summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/glslang/src/SPIRV/SpvBuilder.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/glslang/src/SPIRV/SpvBuilder.cpp')
-rw-r--r--chromium/third_party/glslang/src/SPIRV/SpvBuilder.cpp2491
1 files changed, 2491 insertions, 0 deletions
diff --git a/chromium/third_party/glslang/src/SPIRV/SpvBuilder.cpp b/chromium/third_party/glslang/src/SPIRV/SpvBuilder.cpp
new file mode 100644
index 00000000000..152a463962a
--- /dev/null
+++ b/chromium/third_party/glslang/src/SPIRV/SpvBuilder.cpp
@@ -0,0 +1,2491 @@
+//
+//Copyright (C) 2014-2015 LunarG, Inc.
+//Copyright (C) 2015-2016 Google, Inc.
+//
+//All rights reserved.
+//
+//Redistribution and use in source and binary forms, with or without
+//modification, are permitted provided that the following conditions
+//are met:
+//
+// Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+//
+// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+//POSSIBILITY OF SUCH DAMAGE.
+
+//
+// Helper for making SPIR-V IR. Generally, this is documented in the header
+// SpvBuilder.h.
+//
+
+#include <assert.h>
+#include <stdlib.h>
+
+#include <unordered_set>
+#include <algorithm>
+
+#include "SpvBuilder.h"
+
+#ifndef _WIN32
+ #include <cstdio>
+#endif
+
+namespace spv {
+
+Builder::Builder(unsigned int magicNumber, SpvBuildLogger* buildLogger) :
+ source(SourceLanguageUnknown),
+ sourceVersion(0),
+ addressModel(AddressingModelLogical),
+ memoryModel(MemoryModelGLSL450),
+ builderNumber(magicNumber),
+ buildPoint(0),
+ uniqueId(0),
+ mainFunction(0),
+ generatingOpCodeForSpecConst(false),
+ logger(buildLogger)
+{
+ clearAccessChain();
+}
+
+Builder::~Builder()
+{
+}
+
+Id Builder::import(const char* name)
+{
+ Instruction* import = new Instruction(getUniqueId(), NoType, OpExtInstImport);
+ import->addStringOperand(name);
+
+ imports.push_back(std::unique_ptr<Instruction>(import));
+ return import->getResultId();
+}
+
+// For creating new groupedTypes (will return old type if the requested one was already made).
+Id Builder::makeVoidType()
+{
+ Instruction* type;
+ if (groupedTypes[OpTypeVoid].size() == 0) {
+ type = new Instruction(getUniqueId(), NoType, OpTypeVoid);
+ groupedTypes[OpTypeVoid].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+ } else
+ type = groupedTypes[OpTypeVoid].back();
+
+ return type->getResultId();
+}
+
+Id Builder::makeBoolType()
+{
+ Instruction* type;
+ if (groupedTypes[OpTypeBool].size() == 0) {
+ type = new Instruction(getUniqueId(), NoType, OpTypeBool);
+ groupedTypes[OpTypeBool].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+ } else
+ type = groupedTypes[OpTypeBool].back();
+
+ return type->getResultId();
+}
+
+Id Builder::makeSamplerType()
+{
+ Instruction* type;
+ if (groupedTypes[OpTypeSampler].size() == 0) {
+ type = new Instruction(getUniqueId(), NoType, OpTypeSampler);
+ groupedTypes[OpTypeSampler].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+ } else
+ type = groupedTypes[OpTypeSampler].back();
+
+ return type->getResultId();
+}
+
+Id Builder::makePointer(StorageClass storageClass, Id pointee)
+{
+ // try to find it
+ Instruction* type;
+ for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
+ type = groupedTypes[OpTypePointer][t];
+ if (type->getImmediateOperand(0) == (unsigned)storageClass &&
+ type->getIdOperand(1) == pointee)
+ return type->getResultId();
+ }
+
+ // not found, make it
+ type = new Instruction(getUniqueId(), NoType, OpTypePointer);
+ type->addImmediateOperand(storageClass);
+ type->addIdOperand(pointee);
+ groupedTypes[OpTypePointer].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+
+ return type->getResultId();
+}
+
+Id Builder::makeIntegerType(int width, bool hasSign)
+{
+ // try to find it
+ Instruction* type;
+ for (int t = 0; t < (int)groupedTypes[OpTypeInt].size(); ++t) {
+ type = groupedTypes[OpTypeInt][t];
+ if (type->getImmediateOperand(0) == (unsigned)width &&
+ type->getImmediateOperand(1) == (hasSign ? 1u : 0u))
+ return type->getResultId();
+ }
+
+ // not found, make it
+ type = new Instruction(getUniqueId(), NoType, OpTypeInt);
+ type->addImmediateOperand(width);
+ type->addImmediateOperand(hasSign ? 1 : 0);
+ groupedTypes[OpTypeInt].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+
+ // deal with capabilities
+ switch (width) {
+ case 16:
+ addCapability(CapabilityInt16);
+ break;
+ case 64:
+ addCapability(CapabilityInt64);
+ break;
+ default:
+ break;
+ }
+
+ return type->getResultId();
+}
+
+Id Builder::makeFloatType(int width)
+{
+ // try to find it
+ Instruction* type;
+ for (int t = 0; t < (int)groupedTypes[OpTypeFloat].size(); ++t) {
+ type = groupedTypes[OpTypeFloat][t];
+ if (type->getImmediateOperand(0) == (unsigned)width)
+ return type->getResultId();
+ }
+
+ // not found, make it
+ type = new Instruction(getUniqueId(), NoType, OpTypeFloat);
+ type->addImmediateOperand(width);
+ groupedTypes[OpTypeFloat].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+
+ // deal with capabilities
+ switch (width) {
+ case 16:
+ addCapability(CapabilityFloat16);
+ break;
+ case 64:
+ addCapability(CapabilityFloat64);
+ break;
+ default:
+ break;
+ }
+
+ return type->getResultId();
+}
+
+// Make a struct without checking for duplication.
+// See makeStructResultType() for non-decorated structs
+// needed as the result of some instructions, which does
+// check for duplicates.
+Id Builder::makeStructType(const std::vector<Id>& members, const char* name)
+{
+ // Don't look for previous one, because in the general case,
+ // structs can be duplicated except for decorations.
+
+ // not found, make it
+ Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeStruct);
+ for (int op = 0; op < (int)members.size(); ++op)
+ type->addIdOperand(members[op]);
+ groupedTypes[OpTypeStruct].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+ addName(type->getResultId(), name);
+
+ return type->getResultId();
+}
+
+// Make a struct for the simple results of several instructions,
+// checking for duplication.
+Id Builder::makeStructResultType(Id type0, Id type1)
+{
+ // try to find it
+ Instruction* type;
+ for (int t = 0; t < (int)groupedTypes[OpTypeStruct].size(); ++t) {
+ type = groupedTypes[OpTypeStruct][t];
+ if (type->getNumOperands() != 2)
+ continue;
+ if (type->getIdOperand(0) != type0 ||
+ type->getIdOperand(1) != type1)
+ continue;
+ return type->getResultId();
+ }
+
+ // not found, make it
+ std::vector<spv::Id> members;
+ members.push_back(type0);
+ members.push_back(type1);
+
+ return makeStructType(members, "ResType");
+}
+
+Id Builder::makeVectorType(Id component, int size)
+{
+ // try to find it
+ Instruction* type;
+ for (int t = 0; t < (int)groupedTypes[OpTypeVector].size(); ++t) {
+ type = groupedTypes[OpTypeVector][t];
+ if (type->getIdOperand(0) == component &&
+ type->getImmediateOperand(1) == (unsigned)size)
+ return type->getResultId();
+ }
+
+ // not found, make it
+ type = new Instruction(getUniqueId(), NoType, OpTypeVector);
+ type->addIdOperand(component);
+ type->addImmediateOperand(size);
+ groupedTypes[OpTypeVector].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+
+ return type->getResultId();
+}
+
+Id Builder::makeMatrixType(Id component, int cols, int rows)
+{
+ assert(cols <= maxMatrixSize && rows <= maxMatrixSize);
+
+ Id column = makeVectorType(component, rows);
+
+ // try to find it
+ Instruction* type;
+ for (int t = 0; t < (int)groupedTypes[OpTypeMatrix].size(); ++t) {
+ type = groupedTypes[OpTypeMatrix][t];
+ if (type->getIdOperand(0) == column &&
+ type->getImmediateOperand(1) == (unsigned)cols)
+ return type->getResultId();
+ }
+
+ // not found, make it
+ type = new Instruction(getUniqueId(), NoType, OpTypeMatrix);
+ type->addIdOperand(column);
+ type->addImmediateOperand(cols);
+ groupedTypes[OpTypeMatrix].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+
+ return type->getResultId();
+}
+
+// TODO: performance: track arrays per stride
+// If a stride is supplied (non-zero) make an array.
+// If no stride (0), reuse previous array types.
