summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/glslang/src/glslang/MachineIndependent/Intermediate.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/glslang/src/glslang/MachineIndependent/Intermediate.cpp')
-rw-r--r--chromium/third_party/glslang/src/glslang/MachineIndependent/Intermediate.cpp1980
1 files changed, 1980 insertions, 0 deletions
diff --git a/chromium/third_party/glslang/src/glslang/MachineIndependent/Intermediate.cpp b/chromium/third_party/glslang/src/glslang/MachineIndependent/Intermediate.cpp
new file mode 100644
index 00000000000..02681ac556b
--- /dev/null
+++ b/chromium/third_party/glslang/src/glslang/MachineIndependent/Intermediate.cpp
@@ -0,0 +1,1980 @@
+//
+//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
+//Copyright (C) 2012-2015 LunarG, Inc.
+//Copyright (C) 2015-2016 Google, Inc.
+//
+//All rights reserved.
+//
+//Redistribution and use in source and binary forms, with or without
+//modification, are permitted provided that the following conditions
+//are met:
+//
+// Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+//
+// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+//POSSIBILITY OF SUCH DAMAGE.
+//
+
+//
+// Build the intermediate representation.
+//
+
+#include "localintermediate.h"
+#include "RemoveTree.h"
+#include "SymbolTable.h"
+#include "propagateNoContraction.h"
+
+#include <float.h>
+
+namespace glslang {
+
+////////////////////////////////////////////////////////////////////////////
+//
+// First set of functions are to help build the intermediate representation.
+// These functions are not member functions of the nodes.
+// They are called from parser productions.
+//
+/////////////////////////////////////////////////////////////////////////////
+
+//
+// Add a terminal node for an identifier in an expression.
+//
+// Returns the added node.
+//
+
+TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, const TConstUnionArray& constArray,
+ TIntermTyped* constSubtree, const TSourceLoc& loc)
+{
+ TIntermSymbol* node = new TIntermSymbol(id, name, type);
+ node->setLoc(loc);
+ node->setConstArray(constArray);
+ node->setConstSubtree(constSubtree);
+
+ return node;
+}
+
+TIntermSymbol* TIntermediate::addSymbol(const TVariable& variable)
+{
+ glslang::TSourceLoc loc; // just a null location
+ loc.init();
+
+ return addSymbol(variable, loc);
+}
+
+TIntermSymbol* TIntermediate::addSymbol(const TVariable& variable, const TSourceLoc& loc)
+{
+ return addSymbol(variable.getUniqueId(), variable.getName(), variable.getType(), variable.getConstArray(), variable.getConstSubtree(), loc);
+}
+
+TIntermSymbol* TIntermediate::addSymbol(const TType& type, const TSourceLoc& loc)
+{
+ TConstUnionArray unionArray; // just a null constant
+
+ return addSymbol(0, "", type, unionArray, nullptr, loc);
+}
+
+//
+// Connect two nodes with a new parent that does a binary operation on the nodes.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc loc)
+{
+ // No operations work on blocks
+ if (left->getType().getBasicType() == EbtBlock || right->getType().getBasicType() == EbtBlock)
+ return 0;
+
+ // Try converting the children's base types to compatible types.
+ TIntermTyped* child = addConversion(op, left->getType(), right);
+ if (child)
+ right = child;
+ else {
+ child = addConversion(op, right->getType(), left);
+ if (child)
+ left = child;
+ else
+ return 0;
+ }
+
+ //
+ // Need a new node holding things together. Make
+ // one and promote it to the right type.
+ //
+ TIntermBinary* node = new TIntermBinary(op);
+ if (loc.line == 0)
+ loc = right->getLoc();
+ node->setLoc(loc);
+
+ node->setLeft(left);
+ node->setRight(right);
+ if (! node->promote())
+ return 0;
+
+ node->updatePrecision();
+
+ //
+ // If they are both (non-specialization) constants, they must be folded.
+ // (Unless it's the sequence (comma) operator, but that's handled in addComma().)
+ //
+ TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
+ TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
+ if (leftTempConstant && rightTempConstant) {
+ TIntermTyped* folded = leftTempConstant->fold(node->getOp(), rightTempConstant);
+ if (folded)
+ return folded;
+ }
+
+ // If either is a specialization constant, while the other is
+ // a constant (or specialization constant), the result is still
+ // a specialization constant, if the operation is an allowed
+ // specialization-constant operation.
+ if (( left->getType().getQualifier().isSpecConstant() && right->getType().getQualifier().isConstant()) ||
+ (right->getType().getQualifier().isSpecConstant() && left->getType().getQualifier().isConstant()))
+ if (isSpecializationOperation(*node))
+ node->getWritableType().getQualifier().makeSpecConstant();
+
+ return node;
+}
+
+//
+// Connect two nodes through an assignment.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc loc)
+{
+ // No block assignment
+ if (left->getType().getBasicType() == EbtBlock || right->getType().getBasicType() == EbtBlock)
+ return 0;
+
+ //
+ // Like adding binary math, except the conversion can only go
+ // from right to left.
+ //
+ TIntermBinary* node = new TIntermBinary(op);
+ if (loc.line == 0)
+ loc = left->getLoc();
+ node->setLoc(loc);
+
+ TIntermTyped* child = addConversion(op, left->getType(), right);
+ if (child == 0)
+ return 0;
+
+ node->setLeft(left);
+ node->setRight(child);
+ if (! node->promote())
+ return 0;
+
+ node->updatePrecision();
+
+ return node;
+}
+
+//
+// Connect two nodes through an index operator, where the left node is the base
+// of an array or struct, and the right node is a direct or indirect offset.
+//
+// Returns the added node.
+// The caller should set the type of the returned node.
+//
+TIntermTyped* TIntermediate::addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, TSourceLoc loc)
+{
+ TIntermBinary* node = new TIntermBinary(op);
+ if (loc.line == 0)
+ loc = index->getLoc();
+ node->setLoc(loc);
+ node->setLeft(base);
+ node->setRight(index);
+
+ // caller should set the type
+
+ return node;
+}
+
+//
+// Add one node as the parent of another that it operates on.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermTyped* child, TSourceLoc loc)
+{
+ if (child == 0)
+ return 0;
+
+ if (child->getType().getBasicType() == EbtBlock)
+ return 0;
+
+ switch (op) {
+ case EOpLogicalNot:
+ if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
+ return 0;
+ }
+ break;
+
+ case EOpPostIncrement:
+ case EOpPreIncrement:
+ case EOpPostDecrement:
+ case EOpPreDecrement:
+ case EOpNegative:
+ if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
+ return 0;
+ default: break; // some compilers want this
+ }
+
+ //
+ // Do we need to promote the operand?
+ //
+ TBasicType newType = EbtVoid;
+ switch (op) {
+ case EOpConstructInt: newType = EbtInt; break;
+ case EOpConstructUint: newType = EbtUint; break;
+ case EOpConstructInt64: newType = EbtInt64; break;
+ case EOpConstructUint64: newType = EbtUint64; break;
+ case EOpConstructBool: newType = EbtBool; break;
+ case EOpConstructFloat: newType = EbtFloat; break;
+ case EOpConstructDouble: newType = EbtDouble; break;
+ default: break; // some compilers want this
+ }
+
+ if (newType != EbtVoid) {
+ child = addConversion(op, TType(newType, EvqTemporary, child->getVectorSize(),
+ child->getMatrixCols(),
+ child->getMatrixRows()),
+ child);
+ if (child == 0)
+ return 0;
+ }
+
+ //
+ // For constructors, we are now done, it was all in the conversion.
+ // TODO: but, did this bypass constant folding?
