summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_list.h
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_list.h')
-rw-r--r--chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_list.h1255
1 files changed, 0 insertions, 1255 deletions
diff --git a/chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_list.h b/chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_list.h
deleted file mode 100644
index afb118bb31e..00000000000
--- a/chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_list.h
+++ /dev/null
@@ -1,1255 +0,0 @@
-// List implementation -*- C++ -*-
-
-// Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
-//
-// This file is part of the GNU ISO C++ Library. This library is free
-// software; you can redistribute it and/or modify it under the
-// terms of the GNU General Public License as published by the
-// Free Software Foundation; either version 2, or (at your option)
-// any later version.
-
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-
-// You should have received a copy of the GNU General Public License along
-// with this library; see the file COPYING. If not, write to the Free
-// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
-// USA.
-
-// As a special exception, you may use this file as part of a free software
-// library without restriction. Specifically, if other files instantiate
-// templates or use macros or inline functions from this file, or you compile
-// this file and link it with other files to produce an executable, this
-// file does not by itself cause the resulting executable to be covered by
-// the GNU General Public License. This exception does not however
-// invalidate any other reasons why the executable file might be covered by
-// the GNU General Public License.
-
-/*
- *
- * Copyright (c) 1994
- * Hewlett-Packard Company
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Hewlett-Packard Company makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- *
- *
- * Copyright (c) 1996,1997
- * Silicon Graphics Computer Systems, Inc.
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Silicon Graphics makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- */
-
-/** @file stl_list.h
- * This is an internal header file, included by other library headers.
- * You should not attempt to use it directly.
- */
-
-#ifndef _LIST_H
-#define _LIST_H 1
-
-#include <bits/concept_check.h>
-
-namespace _GLIBCXX_STD
-{
- // Supporting structures are split into common and templated types; the
- // latter publicly inherits from the former in an effort to reduce code
- // duplication. This results in some "needless" static_cast'ing later on,
- // but it's all safe downcasting.
-
- /// @if maint Common part of a node in the %list. @endif
- struct _List_node_base
- {
- _List_node_base* _M_next; ///< Self-explanatory
- _List_node_base* _M_prev; ///< Self-explanatory
-
- static void
- swap(_List_node_base& __x, _List_node_base& __y);
-
- void
- transfer(_List_node_base * const __first,
- _List_node_base * const __last);
-
- void
- reverse();
-
- void
- hook(_List_node_base * const __position);
-
- void
- unhook();
- };
-
- /// @if maint An actual node in the %list. @endif
- template<typename _Tp>
- struct _List_node : public _List_node_base
- {
- _Tp _M_data; ///< User's data.
- };
-
- /**
- * @brief A list::iterator.
- *
- * @if maint
- * All the functions are op overloads.
- * @endif
- */
- template<typename _Tp>
- struct _List_iterator
- {
- typedef _List_iterator<_Tp> _Self;
- typedef _List_node<_Tp> _Node;
-
- typedef ptrdiff_t difference_type;
- typedef bidirectional_iterator_tag iterator_category;
- typedef _Tp value_type;
- typedef _Tp* pointer;
- typedef _Tp& reference;
-
- _List_iterator()
- : _M_node() { }
-
- _List_iterator(_List_node_base* __x)
- : _M_node(__x) { }
-
- // Must downcast from List_node_base to _List_node to get to _M_data.
- reference
- operator*() const
- { return static_cast<_Node*>(_M_node)->_M_data; }
-
- pointer
- operator->() const
- { return &static_cast<_Node*>(_M_node)->_M_data; }
-
- _Self&
- operator++()
- {
- _M_node = _M_node->_M_next;
- return *this;
- }
-
- _Self
- operator++(int)
- {
- _Self __tmp = *this;
- _M_node = _M_node->_M_next;
- return __tmp;
- }
-
- _Self&
- operator--()
- {
- _M_node = _M_node->_M_prev;
- return *this;
- }
-
- _Self
- operator--(int)
- {
- _Self __tmp = *this;
- _M_node = _M_node->_M_prev;
- return __tmp;
- }
-
- bool
- operator==(const _Self& __x) const
- { return _M_node == __x._M_node; }
-
- bool
- operator!=(const _Self& __x) const
- { return _M_node != __x._M_node; }
-
- // The only member points to the %list element.