+// 'size' is an Id of a constant or specialization constant of the array size
+Id Builder::makeArrayType(Id element, Id sizeId, int stride)
+{
+ Instruction* type;
+ if (stride == 0) {
+ // try to find existing type
+ for (int t = 0; t < (int)groupedTypes[OpTypeArray].size(); ++t) {
+ type = groupedTypes[OpTypeArray][t];
+ if (type->getIdOperand(0) == element &&
+ type->getIdOperand(1) == sizeId)
+ return type->getResultId();
+ }
+ }
+
+ // not found, make it
+ type = new Instruction(getUniqueId(), NoType, OpTypeArray);
+ type->addIdOperand(element);
+ type->addIdOperand(sizeId);
+ groupedTypes[OpTypeArray].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+
+ return type->getResultId();
+}
+
+Id Builder::makeRuntimeArray(Id element)
+{
+ Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeRuntimeArray);
+ type->addIdOperand(element);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+
+ return type->getResultId();
+}
+
+Id Builder::makeFunctionType(Id returnType, const std::vector<Id>& paramTypes)
+{
+ // try to find it
+ Instruction* type;
+ for (int t = 0; t < (int)groupedTypes[OpTypeFunction].size(); ++t) {
+ type = groupedTypes[OpTypeFunction][t];
+ if (type->getIdOperand(0) != returnType || (int)paramTypes.size() != type->getNumOperands() - 1)
+ continue;
+ bool mismatch = false;
+ for (int p = 0; p < (int)paramTypes.size(); ++p) {
+ if (paramTypes[p] != type->getIdOperand(p + 1)) {
+ mismatch = true;
+ break;
+ }
+ }
+ if (! mismatch)
+ return type->getResultId();
+ }
+
+ // not found, make it
+ type = new Instruction(getUniqueId(), NoType, OpTypeFunction);
+ type->addIdOperand(returnType);
+ for (int p = 0; p < (int)paramTypes.size(); ++p)
+ type->addIdOperand(paramTypes[p]);
+ groupedTypes[OpTypeFunction].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+
+ return type->getResultId();
+}
+
+Id Builder::makeImageType(Id sampledType, Dim dim, bool depth, bool arrayed, bool ms, unsigned sampled, ImageFormat format)
+{
+ // try to find it
+ Instruction* type;
+ for (int t = 0; t < (int)groupedTypes[OpTypeImage].size(); ++t) {
+ type = groupedTypes[OpTypeImage][t];
+ if (type->getIdOperand(0) == sampledType &&
+ type->getImmediateOperand(1) == (unsigned int)dim &&
+ type->getImmediateOperand(2) == ( depth ? 1u : 0u) &&
+ type->getImmediateOperand(3) == (arrayed ? 1u : 0u) &&
+ type->getImmediateOperand(4) == ( ms ? 1u : 0u) &&
+ type->getImmediateOperand(5) == sampled &&
+ type->getImmediateOperand(6) == (unsigned int)format)
+ return type->getResultId();
+ }
+
+ // not found, make it
+ type = new Instruction(getUniqueId(), NoType, OpTypeImage);
+ type->addIdOperand(sampledType);
+ type->addImmediateOperand( dim);
+ type->addImmediateOperand( depth ? 1 : 0);
+ type->addImmediateOperand(arrayed ? 1 : 0);
+ type->addImmediateOperand( ms ? 1 : 0);
+ type->addImmediateOperand(sampled);
+ type->addImmediateOperand((unsigned int)format);
+
+ groupedTypes[OpTypeImage].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+
+ // deal with capabilities
+ switch (dim) {
+ case DimBuffer:
+ if (sampled)
+ addCapability(CapabilitySampledBuffer);
+ else
+ addCapability(CapabilityImageBuffer);
+ break;
+ case Dim1D:
+ if (sampled)
+ addCapability(CapabilitySampled1D);
+ else
+ addCapability(CapabilityImage1D);
+ break;
+ case DimCube:
+ if (arrayed) {
+ if (sampled)
+ addCapability(CapabilitySampledCubeArray);
+ else
+ addCapability(CapabilityImageCubeArray);
+ }
+ break;
+ case DimRect:
+ if (sampled)
+ addCapability(CapabilitySampledRect);
+ else
+ addCapability(CapabilityImageRect);
+ break;
+ case DimSubpassData:
+ addCapability(CapabilityInputAttachment);
+ break;
+ default:
+ break;
+ }
+
+ if (ms) {
+ if (arrayed)
+ addCapability(CapabilityImageMSArray);
+ if (! sampled)
+ addCapability(CapabilityStorageImageMultisample);
+ }
+
+ return type->getResultId();
+}
+
+Id Builder::makeSampledImageType(Id imageType)
+{
+ // try to find it
+ Instruction* type;
+ for (int t = 0; t < (int)groupedTypes[OpTypeSampledImage].size(); ++t) {
+ type = groupedTypes[OpTypeSampledImage][t];
+ if (type->getIdOperand(0) == imageType)
+ return type->getResultId();
+ }
+
+ // not found, make it
+ type = new Instruction(getUniqueId(), NoType, OpTypeSampledImage);
+ type->addIdOperand(imageType);
+
+ groupedTypes[OpTypeSampledImage].push_back(type);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
+ module.mapInstruction(type);
+
+ return type->getResultId();
+}
+
+Id Builder::getDerefTypeId(Id resultId) const
+{
+ Id typeId = getTypeId(resultId);
+ assert(isPointerType(typeId));
+
+ return module.getInstruction(typeId)->getImmediateOperand(1);
+}
+
+Op Builder::getMostBasicTypeClass(Id typeId) const
+{
+ Instruction* instr = module.getInstruction(typeId);
+
+ Op typeClass = instr->getOpCode();
+ switch (typeClass)
+ {
+ case OpTypeVoid:
+ case OpTypeBool:
+ case OpTypeInt:
+ case OpTypeFloat:
+ case OpTypeStruct:
+ return typeClass;
+ case OpTypeVector:
+ case OpTypeMatrix:
+ case OpTypeArray:
+ case OpTypeRuntimeArray:
+ return getMostBasicTypeClass(instr->getIdOperand(0));
+ case OpTypePointer:
+ return getMostBasicTypeClass(instr->getIdOperand(1));
+ default:
+ assert(0);
+ return OpTypeFloat;
+ }
+}
+
+int Builder::getNumTypeConstituents(Id typeId) const
+{
+ Instruction* instr = module.getInstruction(typeId);
+
+ switch (instr->getOpCode())
+ {
+ case OpTypeBool:
+ case OpTypeInt:
+ case OpTypeFloat:
+ return 1;
+ case OpTypeVector:
+ case OpTypeMatrix:
+ return instr->getImmediateOperand(1);
+ case OpTypeArray:
+ {
+ Id lengthId = instr->getImmediateOperand(1);
+ return module.getInstruction(lengthId)->getImmediateOperand(0);
+ }
+ case OpTypeStruct:
+ return instr->getNumOperands();
+ default:
+ assert(0);
+ return 1;
+ }
+}
+
+// Return the lowest-level type of scalar that an homogeneous composite is made out of.
+// Typically, this is just to find out if something is made out of ints or floats.
+// However, it includes returning a structure, if say, it is an array of structure.
+Id Builder::getScalarTypeId(Id typeId) const
+{
+ Instruction* instr = module.getInstruction(typeId);
+
+ Op typeClass = instr->getOpCode();
+ switch (typeClass)
+ {
+ case OpTypeVoid:
+ case OpTypeBool:
+ case OpTypeInt:
+ case OpTypeFloat:
+ case OpTypeStruct:
+ return instr->getResultId();
+ case OpTypeVector:
+ case OpTypeMatrix:
+ case OpTypeArray:
+ case OpTypeRuntimeArray:
+ case OpTypePointer:
+ return getScalarTypeId(getContainedTypeId(typeId));
+ default:
+ assert(0);
+ return NoResult;
+ }
+}
+
+// Return the type of 'member' of a composite.
+Id Builder::getContainedTypeId(Id typeId, int member) const
+{
+ Instruction* instr = module.getInstruction(typeId);
+
+ Op typeClass = instr->getOpCode();
+ switch (typeClass)
+ {
+ case OpTypeVector:
+ case OpTypeMatrix:
+ case OpTypeArray:
+ case OpTypeRuntimeArray:
+ return instr->getIdOperand(0);
+ case OpTypePointer:
+ return instr->getIdOperand(1);
+ case OpTypeStruct:
+ return instr->getIdOperand(member);
+ default:
+ assert(0);
+ return NoResult;
+ }
+}
+
+// Return the immediately contained type of a given composite type.
+Id Builder::getContainedTypeId(Id typeId) const
+{
+ return getContainedTypeId(typeId, 0);
+}
+
+// See if a scalar constant of this type has already been created, so it
+// can be reused rather than duplicated. (Required by the specification).
+Id Builder::findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned value) const
+{
+ Instruction* constant;
+ for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
+ constant = groupedConstants[typeClass][i];
+ if (constant->getOpCode() == opcode &&
+ constant->getTypeId() == typeId &&
+ constant->getImmediateOperand(0) == value)
+ return constant->getResultId();
+ }
+
+ return 0;
+}
+
+// Version of findScalarConstant (see above) for scalars that take two operands (e.g. a 'double' or 'int64').
+Id Builder::findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned v1, unsigned v2) const
+{
+ Instruction* constant;
+ for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
+ constant = groupedConstants[typeClass][i];
+ if (constant->getOpCode() == opcode &&
+ constant->getTypeId() == typeId &&
+ constant->getImmediateOperand(0) == v1 &&
+ constant->getImmediateOperand(1) == v2)
+ return constant->getResultId();
+ }
+
+ return 0;
+}
+
+// Return true if consuming 'opcode' means consuming a constant.
+// "constant" here means after final transform to executable code,
+// the value consumed will be a constant, so includes specialization.
+bool Builder::isConstantOpCode(Op opcode) const
+{
+ switch (opcode) {
+ case OpUndef:
+ case OpConstantTrue:
+ case OpConstantFalse:
+ case OpConstant:
+ case OpConstantComposite:
+ case OpConstantSampler:
+ case OpConstantNull:
+ case OpSpecConstantTrue:
+ case OpSpecConstantFalse:
+ case OpSpecConstant:
+ case OpSpecConstantComposite:
+ case OpSpecConstantOp:
+ return true;
+ default:
+ return false;
+ }
+}
+
+// Return true if consuming 'opcode' means consuming a specialization constant.
+bool Builder::isSpecConstantOpCode(Op opcode) const
+{
+ switch (opcode) {
+ case OpSpecConstantTrue:
+ case OpSpecConstantFalse:
+ case OpSpecConstant:
+ case OpSpecConstantComposite:
+ case OpSpecConstantOp:
+ return true;
+ default:
+ return false;
+ }
+}
+
+Id Builder::makeBoolConstant(bool b, bool specConstant)
+{
+ Id typeId = makeBoolType();
+ Instruction* constant;
+ Op opcode = specConstant ? (b ? OpSpecConstantTrue : OpSpecConstantFalse) : (b ? OpConstantTrue : OpConstantFalse);
+
+ // See if we already made it. Applies only to regular constants, because specialization constants
+ // must remain distinct for the purpose of applying a SpecId decoration.
+ if (! specConstant) {
+ Id existing = 0;
+ for (int i = 0; i < (int)groupedConstants[OpTypeBool].size(); ++i) {
+ constant = groupedConstants[OpTypeBool][i];
+ if (constant->getTypeId() == typeId && constant->getOpCode() == opcode)
+ existing = constant->getResultId();
+ }
+
+ if (existing)
+ return existing;
+ }
+
+ // Make it
+ Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
+ groupedConstants[OpTypeBool].push_back(c);
+ module.mapInstruction(c);
+
+ return c->getResultId();
+}
+
+Id Builder::makeIntConstant(Id typeId, unsigned value, bool specConstant)
+{
+ Op opcode = specConstant ? OpSpecConstant : OpConstant;
+
+ // See if we already made it. Applies only to regular constants, because specialization constants
+ // must remain distinct for the purpose of applying a SpecId decoration.