+ //
+ switch (op) {
+ case EOpConstructInt:
+ case EOpConstructUint:
+ case EOpConstructInt64:
+ case EOpConstructUint64:
+ case EOpConstructBool:
+ case EOpConstructFloat:
+ case EOpConstructDouble:
+ return child;
+ default: break; // some compilers want this
+ }
+
+ //
+ // Make a new node for the operator.
+ //
+ TIntermUnary* node = new TIntermUnary(op);
+ if (loc.line == 0)
+ loc = child->getLoc();
+ node->setLoc(loc);
+ node->setOperand(child);
+
+ if (! node->promote())
+ return 0;
+
+ node->updatePrecision();
+
+ // If it's a (non-specialization) constant, it must be folded.
+ if (child->getAsConstantUnion())
+ return child->getAsConstantUnion()->fold(op, node->getType());
+
+ // If it's a specialization constant, the result is too,
+ // if the operation is allowed for specialization constants.
+ if (child->getType().getQualifier().isSpecConstant() && isSpecializationOperation(*node))
+ node->getWritableType().getQualifier().makeSpecConstant();
+
+ return node;
+}
+
+TIntermTyped* TIntermediate::addBuiltInFunctionCall(const TSourceLoc& loc, TOperator op, bool unary, TIntermNode* childNode, const TType& returnType)
+{
+ if (unary) {
+ //
+ // Treat it like a unary operator.
+ // addUnaryMath() should get the type correct on its own;
+ // including constness (which would differ from the prototype).
+ //
+ TIntermTyped* child = childNode->getAsTyped();
+ if (child == 0)
+ return 0;
+
+ if (child->getAsConstantUnion()) {
+ TIntermTyped* folded = child->getAsConstantUnion()->fold(op, returnType);
+ if (folded)
+ return folded;
+ }
+
+ TIntermUnary* node = new TIntermUnary(op);
+ node->setLoc(child->getLoc());
+ node->setOperand(child);
+ node->setType(returnType);
+
+ // propagate precision up from child
+ if (profile == EEsProfile && returnType.getQualifier().precision == EpqNone && returnType.getBasicType() != EbtBool)
+ node->getQualifier().precision = child->getQualifier().precision;
+
+ // propagate precision down to child
+ if (node->getQualifier().precision != EpqNone)
+ child->propagatePrecision(node->getQualifier().precision);
+
+ return node;
+ } else {
+ // setAggregateOperater() calls fold() for constant folding
+ TIntermTyped* node = setAggregateOperator(childNode, op, returnType, loc);
+
+ // if not folded, we'll still have an aggregate node to propagate precision with
+ if (node->getAsAggregate()) {
+ TPrecisionQualifier correctPrecision = returnType.getQualifier().precision;
+ if (correctPrecision == EpqNone && profile == EEsProfile) {
+ // find the maximum precision from the arguments, for the built-in's return precision
+ TIntermSequence& sequence = node->getAsAggregate()->getSequence();
+ for (unsigned int arg = 0; arg < sequence.size(); ++arg)
+ correctPrecision = std::max(correctPrecision, sequence[arg]->getAsTyped()->getQualifier().precision);
+ }
+
+ // Propagate precision through this node and its children. That algorithm stops
+ // when a precision is found, so start by clearing this subroot precision
+ node->getQualifier().precision = EpqNone;
+ node->propagatePrecision(correctPrecision);
+ }
+
+ return node;
+ }
+}
+
+//
+// This is the safe way to change the operator on an aggregate, as it
+// does lots of error checking and fixing. Especially for establishing
+// a function call's operation on it's set of parameters. Sequences
+// of instructions are also aggregates, but they just directly set
+// their operator to EOpSequence.
+//
+// Returns an aggregate node, which could be the one passed in if
+// it was already an aggregate.
+//
+TIntermTyped* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, const TType& type, TSourceLoc loc)
+{
+ TIntermAggregate* aggNode;
+
+ //
+ // Make sure we have an aggregate. If not turn it into one.
+ //
+ if (node) {
+ aggNode = node->getAsAggregate();
+ if (aggNode == 0 || aggNode->getOp() != EOpNull) {
+ //
+ // Make an aggregate containing this node.
+ //
+ aggNode = new TIntermAggregate();
+ aggNode->getSequence().push_back(node);
+ if (loc.line == 0)
+ loc = node->getLoc();
+ }
+ } else
+ aggNode = new TIntermAggregate();
+
+ //
+ // Set the operator.
+ //
+ aggNode->setOperator(op);
+ if (loc.line != 0)
+ aggNode->setLoc(loc);
+
+ aggNode->setType(type);
+
+ return fold(aggNode);
+}
+
+//
+// Convert the node's type to the given type, as allowed by the operation involved: 'op'.
+// For implicit conversions, 'op' is not the requested conversion, it is the explicit
+// operation requiring the implicit conversion.
+//
+// Returns a node representing the conversion, which could be the same
+// node passed in if no conversion was needed.
+//
+// Return 0 if a conversion can't be done.
+//
+TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TIntermTyped* node) const
+{
+ //
+ // Does the base type even allow the operation?
+ //
+ switch (node->getBasicType()) {
+ case EbtVoid:
+ return 0;
+ case EbtAtomicUint:
+ case EbtSampler:
+ // opaque types can be passed to functions
+ if (op == EOpFunction)
+ break;
+ // samplers can get assigned via a sampler constructor
+ // (well, not yet, but code in the rest of this function is ready for it)
+ if (node->getBasicType() == EbtSampler && op == EOpAssign &&
+ node->getAsOperator() != nullptr && node->getAsOperator()->getOp() == EOpConstructTextureSampler)
+ break;
+
+ // otherwise, opaque types can't even be operated on, let alone converted
+ return 0;
+ default:
+ break;
+ }
+
+ // Otherwise, if types are identical, no problem
+ if (type == node->getType())
+ return node;
+
+ // If one's a structure, then no conversions.
+ if (type.isStruct() || node->isStruct())
+ return 0;
+
+ // If one's an array, then no conversions.
+ if (type.isArray() || node->getType().isArray())
+ return 0;
+
+ // Note: callers are responsible for other aspects of shape,
+ // like vector and matrix sizes.
+
+ TBasicType promoteTo;
+
+ switch (op) {
+ //
+ // Explicit conversions (unary operations)
+ //
+ case EOpConstructBool:
+ promoteTo = EbtBool;
+ break;
+ case EOpConstructFloat:
+ promoteTo = EbtFloat;
+ break;
+ case EOpConstructDouble:
+ promoteTo = EbtDouble;
+ break;
+ case EOpConstructInt:
+ promoteTo = EbtInt;
+ break;
+ case EOpConstructUint:
+ promoteTo = EbtUint;
+ break;
+ case EOpConstructInt64:
+ promoteTo = EbtInt64;
+ break;
+ case EOpConstructUint64:
+ promoteTo = EbtUint64;
+ break;
+
+ //
+ // List all the binary ops that can implicitly convert one operand to the other's type;
+ // This implements the 'policy' for implicit type conversion.
+ //
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ case EOpEqual:
+ case EOpNotEqual:
+
+ case EOpAdd:
+ case EOpSub:
+ case EOpMul:
+ case EOpDiv:
+ case EOpMod:
+
+ case EOpVectorTimesScalar:
+ case EOpVectorTimesMatrix:
+ case EOpMatrixTimesVector:
+ case EOpMatrixTimesScalar:
+
+ case EOpAnd:
+ case EOpInclusiveOr:
+ case EOpExclusiveOr:
+ case EOpAndAssign:
+ case EOpInclusiveOrAssign:
+ case EOpExclusiveOrAssign:
+
+ case EOpFunctionCall:
+ case EOpReturn:
+ case EOpAssign:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpMulAssign:
+ case EOpVectorTimesScalarAssign:
+ case EOpMatrixTimesScalarAssign:
+ case EOpDivAssign:
+ case EOpModAssign:
+
+ case EOpSequence:
+ case EOpConstructStruct:
+
+ if (type.getBasicType() == node->getType().getBasicType())
+ return node;
+
+ if (canImplicitlyPromote(node->getType().getBasicType(), type.getBasicType()))
+ promoteTo = type.getBasicType();
+ else
+ return 0;
+
+ break;
+
+ // Shifts can have mixed types as long as they are integer, without converting.