- _List_node_base* _M_node;
- };
-
- /**
- * @brief A list::const_iterator.
- *
- * @if maint
- * All the functions are op overloads.
- * @endif
- */
- template<typename _Tp>
- struct _List_const_iterator
- {
- typedef _List_const_iterator<_Tp> _Self;
- typedef const _List_node<_Tp> _Node;
- typedef _List_iterator<_Tp> iterator;
-
- typedef ptrdiff_t difference_type;
- typedef bidirectional_iterator_tag iterator_category;
- typedef _Tp value_type;
- typedef const _Tp* pointer;
- typedef const _Tp& reference;
-
- _List_const_iterator()
- : _M_node() { }
-
- _List_const_iterator(const _List_node_base* __x)
- : _M_node(__x) { }
-
- _List_const_iterator(const iterator& __x)
- : _M_node(__x._M_node) { }
-
- // Must downcast from List_node_base to _List_node to get to
- // _M_data.
- reference
- operator*() const
- { return static_cast<_Node*>(_M_node)->_M_data; }
-
- pointer
- operator->() const
- { return &static_cast<_Node*>(_M_node)->_M_data; }
-
- _Self&
- operator++()
- {
- _M_node = _M_node->_M_next;
- return *this;
- }
-
- _Self
- operator++(int)
- {
- _Self __tmp = *this;
- _M_node = _M_node->_M_next;
- return __tmp;
- }
-
- _Self&
- operator--()
- {
- _M_node = _M_node->_M_prev;
- return *this;
- }
-
- _Self
- operator--(int)
- {
- _Self __tmp = *this;
- _M_node = _M_node->_M_prev;
- return __tmp;
- }
-
- bool
- operator==(const _Self& __x) const
- { return _M_node == __x._M_node; }
-
- bool
- operator!=(const _Self& __x) const
- { return _M_node != __x._M_node; }
-
- // The only member points to the %list element.
- const _List_node_base* _M_node;
- };
-
- template<typename _Val>
- inline bool
- operator==(const _List_iterator<_Val>& __x,
- const _List_const_iterator<_Val>& __y)
- { return __x._M_node == __y._M_node; }
-
- template<typename _Val>
- inline bool
- operator!=(const _List_iterator<_Val>& __x,
- const _List_const_iterator<_Val>& __y)
- { return __x._M_node != __y._M_node; }
-
-
- /**
- * @if maint
- * See bits/stl_deque.h's _Deque_base for an explanation.
- * @endif
- */
- template<typename _Tp, typename _Alloc>
- class _List_base
- {
- protected:
- // NOTA BENE
- // The stored instance is not actually of "allocator_type"'s
- // type. Instead we rebind the type to
- // Allocator<List_node<Tp>>, which according to [20.1.5]/4
- // should probably be the same. List_node<Tp> is not the same
- // size as Tp (it's two pointers larger), and specializations on
- // Tp may go unused because List_node<Tp> is being bound
- // instead.
- //
- // We put this to the test in the constructors and in
- // get_allocator, where we use conversions between
- // allocator_type and _Node_Alloc_type. The conversion is
- // required by table 32 in [20.1.5].
- typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
-
- _Node_Alloc_type;
-
- struct _List_impl
- : public _Node_Alloc_type {
- _List_node_base _M_node;
- _List_impl (const _Node_Alloc_type& __a)
- : _Node_Alloc_type(__a)
- { }
- };
-
- _List_impl _M_impl;
-
- _List_node<_Tp>*
- _M_get_node()
- { return _M_impl._Node_Alloc_type::allocate(1); }
-
- void
- _M_put_node(_List_node<_Tp>* __p)
- { _M_impl._Node_Alloc_type::deallocate(__p, 1); }
-
- public:
- typedef _Alloc allocator_type;
-
- allocator_type
- get_allocator() const
- { return allocator_type(*static_cast<const _Node_Alloc_type*>(&this->_M_impl)); }
-
- _List_base(const allocator_type& __a)
- : _M_impl(__a)
- { _M_init(); }
-
- // This is what actually destroys the list.
- ~_List_base()
- { _M_clear(); }
-
- void
- _M_clear();
-
- void
- _M_init()
- {
- this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
- this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
- }
- };
-
- /**
- * @brief A standard container with linear time access to elements,
- * and fixed time insertion/deletion at any point in the sequence.