+ if (! specConstant) {
+ Id existing = findScalarConstant(OpTypeInt, opcode, typeId, value);
+ if (existing)
+ return existing;
+ }
+
+ Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
+ c->addImmediateOperand(value);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
+ groupedConstants[OpTypeInt].push_back(c);
+ module.mapInstruction(c);
+
+ return c->getResultId();
+}
+
+Id Builder::makeInt64Constant(Id typeId, unsigned long long value, bool specConstant)
+{
+ Op opcode = specConstant ? OpSpecConstant : OpConstant;
+
+ unsigned op1 = value & 0xFFFFFFFF;
+ unsigned op2 = value >> 32;
+
+ // See if we already made it. Applies only to regular constants, because specialization constants
+ // must remain distinct for the purpose of applying a SpecId decoration.
+ if (! specConstant) {
+ Id existing = findScalarConstant(OpTypeInt, opcode, typeId, op1, op2);
+ if (existing)
+ return existing;
+ }
+
+ Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
+ c->addImmediateOperand(op1);
+ c->addImmediateOperand(op2);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
+ groupedConstants[OpTypeInt].push_back(c);
+ module.mapInstruction(c);
+
+ return c->getResultId();
+}
+
+Id Builder::makeFloatConstant(float f, bool specConstant)
+{
+ Op opcode = specConstant ? OpSpecConstant : OpConstant;
+ Id typeId = makeFloatType(32);
+ union { float fl; unsigned int ui; } u;
+ u.fl = f;
+ unsigned value = u.ui;
+
+ // See if we already made it. Applies only to regular constants, because specialization constants
+ // must remain distinct for the purpose of applying a SpecId decoration.
+ if (! specConstant) {
+ Id existing = findScalarConstant(OpTypeFloat, opcode, typeId, value);
+ if (existing)
+ return existing;
+ }
+
+ Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
+ c->addImmediateOperand(value);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
+ groupedConstants[OpTypeFloat].push_back(c);
+ module.mapInstruction(c);
+
+ return c->getResultId();
+}
+
+Id Builder::makeDoubleConstant(double d, bool specConstant)
+{
+ Op opcode = specConstant ? OpSpecConstant : OpConstant;
+ Id typeId = makeFloatType(64);
+ union { double db; unsigned long long ull; } u;
+ u.db = d;
+ unsigned long long value = u.ull;
+ unsigned op1 = value & 0xFFFFFFFF;
+ unsigned op2 = value >> 32;
+
+ // See if we already made it. Applies only to regular constants, because specialization constants
+ // must remain distinct for the purpose of applying a SpecId decoration.
+ if (! specConstant) {
+ Id existing = findScalarConstant(OpTypeFloat, opcode, typeId, op1, op2);
+ if (existing)
+ return existing;
+ }
+
+ Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
+ c->addImmediateOperand(op1);
+ c->addImmediateOperand(op2);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
+ groupedConstants[OpTypeFloat].push_back(c);
+ module.mapInstruction(c);
+
+ return c->getResultId();
+}
+
+Id Builder::findCompositeConstant(Op typeClass, std::vector<Id>& comps) const
+{
+ Instruction* constant = 0;
+ bool found = false;
+ for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
+ constant = groupedConstants[typeClass][i];
+
+ // same shape?
+ if (constant->getNumOperands() != (int)comps.size())
+ continue;
+
+ // same contents?
+ bool mismatch = false;
+ for (int op = 0; op < constant->getNumOperands(); ++op) {
+ if (constant->getIdOperand(op) != comps[op]) {
+ mismatch = true;
+ break;
+ }
+ }
+ if (! mismatch) {
+ found = true;
+ break;
+ }
+ }
+
+ return found ? constant->getResultId() : NoResult;
+}
+
+// Comments in header
+Id Builder::makeCompositeConstant(Id typeId, std::vector<Id>& members, bool specConstant)
+{
+ Op opcode = specConstant ? OpSpecConstantComposite : OpConstantComposite;
+ assert(typeId);
+ Op typeClass = getTypeClass(typeId);
+
+ switch (typeClass) {
+ case OpTypeVector:
+ case OpTypeArray:
+ case OpTypeStruct:
+ case OpTypeMatrix:
+ break;
+ default:
+ assert(0);
+ return makeFloatConstant(0.0);
+ }
+
+ if (! specConstant) {
+ Id existing = findCompositeConstant(typeClass, members);
+ if (existing)
+ return existing;
+ }
+
+ Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
+ for (int op = 0; op < (int)members.size(); ++op)
+ c->addIdOperand(members[op]);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
+ groupedConstants[typeClass].push_back(c);
+ module.mapInstruction(c);
+
+ return c->getResultId();
+}
+
+Instruction* Builder::addEntryPoint(ExecutionModel model, Function* function, const char* name)
+{
+ Instruction* entryPoint = new Instruction(OpEntryPoint);
+ entryPoint->addImmediateOperand(model);
+ entryPoint->addIdOperand(function->getId());
+ entryPoint->addStringOperand(name);
+
+ entryPoints.push_back(std::unique_ptr<Instruction>(entryPoint));
+
+ return entryPoint;
+}
+
+// Currently relying on the fact that all 'value' of interest are small non-negative values.
+void Builder::addExecutionMode(Function* entryPoint, ExecutionMode mode, int value1, int value2, int value3)
+{
+ Instruction* instr = new Instruction(OpExecutionMode);
+ instr->addIdOperand(entryPoint->getId());
+ instr->addImmediateOperand(mode);
+ if (value1 >= 0)
+ instr->addImmediateOperand(value1);
+ if (value2 >= 0)
+ instr->addImmediateOperand(value2);
+ if (value3 >= 0)
+ instr->addImmediateOperand(value3);
+
+ executionModes.push_back(std::unique_ptr<Instruction>(instr));
+}
+
+void Builder::addName(Id id, const char* string)
+{
+ Instruction* name = new Instruction(OpName);
+ name->addIdOperand(id);
+ name->addStringOperand(string);
+
+ names.push_back(std::unique_ptr<Instruction>(name));
+}
+
+void Builder::addMemberName(Id id, int memberNumber, const char* string)
+{
+ Instruction* name = new Instruction(OpMemberName);
+ name->addIdOperand(id);
+ name->addImmediateOperand(memberNumber);
+ name->addStringOperand(string);
+
+ names.push_back(std::unique_ptr<Instruction>(name));
+}
+
+void Builder::addLine(Id target, Id fileName, int lineNum, int column)
+{
+ Instruction* line = new Instruction(OpLine);
+ line->addIdOperand(target);
+ line->addIdOperand(fileName);
+ line->addImmediateOperand(lineNum);
+ line->addImmediateOperand(column);
+
+ lines.push_back(std::unique_ptr<Instruction>(line));
+}
+
+void Builder::addDecoration(Id id, Decoration decoration, int num)
+{
+ if (decoration == (spv::Decoration)spv::BadValue)
+ return;
+ Instruction* dec = new Instruction(OpDecorate);
+ dec->addIdOperand(id);
+ dec->addImmediateOperand(decoration);
+ if (num >= 0)
+ dec->addImmediateOperand(num);
+
+ decorations.push_back(std::unique_ptr<Instruction>(dec));
+}
+
+void Builder::addMemberDecoration(Id id, unsigned int member, Decoration decoration, int num)
+{
+ Instruction* dec = new Instruction(OpMemberDecorate);
+ dec->addIdOperand(id);
+ dec->addImmediateOperand(member);
+ dec->addImmediateOperand(decoration);
+ if (num >= 0)
+ dec->addImmediateOperand(num);
+
+ decorations.push_back(std::unique_ptr<Instruction>(dec));
+}
+
+// Comments in header
+Function* Builder::makeEntrypoint(const char* entryPoint)
+{
+ assert(! mainFunction);
+
+ Block* entry;
+ std::vector<Id> params;
+ std::vector<Decoration> precisions;
+
+ mainFunction = makeFunctionEntry(NoPrecision, makeVoidType(), entryPoint, params, precisions, &entry);
+
+ return mainFunction;
+}
+
+// Comments in header
+Function* Builder::makeFunctionEntry(Decoration precision, Id returnType, const char* name,
+ const std::vector<Id>& paramTypes, const std::vector<Decoration>& precisions, Block **entry)
+{
+ // Make the function and initial instructions in it
+ Id typeId = makeFunctionType(returnType, paramTypes);
+ Id firstParamId = paramTypes.size() == 0 ? 0 : getUniqueIds((int)paramTypes.size());
+ Function* function = new Function(getUniqueId(), returnType, typeId, firstParamId, module);
+
+ // Set up the precisions
+ setPrecision(function->getId(), precision);
+ for (unsigned p = 0; p < (unsigned)precisions.size(); ++p)
+ setPrecision(firstParamId + p, precisions[p]);
+
+ // CFG
+ if (entry) {
+ *entry = new Block(getUniqueId(), *function);
+ function->addBlock(*entry);
+ setBuildPoint(*entry);
+ }
+
+ if (name)
+ addName(function->getId(), name);
+
+ functions.push_back(std::unique_ptr<Function>(function));
+
+ return function;
+}
+
+// Comments in header
+void Builder::makeReturn(bool implicit, Id retVal)
+{
+ if (retVal) {
+ Instruction* inst = new Instruction(NoResult, NoType, OpReturnValue);
+ inst->addIdOperand(retVal);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
+ } else
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(new Instruction(NoResult, NoType, OpReturn)));
+
+ if (! implicit)
+ createAndSetNoPredecessorBlock("post-return");
+}
+
+// Comments in header
+void Builder::leaveFunction()
+{
+ Block* block = buildPoint;
+ Function& function = buildPoint->getParent();
+ assert(block);
+
+ // If our function did not contain a return, add a return void now.