+ // It's the left operand's type that determines the resulting type, so no issue
+ // with assign shift ops either.
+ case EOpLeftShift:
+ case EOpRightShift:
+ case EOpLeftShiftAssign:
+ case EOpRightShiftAssign:
+ if ((type.getBasicType() == EbtInt ||
+ type.getBasicType() == EbtUint ||
+ type.getBasicType() == EbtInt64 ||
+ type.getBasicType() == EbtUint64) &&
+ (node->getType().getBasicType() == EbtInt ||
+ node->getType().getBasicType() == EbtUint ||
+ node->getType().getBasicType() == EbtInt64 ||
+ node->getType().getBasicType() == EbtUint64))
+
+ return node;
+ else
+ return 0;
+
+ default:
+ // default is to require a match; all exceptions should have case statements above
+
+ if (type.getBasicType() == node->getType().getBasicType())
+ return node;
+ else
+ return 0;
+ }
+
+ if (node->getAsConstantUnion())
+ return promoteConstantUnion(promoteTo, node->getAsConstantUnion());
+
+ //
+ // Add a new newNode for the conversion.
+ //
+ TIntermUnary* newNode = 0;
+
+ TOperator newOp = EOpNull;
+
+ // This is 'mechanism' here, it does any conversion told. The policy comes
+ // from the shader or the above code.
+ switch (promoteTo) {
+ case EbtDouble:
+ switch (node->getBasicType()) {
+ case EbtInt: newOp = EOpConvIntToDouble; break;
+ case EbtUint: newOp = EOpConvUintToDouble; break;
+ case EbtBool: newOp = EOpConvBoolToDouble; break;
+ case EbtFloat: newOp = EOpConvFloatToDouble; break;
+ case EbtInt64: newOp = EOpConvInt64ToDouble; break;
+ case EbtUint64: newOp = EOpConvUint64ToDouble; break;
+ default:
+ return 0;
+ }
+ break;
+ case EbtFloat:
+ switch (node->getBasicType()) {
+ case EbtInt: newOp = EOpConvIntToFloat; break;
+ case EbtUint: newOp = EOpConvUintToFloat; break;
+ case EbtBool: newOp = EOpConvBoolToFloat; break;
+ case EbtDouble: newOp = EOpConvDoubleToFloat; break;
+ case EbtInt64: newOp = EOpConvInt64ToFloat; break;
+ case EbtUint64: newOp = EOpConvUint64ToFloat; break;
+ default:
+ return 0;
+ }
+ break;
+ case EbtBool:
+ switch (node->getBasicType()) {
+ case EbtInt: newOp = EOpConvIntToBool; break;
+ case EbtUint: newOp = EOpConvUintToBool; break;
+ case EbtFloat: newOp = EOpConvFloatToBool; break;
+ case EbtDouble: newOp = EOpConvDoubleToBool; break;
+ case EbtInt64: newOp = EOpConvInt64ToBool; break;
+ case EbtUint64: newOp = EOpConvUint64ToBool; break;
+ default:
+ return 0;
+ }
+ break;
+ case EbtInt:
+ switch (node->getBasicType()) {
+ case EbtUint: newOp = EOpConvUintToInt; break;
+ case EbtBool: newOp = EOpConvBoolToInt; break;
+ case EbtFloat: newOp = EOpConvFloatToInt; break;
+ case EbtDouble: newOp = EOpConvDoubleToInt; break;
+ case EbtInt64: newOp = EOpConvInt64ToInt; break;
+ case EbtUint64: newOp = EOpConvUint64ToInt; break;
+ default:
+ return 0;
+ }
+ break;
+ case EbtUint:
+ switch (node->getBasicType()) {
+ case EbtInt: newOp = EOpConvIntToUint; break;
+ case EbtBool: newOp = EOpConvBoolToUint; break;
+ case EbtFloat: newOp = EOpConvFloatToUint; break;
+ case EbtDouble: newOp = EOpConvDoubleToUint; break;
+ case EbtInt64: newOp = EOpConvInt64ToUint; break;
+ case EbtUint64: newOp = EOpConvUint64ToUint; break;
+ default:
+ return 0;
+ }
+ break;
+ case EbtInt64:
+ switch (node->getBasicType()) {
+ case EbtInt: newOp = EOpConvIntToInt64; break;
+ case EbtUint: newOp = EOpConvUintToInt64; break;
+ case EbtBool: newOp = EOpConvBoolToInt64; break;
+ case EbtFloat: newOp = EOpConvFloatToInt64; break;
+ case EbtDouble: newOp = EOpConvDoubleToInt64; break;
+ case EbtUint64: newOp = EOpConvUint64ToInt64; break;
+ default:
+ return 0;
+ }
+ break;
+ case EbtUint64:
+ switch (node->getBasicType()) {
+ case EbtInt: newOp = EOpConvIntToUint64; break;
+ case EbtUint: newOp = EOpConvUintToUint64; break;
+ case EbtBool: newOp = EOpConvBoolToUint64; break;
+ case EbtFloat: newOp = EOpConvFloatToUint64; break;
+ case EbtDouble: newOp = EOpConvDoubleToUint64; break;
+ case EbtInt64: newOp = EOpConvInt64ToUint64; break;
+ default:
+ return 0;
+ }
+ break;
+ default:
+ return 0;
+ }
+
+ TType newType(promoteTo, EvqTemporary, node->getVectorSize(), node->getMatrixCols(), node->getMatrixRows());
+ newNode = new TIntermUnary(newOp, newType);
+ newNode->setLoc(node->getLoc());
+ newNode->setOperand(node);
+
+ // TODO: it seems that some unary folding operations should occur here, but are not
+
+ // Propagate specialization-constant-ness, if allowed
+ if (node->getType().getQualifier().isSpecConstant() && isSpecializationOperation(*newNode))
+ newNode->getWritableType().getQualifier().makeSpecConstant();
+
+ return newNode;
+}
+
+//
+// See if the 'from' type is allowed to be implicitly converted to the
+// 'to' type. This is not about vector/array/struct, only about basic type.
+//
+bool TIntermediate::canImplicitlyPromote(TBasicType from, TBasicType to) const
+{
+ if (profile == EEsProfile || version == 110)
+ return false;
+
+ switch (to) {
+ case EbtDouble:
+ switch (from) {
+ case EbtInt:
+ case EbtUint:
+ case EbtInt64:
+ case EbtUint64:
+ case EbtFloat:
+ case EbtDouble:
+ return true;
+ default:
+ return false;
+ }
+ case EbtFloat:
+ switch (from) {
+ case EbtInt:
+ case EbtUint:
+ case EbtFloat:
+ return true;
+ default:
+ return false;
+ }
+ case EbtUint:
+ switch (from) {
+ case EbtInt:
+ return version >= 400;
+ case EbtUint:
+ return true;
+ default:
+ return false;
+ }
+ case EbtInt:
+ switch (from) {
+ case EbtInt:
+ return true;
+ default:
+ return false;
+ }
+ case EbtUint64:
+ switch (from) {
+ case EbtInt:
+ case EbtUint:
+ case EbtInt64:
+ case EbtUint64:
+ return true;
+ default:
+ return false;
+ }
+ case EbtInt64:
+ switch (from) {
+ case EbtInt:
+ case EbtInt64:
+ return true;
+ default:
+ return false;
+ }
+ default:
+ return false;
+ }
+}
+
+//
+// Safe way to combine two nodes into an aggregate. Works with null pointers,
+// a node that's not a aggregate yet, etc.
