::deque
- //standard container and at the same time makes use of the EBO
- //for empty allocators.
- struct _Deque_impl
- : public _Alloc {
- _Tp** _M_map;
- size_t _M_map_size;
- iterator _M_start;
- iterator _M_finish;
-
- _Deque_impl(const _Alloc& __a)
- : _Alloc(__a), _M_map(0), _M_map_size(0), _M_start(), _M_finish()
- { }
- };
-
- typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
- _Map_alloc_type _M_get_map_allocator() const
- { return _Map_alloc_type(this->get_allocator()); }
-
- _Tp*
- _M_allocate_node()
- { return _M_impl._Alloc::allocate(__deque_buf_size(sizeof(_Tp))); }
-
- void
- _M_deallocate_node(_Tp* __p)
- { _M_impl._Alloc::deallocate(__p, __deque_buf_size(sizeof(_Tp))); }
-
- _Tp**
- _M_allocate_map(size_t __n)
- { return _M_get_map_allocator().allocate(__n); }
-
- void
- _M_deallocate_map(_Tp** __p, size_t __n)
- { _M_get_map_allocator().deallocate(__p, __n); }
-
- protected:
- void _M_initialize_map(size_t);
- void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
- void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
- enum { _S_initial_map_size = 8 };
-
- _Deque_impl _M_impl;
- };
-
- template<typename _Tp, typename _Alloc>
- _Deque_base<_Tp,_Alloc>::~_Deque_base()
- {
- if (this->_M_impl._M_map)
- {
- _M_destroy_nodes(this->_M_impl._M_start._M_node, this->_M_impl._M_finish._M_node + 1);
- _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
- }
- }
-
- /**
- * @if maint
- * @brief Layout storage.
- * @param num_elements The count of T's for which to allocate space
- * at first.
- * @return Nothing.
- *
- * The initial underlying memory layout is a bit complicated...
- * @endif
- */
- template<typename _Tp, typename _Alloc>
- void
- _Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements)
- {
- size_t __num_nodes = __num_elements / __deque_buf_size(sizeof(_Tp)) + 1;
-
- this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
- __num_nodes + 2);
- this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
-
- // For "small" maps (needing less than _M_map_size nodes), allocation
- // starts in the middle elements and grows outwards. So nstart may be
- // the beginning of _M_map, but for small maps it may be as far in as
- // _M_map+3.
-
- _Tp** __nstart = this->_M_impl._M_map + (this->_M_impl._M_map_size - __num_nodes) / 2;
- _Tp** __nfinish = __nstart + __num_nodes;
-
- try
- { _M_create_nodes(__nstart, __nfinish); }
- catch(...)
- {
- _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
- this->_M_impl._M_map = 0;
- this->_M_impl._M_map_size = 0;
- __throw_exception_again;
- }
-
- this->_M_impl._M_start._M_set_node(__nstart);
- this->_M_impl._M_finish._M_set_node(__nfinish - 1);
- this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
- this->_M_impl._M_finish._M_cur = this->_M_impl._M_finish._M_first + __num_elements
- % __deque_buf_size(sizeof(_Tp));
- }
-
- template<typename _Tp, typename _Alloc>
- void
- _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
- {
- _Tp** __cur;
- try
- {
- for (__cur = __nstart; __cur < __nfinish; ++__cur)
- *__cur = this->_M_allocate_node();
- }
- catch(...)
- {
- _M_destroy_nodes(__nstart, __cur);
- __throw_exception_again;
- }
- }
-
- template<typename _Tp, typename _Alloc>
- void
- _Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
- {
- for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
- _M_deallocate_node(*__n);
- }
-
- /**
- * @brief A standard container using fixed-size memory allocation and
- * constant-time manipulation of elements at either end.
- *
- * @ingroup Containers
- * @ingroup Sequences
- *
- * Meets the requirements of a <a href="tables.html#65">container</a>, a
- * <a href="tables.html#66">reversible container</a>, and a
- * <a href="tables.html#67">sequence</a>, including the
- * <a href="tables.html#68">optional sequence requirements</a>.
- *
- * In previous HP/SGI versions of deque, there was an extra template
- * parameter so users could control the node size. This extension turned
- * out to violate the C++ standard (it can be detected using template
- * template parameters), and it was removed.