- *
- * @ingroup Containers
- * @ingroup Sequences
- *
- * Meets the requirements of a <a href="tables.html#65">container</a>, a
- * <a href="tables.html#66">reversible container</a>, and a
- * <a href="tables.html#67">sequence</a>, including the
- * <a href="tables.html#68">optional sequence requirements</a> with the
- * %exception of @c at and @c operator[].
- *
- * This is a @e doubly @e linked %list. Traversal up and down the
- * %list requires linear time, but adding and removing elements (or
- * @e nodes) is done in constant time, regardless of where the
- * change takes place. Unlike std::vector and std::deque,
- * random-access iterators are not provided, so subscripting ( @c
- * [] ) access is not allowed. For algorithms which only need
- * sequential access, this lack makes no difference.
- *
- * Also unlike the other standard containers, std::list provides
- * specialized algorithms %unique to linked lists, such as
- * splicing, sorting, and in-place reversal.
- *
- * @if maint
- * A couple points on memory allocation for list<Tp>:
- *
- * First, we never actually allocate a Tp, we allocate
- * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
- * that after elements from %list<X,Alloc1> are spliced into
- * %list<X,Alloc2>, destroying the memory of the second %list is a
- * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
- *
- * Second, a %list conceptually represented as
- * @code
- * A <---> B <---> C <---> D
- * @endcode
- * is actually circular; a link exists between A and D. The %list
- * class holds (as its only data member) a private list::iterator
- * pointing to @e D, not to @e A! To get to the head of the %list,
- * we start at the tail and move forward by one. When this member
- * iterator's next/previous pointers refer to itself, the %list is
- * %empty. @endif
- */
- template<typename _Tp, typename _Alloc = allocator<_Tp> >
- class list : protected _List_base<_Tp, _Alloc>
- {
- // concept requirements
- __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
-
- typedef _List_base<_Tp, _Alloc> _Base;
-
- public:
- typedef _Tp value_type;
- typedef typename _Alloc::pointer pointer;
- typedef typename _Alloc::const_pointer const_pointer;
- typedef typename _Alloc::reference reference;
- typedef typename _Alloc::const_reference const_reference;
- typedef _List_iterator<_Tp> iterator;
- typedef _List_const_iterator<_Tp> const_iterator;
- typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
- typedef std::reverse_iterator<iterator> reverse_iterator;
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef typename _Base::allocator_type allocator_type;
-
- protected:
- // Note that pointers-to-_Node's can be ctor-converted to
- // iterator types.
- typedef _List_node<_Tp> _Node;
-
- /** @if maint
- * One data member plus two memory-handling functions. If the
- * _Alloc type requires separate instances, then one of those
- * will also be included, accumulated from the topmost parent.
- * @endif
- */
- using _Base::_M_impl;
- using _Base::_M_put_node;
- using _Base::_M_get_node;
-
- /**
- * @if maint
- * @param x An instance of user data.
- *
- * Allocates space for a new node and constructs a copy of @a x in it.
- * @endif
- */
- _Node*
- _M_create_node(const value_type& __x)
- {
- _Node* __p = this->_M_get_node();
- try
- {
- std::_Construct(&__p->_M_data, __x);
- }
- catch(...)
- {
- _M_put_node(__p);
- __throw_exception_again;
- }
- return __p;
- }
-
- /**
- * @if maint
- * Allocates space for a new node and default-constructs a new
- * instance of @c value_type in it.
- * @endif
- */
- _Node*
- _M_create_node()
- {
- _Node* __p = this->_M_get_node();
- try
- {
- std::_Construct(&__p->_M_data);
- }
- catch(...)
- {
- _M_put_node(__p);
- __throw_exception_again;
- }
- return __p;
- }
-
- public:
- // [23.2.2.1] construct/copy/destroy
- // (assign() and get_allocator() are also listed in this section)
- /**
- * @brief Default constructor creates no elements.
- */
- explicit
- list(const allocator_type& __a = allocator_type())
- : _Base(__a) { }
-
- /**
- * @brief Create a %list with copies of an exemplar element.
- * @param n The number of elements to initially create.
- * @param value An element to copy.
- *
- * This constructor fills the %list with @a n copies of @a value.