+//
+// Returns the resulting aggregate, unless 0 was passed in for
+// both existing nodes.
+//
+TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right)
+{
+ if (left == 0 && right == 0)
+ return 0;
+
+ TIntermAggregate* aggNode = 0;
+ if (left)
+ aggNode = left->getAsAggregate();
+ if (! aggNode || aggNode->getOp() != EOpNull) {
+ aggNode = new TIntermAggregate;
+ if (left)
+ aggNode->getSequence().push_back(left);
+ }
+
+ if (right)
+ aggNode->getSequence().push_back(right);
+
+ return aggNode;
+}
+
+TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, const TSourceLoc& loc)
+{
+ TIntermAggregate* aggNode = growAggregate(left, right);
+ if (aggNode)
+ aggNode->setLoc(loc);
+
+ return aggNode;
+}
+
+//
+// Turn an existing node into an aggregate.
+//
+// Returns an aggregate, unless 0 was passed in for the existing node.
+//
+TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node)
+{
+ if (node == 0)
+ return 0;
+
+ TIntermAggregate* aggNode = new TIntermAggregate;
+ aggNode->getSequence().push_back(node);
+ aggNode->setLoc(node->getLoc());
+
+ return aggNode;
+}
+
+TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, const TSourceLoc& loc)
+{
+ if (node == 0)
+ return 0;
+
+ TIntermAggregate* aggNode = new TIntermAggregate;
+ aggNode->getSequence().push_back(node);
+ aggNode->setLoc(loc);
+
+ return aggNode;
+}
+
+//
+// For "if" test nodes. There are three children; a condition,
+// a true path, and a false path. The two paths are in the
+// nodePair.
+//
+// Returns the selection node created.
+//
+TIntermNode* TIntermediate::addSelection(TIntermTyped* cond, TIntermNodePair nodePair, const TSourceLoc& loc)
+{
+ //
+ // Don't prune the false path for compile-time constants; it's needed
+ // for static access analysis.
+ //
+
+ TIntermSelection* node = new TIntermSelection(cond, nodePair.node1, nodePair.node2);
+ node->setLoc(loc);
+
+ return node;
+}
+
+
+TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, const TSourceLoc& loc)
+{
+ // However, the lowest precedence operators of the sequence operator ( , ) and the assignment operators
+ // ... are not included in the operators that can create a constant expression.
+ //
+ //if (left->getType().getQualifier().storage == EvqConst &&
+ // right->getType().getQualifier().storage == EvqConst) {
+
+ // return right;
+ //}
+
+ TIntermTyped *commaAggregate = growAggregate(left, right, loc);
+ commaAggregate->getAsAggregate()->setOperator(EOpComma);
+ commaAggregate->setType(right->getType());
+ commaAggregate->getWritableType().getQualifier().makeTemporary();
+
+ return commaAggregate;
+}
+
+TIntermTyped* TIntermediate::addMethod(TIntermTyped* object, const TType& type, const TString* name, const TSourceLoc& loc)
+{
+ TIntermMethod* method = new TIntermMethod(object, type, *name);
+ method->setLoc(loc);
+
+ return method;
+}
+
+//
+// For "?:" test nodes. There are three children; a condition,
+// a true path, and a false path. The two paths are specified
+// as separate parameters.
+//
+// Returns the selection node created, or 0 if one could not be.
+//
+TIntermTyped* TIntermediate::addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, const TSourceLoc& loc)
+{
+ //
+ // Get compatible types.
+ //
+ TIntermTyped* child = addConversion(EOpSequence, trueBlock->getType(), falseBlock);
+ if (child)
+ falseBlock = child;
+ else {
+ child = addConversion(EOpSequence, falseBlock->getType(), trueBlock);
+ if (child)
+ trueBlock = child;
+ else
+ return 0;
+ }
+
+ // After conversion, types have to match.
+ if (falseBlock->getType() != trueBlock->getType())
+ return 0;
+
+ //
+ // See if all the operands are constant, then fold it otherwise not.
+ //
+
+ if (cond->getAsConstantUnion() && trueBlock->getAsConstantUnion() && falseBlock->getAsConstantUnion()) {
+ if (cond->getAsConstantUnion()->getConstArray()[0].getBConst())
+ return trueBlock;
+ else
+ return falseBlock;
+ }
+
+ //
+ // Make a selection node.
+ //
+ TIntermSelection* node = new TIntermSelection(cond, trueBlock, falseBlock, trueBlock->getType());
+ node->getQualifier().makeTemporary();
+ node->setLoc(loc);
+ node->getQualifier().precision = std::max(trueBlock->getQualifier().precision, falseBlock->getQualifier().precision);
+
+ return node;
+}
+
+//
+// Constant terminal nodes. Has a union that contains bool, float or int constants
+//
+// Returns the constant union node created.
+//
+
+TIntermConstantUnion* TIntermediate::addConstantUnion(const TConstUnionArray& unionArray, const TType& t, const TSourceLoc& loc, bool literal) const
+{
+ TIntermConstantUnion* node = new TIntermConstantUnion(unionArray, t);
+ node->getQualifier().storage = EvqConst;
+ node->setLoc(loc);
+ if (literal)
+ node->setLiteral();
+
+ return node;
+}
+
+TIntermConstantUnion* TIntermediate::addConstantUnion(int i, const TSourceLoc& loc, bool literal) const
+{
+ TConstUnionArray unionArray(1);
+ unionArray[0].setIConst(i);
+
+ return addConstantUnion(unionArray, TType(EbtInt, EvqConst), loc, literal);
+}
+
+TIntermConstantUnion* TIntermediate::addConstantUnion(unsigned int u, const TSourceLoc& loc, bool literal) const
+{
+ TConstUnionArray unionArray(1);
+ unionArray[0].setUConst(u);
+
+ return addConstantUnion(unionArray, TType(EbtUint, EvqConst), loc, literal);
+}
+
+TIntermConstantUnion* TIntermediate::addConstantUnion(long long i64, const TSourceLoc& loc, bool literal) const
+{
+ TConstUnionArray unionArray(1);
+ unionArray[0].setI64Const(i64);
+
+ return addConstantUnion(unionArray, TType(EbtInt64, EvqConst), loc, literal);
+}
+
+TIntermConstantUnion* TIntermediate::addConstantUnion(unsigned long long u64, const TSourceLoc& loc, bool literal) const
+{
+ TConstUnionArray unionArray(1);
+ unionArray[0].setU64Const(u64);
+
+ return addConstantUnion(unionArray, TType(EbtUint64, EvqConst), loc, literal);
+}
+
+TIntermConstantUnion* TIntermediate::addConstantUnion(bool b, const TSourceLoc& loc, bool literal) const
+{
+ TConstUnionArray unionArray(1);
+ unionArray[0].setBConst(b);
+
+ return addConstantUnion(unionArray, TType(EbtBool, EvqConst), loc, literal);
+}
+
+TIntermConstantUnion* TIntermediate::addConstantUnion(double d, TBasicType baseType, const TSourceLoc& loc, bool literal) const
+{
+ assert(baseType == EbtFloat || baseType == EbtDouble);
+
+ TConstUnionArray unionArray(1);
+ unionArray[0].setDConst(d);
+
+ return addConstantUnion(unionArray, TType(baseType, EvqConst), loc, literal);
+}
+
+TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, const TSourceLoc& loc)
+{
+ TIntermAggregate* node = new TIntermAggregate(EOpSequence);
+
+ node->setLoc(loc);
+ TIntermConstantUnion* constIntNode;
+ TIntermSequence &sequenceVector = node->getSequence();
+
+ for (int i = 0; i < fields.num; i++) {
+ constIntNode = addConstantUnion(fields.offsets[i], loc);
+ sequenceVector.push_back(constIntNode);
+ }
+
+ return node;
+}
+
+//
+// Follow the left branches down to the root of an l-value
+// expression (just "." and []).