- *
- * @if maint
- * Here's how a deque<Tp> manages memory. Each deque has 4 members:
- *
- * - Tp** _M_map
- * - size_t _M_map_size
- * - iterator _M_start, _M_finish
- *
- * map_size is at least 8. %map is an array of map_size pointers-to-"nodes".
- * (The name %map has nothing to do with the std::map class, and "nodes"
- * should not be confused with std::list's usage of "node".)
- *
- * A "node" has no specific type name as such, but it is referred to as
- * "node" in this file. It is a simple array-of-Tp. If Tp is very large,
- * there will be one Tp element per node (i.e., an "array" of one).
- * For non-huge Tp's, node size is inversely related to Tp size: the
- * larger the Tp, the fewer Tp's will fit in a node. The goal here is to
- * keep the total size of a node relatively small and constant over different
- * Tp's, to improve allocator efficiency.
- *
- * **** As I write this, the nodes are /not/ allocated using the high-speed
- * memory pool. There are 20 hours left in the year; perhaps I can fix
- * this before 2002.
- *
- * Not every pointer in the %map array will point to a node. If the initial
- * number of elements in the deque is small, the /middle/ %map pointers will
- * be valid, and the ones at the edges will be unused. This same situation
- * will arise as the %map grows: available %map pointers, if any, will be on
- * the ends. As new nodes are created, only a subset of the %map's pointers
- * need to be copied "outward".
- *
- * Class invariants:
- * - For any nonsingular iterator i:
- * - i.node points to a member of the %map array. (Yes, you read that
- * correctly: i.node does not actually point to a node.) The member of
- * the %map array is what actually points to the node.
- * - i.first == *(i.node) (This points to the node (first Tp element).)
- * - i.last == i.first + node_size
- * - i.cur is a pointer in the range [i.first, i.last). NOTE:
- * the implication of this is that i.cur is always a dereferenceable
- * pointer, even if i is a past-the-end iterator.
- * - Start and Finish are always nonsingular iterators. NOTE: this means that
- * an empty deque must have one node, a deque with <N elements (where N is
- * the node buffer size) must have one node, a deque with N through (2N-1)
- * elements must have two nodes, etc.
- * - For every node other than start.node and finish.node, every element in
- * the node is an initialized object. If start.node == finish.node, then
- * [start.cur, finish.cur) are initialized objects, and the elements outside
- * that range are uninitialized storage. Otherwise, [start.cur, start.last)
- * and [finish.first, finish.cur) are initialized objects, and [start.first,
- * start.cur) and [finish.cur, finish.last) are uninitialized storage.
- * - [%map, %map + map_size) is a valid, non-empty range.
- * - [start.node, finish.node] is a valid range contained within
- * [%map, %map + map_size).
- * - A pointer in the range [%map, %map + map_size) points to an allocated
- * node if and only if the pointer is in the range
- * [start.node, finish.node].
- *
- * Here's the magic: nothing in deque is "aware" of the discontiguous
- * storage!
- *
- * The memory setup and layout occurs in the parent, _Base, and the iterator
- * class is entirely responsible for "leaping" from one node to the next.
- * All the implementation routines for deque itself work only through the
- * start and finish iterators. This keeps the routines simple and sane,
- * and we can use other standard algorithms as well.
- * @endif
- */
- template<typename _Tp, typename _Alloc = allocator<_Tp> >
- class deque : protected _Deque_base<_Tp, _Alloc>
- {
- // concept requirements
- __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
-
- typedef _Deque_base<_Tp, _Alloc> _Base;
-
- public:
- typedef _Tp value_type;
- typedef typename _Alloc::pointer pointer;
- typedef typename _Alloc::const_pointer const_pointer;
- typedef typename _Alloc::reference reference;
- typedef typename _Alloc::const_reference const_reference;
- typedef typename _Base::iterator iterator;
- typedef typename _Base::const_iterator const_iterator;
- typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
- typedef std::reverse_iterator<iterator> reverse_iterator;
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef typename _Base::allocator_type allocator_type;
-
- protected:
- typedef pointer* _Map_pointer;
-
- static size_t _S_buffer_size()
- { return __deque_buf_size(sizeof(_Tp)); }
-
- // Functions controlling memory layout, and nothing else.