+ if (! block->isTerminated()) {
+ if (function.getReturnType() == makeVoidType())
+ makeReturn(true);
+ else {
+ makeReturn(true, createUndefined(function.getReturnType()));
+ }
+ }
+}
+
+// Comments in header
+void Builder::makeDiscard()
+{
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(new Instruction(OpKill)));
+ createAndSetNoPredecessorBlock("post-discard");
+}
+
+// Comments in header
+Id Builder::createVariable(StorageClass storageClass, Id type, const char* name)
+{
+ Id pointerType = makePointer(storageClass, type);
+ Instruction* inst = new Instruction(getUniqueId(), pointerType, OpVariable);
+ inst->addImmediateOperand(storageClass);
+
+ switch (storageClass) {
+ case StorageClassFunction:
+ // Validation rules require the declaration in the entry block
+ buildPoint->getParent().addLocalVariable(std::unique_ptr<Instruction>(inst));
+ break;
+
+ default:
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(inst));
+ module.mapInstruction(inst);
+ break;
+ }
+
+ if (name)
+ addName(inst->getResultId(), name);
+
+ return inst->getResultId();
+}
+
+// Comments in header
+Id Builder::createUndefined(Id type)
+{
+ Instruction* inst = new Instruction(getUniqueId(), type, OpUndef);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
+ return inst->getResultId();
+}
+
+// Comments in header
+void Builder::createStore(Id rValue, Id lValue)
+{
+ Instruction* store = new Instruction(OpStore);
+ store->addIdOperand(lValue);
+ store->addIdOperand(rValue);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(store));
+}
+
+// Comments in header
+Id Builder::createLoad(Id lValue)
+{
+ Instruction* load = new Instruction(getUniqueId(), getDerefTypeId(lValue), OpLoad);
+ load->addIdOperand(lValue);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(load));
+
+ return load->getResultId();
+}
+
+// Comments in header
+Id Builder::createAccessChain(StorageClass storageClass, Id base, std::vector<Id>& offsets)
+{
+ // Figure out the final resulting type.
+ spv::Id typeId = getTypeId(base);
+ assert(isPointerType(typeId) && offsets.size() > 0);
+ typeId = getContainedTypeId(typeId);
+ for (int i = 0; i < (int)offsets.size(); ++i) {
+ if (isStructType(typeId)) {
+ assert(isConstantScalar(offsets[i]));
+ typeId = getContainedTypeId(typeId, getConstantScalar(offsets[i]));
+ } else
+ typeId = getContainedTypeId(typeId, offsets[i]);
+ }
+ typeId = makePointer(storageClass, typeId);
+
+ // Make the instruction
+ Instruction* chain = new Instruction(getUniqueId(), typeId, OpAccessChain);
+ chain->addIdOperand(base);
+ for (int i = 0; i < (int)offsets.size(); ++i)
+ chain->addIdOperand(offsets[i]);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(chain));
+
+ return chain->getResultId();
+}
+
+Id Builder::createArrayLength(Id base, unsigned int member)
+{
+ Instruction* length = new Instruction(getUniqueId(), makeIntType(32), OpArrayLength);
+ length->addIdOperand(base);
+ length->addImmediateOperand(member);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(length));
+
+ return length->getResultId();
+}
+
+Id Builder::createCompositeExtract(Id composite, Id typeId, unsigned index)
+{
+ // Generate code for spec constants if in spec constant operation
+ // generation mode.
+ if (generatingOpCodeForSpecConst) {
+ return createSpecConstantOp(OpCompositeExtract, typeId, std::vector<Id>(1, composite), std::vector<Id>(1, index));
+ }
+ Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
+ extract->addIdOperand(composite);
+ extract->addImmediateOperand(index);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
+
+ return extract->getResultId();
+}
+
+Id Builder::createCompositeExtract(Id composite, Id typeId, std::vector<unsigned>& indexes)
+{
+ // Generate code for spec constants if in spec constant operation
+ // generation mode.
+ if (generatingOpCodeForSpecConst) {
+ return createSpecConstantOp(OpCompositeExtract, typeId, std::vector<Id>(1, composite), indexes);
+ }
+ Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
+ extract->addIdOperand(composite);
+ for (int i = 0; i < (int)indexes.size(); ++i)
+ extract->addImmediateOperand(indexes[i]);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
+
+ return extract->getResultId();
+}
+
+Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, unsigned index)
+{
+ Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
+ insert->addIdOperand(object);
+ insert->addIdOperand(composite);
+ insert->addImmediateOperand(index);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
+
+ return insert->getResultId();
+}
+
+Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, std::vector<unsigned>& indexes)
+{
+ Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
+ insert->addIdOperand(object);
+ insert->addIdOperand(composite);
+ for (int i = 0; i < (int)indexes.size(); ++i)
+ insert->addImmediateOperand(indexes[i]);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
+
+ return insert->getResultId();
+}
+
+Id Builder::createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex)
+{
+ Instruction* extract = new Instruction(getUniqueId(), typeId, OpVectorExtractDynamic);
+ extract->addIdOperand(vector);
+ extract->addIdOperand(componentIndex);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
+
+ return extract->getResultId();
+}
+
+Id Builder::createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex)
+{
+ Instruction* insert = new Instruction(getUniqueId(), typeId, OpVectorInsertDynamic);
+ insert->addIdOperand(vector);
+ insert->addIdOperand(component);
+ insert->addIdOperand(componentIndex);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
+
+ return insert->getResultId();
+}
+
+// An opcode that has no operands, no result id, and no type
+void Builder::createNoResultOp(Op opCode)
+{
+ Instruction* op = new Instruction(opCode);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
+}
+
+// An opcode that has one operand, no result id, and no type
+void Builder::createNoResultOp(Op opCode, Id operand)
+{
+ Instruction* op = new Instruction(opCode);
+ op->addIdOperand(operand);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
+}
+
+// An opcode that has one operand, no result id, and no type
+void Builder::createNoResultOp(Op opCode, const std::vector<Id>& operands)
+{
+ Instruction* op = new Instruction(opCode);
+ for (auto it = operands.cbegin(); it != operands.cend(); ++it)
+ op->addIdOperand(*it);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
+}
+
+void Builder::createControlBarrier(Scope execution, Scope memory, MemorySemanticsMask semantics)
+{
+ Instruction* op = new Instruction(OpControlBarrier);
+ op->addImmediateOperand(makeUintConstant(execution));
+ op->addImmediateOperand(makeUintConstant(memory));
+ op->addImmediateOperand(makeUintConstant(semantics));
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
+}
+
+void Builder::createMemoryBarrier(unsigned executionScope, unsigned memorySemantics)
+{
+ Instruction* op = new Instruction(OpMemoryBarrier);
+ op->addImmediateOperand(makeUintConstant(executionScope));
+ op->addImmediateOperand(makeUintConstant(memorySemantics));
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
+}
+
+// An opcode that has one operands, a result id, and a type
+Id Builder::createUnaryOp(Op opCode, Id typeId, Id operand)
+{
+ // Generate code for spec constants if in spec constant operation
+ // generation mode.
+ if (generatingOpCodeForSpecConst) {
+ return createSpecConstantOp(opCode, typeId, std::vector<Id>(1, operand), std::vector<Id>());
+ }
+ Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
+ op->addIdOperand(operand);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
+
+ return op->getResultId();
+}
+
+Id Builder::createBinOp(Op opCode, Id typeId, Id left, Id right)
+{
+ // Generate code for spec constants if in spec constant operation
+ // generation mode.
+ if (generatingOpCodeForSpecConst) {
+ std::vector<Id> operands(2);
+ operands[0] = left; operands[1] = right;
+ return createSpecConstantOp(opCode, typeId, operands, std::vector<Id>());
+ }
+ Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
+ op->addIdOperand(left);
+ op->addIdOperand(right);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
+
+ return op->getResultId();
+}
+
+Id Builder::createTriOp(Op opCode, Id typeId, Id op1, Id op2, Id op3)
+{
+ // Generate code for spec constants if in spec constant operation
+ // generation mode.
+ if (generatingOpCodeForSpecConst) {
+ std::vector<Id> operands(3);
+ operands[0] = op1;
+ operands[1] = op2;
+ operands[2] = op3;
+ return createSpecConstantOp(
+ opCode, typeId, operands, std::vector<Id>());
+ }
+ Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
+ op->addIdOperand(op1);
+ op->addIdOperand(op2);
+ op->addIdOperand(op3);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
+
+ return op->getResultId();
+}
+
+Id Builder::createOp(Op opCode, Id typeId, const std::vector<Id>& operands)
+{
+ Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
+ for (auto it = operands.cbegin(); it != operands.cend(); ++it)
+ op->addIdOperand(*it);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
+
+ return op->getResultId();
+}
+
+Id Builder::createSpecConstantOp(Op opCode, Id typeId, const std::vector<Id>& operands, const std::vector<unsigned>& literals)
+{
+ Instruction* op = new Instruction(getUniqueId(), typeId, OpSpecConstantOp);
+ op->addImmediateOperand((unsigned) opCode);
+ for (auto it = operands.cbegin(); it != operands.cend(); ++it)
+ op->addIdOperand(*it);
+ for (auto it = literals.cbegin(); it != literals.cend(); ++it)
+ op->addImmediateOperand(*it);
+ module.mapInstruction(op);
+ constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(op));
+
+ return op->getResultId();
+}
+
+Id Builder::createFunctionCall(spv::Function* function, std::vector<spv::Id>& args)
+{
+ Instruction* op = new Instruction(getUniqueId(), function->getReturnType(), OpFunctionCall);
+ op->addIdOperand(function->getId());
+ for (int a = 0; a < (int)args.size(); ++a)
+ op->addIdOperand(args[a]);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
+
+ return op->getResultId();
+}
+
+// Comments in header
+Id Builder::createRvalueSwizzle(Decoration precision, Id typeId, Id source, std::vector<unsigned>& channels)
+{
+ if (channels.size() == 1)
+ return setPrecision(createCompositeExtract(source, typeId, channels.front()), precision);
+
+ if (generatingOpCodeForSpecConst) {
+ std::vector<Id> operands(2);
+ operands[0] = operands[1] = source;
+ return setPrecision(createSpecConstantOp(OpVectorShuffle, typeId, operands, channels), precision);
+ }
+ Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
+ assert(isVector(source));
+ swizzle->addIdOperand(source);
+ swizzle->addIdOperand(source);
+ for (int i = 0; i < (int)channels.size(); ++i)
+ swizzle->addImmediateOperand(channels[i]);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(swizzle));
+
+ return setPrecision(swizzle->getResultId(), precision);
+}
+
+// Comments in header
+Id Builder::createLvalueSwizzle(Id typeId, Id target, Id source, std::vector<unsigned>& channels)
+{
+ assert(getNumComponents(source) == (int)channels.size());
+ if (channels.size() == 1 && getNumComponents(source) == 1)
+ return createCompositeInsert(source, target, typeId, channels.front());
+
+ Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
+ assert(isVector(source));
+ assert(isVector(target));
+ swizzle->addIdOperand(target);
+ swizzle->addIdOperand(source);
+
+ // Set up an identity shuffle from the base value to the result value
+ unsigned int components[4];
+ int numTargetComponents = getNumComponents(target);
+ for (int i = 0; i < numTargetComponents; ++i)
+ components[i] = i;
+
+ // Punch in the l-value swizzle
+ for (int i = 0; i < (int)channels.size(); ++i)
+ components[channels[i]] = numTargetComponents + i;
+
+ // finish the instruction with these components selectors
+ for (int i = 0; i < numTargetComponents; ++i)
+ swizzle->addImmediateOperand(components[i]);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(swizzle));
+
+ return swizzle->getResultId();
+}
+
+// Comments in header
+void Builder::promoteScalar(Decoration precision, Id& left, Id& right)
+{
+ int direction = getNumComponents(right) - getNumComponents(left);
+
+ if (direction > 0)
+ left = smearScalar(precision, left, makeVectorType(getTypeId(left), getNumComponents(right)));
+ else if (direction < 0)
+ right = smearScalar(precision, right, makeVectorType(getTypeId(right), getNumComponents(left)));
+
+ return;
+}
+
+// Comments in header
+Id Builder::smearScalar(Decoration precision, Id scalar, Id vectorType)
+{
+ assert(getNumComponents(scalar) == 1);
+ assert(getTypeId(scalar) == getScalarTypeId(vectorType));
+
+ int numComponents = getNumTypeComponents(vectorType);
+ if (numComponents == 1)
+ return scalar;
+
+ Instruction* smear = nullptr;
+ if (generatingOpCodeForSpecConst) {
+ auto members = std::vector<spv::Id>(numComponents, scalar);
+ // Sometime even in spec-constant-op mode, the temporary vector created by
+ // promoting a scalar might not be a spec constant. This should depend on
+ // the scalar.