+//
+// Return the base of the l-value (where following indexing quits working).
+// Return nullptr if a chain following dereferences cannot be followed.
+//
+// 'swizzleOkay' says whether or not it is okay to consider a swizzle
+// a valid part of the dereference chain.
+//
+const TIntermTyped* TIntermediate::findLValueBase(const TIntermTyped* node, bool swizzleOkay)
+{
+ do {
+ const TIntermBinary* binary = node->getAsBinaryNode();
+ if (binary == nullptr)
+ return node;
+ TOperator op = binary->getOp();
+ if (op != EOpIndexDirect && op != EOpIndexIndirect && op != EOpIndexDirectStruct && op != EOpVectorSwizzle)
+ return nullptr;
+ if (! swizzleOkay) {
+ if (op == EOpVectorSwizzle)
+ return nullptr;
+ if ((op == EOpIndexDirect || op == EOpIndexIndirect) &&
+ (binary->getLeft()->getType().isVector() || binary->getLeft()->getType().isScalar()) &&
+ ! binary->getLeft()->getType().isArray())
+ return nullptr;
+ }
+ node = node->getAsBinaryNode()->getLeft();
+ } while (true);
+}
+
+//
+// Create while and do-while loop nodes.
+//
+TIntermLoop* TIntermediate::addLoop(TIntermNode* body, TIntermTyped* test, TIntermTyped* terminal, bool testFirst, const TSourceLoc& loc)
+{
+ TIntermLoop* node = new TIntermLoop(body, test, terminal, testFirst);
+ node->setLoc(loc);
+
+ return node;
+}
+
+//
+// Create a for-loop sequence.
+//
+TIntermAggregate* TIntermediate::addForLoop(TIntermNode* body, TIntermNode* initializer, TIntermTyped* test, TIntermTyped* terminal, bool testFirst, const TSourceLoc& loc)
+{
+ TIntermLoop* node = new TIntermLoop(body, test, terminal, testFirst);
+ node->setLoc(loc);
+
+ // make a sequence of the initializer and statement
+ TIntermAggregate* loopSequence = makeAggregate(initializer, loc);
+ loopSequence = growAggregate(loopSequence, node);
+ loopSequence->setOperator(EOpSequence);
+
+ return loopSequence;
+}
+
+//
+// Add branches.
+//
+TIntermBranch* TIntermediate::addBranch(TOperator branchOp, const TSourceLoc& loc)
+{
+ return addBranch(branchOp, 0, loc);
+}
+
+TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TIntermTyped* expression, const TSourceLoc& loc)
+{
+ TIntermBranch* node = new TIntermBranch(branchOp, expression);
+ node->setLoc(loc);
+
+ return node;
+}
+
+//
+// This is to be executed after the final root is put on top by the parsing
+// process.
+//
+bool TIntermediate::postProcess(TIntermNode* root, EShLanguage /*language*/)
+{
+ if (root == 0)
+ return true;
+
+ // Finish off the top-level sequence
+ TIntermAggregate* aggRoot = root->getAsAggregate();
+ if (aggRoot && aggRoot->getOp() == EOpNull)
+ aggRoot->setOperator(EOpSequence);
+
+ // Propagate 'noContraction' label in backward from 'precise' variables.
+ glslang::PropagateNoContraction(*this);
+
+ return true;
+}
+
+void TIntermediate::addSymbolLinkageNodes(TIntermAggregate*& linkage, EShLanguage language, TSymbolTable& symbolTable)
+{
+ // Add top-level nodes for declarations that must be checked cross
+ // compilation unit by a linker, yet might not have been referenced
+ // by the AST.
+ //
+ // Almost entirely, translation of symbols is driven by what's present
+ // in the AST traversal, not by translating the symbol table.
+ //
+ // However, there are some special cases:
+ // - From the specification: "Special built-in inputs gl_VertexID and
+ // gl_InstanceID are also considered active vertex attributes."
+ // - Linker-based type mismatch error reporting needs to see all
+ // uniforms/ins/outs variables and blocks.
+ // - ftransform() can make gl_Vertex and gl_ModelViewProjectionMatrix active.
+ //
+
+ //if (ftransformUsed) {
+ // TODO: 1.1 lowering functionality: track ftransform() usage
+ // addSymbolLinkageNode(root, symbolTable, "gl_Vertex");
+ // addSymbolLinkageNode(root, symbolTable, "gl_ModelViewProjectionMatrix");
+ //}
+
+ if (language == EShLangVertex) {
+ // the names won't be found in the symbol table unless the versions are right,
+ // so version logic does not need to be repeated here
+ addSymbolLinkageNode(linkage, symbolTable, "gl_VertexID");
+ addSymbolLinkageNode(linkage, symbolTable, "gl_InstanceID");
+ }
+
+ // Add a child to the root node for the linker objects
+ linkage->setOperator(EOpLinkerObjects);
+ treeRoot = growAggregate(treeRoot, linkage);
+}
+
+//
+// Add the given name or symbol to the list of nodes at the end of the tree used
+// for link-time checking and external linkage.
+//
+
+void TIntermediate::addSymbolLinkageNode(TIntermAggregate*& linkage, TSymbolTable& symbolTable, const TString& name)
+{
+ TSymbol* symbol = symbolTable.find(name);
+ if (symbol)
+ addSymbolLinkageNode(linkage, *symbol->getAsVariable());
+}
+
+void TIntermediate::addSymbolLinkageNode(TIntermAggregate*& linkage, const TSymbol& symbol)
+{
+ const TVariable* variable = symbol.getAsVariable();
+ if (! variable) {
+ // This must be a member of an anonymous block, and we need to add the whole block
+ const TAnonMember* anon = symbol.getAsAnonMember();
+ variable = &anon->getAnonContainer();
+ }
+ TIntermSymbol* node = addSymbol(*variable);
+ linkage = growAggregate(linkage, node);
+}
+
+//
+// Add a caller->callee relationship to the call graph.
+// Assumes the strings are unique per signature.
+//
+void TIntermediate::addToCallGraph(TInfoSink& /*infoSink*/, const TString& caller, const TString& callee)
+{
+ // Duplicates are okay, but faster to not keep them, and they come grouped by caller,
+ // as long as new ones are push on the same end we check on for duplicates
+ for (TGraph::const_iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
+ if (call->caller != caller)
+ break;
+ if (call->callee == callee)
+ return;
+ }
+
+ callGraph.push_front(TCall(caller, callee));
+}
+
+//
+// This deletes the tree.
+//
+void TIntermediate::removeTree()
+{
+ if (treeRoot)
+ RemoveAllTreeNodes(treeRoot);
+}
+
+//
+// Implement the part of KHR_vulkan_glsl that lists the set of operations
+// that can result in a specialization constant operation.
+//
+// "5.x Specialization Constant Operations"
+//
+// Only some operations discussed in this section may be applied to a
+// specialization constant and still yield a result that is as
+// specialization constant. The operations allowed are listed below.
+// When a specialization constant is operated on with one of these
+// operators and with another constant or specialization constant, the
+// result is implicitly a specialization constant.