- using _Base::_M_initialize_map;
- using _Base::_M_create_nodes;
- using _Base::_M_destroy_nodes;
- using _Base::_M_allocate_node;
- using _Base::_M_deallocate_node;
- using _Base::_M_allocate_map;
- using _Base::_M_deallocate_map;
-
- /** @if maint
- * A total of four data members accumulated down the heirarchy.
- * May be accessed via _M_impl.*
- * @endif
- */
- using _Base::_M_impl;
-
- public:
- // [23.2.1.1] construct/copy/destroy
- // (assign() and get_allocator() are also listed in this section)
- /**
- * @brief Default constructor creates no elements.
- */
- explicit
- deque(const allocator_type& __a = allocator_type())
- : _Base(__a, 0) {}
-
- /**
- * @brief Create a %deque with copies of an exemplar element.
- * @param n The number of elements to initially create.
- * @param value An element to copy.
- *
- * This constructor fills the %deque with @a n copies of @a value.
- */
- deque(size_type __n, const value_type& __value,
- const allocator_type& __a = allocator_type())
- : _Base(__a, __n)
- { _M_fill_initialize(__value); }
-
- /**
- * @brief Create a %deque with default elements.
- * @param n The number of elements to initially create.
- *
- * This constructor fills the %deque with @a n copies of a
- * default-constructed element.
- */
- explicit
- deque(size_type __n)
- : _Base(allocator_type(), __n)
- { _M_fill_initialize(value_type()); }
-
- /**
- * @brief %Deque copy constructor.
- * @param x A %deque of identical element and allocator types.
- *
- * The newly-created %deque uses a copy of the allocation object used
- * by @a x.
- */
- deque(const deque& __x)
- : _Base(__x.get_allocator(), __x.size())
- { std::uninitialized_copy(__x.begin(), __x.end(), this->_M_impl._M_start); }
-
- /**
- * @brief Builds a %deque from a range.
- * @param first An input iterator.
- * @param last An input iterator.
- *
- * Create a %deque consisting of copies of the elements from [first,
- * last).
- *
- * If the iterators are forward, bidirectional, or random-access, then
- * this will call the elements' copy constructor N times (where N is
- * distance(first,last)) and do no memory reallocation. But if only
- * input iterators are used, then this will do at most 2N calls to the
- * copy constructor, and logN memory reallocations.
- */
- template<typename _InputIterator>
- deque(_InputIterator __first, _InputIterator __last,
- const allocator_type& __a = allocator_type())
- : _Base(__a)
- {
- // Check whether it's an integral type. If so, it's not an iterator.
- typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
- _M_initialize_dispatch(__first, __last, _Integral());
- }
-
- /**
- * The dtor only erases the elements, and note that if the elements
- * themselves are pointers, the pointed-to memory is not touched in any
- * way. Managing the pointer is the user's responsibilty.
- */
- ~deque()
- { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish); }
-
- /**
- * @brief %Deque assignment operator.
- * @param x A %deque of identical element and allocator types.
- *
- * All the elements of @a x are copied, but unlike the copy constructor,
- * the allocator object is not copied.
- */
- deque&
- operator=(const deque& __x);
-
- /**
- * @brief Assigns a given value to a %deque.
- * @param n Number of elements to be assigned.
- * @param val Value to be assigned.
- *
- * This function fills a %deque with @a n copies of the given value.
- * Note that the assignment completely changes the %deque and that the
- * resulting %deque's size is the same as the number of elements assigned.
- * Old data may be lost.
- */
- void
- assign(size_type __n, const value_type& __val)
- { _M_fill_assign(__n, __val); }
-
- /**
- * @brief Assigns a range to a %deque.
- * @param first An input iterator.
- * @param last An input iterator.
- *
- * This function fills a %deque with copies of the elements in the
- * range [first,last).
- *
- * Note that the assignment completely changes the %deque and that the
- * resulting %deque's size is the same as the number of elements
- * assigned. Old data may be lost.
- */
- template<typename _InputIterator>
- void
- assign(_InputIterator __first, _InputIterator __last)
- {
- typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
- _M_assign_dispatch(__first, __last, _Integral());
- }
-
- /// Get a copy of the memory allocation object.