- */
- list(size_type __n, const value_type& __value,
- const allocator_type& __a = allocator_type())
- : _Base(__a)
- { this->insert(begin(), __n, __value); }
-
- /**
- * @brief Create a %list with default elements.
- * @param n The number of elements to initially create.
- *
- * This constructor fills the %list with @a n copies of a
- * default-constructed element.
- */
- explicit
- list(size_type __n)
- : _Base(allocator_type())
- { this->insert(begin(), __n, value_type()); }
-
- /**
- * @brief %List copy constructor.
- * @param x A %list of identical element and allocator types.
- *
- * The newly-created %list uses a copy of the allocation object used
- * by @a x.
- */
- list(const list& __x)
- : _Base(__x.get_allocator())
- { this->insert(begin(), __x.begin(), __x.end()); }
-
- /**
- * @brief Builds a %list from a range.
- * @param first An input iterator.
- * @param last An input iterator.
- *
- * Create a %list consisting of copies of the elements from
- * [@a first,@a last). This is linear in N (where N is
- * distance(@a first,@a last)).
- *
- * @if maint
- * We don't need any dispatching tricks here, because insert does all of
- * that anyway.
- * @endif
- */
- template<typename _InputIterator>
- list(_InputIterator __first, _InputIterator __last,
- const allocator_type& __a = allocator_type())
- : _Base(__a)
- { this->insert(begin(), __first, __last); }
-
- /**
- * No explicit dtor needed as the _Base dtor takes care of
- * things. The _Base dtor only erases the elements, and note
- * that if the elements themselves are pointers, the pointed-to
- * memory is not touched in any way. Managing the pointer is
- * the user's responsibilty.
- */
-
- /**
- * @brief %List assignment operator.
- * @param x A %list of identical element and allocator types.
- *
- * All the elements of @a x are copied, but unlike the copy
- * constructor, the allocator object is not copied.
- */
- list&
- operator=(const list& __x);
-
- /**
- * @brief Assigns a given value to a %list.
- * @param n Number of elements to be assigned.
- * @param val Value to be assigned.
- *
- * This function fills a %list with @a n copies of the given
- * value. Note that the assignment completely changes the %list
- * and that the resulting %list's size is the same as the number
- * of elements assigned. Old data may be lost.
- */
- void
- assign(size_type __n, const value_type& __val)
- { _M_fill_assign(__n, __val); }
-
- /**
- * @brief Assigns a range to a %list.
- * @param first An input iterator.
- * @param last An input iterator.
- *
- * This function fills a %list with copies of the elements in the
- * range [@a first,@a last).
- *
- * Note that the assignment completely changes the %list and
- * that the resulting %list's size is the same as the number of
- * elements assigned. Old data may be lost.
- */
- template<typename _InputIterator>
- void
- assign(_InputIterator __first, _InputIterator __last)
- {
- // Check whether it's an integral type. If so, it's not an iterator.
- typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
- _M_assign_dispatch(__first, __last, _Integral());
- }
-
- /// Get a copy of the memory allocation object.
- allocator_type
- get_allocator() const
- { return _Base::get_allocator(); }
-
- // iterators
- /**
- * Returns a read/write iterator that points to the first element in the
- * %list. Iteration is done in ordinary element order.
- */
- iterator
- begin()
- { return this->_M_impl._M_node._M_next; }
-
- /**
- * Returns a read-only (constant) iterator that points to the
- * first element in the %list. Iteration is done in ordinary
- * element order.
- */
- const_iterator
- begin() const
- { return this->_M_impl._M_node._M_next; }
-
- /**
- * Returns a read/write iterator that points one past the last
- * element in the %list. Iteration is done in ordinary element
- * order.
- */
- iterator
- end() { return &this->_M_impl._M_node; }
-
- /**
- * Returns a read-only (constant) iterator that points one past
- * the last element in the %list. Iteration is done in ordinary
- * element order.
- */
- const_iterator
- end() const
- { return &this->_M_impl._M_node; }
-
- /**
- * Returns a read/write reverse iterator that points to the last
- * element in the %list. Iteration is done in reverse element
- * order.
- */
- reverse_iterator
- rbegin()
- { return reverse_iterator(end()); }
-
- /**
- * Returns a read-only (constant) reverse iterator that points to
- * the last element in the %list. Iteration is done in reverse
- * element order.