+//
+// - int(), uint(), and bool() constructors for type conversions
+// from any of the following types to any of the following types:
+// * int
+// * uint
+// * bool
+// - vector versions of the above conversion constructors
+// - allowed implicit conversions of the above
+// - swizzles (e.g., foo.yx)
+// - The following when applied to integer or unsigned integer types:
+// * unary negative ( - )
+// * binary operations ( + , - , * , / , % )
+// * shift ( <<, >> )
+// * bitwise operations ( & , | , ^ )
+// - The following when applied to integer or unsigned integer scalar types:
+// * comparison ( == , != , > , >= , < , <= )
+// - The following when applied to the Boolean scalar type:
+// * not ( ! )
+// * logical operations ( && , || , ^^ )
+// * comparison ( == , != )"
+//
+// This function just handles binary and unary nodes. Construction
+// rules are handled in construction paths that are not covered by the unary
+// and binary paths, while required conversions will still show up here
+// as unary converters in the from a construction operator.
+//
+bool TIntermediate::isSpecializationOperation(const TIntermOperator& node) const
+{
+ // The operations resulting in floating point are quite limited
+ // (However, some floating-point operations result in bool, like ">",
+ // so are handled later.)
+ if (node.getType().isFloatingDomain()) {
+ switch (node.getOp()) {
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ case EOpIndexDirectStruct:
+ case EOpVectorSwizzle:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ // Check for floating-point arguments
+ if (const TIntermBinary* bin = node.getAsBinaryNode())
+ if (bin->getLeft() ->getType().isFloatingDomain() ||
+ bin->getRight()->getType().isFloatingDomain())
+ return false;
+
+ // So, for now, we can assume everything left is non-floating-point...
+
+ // Now check for integer/bool-based operations
+ switch (node.getOp()) {
+
+ // dereference/swizzle
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ case EOpIndexDirectStruct:
+ case EOpVectorSwizzle:
+
+ // conversion constructors
+ case EOpConvIntToBool:
+ case EOpConvUintToBool:
+ case EOpConvUintToInt:
+ case EOpConvBoolToInt:
+ case EOpConvIntToUint:
+ case EOpConvBoolToUint:
+
+ // unary operations
+ case EOpNegative:
+ case EOpLogicalNot:
+ case EOpBitwiseNot:
+
+ // binary operations
+ case EOpAdd:
+ case EOpSub:
+ case EOpMul:
+ case EOpVectorTimesScalar:
+ case EOpDiv:
+ case EOpMod:
+ case EOpRightShift:
+ case EOpLeftShift:
+ case EOpAnd:
+ case EOpInclusiveOr:
+ case EOpExclusiveOr:
+ case EOpLogicalOr:
+ case EOpLogicalXor:
+ case EOpLogicalAnd:
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ return true;
+ default:
+ return false;
+ }
+}
+
+////////////////////////////////////////////////////////////////
+//
+// Member functions of the nodes used for building the tree.
+//
+////////////////////////////////////////////////////////////////
+
+//
+// Say whether or not an operation node changes the value of a variable.
+//
+// Returns true if state is modified.
+//
+bool TIntermOperator::modifiesState() const
+{
+ switch (op) {
+ case EOpPostIncrement:
+ case EOpPostDecrement:
+ case EOpPreIncrement:
+ case EOpPreDecrement:
+ case EOpAssign:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpMulAssign:
+ case EOpVectorTimesMatrixAssign:
+ case EOpVectorTimesScalarAssign:
+ case EOpMatrixTimesScalarAssign:
+ case EOpMatrixTimesMatrixAssign:
+ case EOpDivAssign:
+ case EOpModAssign:
+ case EOpAndAssign:
+ case EOpInclusiveOrAssign:
+ case EOpExclusiveOrAssign:
+ case EOpLeftShiftAssign:
+ case EOpRightShiftAssign:
+ return true;
+ default:
+ return false;
+ }
+}
+
+//
+// returns true if the operator is for one of the constructors
+//
+bool TIntermOperator::isConstructor() const
+{
+ return op > EOpConstructGuardStart && op < EOpConstructGuardEnd;
+}
+
+//
+// Make sure the type of a unary operator is appropriate for its
+// combination of operation and operand type.
+//
+// Returns false in nothing makes sense.
+//
+bool TIntermUnary::promote()
+{
+ switch (op) {
+ case EOpLogicalNot:
+ if (operand->getBasicType() != EbtBool)
+
+ return false;
+ break;
+ case EOpBitwiseNot:
+ if (operand->getBasicType() != EbtInt &&
+ operand->getBasicType() != EbtUint &&
+ operand->getBasicType() != EbtInt64 &&
+ operand->getBasicType() != EbtUint64)
+
+ return false;
+ break;
+ case EOpNegative:
+ case EOpPostIncrement:
+ case EOpPostDecrement:
+ case EOpPreIncrement:
+ case EOpPreDecrement:
+ if (operand->getBasicType() != EbtInt &&
+ operand->getBasicType() != EbtUint &&
+ operand->getBasicType() != EbtInt64 &&
+ operand->getBasicType() != EbtUint64 &&
+ operand->getBasicType() != EbtFloat &&
+ operand->getBasicType() != EbtDouble)
+
+ return false;
+ break;
+
+ default:
+ if (operand->getBasicType() != EbtFloat)
+
+ return false;
+ }
+
+ setType(operand->getType());
+ getWritableType().getQualifier().makeTemporary();
+
+ return true;
+}
+
+void TIntermUnary::updatePrecision()
+{
+ if (getBasicType() == EbtInt || getBasicType() == EbtUint || getBasicType() == EbtFloat) {
+ if (operand->getQualifier().precision > getQualifier().precision)
+ getQualifier().precision = operand->getQualifier().precision;
+ }
+}
+
+//
+// Establishes the type of the resultant operation, as well as
+// makes the operator the correct one for the operands.
+//
+// Returns false if operator can't work on operands.
+//
+bool TIntermBinary::promote()
+{
+ // Arrays and structures have to be exact matches.
+ if ((left->isArray() || right->isArray() || left->getBasicType() == EbtStruct || right->getBasicType() == EbtStruct)
+ && left->getType() != right->getType())
+ return false;
+
+ // Base assumption: just make the type the same as the left
+ // operand. Only deviations from this will be coded.
+ setType(left->getType());
+ type.getQualifier().clear();
+
+ // Composite and opaque types don't having pending operator changes, e.g.,
+ // array, structure, and samplers. Just establish final type and correctness.
+ if (left->isArray() || left->getBasicType() == EbtStruct || left->getBasicType() == EbtSampler) {
+ switch (op) {
+ case EOpEqual:
+ case EOpNotEqual:
+ if (left->getBasicType() == EbtSampler) {
+ // can't compare samplers
+ return false;
+ } else {
+ // Promote to conditional
+ setType(TType(EbtBool));
+ }
+
+ return true;
+
+ case EOpAssign:
+ // Keep type from above
+
+ return true;
+
+ default:
+ return false;
+ }
+ }
+
+ //
+ // We now have only scalars, vectors, and matrices to worry about.
+ //
+
+ // Do general type checks against individual operands (comparing left and right is coming up, checking mixed shapes after that)
+ switch (op) {
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ // Relational comparisons need matching numeric types and will promote to scalar Boolean.
+ if (left->getBasicType() == EbtBool || left->getType().isVector() || left->getType().isMatrix())
+ return false;
+
+ // Fall through
+
+ case EOpEqual:
+ case EOpNotEqual:
+ // All the above comparisons result in a bool (but not the vector compares)
+ setType(TType(EbtBool));
+ break;
+
+ case EOpLogicalAnd:
+ case EOpLogicalOr:
+ case EOpLogicalXor:
+ // logical ops operate only on scalar Booleans and will promote to scalar Boolean.
+ if (left->getBasicType() != EbtBool || left->isVector() || left->isMatrix())
+ return false;
+
+ setType(TType(EbtBool));
+ break;
+
+ case EOpRightShift:
+ case EOpLeftShift:
+ case EOpRightShiftAssign:
+ case EOpLeftShiftAssign:
+
+ case EOpMod:
+ case EOpModAssign:
+
+ case EOpAnd:
+ case EOpInclusiveOr:
+ case EOpExclusiveOr:
+ case EOpAndAssign:
+ case EOpInclusiveOrAssign:
+ case EOpExclusiveOrAssign:
+ // Check for integer-only operands.