- allocator_type
- get_allocator() const
- { return _Base::get_allocator(); }
-
- // iterators
- /**
- * Returns a read/write iterator that points to the first element in the
- * %deque. Iteration is done in ordinary element order.
- */
- iterator
- begin()
- { return this->_M_impl._M_start; }
-
- /**
- * Returns a read-only (constant) iterator that points to the first
- * element in the %deque. Iteration is done in ordinary element order.
- */
- const_iterator
- begin() const
- { return this->_M_impl._M_start; }
-
- /**
- * Returns a read/write iterator that points one past the last element in
- * the %deque. Iteration is done in ordinary element order.
- */
- iterator
- end()
- { return this->_M_impl._M_finish; }
-
- /**
- * Returns a read-only (constant) iterator that points one past the last
- * element in the %deque. Iteration is done in ordinary element order.
- */
- const_iterator
- end() const
- { return this->_M_impl._M_finish; }
-
- /**
- * Returns a read/write reverse iterator that points to the last element
- * in the %deque. Iteration is done in reverse element order.
- */
- reverse_iterator
- rbegin()
- { return reverse_iterator(this->_M_impl._M_finish); }
-
- /**
- * Returns a read-only (constant) reverse iterator that points to the
- * last element in the %deque. Iteration is done in reverse element
- * order.
- */
- const_reverse_iterator
- rbegin() const
- { return const_reverse_iterator(this->_M_impl._M_finish); }
-
- /**
- * Returns a read/write reverse iterator that points to one before the
- * first element in the %deque. Iteration is done in reverse element
- * order.
- */
- reverse_iterator
- rend() { return reverse_iterator(this->_M_impl._M_start); }
-
- /**
- * Returns a read-only (constant) reverse iterator that points to one
- * before the first element in the %deque. Iteration is done in reverse
- * element order.
- */
- const_reverse_iterator
- rend() const
- { return const_reverse_iterator(this->_M_impl._M_start); }
-
- // [23.2.1.2] capacity
- /** Returns the number of elements in the %deque. */
- size_type
- size() const
- { return this->_M_impl._M_finish - this->_M_impl._M_start; }
-
- /** Returns the size() of the largest possible %deque. */
- size_type
- max_size() const
- { return size_type(-1); }
-
- /**
- * @brief Resizes the %deque to the specified number of elements.
- * @param new_size Number of elements the %deque should contain.
- * @param x Data with which new elements should be populated.
- *
- * This function will %resize the %deque to the specified number of
- * elements. If the number is smaller than the %deque's current size the
- * %deque is truncated, otherwise the %deque is extended and new elements
- * are populated with given data.
- */
- void
- resize(size_type __new_size, const value_type& __x)
- {
- const size_type __len = size();
- if (__new_size < __len)
- erase(this->_M_impl._M_start + __new_size, this->_M_impl._M_finish);
- else
- insert(this->_M_impl._M_finish, __new_size - __len, __x);
- }
-
- /**
- * @brief Resizes the %deque to the specified number of elements.
- * @param new_size Number of elements the %deque should contain.
- *
- * This function will resize the %deque to the specified number of
- * elements. If the number is smaller than the %deque's current size the
- * %deque is truncated, otherwise the %deque is extended and new elements
- * are default-constructed.
- */
- void
- resize(size_type new_size)
- { resize(new_size, value_type()); }
-
- /**
- * Returns true if the %deque is empty. (Thus begin() would equal end().)
- */
- bool
- empty() const
- { return this->_M_impl._M_finish == this->_M_impl._M_start; }
-
- // element access
- /**
- * @brief Subscript access to the data contained in the %deque.
- * @param n The index of the element for which data should be accessed.
- * @return Read/write reference to data.
- *
- * This operator allows for easy, array-style, data access.
- * Note that data access with this operator is unchecked and out_of_range
- * lookups are not defined. (For checked lookups see at().)
- */
- reference
- operator[](size_type __n)
- { return this->_M_impl._M_start[difference_type(__n)]; }
-
- /**
- * @brief Subscript access to the data contained in the %deque.
- * @param n The index of the element for which data should be accessed.