+ // e.g.:
+ // const vec2 spec_const_result = a_spec_const_vec2 + a_front_end_const_scalar;
+ // In such cases, the temporary vector created from a_front_end_const_scalar
+ // is not a spec constant vector, even though the binary operation node is marked
+ // as 'specConstant' and we are in spec-constant-op mode.
+ auto result_id = makeCompositeConstant(vectorType, members, isSpecConstant(scalar));
+ smear = module.getInstruction(result_id);
+ } else {
+ smear = new Instruction(getUniqueId(), vectorType, OpCompositeConstruct);
+ for (int c = 0; c < numComponents; ++c)
+ smear->addIdOperand(scalar);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(smear));
+ }
+
+ return setPrecision(smear->getResultId(), precision);
+}
+
+// Comments in header
+Id Builder::createBuiltinCall(Id resultType, Id builtins, int entryPoint, std::vector<Id>& args)
+{
+ Instruction* inst = new Instruction(getUniqueId(), resultType, OpExtInst);
+ inst->addIdOperand(builtins);
+ inst->addImmediateOperand(entryPoint);
+ for (int arg = 0; arg < (int)args.size(); ++arg)
+ inst->addIdOperand(args[arg]);
+
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
+
+ return inst->getResultId();
+}
+
+// Accept all parameters needed to create a texture instruction.
+// Create the correct instruction based on the inputs, and make the call.
+Id Builder::createTextureCall(Decoration precision, Id resultType, bool sparse, bool fetch, bool proj, bool gather, bool noImplicitLod, const TextureParameters& parameters)
+{
+ static const int maxTextureArgs = 10;
+ Id texArgs[maxTextureArgs] = {};
+
+ //
+ // Set up the fixed arguments
+ //
+ int numArgs = 0;
+ bool explicitLod = false;
+ texArgs[numArgs++] = parameters.sampler;
+ texArgs[numArgs++] = parameters.coords;
+ if (parameters.Dref)
+ texArgs[numArgs++] = parameters.Dref;
+ if (parameters.comp)
+ texArgs[numArgs++] = parameters.comp;
+
+ //
+ // Set up the optional arguments
+ //
+ int optArgNum = numArgs; // track which operand, if it exists, is the mask of optional arguments
+ ++numArgs; // speculatively make room for the mask operand
+ ImageOperandsMask mask = ImageOperandsMaskNone; // the mask operand
+ if (parameters.bias) {
+ mask = (ImageOperandsMask)(mask | ImageOperandsBiasMask);
+ texArgs[numArgs++] = parameters.bias;
+ }
+ if (parameters.lod) {
+ mask = (ImageOperandsMask)(mask | ImageOperandsLodMask);
+ texArgs[numArgs++] = parameters.lod;
+ explicitLod = true;
+ } else if (parameters.gradX) {
+ mask = (ImageOperandsMask)(mask | ImageOperandsGradMask);
+ texArgs[numArgs++] = parameters.gradX;
+ texArgs[numArgs++] = parameters.gradY;
+ explicitLod = true;
+ } else if (noImplicitLod && ! fetch && ! gather) {
+ // have to explicitly use lod of 0 if not allowed to have them be implicit, and
+ // we would otherwise be about to issue an implicit instruction
+ mask = (ImageOperandsMask)(mask | ImageOperandsLodMask);
+ texArgs[numArgs++] = makeFloatConstant(0.0);
+ explicitLod = true;
+ }
+ if (parameters.offset) {
+ if (isConstant(parameters.offset))
+ mask = (ImageOperandsMask)(mask | ImageOperandsConstOffsetMask);
+ else {
+ addCapability(CapabilityImageGatherExtended);
+ mask = (ImageOperandsMask)(mask | ImageOperandsOffsetMask);
+ }
+ texArgs[numArgs++] = parameters.offset;
+ }
+ if (parameters.offsets) {
+ mask = (ImageOperandsMask)(mask | ImageOperandsConstOffsetsMask);
+ texArgs[numArgs++] = parameters.offsets;
+ }
+ if (parameters.sample) {
+ mask = (ImageOperandsMask)(mask | ImageOperandsSampleMask);
+ texArgs[numArgs++] = parameters.sample;
+ }
+ if (parameters.lodClamp) {
+ // capability if this bit is used
+ addCapability(CapabilityMinLod);
+
+ mask = (ImageOperandsMask)(mask | ImageOperandsMinLodMask);
+ texArgs[numArgs++] = parameters.lodClamp;
+ }
+ if (mask == ImageOperandsMaskNone)
+ --numArgs; // undo speculative reservation for the mask argument
+ else
+ texArgs[optArgNum] = mask;
+
+ //
+ // Set up the instruction
+ //
+ Op opCode = OpNop; // All paths below need to set this
+ if (fetch) {
+ if (sparse)
+ opCode = OpImageSparseFetch;
+ else
+ opCode = OpImageFetch;
+ } else if (gather) {
+ if (parameters.Dref)
+ if (sparse)
+ opCode = OpImageSparseDrefGather;
+ else
+ opCode = OpImageDrefGather;
+ else
+ if (sparse)
+ opCode = OpImageSparseGather;
+ else
+ opCode = OpImageGather;
+ } else if (explicitLod) {
+ if (parameters.Dref) {
+ if (proj)
+ if (sparse)
+ opCode = OpImageSparseSampleProjDrefExplicitLod;
+ else
+ opCode = OpImageSampleProjDrefExplicitLod;
+ else
+ if (sparse)
+ opCode = OpImageSparseSampleDrefExplicitLod;
+ else
+ opCode = OpImageSampleDrefExplicitLod;
+ } else {
+ if (proj)
+ if (sparse)
+ opCode = OpImageSparseSampleProjExplicitLod;
+ else
+ opCode = OpImageSampleProjExplicitLod;
+ else
+ if (sparse)
+ opCode = OpImageSparseSampleExplicitLod;
+ else
+ opCode = OpImageSampleExplicitLod;
+ }
+ } else {
+ if (parameters.Dref) {
+ if (proj)
+ if (sparse)
+ opCode = OpImageSparseSampleProjDrefImplicitLod;
+ else
+ opCode = OpImageSampleProjDrefImplicitLod;
+ else
+ if (sparse)
+ opCode = OpImageSparseSampleDrefImplicitLod;
+ else
+ opCode = OpImageSampleDrefImplicitLod;
+ } else {
+ if (proj)
+ if (sparse)
+ opCode = OpImageSparseSampleProjImplicitLod;
+ else
+ opCode = OpImageSampleProjImplicitLod;
+ else
+ if (sparse)
+ opCode = OpImageSparseSampleImplicitLod;
+ else
+ opCode = OpImageSampleImplicitLod;
+ }
+ }
+
+ // See if the result type is expecting a smeared result.
+ // This happens when a legacy shadow*() call is made, which
+ // gets a vec4 back instead of a float.
+ Id smearedType = resultType;
+ if (! isScalarType(resultType)) {
+ switch (opCode) {
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ resultType = getScalarTypeId(resultType);
+ break;
+ default:
+ break;
+ }
+ }
+
+ Id typeId0 = 0;
+ Id typeId1 = 0;
+
+ if (sparse) {
+ typeId0 = resultType;
+ typeId1 = getDerefTypeId(parameters.texelOut);
+ resultType = makeStructResultType(typeId0, typeId1);
+ }
+
+ // Build the SPIR-V instruction
+ Instruction* textureInst = new Instruction(getUniqueId(), resultType, opCode);
+ for (int op = 0; op < optArgNum; ++op)
+ textureInst->addIdOperand(texArgs[op]);
+ if (optArgNum < numArgs)
+ textureInst->addImmediateOperand(texArgs[optArgNum]);
+ for (int op = optArgNum + 1; op < numArgs; ++op)
+ textureInst->addIdOperand(texArgs[op]);
+ setPrecision(textureInst->getResultId(), precision);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(textureInst));
+
+ Id resultId = textureInst->getResultId();
+
+ if (sparse) {
+ // set capability
+ addCapability(CapabilitySparseResidency);
+
+ // Decode the return type that was a special structure
+ createStore(createCompositeExtract(resultId, typeId1, 1), parameters.texelOut);
+ resultId = createCompositeExtract(resultId, typeId0, 0);
+ setPrecision(resultId, precision);
+ } else {
+ // When a smear is needed, do it, as per what was computed
+ // above when resultType was changed to a scalar type.