- */
- const_reverse_iterator
- rbegin() const
- { return const_reverse_iterator(end()); }
-
- /**
- * Returns a read/write reverse iterator that points to one
- * before the first element in the %list. Iteration is done in
- * reverse element order.
- */
- reverse_iterator
- rend()
- { return reverse_iterator(begin()); }
-
- /**
- * Returns a read-only (constant) reverse iterator that points to one
- * before the first element in the %list. Iteration is done in reverse
- * element order.
- */
- const_reverse_iterator
- rend() const
- { return const_reverse_iterator(begin()); }
-
- // [23.2.2.2] capacity
- /**
- * Returns true if the %list is empty. (Thus begin() would equal
- * end().)
- */
- bool
- empty() const
- { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
-
- /** Returns the number of elements in the %list. */
- size_type
- size() const
- { return std::distance(begin(), end()); }
-
- /** Returns the size() of the largest possible %list. */
- size_type
- max_size() const
- { return size_type(-1); }
-
- /**
- * @brief Resizes the %list to the specified number of elements.
- * @param new_size Number of elements the %list should contain.
- * @param x Data with which new elements should be populated.
- *
- * This function will %resize the %list to the specified number
- * of elements. If the number is smaller than the %list's
- * current size the %list is truncated, otherwise the %list is
- * extended and new elements are populated with given data.
- */
- void
- resize(size_type __new_size, const value_type& __x);
-
- /**
- * @brief Resizes the %list to the specified number of elements.
- * @param new_size Number of elements the %list should contain.
- *
- * This function will resize the %list to the specified number of
- * elements. If the number is smaller than the %list's current
- * size the %list is truncated, otherwise the %list is extended
- * and new elements are default-constructed.
- */
- void
- resize(size_type __new_size)
- { this->resize(__new_size, value_type()); }
-
- // element access
- /**
- * Returns a read/write reference to the data at the first
- * element of the %list.
- */
- reference
- front()
- { return *begin(); }
-
- /**
- * Returns a read-only (constant) reference to the data at the first
- * element of the %list.
- */
- const_reference
- front() const
- { return *begin(); }
-
- /**
- * Returns a read/write reference to the data at the last element
- * of the %list.
- */
- reference
- back()
- { return *(--end()); }
-
- /**
- * Returns a read-only (constant) reference to the data at the last
- * element of the %list.
- */
- const_reference
- back() const
- { return *(--end()); }
-
- // [23.2.2.3] modifiers
- /**
- * @brief Add data to the front of the %list.
- * @param x Data to be added.
- *
- * This is a typical stack operation. The function creates an
- * element at the front of the %list and assigns the given data
- * to it. Due to the nature of a %list this operation can be
- * done in constant time, and does not invalidate iterators and
- * references.
- */
- void
- push_front(const value_type& __x)
- { this->_M_insert(begin(), __x); }
-
- /**
- * @brief Removes first element.
- *
- * This is a typical stack operation. It shrinks the %list by
- * one. Due to the nature of a %list this operation can be done
- * in constant time, and only invalidates iterators/references to
- * the element being removed.
- *
- * Note that no data is returned, and if the first element's data
- * is needed, it should be retrieved before pop_front() is
- * called.
- */
- void
- pop_front()
- { this->_M_erase(begin()); }
-
- /**
- * @brief Add data to the end of the %list.
- * @param x Data to be added.
- *
- * This is a typical stack operation. The function creates an
- * element at the end of the %list and assigns the given data to
- * it. Due to the nature of a %list this operation can be done
- * in constant time, and does not invalidate iterators and
- * references.
- */
- void
- push_back(const value_type& __x)
- { this->_M_insert(end(), __x); }
-
- /**
- * @brief Removes last element.
- *
- * This is a typical stack operation. It shrinks the %list by
- * one. Due to the nature of a %list this operation can be done
- * in constant time, and only invalidates iterators/references to
- * the element being removed.
- *
- * Note that no data is returned, and if the last element's data
- * is needed, it should be retrieved before pop_back() is called.
- */
- void
- pop_back()
- { this->_M_erase(this->_M_impl._M_node._M_prev); }
-
- /**
- * @brief Inserts given value into %list before specified iterator.
- * @param position An iterator into the %list.