- * @return Read-only (constant) reference to data.
- *
- * This operator allows for easy, array-style, data access.
- * Note that data access with this operator is unchecked and out_of_range
- * lookups are not defined. (For checked lookups see at().)
- */
- const_reference
- operator[](size_type __n) const
- { return this->_M_impl._M_start[difference_type(__n)]; }
-
- protected:
- /// @if maint Safety check used only from at(). @endif
- void
- _M_range_check(size_type __n) const
- {
- if (__n >= this->size())
- __throw_out_of_range(__N("deque::_M_range_check"));
- }
-
- public:
- /**
- * @brief Provides access to the data contained in the %deque.
- * @param n The index of the element for which data should be accessed.
- * @return Read/write reference to data.
- * @throw std::out_of_range If @a n is an invalid index.
- *
- * This function provides for safer data access. The parameter is first
- * checked that it is in the range of the deque. The function throws
- * out_of_range if the check fails.
- */
- reference
- at(size_type __n)
- { _M_range_check(__n); return (*this)[__n]; }
-
- /**
- * @brief Provides access to the data contained in the %deque.
- * @param n The index of the element for which data should be accessed.
- * @return Read-only (constant) reference to data.
- * @throw std::out_of_range If @a n is an invalid index.
- *
- * This function provides for safer data access. The parameter is first
- * checked that it is in the range of the deque. The function throws
- * out_of_range if the check fails.
- */
- const_reference
- at(size_type __n) const
- {
- _M_range_check(__n);
- return (*this)[__n];
- }
-
- /**
- * Returns a read/write reference to the data at the first element of the
- * %deque.
- */
- reference
- front()
- { return *this->_M_impl._M_start; }
-
- /**
- * Returns a read-only (constant) reference to the data at the first
- * element of the %deque.
- */
- const_reference
- front() const
- { return *this->_M_impl._M_start; }
-
- /**
- * Returns a read/write reference to the data at the last element of the
- * %deque.
- */
- reference
- back()
- {
- iterator __tmp = this->_M_impl._M_finish;
- --__tmp;
- return *__tmp;
- }
-
- /**
- * Returns a read-only (constant) reference to the data at the last
- * element of the %deque.
- */
- const_reference
- back() const
- {
- const_iterator __tmp = this->_M_impl._M_finish;
- --__tmp;
- return *__tmp;
- }
-
- // [23.2.1.2] modifiers
- /**
- * @brief Add data to the front of the %deque.
- * @param x Data to be added.
- *
- * This is a typical stack operation. The function creates an element at
- * the front of the %deque and assigns the given data to it. Due to the
- * nature of a %deque this operation can be done in constant time.
- */
- void
- push_front(const value_type& __x)
- {
- if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
- {
- std::_Construct(this->_M_impl._M_start._M_cur - 1, __x);
- --this->_M_impl._M_start._M_cur;
- }
- else
- _M_push_front_aux(__x);
- }
-
- /**
- * @brief Add data to the end of the %deque.
- * @param x Data to be added.
- *
- * This is a typical stack operation. The function creates an element at
- * the end of the %deque and assigns the given data to it. Due to the
- * nature of a %deque this operation can be done in constant time.
- */
- void
- push_back(const value_type& __x)
- {
- if (this->_M_impl._M_finish._M_cur != this->_M_impl._M_finish._M_last - 1)
- {
- std::_Construct(this->_M_impl._M_finish._M_cur, __x);
- ++this->_M_impl._M_finish._M_cur;
- }
- else
- _M_push_back_aux(__x);
- }
-
- /**
- * @brief Removes first element.
- *
- * This is a typical stack operation. It shrinks the %deque by one.
- *
- * Note that no data is returned, and if the first element's data is
- * needed, it should be retrieved before pop_front() is called.
- */
- void
- pop_front()
- {
- if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_last - 1)
- {
- std::_Destroy(this->_M_impl._M_start._M_cur);
- ++this->_M_impl._M_start._M_cur;
- }
- else
- _M_pop_front_aux();
- }
-
- /**
- * @brief Removes last element.
- *
- * This is a typical stack operation. It shrinks the %deque by one.