+ if ((left->getBasicType() != EbtInt && left->getBasicType() != EbtUint &&
+ left->getBasicType() != EbtInt64 && left->getBasicType() != EbtUint64) ||
+ (right->getBasicType() != EbtInt && right->getBasicType() != EbtUint &&
+ right->getBasicType() != EbtInt64 && right->getBasicType() != EbtUint64))
+ return false;
+ if (left->isMatrix() || right->isMatrix())
+ return false;
+
+ break;
+
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpMul:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpMulAssign:
+ case EOpDivAssign:
+ // check for non-Boolean operands
+ if (left->getBasicType() == EbtBool || right->getBasicType() == EbtBool)
+ return false;
+
+ default:
+ break;
+ }
+
+ // Compare left and right, and finish with the cases where the operand types must match
+ switch (op) {
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+
+ case EOpEqual:
+ case EOpNotEqual:
+
+ case EOpLogicalAnd:
+ case EOpLogicalOr:
+ case EOpLogicalXor:
+ return left->getType() == right->getType();
+
+ // no shifts: they can mix types (scalar int can shift a vector uint, etc.)
+
+ case EOpMod:
+ case EOpModAssign:
+
+ case EOpAnd:
+ case EOpInclusiveOr:
+ case EOpExclusiveOr:
+ case EOpAndAssign:
+ case EOpInclusiveOrAssign:
+ case EOpExclusiveOrAssign:
+
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpDivAssign:
+ // Quick out in case the types do match
+ if (left->getType() == right->getType())
+ return true;
+
+ // Fall through
+
+ case EOpMul:
+ case EOpMulAssign:
+ // At least the basic type has to match
+ if (left->getBasicType() != right->getBasicType())
+ return false;
+
+ default:
+ break;
+ }
+
+ // Finish handling the case, for all ops, where both operands are scalars.
+ if (left->isScalar() && right->isScalar())
+ return true;
+
+ // Finish handling the case, for all ops, where there are two vectors of different sizes
+ if (left->isVector() && right->isVector() && left->getVectorSize() != right->getVectorSize())
+ return false;
+
+ //
+ // We now have a mix of scalars, vectors, or matrices, for non-relational operations.
+ //
+
+ // Can these two operands be combined, what is the resulting type?
+ TBasicType basicType = left->getBasicType();
+ switch (op) {
+ case EOpMul:
+ if (!left->isMatrix() && right->isMatrix()) {
+ if (left->isVector()) {
+ if (left->getVectorSize() != right->getMatrixRows())
+ return false;
+ op = EOpVectorTimesMatrix;
+ setType(TType(basicType, EvqTemporary, right->getMatrixCols()));
+ } else {
+ op = EOpMatrixTimesScalar;
+ setType(TType(basicType, EvqTemporary, 0, right->getMatrixCols(), right->getMatrixRows()));
+ }
+ } else if (left->isMatrix() && !right->isMatrix()) {
+ if (right->isVector()) {
+ if (left->getMatrixCols() != right->getVectorSize())
+ return false;
+ op = EOpMatrixTimesVector;
+ setType(TType(basicType, EvqTemporary, left->getMatrixRows()));
+ } else {
+ op = EOpMatrixTimesScalar;
+ }
+ } else if (left->isMatrix() && right->isMatrix()) {
+ if (left->getMatrixCols() != right->getMatrixRows())
+ return false;
+ op = EOpMatrixTimesMatrix;
+ setType(TType(basicType, EvqTemporary, 0, right->getMatrixCols(), left->getMatrixRows()));
+ } else if (! left->isMatrix() && ! right->isMatrix()) {
+ if (left->isVector() && right->isVector()) {
+ ; // leave as component product
+ } else if (left->isVector() || right->isVector()) {
+ op = EOpVectorTimesScalar;
+ if (right->isVector())
+ setType(TType(basicType, EvqTemporary, right->getVectorSize()));
+ }
+ } else {
+ return false;
+ }
+ break;
+ case EOpMulAssign:
+ if (! left->isMatrix() && right->isMatrix()) {
+ if (left->isVector()) {
+ if (left->getVectorSize() != right->getMatrixRows() || left->getVectorSize() != right->getMatrixCols())
+ return false;
+ op = EOpVectorTimesMatrixAssign;
+ } else {
+ return false;
+ }
+ } else if (left->isMatrix() && !right->isMatrix()) {
+ if (right->isVector()) {
+ return false;
+ } else {
+ op = EOpMatrixTimesScalarAssign;
+ }
+ } else if (left->isMatrix() && right->isMatrix()) {
+ if (left->getMatrixCols() != left->getMatrixRows() || left->getMatrixCols() != right->getMatrixCols() || left->getMatrixCols() != right->getMatrixRows())
+ return false;
+ op = EOpMatrixTimesMatrixAssign;
+ } else if (!left->isMatrix() && !right->isMatrix()) {
+ if (left->isVector() && right->isVector()) {
+ // leave as component product
+ } else if (left->isVector() || right->isVector()) {
+ if (! left->isVector())
+ return false;
+ op = EOpVectorTimesScalarAssign;
+ }
+ } else {
+ return false;
+ }
+ break;
+
+ case EOpRightShift:
+ case EOpLeftShift:
+ case EOpRightShiftAssign:
+ case EOpLeftShiftAssign:
+ if (right->isVector() && (! left->isVector() || right->getVectorSize() != left->getVectorSize()))
+ return false;
+ break;
+
+ case EOpAssign:
+ if (left->getVectorSize() != right->getVectorSize() || left->getMatrixCols() != right->getMatrixCols() || left->getMatrixRows() != right->getMatrixRows())
+ return false;
+ // fall through
+
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpMod:
+ case EOpAnd:
+ case EOpInclusiveOr:
+ case EOpExclusiveOr:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpDivAssign:
+ case EOpModAssign:
+ case EOpAndAssign:
+ case EOpInclusiveOrAssign:
+ case EOpExclusiveOrAssign:
+ if ((left->isMatrix() && right->isVector()) ||
+ (left->isVector() && right->isMatrix()) ||
+ left->getBasicType() != right->getBasicType())
+ return false;
+ if (left->isMatrix() && right->isMatrix() && (left->getMatrixCols() != right->getMatrixCols() || left->getMatrixRows() != right->getMatrixRows()))
+ return false;
+ if (left->isVector() && right->isVector() && left->getVectorSize() != right->getVectorSize())
+ return false;
+ if (right->isVector() || right->isMatrix()) {
+ type.shallowCopy(right->getType());
+ type.getQualifier().makeTemporary();
+ }
+ break;
+
+ default:
+ return false;
+ }
+
+ //
+ // One more check for assignment.
+ //
+ switch (op) {
+ // The resulting type has to match the left operand.