- * @param x Data to be inserted.
- * @return An iterator that points to the inserted data.
- *
- * This function will insert a copy of the given value before
- * the specified location. Due to the nature of a %list this
- * operation can be done in constant time, and does not
- * invalidate iterators and references.
- */
- iterator
- insert(iterator __position, const value_type& __x);
-
- /**
- * @brief Inserts a number of copies of given data into the %list.
- * @param position An iterator into the %list.
- * @param n Number of elements to be inserted.
- * @param x Data to be inserted.
- *
- * This function will insert a specified number of copies of the
- * given data before the location specified by @a position.
- *
- * Due to the nature of a %list this operation can be done in
- * constant time, and does not invalidate iterators and
- * references.
- */
- void
- insert(iterator __position, size_type __n, const value_type& __x)
- { _M_fill_insert(__position, __n, __x); }
-
- /**
- * @brief Inserts a range into the %list.
- * @param position An iterator into the %list.
- * @param first An input iterator.
- * @param last An input iterator.
- *
- * This function will insert copies of the data in the range [@a
- * first,@a last) into the %list before the location specified by
- * @a position.
- *
- * Due to the nature of a %list this operation can be done in
- * constant time, and does not invalidate iterators and
- * references.
- */
- template<typename _InputIterator>
- void
- insert(iterator __position, _InputIterator __first,
- _InputIterator __last)
- {
- // Check whether it's an integral type. If so, it's not an iterator.
- typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
- _M_insert_dispatch(__position, __first, __last, _Integral());
- }
-
- /**
- * @brief Remove element at given position.
- * @param position Iterator pointing to element to be erased.
- * @return An iterator pointing to the next element (or end()).
- *
- * This function will erase the element at the given position and thus
- * shorten the %list by one.
- *
- * Due to the nature of a %list this operation can be done in
- * constant time, and only invalidates iterators/references to
- * the element being removed. The user is also cautioned that
- * this function only erases the element, and that if the element
- * is itself a pointer, the pointed-to memory is not touched in
- * any way. Managing the pointer is the user's responsibilty.
- */
- iterator
- erase(iterator __position);
-
- /**
- * @brief Remove a range of elements.
- * @param first Iterator pointing to the first element to be erased.
- * @param last Iterator pointing to one past the last element to be
- * erased.
- * @return An iterator pointing to the element pointed to by @a last
- * prior to erasing (or end()).
- *
- * This function will erase the elements in the range @a
- * [first,last) and shorten the %list accordingly.
- *
- * Due to the nature of a %list this operation can be done in
- * constant time, and only invalidates iterators/references to
- * the element being removed. The user is also cautioned that
- * this function only erases the elements, and that if the
- * elements themselves are pointers, the pointed-to memory is not
- * touched in any way. Managing the pointer is the user's
- * responsibilty.
- */
- iterator
- erase(iterator __first, iterator __last)
- {
- while (__first != __last)
- __first = erase(__first);
- return __last;
- }
-
- /**
- * @brief Swaps data with another %list.
- * @param x A %list of the same element and allocator types.
- *
- * This exchanges the elements between two lists in constant
- * time. Note that the global std::swap() function is
- * specialized such that std::swap(l1,l2) will feed to this
- * function.
- */
- void
- swap(list& __x)
- { _List_node_base::swap(this->_M_impl._M_node,__x._M_impl._M_node); }
-
- /**
- * Erases all the elements. Note that this function only erases
- * the elements, and that if the elements themselves are
- * pointers, the pointed-to memory is not touched in any way.
- * Managing the pointer is the user's responsibilty.
- */
- void
- clear()
- {
- _Base::_M_clear();
- _Base::_M_init();
- }
-
- // [23.2.2.4] list operations
- /**
- * @brief Insert contents of another %list.
- * @param position Iterator referencing the element to insert before.
- * @param x Source list.
- *
- * The elements of @a x are inserted in constant time in front of
- * the element referenced by @a position. @a x becomes an empty
- * list.
- */
- void
- splice(iterator __position, list& __x)
- {
- if (!__x.empty())
- this->_M_transfer(__position, __x.begin(), __x.end());
- }
-
- /**
- * @brief Insert element from another %list.
- * @param position Iterator referencing the element to insert before.
- * @param x Source list.
- * @param i Iterator referencing the element to move.