+ if (resultType != smearedType)
+ resultId = smearScalar(precision, resultId, smearedType);
+ }
+
+ return resultId;
+}
+
+// Comments in header
+Id Builder::createTextureQueryCall(Op opCode, const TextureParameters& parameters)
+{
+ // All these need a capability
+ addCapability(CapabilityImageQuery);
+
+ // Figure out the result type
+ Id resultType = 0;
+ switch (opCode) {
+ case OpImageQuerySize:
+ case OpImageQuerySizeLod:
+ {
+ int numComponents = 0;
+ switch (getTypeDimensionality(getImageType(parameters.sampler))) {
+ case Dim1D:
+ case DimBuffer:
+ numComponents = 1;
+ break;
+ case Dim2D:
+ case DimCube:
+ case DimRect:
+ case DimSubpassData:
+ numComponents = 2;
+ break;
+ case Dim3D:
+ numComponents = 3;
+ break;
+
+ default:
+ assert(0);
+ break;
+ }
+ if (isArrayedImageType(getImageType(parameters.sampler)))
+ ++numComponents;
+ if (numComponents == 1)
+ resultType = makeIntType(32);
+ else
+ resultType = makeVectorType(makeIntType(32), numComponents);
+
+ break;
+ }
+ case OpImageQueryLod:
+ resultType = makeVectorType(makeFloatType(32), 2);
+ break;
+ case OpImageQueryLevels:
+ case OpImageQuerySamples:
+ resultType = makeIntType(32);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+
+ Instruction* query = new Instruction(getUniqueId(), resultType, opCode);
+ query->addIdOperand(parameters.sampler);
+ if (parameters.coords)
+ query->addIdOperand(parameters.coords);
+ if (parameters.lod)
+ query->addIdOperand(parameters.lod);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(query));
+
+ return query->getResultId();
+}
+
+// External comments in header.
+// Operates recursively to visit the composite's hierarchy.
+Id Builder::createCompositeCompare(Decoration precision, Id value1, Id value2, bool equal)
+{
+ Id boolType = makeBoolType();
+ Id valueType = getTypeId(value1);
+
+ Id resultId = NoResult;
+
+ int numConstituents = getNumTypeConstituents(valueType);
+
+ // Scalars and Vectors
+
+ if (isScalarType(valueType) || isVectorType(valueType)) {
+ assert(valueType == getTypeId(value2));
+ // These just need a single comparison, just have
+ // to figure out what it is.
+ Op op;
+ switch (getMostBasicTypeClass(valueType)) {
+ case OpTypeFloat:
+ op = equal ? OpFOrdEqual : OpFOrdNotEqual;
+ break;
+ case OpTypeInt:
+ default:
+ op = equal ? OpIEqual : OpINotEqual;
+ break;
+ case OpTypeBool:
+ op = equal ? OpLogicalEqual : OpLogicalNotEqual;
+ precision = NoPrecision;
+ break;
+ }
+
+ if (isScalarType(valueType)) {
+ // scalar
+ resultId = createBinOp(op, boolType, value1, value2);
+ } else {
+ // vector
+ resultId = createBinOp(op, makeVectorType(boolType, numConstituents), value1, value2);
+ setPrecision(resultId, precision);
+ // reduce vector compares...
+ resultId = createUnaryOp(equal ? OpAll : OpAny, boolType, resultId);
+ }
+
+ return setPrecision(resultId, precision);
+ }
+
+ // Only structs, arrays, and matrices should be left.
+ // They share in common the reduction operation across their constituents.
+ assert(isAggregateType(valueType) || isMatrixType(valueType));
+
+ // Compare each pair of constituents
+ for (int constituent = 0; constituent < numConstituents; ++constituent) {
+ std::vector<unsigned> indexes(1, constituent);
+ Id constituentType1 = getContainedTypeId(getTypeId(value1), constituent);
+ Id constituentType2 = getContainedTypeId(getTypeId(value2), constituent);
+ Id constituent1 = createCompositeExtract(value1, constituentType1, indexes);
+ Id constituent2 = createCompositeExtract(value2, constituentType2, indexes);
+
+ Id subResultId = createCompositeCompare(precision, constituent1, constituent2, equal);
+
+ if (constituent == 0)
+ resultId = subResultId;
+ else
+ resultId = setPrecision(createBinOp(equal ? OpLogicalAnd : OpLogicalOr, boolType, resultId, subResultId), precision);
+ }
+
+ return resultId;
+}
+
+// OpCompositeConstruct
+Id Builder::createCompositeConstruct(Id typeId, std::vector<Id>& constituents)
+{
+ assert(isAggregateType(typeId) || (getNumTypeConstituents(typeId) > 1 && getNumTypeConstituents(typeId) == (int)constituents.size()));
+
+ if (generatingOpCodeForSpecConst) {
+ // Sometime, even in spec-constant-op mode, the constant composite to be
+ // constructed may not be a specialization constant.
+ // e.g.:
+ // const mat2 m2 = mat2(a_spec_const, a_front_end_const, another_front_end_const, third_front_end_const);
+ // The first column vector should be a spec constant one, as a_spec_const is a spec constant.
+ // The second column vector should NOT be spec constant, as it does not contain any spec constants.
+ // To handle such cases, we check the constituents of the constant vector to determine whether this
+ // vector should be created as a spec constant.
+ return makeCompositeConstant(typeId, constituents,
+ std::any_of(constituents.begin(), constituents.end(),
+ [&](spv::Id id) { return isSpecConstant(id); }));
+ }
+
+ Instruction* op = new Instruction(getUniqueId(), typeId, OpCompositeConstruct);
+ for (int c = 0; c < (int)constituents.size(); ++c)
+ op->addIdOperand(constituents[c]);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
+
+ return op->getResultId();
+}
+
+// Vector or scalar constructor
+Id Builder::createConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
+{
+ Id result = NoResult;
+ unsigned int numTargetComponents = getNumTypeComponents(resultTypeId);
+ unsigned int targetComponent = 0;
+
+ // Special case: when calling a vector constructor with a single scalar
+ // argument, smear the scalar
+ if (sources.size() == 1 && isScalar(sources[0]) && numTargetComponents > 1)
+ return smearScalar(precision, sources[0], resultTypeId);
+
+ Id scalarTypeId = getScalarTypeId(resultTypeId);
+ std::vector<Id> constituents; // accumulate the arguments for OpCompositeConstruct
+ for (unsigned int i = 0; i < sources.size(); ++i) {
+ assert(! isAggregate(sources[i]));
+ unsigned int sourceSize = getNumComponents(sources[i]);
+ unsigned int sourcesToUse = sourceSize;
+ if (sourcesToUse + targetComponent > numTargetComponents)
+ sourcesToUse = numTargetComponents - targetComponent;
+
+ for (unsigned int s = 0; s < sourcesToUse; ++s) {
+ Id arg = sources[i];
+ if (sourceSize > 1) {
+ std::vector<unsigned> swiz;
+ swiz.push_back(s);
+ arg = createRvalueSwizzle(precision, scalarTypeId, arg, swiz);
+ }
+
+ if (numTargetComponents > 1)
+ constituents.push_back(arg);
+ else
+ result = arg;
+ ++targetComponent;
+ }
+
+ if (targetComponent >= numTargetComponents)
+ break;
+ }
+
+ if (constituents.size() > 0)
+ result = createCompositeConstruct(resultTypeId, constituents);
+
+ return setPrecision(result, precision);
+}
+
+// Comments in header
+Id Builder::createMatrixConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
+{
+ Id componentTypeId = getScalarTypeId(resultTypeId);
+ int numCols = getTypeNumColumns(resultTypeId);
+ int numRows = getTypeNumRows(resultTypeId);
+
+ Instruction* instr = module.getInstruction(componentTypeId);
+ Id bitCount = instr->getIdOperand(0);
+
+ // Will use a two step process
+ // 1. make a compile-time 2D array of values
+ // 2. construct a matrix from that array
+
+ // Step 1.
+
+ // initialize the array to the identity matrix
+ Id ids[maxMatrixSize][maxMatrixSize];
+ Id one = (bitCount == 64 ? makeDoubleConstant(1.0) : makeFloatConstant(1.0));
+ Id zero = (bitCount == 64 ? makeDoubleConstant(0.0) : makeFloatConstant(0.0));
+ for (int col = 0; col < 4; ++col) {
+ for (int row = 0; row < 4; ++row) {
+ if (col == row)
+ ids[col][row] = one;
+ else
+ ids[col][row] = zero;
+ }
+ }
+
+ // modify components as dictated by the arguments
+ if (sources.size() == 1 && isScalar(sources[0])) {
+ // a single scalar; resets the diagonals
+ for (int col = 0; col < 4; ++col)
+ ids[col][col] = sources[0];
+ } else if (isMatrix(sources[0])) {
+ // constructing from another matrix; copy over the parts that exist in both the argument and constructee
+ Id matrix = sources[0];
+ int minCols = std::min(numCols, getNumColumns(matrix));
+ int minRows = std::min(numRows, getNumRows(matrix));
+ for (int col = 0; col < minCols; ++col) {
+ std::vector<unsigned> indexes;
+ indexes.push_back(col);
+ for (int row = 0; row < minRows; ++row) {
+ indexes.push_back(row);
+ ids[col][row] = createCompositeExtract(matrix, componentTypeId, indexes);
+ indexes.pop_back();
+ setPrecision(ids[col][row], precision);
+ }
+ }
+ } else {
+ // fill in the matrix in column-major order with whatever argument components are available
+ int row = 0;
+ int col = 0;
+
+ for (int arg = 0; arg < (int)sources.size(); ++arg) {
+ Id argComp = sources[arg];
+ for (int comp = 0; comp < getNumComponents(sources[arg]); ++comp) {
+ if (getNumComponents(sources[arg]) > 1) {
+ argComp = createCompositeExtract(sources[arg], componentTypeId, comp);
+ setPrecision(argComp, precision);
+ }
+ ids[col][row++] = argComp;
+ if (row == numRows) {
+ row = 0;
+ col++;
+ }
+ }
+ }
+ }
+
+
+ // Step 2: Construct a matrix from that array.
+ // First make the column vectors, then make the matrix.