+ case EOpAssign:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpMulAssign:
+ case EOpDivAssign:
+ case EOpModAssign:
+ case EOpAndAssign:
+ case EOpInclusiveOrAssign:
+ case EOpExclusiveOrAssign:
+ case EOpLeftShiftAssign:
+ case EOpRightShiftAssign:
+ if (getType() != left->getType())
+ return false;
+ break;
+ default:
+ break;
+ }
+
+ return true;
+}
+
+void TIntermBinary::updatePrecision()
+{
+ if (getBasicType() == EbtInt || getBasicType() == EbtUint || getBasicType() == EbtFloat) {
+ getQualifier().precision = std::max(right->getQualifier().precision, left->getQualifier().precision);
+ if (getQualifier().precision != EpqNone) {
+ left->propagatePrecision(getQualifier().precision);
+ right->propagatePrecision(getQualifier().precision);
+ }
+ }
+}
+
+void TIntermTyped::propagatePrecision(TPrecisionQualifier newPrecision)
+{
+ if (getQualifier().precision != EpqNone || (getBasicType() != EbtInt && getBasicType() != EbtUint && getBasicType() != EbtFloat))
+ return;
+
+ getQualifier().precision = newPrecision;
+
+ TIntermBinary* binaryNode = getAsBinaryNode();
+ if (binaryNode) {
+ binaryNode->getLeft()->propagatePrecision(newPrecision);
+ binaryNode->getRight()->propagatePrecision(newPrecision);
+
+ return;
+ }
+
+ TIntermUnary* unaryNode = getAsUnaryNode();
+ if (unaryNode) {
+ unaryNode->getOperand()->propagatePrecision(newPrecision);
+
+ return;
+ }
+
+ TIntermAggregate* aggregateNode = getAsAggregate();
+ if (aggregateNode) {
+ TIntermSequence operands = aggregateNode->getSequence();
+ for (unsigned int i = 0; i < operands.size(); ++i) {
+ TIntermTyped* typedNode = operands[i]->getAsTyped();
+ if (! typedNode)
+ break;
+ typedNode->propagatePrecision(newPrecision);
+ }
+
+ return;
+ }
+
+ TIntermSelection* selectionNode = getAsSelectionNode();
+ if (selectionNode) {
+ TIntermTyped* typedNode = selectionNode->getTrueBlock()->getAsTyped();
+ if (typedNode) {
+ typedNode->propagatePrecision(newPrecision);
+ typedNode = selectionNode->getFalseBlock()->getAsTyped();
+ if (typedNode)
+ typedNode->propagatePrecision(newPrecision);
+ }
+
+ return;
+ }
+}
+
+TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node) const
+{
+ const TConstUnionArray& rightUnionArray = node->getConstArray();
+ int size = node->getType().computeNumComponents();
+
+ TConstUnionArray leftUnionArray(size);
+
+ for (int i=0; i < size; i++) {
+ switch (promoteTo) {
+ case EbtFloat:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getIConst()));
+ break;
+ case EbtUint:
+ leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getUConst()));
+ break;
+ case EbtInt64:
+ leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getI64Const()));
+ break;
+ case EbtUint64:
+ leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getU64Const()));
+ break;
+ case EbtBool:
+ leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getBConst()));
+ break;
+ case EbtFloat:
+ leftUnionArray[i] = rightUnionArray[i];
+ break;
+ case EbtDouble:
+ leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getDConst()));
+ break;
+ default:
+ return node;
+ }
+ break;
+ case EbtDouble:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getIConst()));
+ break;
+ case EbtUint:
+ leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getUConst()));
+ break;
+ case EbtInt64:
+ leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getI64Const()));
+ break;
+ case EbtUint64:
+ leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getU64Const()));
+ break;
+ case EbtBool:
+ leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getBConst()));
+ break;
+ case EbtFloat:
+ case EbtDouble:
+ leftUnionArray[i] = rightUnionArray[i];
+ break;
+ default:
+ return node;
+ }
+ break;
+ case EbtInt:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i] = rightUnionArray[i];
+ break;
+ case EbtUint:
+ leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getUConst()));
+ break;
+ case EbtInt64:
+ leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getI64Const()));
+ break;
+ case EbtUint64:
+ leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getU64Const()));
+ break;
+ case EbtBool:
+ leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getBConst()));
+ break;
+ case EbtFloat:
+ case EbtDouble:
+ leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getDConst()));
+ break;
+ default:
+ return node;
+ }
+ break;
+ case EbtUint:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i].setUConst(static_cast<unsigned int>(rightUnionArray[i].getIConst()));
+ break;
+ case EbtUint:
+ leftUnionArray[i] = rightUnionArray[i];
+ break;
+ case EbtInt64:
+ leftUnionArray[i].setUConst(static_cast<unsigned int>(rightUnionArray[i].getI64Const()));
+ break;
+ case EbtUint64:
+ leftUnionArray[i].setUConst(static_cast<unsigned int>(rightUnionArray[i].getU64Const()));
+ break;
+ case EbtBool:
+ leftUnionArray[i].setUConst(static_cast<unsigned int>(rightUnionArray[i].getBConst()));
+ break;
+ case EbtFloat:
+ case EbtDouble:
+ leftUnionArray[i].setUConst(static_cast<unsigned int>(rightUnionArray[i].getDConst()));
+ break;
+ default:
+ return node;
+ }
+ break;
+ case EbtBool:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i].setBConst(rightUnionArray[i].getIConst() != 0);
+ break;
+ case EbtUint:
+ leftUnionArray[i].setBConst(rightUnionArray[i].getUConst() != 0);
+ break;
+ case EbtInt64:
+ leftUnionArray[i].setBConst(rightUnionArray[i].getI64Const() != 0);
+ break;
+ case EbtUint64:
+ leftUnionArray[i].setBConst(rightUnionArray[i].getU64Const() != 0);
+ break;
+ case EbtBool:
+ leftUnionArray[i] = rightUnionArray[i];
+ break;
+ case EbtFloat:
+ case EbtDouble:
+ leftUnionArray[i].setBConst(rightUnionArray[i].getDConst() != 0.0);
+ break;
+ default:
+ return node;
+ }
+ break;
+ case EbtInt64:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i].setI64Const(static_cast<long long>(rightUnionArray[i].getIConst()));
+ break;
+ case EbtUint:
+ leftUnionArray[i].setI64Const(static_cast<long long>(rightUnionArray[i].getUConst()));
+ break;
+ case EbtInt64:
+ leftUnionArray[i] = rightUnionArray[i];
+ break;
+ case EbtUint64:
+ leftUnionArray[i].setI64Const(static_cast<long long>(rightUnionArray[i].getU64Const()));
+ break;
+ case EbtBool:
+ leftUnionArray[i].setI64Const(static_cast<long long>(rightUnionArray[i].getBConst()));
+ break;
+ case EbtFloat:
+ case EbtDouble:
+ leftUnionArray[i].setI64Const(static_cast<long long>(rightUnionArray[i].getDConst()));
+ break;
+ default:
+ return node;
+ }
+ break;
+ case EbtUint64:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i].setU64Const(static_cast<unsigned long long>(rightUnionArray[i].getIConst()));
+ break;
+ case EbtUint:
+ leftUnionArray[i].setU64Const(static_cast<unsigned long long>(rightUnionArray[i].getUConst()));
+ break;
+ case EbtInt64:
+ leftUnionArray[i].setU64Const(static_cast<unsigned long long>(rightUnionArray[i].getI64Const()));
+ break;
+ case EbtUint64:
+ leftUnionArray[i] = rightUnionArray[i];
+ break;
+ case EbtBool:
+ leftUnionArray[i].setU64Const(static_cast<unsigned long long>(rightUnionArray[i].getBConst()));
+ break;
+ case EbtFloat:
+ case EbtDouble:
+ leftUnionArray[i].setU64Const(static_cast<unsigned long long>(rightUnionArray[i].getDConst()));
+ break;
+ default:
+ return node;
+ }
+ break;
+ default:
+ return node;
+ }
+ }
+
+ const TType& t = node->getType();
+
+ return addConstantUnion(leftUnionArray, TType(promoteTo, t.getQualifier().storage, t.getVectorSize(), t.getMatrixCols(), t.getMatrixRows()),
+ node->getLoc());
+}
+
+void TIntermAggregate::addToPragmaTable(const TPragmaTable& pTable)
+{
+ assert(!pragmaTable);
+ pragmaTable = new TPragmaTable();
+ *pragmaTable = pTable;
+}
+
+} // end namespace glslang