- *
- * Note that no data is returned, and if the last element's data is
- * needed, it should be retrieved before pop_back() is called.
- */
- void
- pop_back()
- {
- if (this->_M_impl._M_finish._M_cur != this->_M_impl._M_finish._M_first)
- {
- --this->_M_impl._M_finish._M_cur;
- std::_Destroy(this->_M_impl._M_finish._M_cur);
- }
- else
- _M_pop_back_aux();
- }
-
- /**
- * @brief Inserts given value into %deque before specified iterator.
- * @param position An iterator into the %deque.
- * @param x Data to be inserted.
- * @return An iterator that points to the inserted data.
- *
- * This function will insert a copy of the given value before the
- * specified location.
- */
- iterator
- insert(iterator position, const value_type& __x);
-
- /**
- * @brief Inserts a number of copies of given data into the %deque.
- * @param position An iterator into the %deque.
- * @param n Number of elements to be inserted.
- * @param x Data to be inserted.
- *
- * This function will insert a specified number of copies of the given
- * data before the location specified by @a position.
- */
- void
- insert(iterator __position, size_type __n, const value_type& __x)
- { _M_fill_insert(__position, __n, __x); }
-
- /**
- * @brief Inserts a range into the %deque.
- * @param position An iterator into the %deque.
- * @param first An input iterator.
- * @param last An input iterator.
- *
- * This function will insert copies of the data in the range [first,last)
- * into the %deque before the location specified by @a pos. This is
- * known as "range insert."
- */
- template<typename _InputIterator>
- void
- insert(iterator __position, _InputIterator __first,
- _InputIterator __last)
- {
- // Check whether it's an integral type. If so, it's not an iterator.
- typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
- _M_insert_dispatch(__position, __first, __last, _Integral());
- }
-
- /**
- * @brief Remove element at given position.
- * @param position Iterator pointing to element to be erased.
- * @return An iterator pointing to the next element (or end()).
- *
- * This function will erase the element at the given position and thus
- * shorten the %deque by one.
- *
- * The user is cautioned that
- * this function only erases the element, and that if the element is
- * itself a pointer, the pointed-to memory is not touched in any way.
- * Managing the pointer is the user's responsibilty.
- */
- iterator
- erase(iterator __position);
-
- /**
- * @brief Remove a range of elements.
- * @param first Iterator pointing to the first element to be erased.
- * @param last Iterator pointing to one past the last element to be
- * erased.
- * @return An iterator pointing to the element pointed to by @a last
- * prior to erasing (or end()).
- *
- * This function will erase the elements in the range [first,last) and
- * shorten the %deque accordingly.
- *
- * The user is cautioned that
- * this function only erases the elements, and that if the elements
- * themselves are pointers, the pointed-to memory is not touched in any
- * way. Managing the pointer is the user's responsibilty.
- */
- iterator
- erase(iterator __first, iterator __last);
-
- /**
- * @brief Swaps data with another %deque.
- * @param x A %deque of the same element and allocator types.
- *
- * This exchanges the elements between two deques in constant time.
- * (Four pointers, so it should be quite fast.)
- * Note that the global std::swap() function is specialized such that
- * std::swap(d1,d2) will feed to this function.
- */
- void
- swap(deque& __x)
- {
- std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
- std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
- std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
- std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
- }
-
- /**
- * Erases all the elements. Note that this function only erases the
- * elements, and that if the elements themselves are pointers, the
- * pointed-to memory is not touched in any way. Managing the pointer is
- * the user's responsibilty.
- */
- void clear();
-
- protected:
- // Internal constructor functions follow.
-
- // called by the range constructor to implement [23.1.1]/9
- template<typename _Integer>
- void
- _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
- {
- _M_initialize_map(__n);
- _M_fill_initialize(__x);
- }
-
- // called by the range constructor to implement [23.1.1]/9
- template<typename _InputIterator>
- void
- _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
- __false_type)
- {
- typedef typename iterator_traits<_InputIterator>::iterator_category
- _IterCategory;
- _M_range_initialize(__first, __last, _IterCategory());
- }
-
- // called by the second initialize_dispatch above
- //@{
- /**
- * @if maint
- * @brief Fills the deque with whatever is in [first,last).
- * @param first An input iterator.