+
+ // make the column vectors
+ Id columnTypeId = getContainedTypeId(resultTypeId);
+ std::vector<Id> matrixColumns;
+ for (int col = 0; col < numCols; ++col) {
+ std::vector<Id> vectorComponents;
+ for (int row = 0; row < numRows; ++row)
+ vectorComponents.push_back(ids[col][row]);
+ Id column = createCompositeConstruct(columnTypeId, vectorComponents);
+ setPrecision(column, precision);
+ matrixColumns.push_back(column);
+ }
+
+ // make the matrix
+ return setPrecision(createCompositeConstruct(resultTypeId, matrixColumns), precision);
+}
+
+// Comments in header
+Builder::If::If(Id cond, Builder& gb) :
+ builder(gb),
+ condition(cond),
+ elseBlock(0)
+{
+ function = &builder.getBuildPoint()->getParent();
+
+ // make the blocks, but only put the then-block into the function,
+ // the else-block and merge-block will be added later, in order, after
+ // earlier code is emitted
+ thenBlock = new Block(builder.getUniqueId(), *function);
+ mergeBlock = new Block(builder.getUniqueId(), *function);
+
+ // Save the current block, so that we can add in the flow control split when
+ // makeEndIf is called.
+ headerBlock = builder.getBuildPoint();
+
+ function->addBlock(thenBlock);
+ builder.setBuildPoint(thenBlock);
+}
+
+// Comments in header
+void Builder::If::makeBeginElse()
+{
+ // Close out the "then" by having it jump to the mergeBlock
+ builder.createBranch(mergeBlock);
+
+ // Make the first else block and add it to the function
+ elseBlock = new Block(builder.getUniqueId(), *function);
+ function->addBlock(elseBlock);
+
+ // Start building the else block
+ builder.setBuildPoint(elseBlock);
+}
+
+// Comments in header
+void Builder::If::makeEndIf()
+{
+ // jump to the merge block
+ builder.createBranch(mergeBlock);
+
+ // Go back to the headerBlock and make the flow control split
+ builder.setBuildPoint(headerBlock);
+ builder.createSelectionMerge(mergeBlock, SelectionControlMaskNone);
+ if (elseBlock)
+ builder.createConditionalBranch(condition, thenBlock, elseBlock);
+ else
+ builder.createConditionalBranch(condition, thenBlock, mergeBlock);
+
+ // add the merge block to the function
+ function->addBlock(mergeBlock);
+ builder.setBuildPoint(mergeBlock);
+}
+
+// Comments in header
+void Builder::makeSwitch(Id selector, int numSegments, std::vector<int>& caseValues, std::vector<int>& valueIndexToSegment, int defaultSegment,
+ std::vector<Block*>& segmentBlocks)
+{
+ Function& function = buildPoint->getParent();
+
+ // make all the blocks
+ for (int s = 0; s < numSegments; ++s)
+ segmentBlocks.push_back(new Block(getUniqueId(), function));
+
+ Block* mergeBlock = new Block(getUniqueId(), function);
+
+ // make and insert the switch's selection-merge instruction
+ createSelectionMerge(mergeBlock, SelectionControlMaskNone);
+
+ // make the switch instruction
+ Instruction* switchInst = new Instruction(NoResult, NoType, OpSwitch);
+ switchInst->addIdOperand(selector);
+ auto defaultOrMerge = (defaultSegment >= 0) ? segmentBlocks[defaultSegment] : mergeBlock;
+ switchInst->addIdOperand(defaultOrMerge->getId());
+ defaultOrMerge->addPredecessor(buildPoint);
+ for (int i = 0; i < (int)caseValues.size(); ++i) {
+ switchInst->addImmediateOperand(caseValues[i]);
+ switchInst->addIdOperand(segmentBlocks[valueIndexToSegment[i]]->getId());
+ segmentBlocks[valueIndexToSegment[i]]->addPredecessor(buildPoint);
+ }
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(switchInst));
+
+ // push the merge block
+ switchMerges.push(mergeBlock);
+}
+
+// Comments in header
+void Builder::addSwitchBreak()
+{
+ // branch to the top of the merge block stack
+ createBranch(switchMerges.top());
+ createAndSetNoPredecessorBlock("post-switch-break");
+}
+
+// Comments in header
+void Builder::nextSwitchSegment(std::vector<Block*>& segmentBlock, int nextSegment)
+{
+ int lastSegment = nextSegment - 1;
+ if (lastSegment >= 0) {
+ // Close out previous segment by jumping, if necessary, to next segment
+ if (! buildPoint->isTerminated())
+ createBranch(segmentBlock[nextSegment]);
+ }
+ Block* block = segmentBlock[nextSegment];
+ block->getParent().addBlock(block);
+ setBuildPoint(block);
+}
+
+// Comments in header
+void Builder::endSwitch(std::vector<Block*>& /*segmentBlock*/)
+{
+ // Close out previous segment by jumping, if necessary, to next segment
+ if (! buildPoint->isTerminated())
+ addSwitchBreak();
+
+ switchMerges.top()->getParent().addBlock(switchMerges.top());
+ setBuildPoint(switchMerges.top());
+
+ switchMerges.pop();
+}
+
+Block& Builder::makeNewBlock()
+{
+ Function& function = buildPoint->getParent();
+ auto block = new Block(getUniqueId(), function);
+ function.addBlock(block);
+ return *block;
+}
+
+Builder::LoopBlocks& Builder::makeNewLoop()
+{
+ // Older MSVC versions don't allow inlining of blocks below.
+ LoopBlocks blocks = {makeNewBlock(), makeNewBlock(), makeNewBlock(), makeNewBlock()};
+ loops.push(blocks);
+ return loops.top();
+}
+
+void Builder::createLoopContinue()
+{
+ createBranch(&loops.top().continue_target);
+ // Set up a block for dead code.
+ createAndSetNoPredecessorBlock("post-loop-continue");
+}
+
+void Builder::createLoopExit()
+{
+ createBranch(&loops.top().merge);
+ // Set up a block for dead code.
+ createAndSetNoPredecessorBlock("post-loop-break");
+}
+
+void Builder::closeLoop()
+{
+ loops.pop();
+}
+
+void Builder::clearAccessChain()
+{
+ accessChain.base = NoResult;
+ accessChain.indexChain.clear();
+ accessChain.instr = NoResult;
+ accessChain.swizzle.clear();
+ accessChain.component = NoResult;
+ accessChain.preSwizzleBaseType = NoType;
+ accessChain.isRValue = false;
+}
+
+// Comments in header
+void Builder::accessChainPushSwizzle(std::vector<unsigned>& swizzle, Id preSwizzleBaseType)
+{
+ // swizzles can be stacked in GLSL, but simplified to a single
+ // one here; the base type doesn't change
+ if (accessChain.preSwizzleBaseType == NoType)
+ accessChain.preSwizzleBaseType = preSwizzleBaseType;
+
+ // if needed, propagate the swizzle for the current access chain
+ if (accessChain.swizzle.size()) {
+ std::vector<unsigned> oldSwizzle = accessChain.swizzle;
+ accessChain.swizzle.resize(0);
+ for (unsigned int i = 0; i < swizzle.size(); ++i) {
+ accessChain.swizzle.push_back(oldSwizzle[swizzle[i]]);
+ }
+ } else
+ accessChain.swizzle = swizzle;
+
+ // determine if we need to track this swizzle anymore
+ simplifyAccessChainSwizzle();
+}
+
+// Comments in header
+void Builder::accessChainStore(Id rvalue)
+{
+ assert(accessChain.isRValue == false);
+
+ transferAccessChainSwizzle(true);
+ Id base = collapseAccessChain();
+
+ if (accessChain.swizzle.size() && accessChain.component != NoResult)
+ logger->missingFunctionality("simultaneous l-value swizzle and dynamic component selection");
+
+ // If swizzle still exists, it is out-of-order or not full, we must load the target vector,
+ // extract and insert elements to perform writeMask and/or swizzle.
+ Id source = NoResult;
+ if (accessChain.swizzle.size()) {
+ Id tempBaseId = createLoad(base);
+ source = createLvalueSwizzle(getTypeId(tempBaseId), tempBaseId, rvalue, accessChain.swizzle);
+ }
+
+ // dynamic component selection
+ if (accessChain.component != NoResult) {
+ Id tempBaseId = (source == NoResult) ? createLoad(base) : source;
+ source = createVectorInsertDynamic(tempBaseId, getTypeId(tempBaseId), rvalue, accessChain.component);
+ }
+
+ if (source == NoResult)
+ source = rvalue;
+
+ createStore(source, base);
+}
+
+// Comments in header
+Id Builder::accessChainLoad(Decoration precision, Id resultType)
+{
+ Id id;
+
+ if (accessChain.isRValue) {
+ // transfer access chain, but keep it static, so we can stay in registers
+ transferAccessChainSwizzle(false);
+ if (accessChain.indexChain.size() > 0) {
+ Id swizzleBase = accessChain.preSwizzleBaseType != NoType ? accessChain.preSwizzleBaseType : resultType;
+
+ // if all the accesses are constants, we can use OpCompositeExtract
+ std::vector<unsigned> indexes;
+ bool constant = true;
+ for (int i = 0; i < (int)accessChain.indexChain.size(); ++i) {
+ if (isConstantScalar(accessChain.indexChain[i]))
+ indexes.push_back(getConstantScalar(accessChain.indexChain[i]));
+ else {
+ constant = false;
+ break;
+ }
+ }
+
+ if (constant)
+ id = createCompositeExtract(accessChain.base, swizzleBase, indexes);
+ else {
+ // make a new function variable for this r-value
+ Id lValue = createVariable(StorageClassFunction, getTypeId(accessChain.base), "indexable");
+
+ // store into it
+ createStore(accessChain.base, lValue);
+
+ // move base to the new variable
+ accessChain.base = lValue;
+ accessChain.isRValue = false;
+
+ // load through the access chain
+ id = createLoad(collapseAccessChain());
+ }
+ setPrecision(id, precision);
+ } else
+ id = accessChain.base; // no precision, it was set when this was defined
+ } else {
+ transferAccessChainSwizzle(true);
+ // load through the access chain
+ id = createLoad(collapseAccessChain());
+ setPrecision(id, precision);
+ }
+
+ // Done, unless there are swizzles to do
+ if (accessChain.swizzle.size() == 0 && accessChain.component == NoResult)
+ return id;
+
+ // Do remaining swizzling
+ // First, static swizzling
+ if (accessChain.swizzle.size()) {
+ // static swizzle
+ Id swizzledType = getScalarTypeId(getTypeId(id));
+ if (accessChain.swizzle.size() > 1)
+ swizzledType = makeVectorType(swizzledType, (int)accessChain.swizzle.size());
+ id = createRvalueSwizzle(precision, swizzledType, id, accessChain.swizzle);
+ }
+
+ // dynamic single-component selection
+ if (accessChain.component != NoResult)
+ id = setPrecision(createVectorExtractDynamic(id, resultType, accessChain.component), precision);
+
+ return id;
+}
+
+Id Builder::accessChainGetLValue()
+{
+ assert(accessChain.isRValue == false);
+
+ transferAccessChainSwizzle(true);
+ Id lvalue = collapseAccessChain();
+
+ // If swizzle exists, it is out-of-order or not full, we must load the target vector,
+ // extract and insert elements to perform writeMask and/or swizzle. This does not
+ // go with getting a direct l-value pointer.