- *
- * Removes the element in list @a x referenced by @a i and
- * inserts it into the current list before @a position.
- */
- void
- splice(iterator __position, list&, iterator __i)
- {
- iterator __j = __i;
- ++__j;
- if (__position == __i || __position == __j)
- return;
- this->_M_transfer(__position, __i, __j);
- }
-
- /**
- * @brief Insert range from another %list.
- * @param position Iterator referencing the element to insert before.
- * @param x Source list.
- * @param first Iterator referencing the start of range in x.
- * @param last Iterator referencing the end of range in x.
- *
- * Removes elements in the range [first,last) and inserts them
- * before @a position in constant time.
- *
- * Undefined if @a position is in [first,last).
- */
- void
- splice(iterator __position, list&, iterator __first, iterator __last)
- {
- if (__first != __last)
- this->_M_transfer(__position, __first, __last);
- }
-
- /**
- * @brief Remove all elements equal to value.
- * @param value The value to remove.
- *
- * Removes every element in the list equal to @a value.
- * Remaining elements stay in list order. Note that this
- * function only erases the elements, and that if the elements
- * themselves are pointers, the pointed-to memory is not
- * touched in any way. Managing the pointer is the user's
- * responsibilty.
- */
- void
- remove(const _Tp& __value);
-
- /**
- * @brief Remove all elements satisfying a predicate.
- * @param Predicate Unary predicate function or object.
- *
- * Removes every element in the list for which the predicate
- * returns true. Remaining elements stay in list order. Note
- * that this function only erases the elements, and that if the
- * elements themselves are pointers, the pointed-to memory is
- * not touched in any way. Managing the pointer is the user's
- * responsibilty.
- */
- template<typename _Predicate>
- void
- remove_if(_Predicate);
-
- /**
- * @brief Remove consecutive duplicate elements.
- *
- * For each consecutive set of elements with the same value,
- * remove all but the first one. Remaining elements stay in
- * list order. Note that this function only erases the
- * elements, and that if the elements themselves are pointers,
- * the pointed-to memory is not touched in any way. Managing
- * the pointer is the user's responsibilty.
- */
- void
- unique();
-
- /**
- * @brief Remove consecutive elements satisfying a predicate.
- * @param BinaryPredicate Binary predicate function or object.
- *
- * For each consecutive set of elements [first,last) that
- * satisfy predicate(first,i) where i is an iterator in
- * [first,last), remove all but the first one. Remaining
- * elements stay in list order. Note that this function only
- * erases the elements, and that if the elements themselves are
- * pointers, the pointed-to memory is not touched in any way.
- * Managing the pointer is the user's responsibilty.
- */
- template<typename _BinaryPredicate>
- void
- unique(_BinaryPredicate);
-
- /**
- * @brief Merge sorted lists.
- * @param x Sorted list to merge.
- *
- * Assumes that both @a x and this list are sorted according to
- * operator<(). Merges elements of @a x into this list in
- * sorted order, leaving @a x empty when complete. Elements in
- * this list precede elements in @a x that are equal.
- */
- void
- merge(list& __x);
-
- /**
- * @brief Merge sorted lists according to comparison function.
- * @param x Sorted list to merge.
- * @param StrictWeakOrdering Comparison function definining
- * sort order.
- *
- * Assumes that both @a x and this list are sorted according to
- * StrictWeakOrdering. Merges elements of @a x into this list
- * in sorted order, leaving @a x empty when complete. Elements
- * in this list precede elements in @a x that are equivalent
- * according to StrictWeakOrdering().
- */
- template<typename _StrictWeakOrdering>
- void
- merge(list&, _StrictWeakOrdering);
-
- /**
- * @brief Reverse the elements in list.
- *
- * Reverse the order of elements in the list in linear time.
- */
- void
- reverse()
- { this->_M_impl._M_node.reverse(); }
-
- /**
- * @brief Sort the elements.
- *
- * Sorts the elements of this list in NlogN time. Equivalent
- * elements remain in list order.
- */
- void
- sort();
-
- /**
- * @brief Sort the elements according to comparison function.
- *
- * Sorts the elements of this list in NlogN time. Equivalent
- * elements remain in list order.
- */
- template<typename _StrictWeakOrdering>
- void
- sort(_StrictWeakOrdering);
-
- protected:
- // Internal assign functions follow.