- * @param last An input iterator.
- * @return Nothing.
- *
- * If the iterators are actually forward iterators (or better), then the
- * memory layout can be done all at once. Else we move forward using
- * push_back on each value from the iterator.
- * @endif
- */
- template<typename _InputIterator>
- void
- _M_range_initialize(_InputIterator __first, _InputIterator __last,
- input_iterator_tag);
-
- // called by the second initialize_dispatch above
- template<typename _ForwardIterator>
- void
- _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
- forward_iterator_tag);
- //@}
-
- /**
- * @if maint
- * @brief Fills the %deque with copies of value.
- * @param value Initial value.
- * @return Nothing.
- * @pre _M_start and _M_finish have already been initialized, but none of
- * the %deque's elements have yet been constructed.
- *
- * This function is called only when the user provides an explicit size
- * (with or without an explicit exemplar value).
- * @endif
- */
- void
- _M_fill_initialize(const value_type& __value);
-
- // Internal assign functions follow. The *_aux functions do the actual
- // assignment work for the range versions.
-
- // called by the range assign to implement [23.1.1]/9
- template<typename _Integer>
- void
- _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
- {
- _M_fill_assign(static_cast<size_type>(__n),
- static_cast<value_type>(__val));
- }
-
- // called by the range assign to implement [23.1.1]/9
- template<typename _InputIterator>
- void
- _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
- __false_type)
- {
- typedef typename iterator_traits<_InputIterator>::iterator_category
- _IterCategory;
- _M_assign_aux(__first, __last, _IterCategory());
- }
-
- // called by the second assign_dispatch above
- template<typename _InputIterator>
- void
- _M_assign_aux(_InputIterator __first, _InputIterator __last,
- input_iterator_tag);
-
- // called by the second assign_dispatch above
- template<typename _ForwardIterator>
- void
- _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
- forward_iterator_tag)
- {
- const size_type __len = std::distance(__first, __last);
- if (__len > size())
- {
- _ForwardIterator __mid = __first;
- std::advance(__mid, size());
- std::copy(__first, __mid, begin());
- insert(end(), __mid, __last);
- }
- else
- erase(std::copy(__first, __last, begin()), end());
- }
-
- // Called by assign(n,t), and the range assign when it turns out to be the
- // same thing.
- void
- _M_fill_assign(size_type __n, const value_type& __val)
- {
- if (__n > size())
- {
- std::fill(begin(), end(), __val);
- insert(end(), __n - size(), __val);
- }
- else
- {
- erase(begin() + __n, end());
- std::fill(begin(), end(), __val);
- }
- }
-
- //@{
- /**
- * @if maint
- * @brief Helper functions for push_* and pop_*.
- * @endif
- */
- void _M_push_back_aux(const value_type&);
- void _M_push_front_aux(const value_type&);
- void _M_pop_back_aux();
- void _M_pop_front_aux();
- //@}
-
- // Internal insert functions follow. The *_aux functions do the actual
- // insertion work when all shortcuts fail.
-
- // called by the range insert to implement [23.1.1]/9
- template<typename _Integer>
- void
- _M_insert_dispatch(iterator __pos,
- _Integer __n, _Integer __x, __true_type)
- {
- _M_fill_insert(__pos, static_cast<size_type>(__n),
- static_cast<value_type>(__x));
- }
-
- // called by the range insert to implement [23.1.1]/9
- template<typename _InputIterator>
- void
- _M_insert_dispatch(iterator __pos,
- _InputIterator __first, _InputIterator __last,
- __false_type)
- {
- typedef typename iterator_traits<_InputIterator>::iterator_category
- _IterCategory;
- _M_range_insert_aux(__pos, __first, __last, _IterCategory());
- }
-
- // called by the second insert_dispatch above
- template<typename _InputIterator>
- void
- _M_range_insert_aux(iterator __pos, _InputIterator __first,
- _InputIterator __last, input_iterator_tag);
-
- // called by the second insert_dispatch above
- template<typename _ForwardIterator>
- void
- _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
- _ForwardIterator __last, forward_iterator_tag);
-
- // Called by insert(p,n,x), and the range insert when it turns out to be
- // the same thing. Can use fill functions in optimal situations,
- // otherwise passes off to insert_aux(p,n,x).