+ assert(accessChain.swizzle.size() == 0);
+ assert(accessChain.component == NoResult);
+
+ return lvalue;
+}
+
+// comment in header
+Id Builder::accessChainGetInferredType()
+{
+ // anything to operate on?
+ if (accessChain.base == NoResult)
+ return NoType;
+ Id type = getTypeId(accessChain.base);
+
+ // do initial dereference
+ if (! accessChain.isRValue)
+ type = getContainedTypeId(type);
+
+ // dereference each index
+ for (auto it = accessChain.indexChain.cbegin(); it != accessChain.indexChain.cend(); ++it) {
+ if (isStructType(type))
+ type = getContainedTypeId(type, getConstantScalar(*it));
+ else
+ type = getContainedTypeId(type);
+ }
+
+ // dereference swizzle
+ if (accessChain.swizzle.size() == 1)
+ type = getContainedTypeId(type);
+ else if (accessChain.swizzle.size() > 1)
+ type = makeVectorType(getContainedTypeId(type), (int)accessChain.swizzle.size());
+
+ // dereference component selection
+ if (accessChain.component)
+ type = getContainedTypeId(type);
+
+ return type;
+}
+
+// comment in header
+void Builder::eliminateDeadDecorations() {
+ std::unordered_set<const Block*> reachable_blocks;
+ std::unordered_set<Id> unreachable_definitions;
+ // Collect IDs defined in unreachable blocks. For each function, label the
+ // reachable blocks first. Then for each unreachable block, collect the
+ // result IDs of the instructions in it.
+ for (std::vector<Function*>::const_iterator fi = module.getFunctions().cbegin();
+ fi != module.getFunctions().cend(); fi++) {
+ Function* f = *fi;
+ Block* entry = f->getEntryBlock();
+ inReadableOrder(entry, [&reachable_blocks](const Block* b) {
+ reachable_blocks.insert(b);
+ });
+ for (std::vector<Block*>::const_iterator bi = f->getBlocks().cbegin();
+ bi != f->getBlocks().cend(); bi++) {
+ Block* b = *bi;
+ if (!reachable_blocks.count(b)) {
+ for (std::vector<std::unique_ptr<Instruction> >::const_iterator
+ ii = b->getInstructions().cbegin();
+ ii != b->getInstructions().cend(); ii++) {
+ Instruction* i = ii->get();
+ unreachable_definitions.insert(i->getResultId());
+ }
+ }
+ }
+ }
+ decorations.erase(std::remove_if(decorations.begin(), decorations.end(),
+ [&unreachable_definitions](std::unique_ptr<Instruction>& I) -> bool {
+ Instruction* inst = I.get();
+ Id decoration_id = inst->getIdOperand(0);
+ return unreachable_definitions.count(decoration_id) != 0;
+ }),
+ decorations.end());
+}
+
+void Builder::dump(std::vector<unsigned int>& out) const
+{
+ // Header, before first instructions:
+ out.push_back(MagicNumber);
+ out.push_back(Version);
+ out.push_back(builderNumber);
+ out.push_back(uniqueId + 1);
+ out.push_back(0);
+
+ // Capabilities
+ for (auto it = capabilities.cbegin(); it != capabilities.cend(); ++it) {
+ Instruction capInst(0, 0, OpCapability);
+ capInst.addImmediateOperand(*it);
+ capInst.dump(out);
+ }
+
+ // TBD: OpExtension ...
+
+ dumpInstructions(out, imports);
+ Instruction memInst(0, 0, OpMemoryModel);
+ memInst.addImmediateOperand(addressModel);
+ memInst.addImmediateOperand(memoryModel);
+ memInst.dump(out);
+
+ // Instructions saved up while building:
+ dumpInstructions(out, entryPoints);
+ dumpInstructions(out, executionModes);
+
+ // Debug instructions
+ if (source != SourceLanguageUnknown) {
+ Instruction sourceInst(0, 0, OpSource);
+ sourceInst.addImmediateOperand(source);
+ sourceInst.addImmediateOperand(sourceVersion);
+ sourceInst.dump(out);
+ }
+ for (int e = 0; e < (int)extensions.size(); ++e) {
+ Instruction extInst(0, 0, OpSourceExtension);
+ extInst.addStringOperand(extensions[e]);
+ extInst.dump(out);
+ }
+ dumpInstructions(out, names);
+ dumpInstructions(out, lines);
+
+ // Annotation instructions
+ dumpInstructions(out, decorations);
+
+ dumpInstructions(out, constantsTypesGlobals);
+ dumpInstructions(out, externals);
+
+ // The functions
+ module.dump(out);
+}
+
+//
+// Protected methods.
+//
+
+// Turn the described access chain in 'accessChain' into an instruction
+// computing its address. This *cannot* include complex swizzles, which must
+// be handled after this is called, but it does include swizzles that select
+// an individual element, as a single address of a scalar type can be
+// computed by an OpAccessChain instruction.
+Id Builder::collapseAccessChain()
+{
+ assert(accessChain.isRValue == false);
+
+ if (accessChain.indexChain.size() > 0) {
+ if (accessChain.instr == 0) {
+ StorageClass storageClass = (StorageClass)module.getStorageClass(getTypeId(accessChain.base));
+ accessChain.instr = createAccessChain(storageClass, accessChain.base, accessChain.indexChain);
+ }
+
+ return accessChain.instr;
+ } else
+ return accessChain.base;
+
+ // note that non-trivial swizzling is left pending...
+}
+
+// clear out swizzle if it is redundant, that is reselecting the same components
+// that would be present without the swizzle.
+void Builder::simplifyAccessChainSwizzle()
+{
+ // If the swizzle has fewer components than the vector, it is subsetting, and must stay
+ // to preserve that fact.
+ if (getNumTypeComponents(accessChain.preSwizzleBaseType) > (int)accessChain.swizzle.size())
+ return;
+
+ // if components are out of order, it is a swizzle
+ for (unsigned int i = 0; i < accessChain.swizzle.size(); ++i) {
+ if (i != accessChain.swizzle[i])
+ return;
+ }
+
+ // otherwise, there is no need to track this swizzle
+ accessChain.swizzle.clear();
+ if (accessChain.component == NoResult)
+ accessChain.preSwizzleBaseType = NoType;
+}
+
+// To the extent any swizzling can become part of the chain
+// of accesses instead of a post operation, make it so.
+// If 'dynamic' is true, include transferring a non-static component index,
+// otherwise, only transfer static indexes.
+//
+// Also, Boolean vectors are likely to be special. While
+// for external storage, they should only be integer types,
+// function-local bool vectors could use sub-word indexing,
+// so keep that as a separate Insert/Extract on a loaded vector.
+void Builder::transferAccessChainSwizzle(bool dynamic)
+{
+ // too complex?
+ if (accessChain.swizzle.size() > 1)
+ return;
+
+ // non existent?
+ if (accessChain.swizzle.size() == 0 && accessChain.component == NoResult)
+ return;
+
+ // single component...
+
+ // skip doing it for Boolean vectors
+ if (isBoolType(getContainedTypeId(accessChain.preSwizzleBaseType)))
+ return;
+
+ if (accessChain.swizzle.size() == 1) {
+ // handle static component
+ accessChain.indexChain.push_back(makeUintConstant(accessChain.swizzle.front()));
+ accessChain.swizzle.clear();
+ // note, the only valid remaining dynamic access would be to this one
+ // component, so don't bother even looking at accessChain.component
+ accessChain.preSwizzleBaseType = NoType;
+ accessChain.component = NoResult;
+ } else if (dynamic && accessChain.component != NoResult) {
+ // handle dynamic component
+ accessChain.indexChain.push_back(accessChain.component);
+ accessChain.preSwizzleBaseType = NoType;
+ accessChain.component = NoResult;
+ }
+}
+
+// Utility method for creating a new block and setting the insert point to
+// be in it. This is useful for flow-control operations that need a "dummy"
+// block proceeding them (e.g. instructions after a discard, etc).
+void Builder::createAndSetNoPredecessorBlock(const char* /*name*/)
+{
+ Block* block = new Block(getUniqueId(), buildPoint->getParent());
+ block->setUnreachable();
+ buildPoint->getParent().addBlock(block);
+ setBuildPoint(block);
+
+ //if (name)
+ // addName(block->getId(), name);
+}
+
+// Comments in header
+void Builder::createBranch(Block* block)
+{
+ Instruction* branch = new Instruction(OpBranch);
+ branch->addIdOperand(block->getId());
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(branch));
+ block->addPredecessor(buildPoint);
+}
+
+void Builder::createSelectionMerge(Block* mergeBlock, unsigned int control)
+{
+ Instruction* merge = new Instruction(OpSelectionMerge);
+ merge->addIdOperand(mergeBlock->getId());
+ merge->addImmediateOperand(control);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(merge));
+}
+
+void Builder::createLoopMerge(Block* mergeBlock, Block* continueBlock, unsigned int control)
+{
+ Instruction* merge = new Instruction(OpLoopMerge);
+ merge->addIdOperand(mergeBlock->getId());
+ merge->addIdOperand(continueBlock->getId());
+ merge->addImmediateOperand(control);
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(merge));
+}
+
+void Builder::createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock)
+{
+ Instruction* branch = new Instruction(OpBranchConditional);
+ branch->addIdOperand(condition);
+ branch->addIdOperand(thenBlock->getId());
+ branch->addIdOperand(elseBlock->getId());
+ buildPoint->addInstruction(std::unique_ptr<Instruction>(branch));
+ thenBlock->addPredecessor(buildPoint);
+ elseBlock->addPredecessor(buildPoint);
+}
+
+void Builder::dumpInstructions(std::vector<unsigned int>& out, const std::vector<std::unique_ptr<Instruction> >& instructions) const
+{
+ for (int i = 0; i < (int)instructions.size(); ++i) {
+ instructions[i]->dump(out);
+ }
+}
+
+}; // end spv namespace