-
- // Called by the range assign to implement [23.1.1]/9
- template<typename _Integer>
- void
- _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
- {
- _M_fill_assign(static_cast<size_type>(__n),
- static_cast<value_type>(__val));
- }
-
- // Called by the range assign to implement [23.1.1]/9
- template<typename _InputIterator>
- void
- _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
- __false_type);
-
- // Called by assign(n,t), and the range assign when it turns out
- // to be the same thing.
- void
- _M_fill_assign(size_type __n, const value_type& __val);
-
-
- // Internal insert functions follow.
-
- // Called by the range insert to implement [23.1.1]/9
- template<typename _Integer>
- void
- _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
- __true_type)
- {
- _M_fill_insert(__pos, static_cast<size_type>(__n),
- static_cast<value_type>(__x));
- }
-
- // Called by the range insert to implement [23.1.1]/9
- template<typename _InputIterator>
- void
- _M_insert_dispatch(iterator __pos,
- _InputIterator __first, _InputIterator __last,
- __false_type)
- {
- for ( ; __first != __last; ++__first)
- _M_insert(__pos, *__first);
- }
-
- // Called by insert(p,n,x), and the range insert when it turns out
- // to be the same thing.
- void
- _M_fill_insert(iterator __pos, size_type __n, const value_type& __x)
- {
- for ( ; __n > 0; --__n)
- _M_insert(__pos, __x);
- }
-
-
- // Moves the elements from [first,last) before position.
- void
- _M_transfer(iterator __position, iterator __first, iterator __last)
- { __position._M_node->transfer(__first._M_node,__last._M_node); }
-
- // Inserts new element at position given and with value given.
- void
- _M_insert(iterator __position, const value_type& __x)
- {
- _Node* __tmp = _M_create_node(__x);
- __tmp->hook(__position._M_node);
- }
-
- // Erases element at position given.
- void
- _M_erase(iterator __position)
- {
- __position._M_node->unhook();
- _Node* __n = static_cast<_Node*>(__position._M_node);
- std::_Destroy(&__n->_M_data);
- _M_put_node(__n);
- }
- };
-
- /**
- * @brief List equality comparison.
- * @param x A %list.
- * @param y A %list of the same type as @a x.
- * @return True iff the size and elements of the lists are equal.
- *
- * This is an equivalence relation. It is linear in the size of
- * the lists. Lists are considered equivalent if their sizes are
- * equal, and if corresponding elements compare equal.
- */
- template<typename _Tp, typename _Alloc>
- inline bool
- operator==(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
- {
- typedef typename list<_Tp,_Alloc>::const_iterator const_iterator;
- const_iterator __end1 = __x.end();
- const_iterator __end2 = __y.end();
-
- const_iterator __i1 = __x.begin();
- const_iterator __i2 = __y.begin();
- while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
- {
- ++__i1;
- ++__i2;
- }
- return __i1 == __end1 && __i2 == __end2;
- }
-
- /**
- * @brief List ordering relation.
- * @param x A %list.
- * @param y A %list of the same type as @a x.
- * @return True iff @a x is lexicographically less than @a y.
- *
- * This is a total ordering relation. It is linear in the size of the
- * lists. The elements must be comparable with @c <.
- *
- * See std::lexicographical_compare() for how the determination is made.
- */
- template<typename _Tp, typename _Alloc>
- inline bool
- operator<(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
- { return std::lexicographical_compare(__x.begin(), __x.end(),
- __y.begin(), __y.end()); }
-
- /// Based on operator==
- template<typename _Tp, typename _Alloc>
- inline bool
- operator!=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
- { return !(__x == __y); }
-
- /// Based on operator<
- template<typename _Tp, typename _Alloc>
- inline bool
- operator>(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
- { return __y < __x; }
-
- /// Based on operator<
- template<typename _Tp, typename _Alloc>
- inline bool
- operator<=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
- { return !(__y < __x); }
-
- /// Based on operator<
- template<typename _Tp, typename _Alloc>
- inline bool
- operator>=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
- { return !(__x < __y); }
-
- /// See std::list::swap().
- template<typename _Tp, typename _Alloc>
- inline void
- swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
- { __x.swap(__y); }
-} // namespace std
-
-#endif /* _LIST_H */
-