- void
- _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
-
- // called by insert(p,x)
- iterator
- _M_insert_aux(iterator __pos, const value_type& __x);
-
- // called by insert(p,n,x) via fill_insert
- void
- _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
-
- // called by range_insert_aux for forward iterators
- template<typename _ForwardIterator>
- void
- _M_insert_aux(iterator __pos,
- _ForwardIterator __first, _ForwardIterator __last,
- size_type __n);
-
- //@{
- /**
- * @if maint
- * @brief Memory-handling helpers for the previous internal insert
- * functions.
- * @endif
- */
- iterator
- _M_reserve_elements_at_front(size_type __n)
- {
- const size_type __vacancies = this->_M_impl._M_start._M_cur
- - this->_M_impl._M_start._M_first;
- if (__n > __vacancies)
- _M_new_elements_at_front(__n - __vacancies);
- return this->_M_impl._M_start - difference_type(__n);
- }
-
- iterator
- _M_reserve_elements_at_back(size_type __n)
- {
- const size_type __vacancies = (this->_M_impl._M_finish._M_last
- - this->_M_impl._M_finish._M_cur) - 1;
- if (__n > __vacancies)
- _M_new_elements_at_back(__n - __vacancies);
- return this->_M_impl._M_finish + difference_type(__n);
- }
-
- void
- _M_new_elements_at_front(size_type __new_elements);
-
- void
- _M_new_elements_at_back(size_type __new_elements);
- //@}
-
-
- //@{
- /**
- * @if maint
- * @brief Memory-handling helpers for the major %map.
- *
- * Makes sure the _M_map has space for new nodes. Does not actually add
- * the nodes. Can invalidate _M_map pointers. (And consequently, %deque
- * iterators.)
- * @endif
- */
- void
- _M_reserve_map_at_back (size_type __nodes_to_add = 1)
- {
- if (__nodes_to_add + 1 > this->_M_impl._M_map_size
- - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
- _M_reallocate_map(__nodes_to_add, false);
- }
-
- void
- _M_reserve_map_at_front (size_type __nodes_to_add = 1)
- {
- if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node - this->_M_impl._M_map))
- _M_reallocate_map(__nodes_to_add, true);
- }
-
- void
- _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
- //@}
- };
-
-
- /**
- * @brief Deque equality comparison.
- * @param x A %deque.
- * @param y A %deque of the same type as @a x.
- * @return True iff the size and elements of the deques are equal.
- *
- * This is an equivalence relation. It is linear in the size of the
- * deques. Deques are considered equivalent if their sizes are equal,
- * and if corresponding elements compare equal.
- */
- template<typename _Tp, typename _Alloc>
- inline bool
- operator==(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y)
- { return __x.size() == __y.size()
- && std::equal(__x.begin(), __x.end(), __y.begin()); }
-
- /**
- * @brief Deque ordering relation.
- * @param x A %deque.
- * @param y A %deque of the same type as @a x.
- * @return True iff @a x is lexicographically less than @a y.
- *
- * This is a total ordering relation. It is linear in the size of the
- * deques. The elements must be comparable with @c <.
- *
- * See std::lexicographical_compare() for how the determination is made.
- */
- template<typename _Tp, typename _Alloc>
- inline bool
- operator<(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y)
- { return lexicographical_compare(__x.begin(), __x.end(),
- __y.begin(), __y.end()); }
-
- /// Based on operator==
- template<typename _Tp, typename _Alloc>
- inline bool
- operator!=(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y)
- { return !(__x == __y); }
-
- /// Based on operator<
- template<typename _Tp, typename _Alloc>
- inline bool
- operator>(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y)
- { return __y < __x; }
-
- /// Based on operator<
- template<typename _Tp, typename _Alloc>
- inline bool
- operator<=(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y)
- { return !(__y < __x); }
-
- /// Based on operator<
- template<typename _Tp, typename _Alloc>
- inline bool
- operator>=(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y)
- { return !(__x < __y); }
-
- /// See std::deque::swap().
- template<typename _Tp, typename _Alloc>
- inline void
- swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
- { __x.swap(__y); }
-} // namespace std
-
-#endif /* _DEQUE_H */