summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/glslang/src/glslang/MachineIndependent/propagateNoContraction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/glslang/src/glslang/MachineIndependent/propagateNoContraction.cpp')
-rw-r--r--chromium/third_party/glslang/src/glslang/MachineIndependent/propagateNoContraction.cpp859
1 files changed, 859 insertions, 0 deletions
diff --git a/chromium/third_party/glslang/src/glslang/MachineIndependent/propagateNoContraction.cpp b/chromium/third_party/glslang/src/glslang/MachineIndependent/propagateNoContraction.cpp
new file mode 100644
index 00000000000..835f57f69d6
--- /dev/null
+++ b/chromium/third_party/glslang/src/glslang/MachineIndependent/propagateNoContraction.cpp
@@ -0,0 +1,859 @@
+//
+// Copyright (C) 2015-2016 Google, Inc.
+//
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+//
+// Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+
+//
+// Visit the nodes in the glslang intermediate tree representation to
+// propagate the 'noContraction' qualifier.
+//
+
+#include "propagateNoContraction.h"
+
+#include <cstdlib>
+#include <string>
+#include <tuple>
+#include <unordered_map>
+#include <unordered_set>
+
+#include "localintermediate.h"
+namespace {
+
+// Use a string to hold the access chain information, as in most cases the
+// access chain is short and may contain only one element, which is the symbol
+// ID.
+// Example: struct {float a; float b;} s;
+// Object s.a will be represented with: <symbol ID of s>/0
+// Object s.b will be represented with: <symbol ID of s>/1
+// Object s will be represented with: <symbol ID of s>
+// For members of vector, matrix and arrays, they will be represented with the
+// same symbol ID of their container symbol objects. This is because their
+// preciseness is always the same as their container symbol objects.
+typedef std::string ObjectAccessChain;
+
+// The delimiter used in the ObjectAccessChain string to separate symbol ID and
+// different level of struct indices.
+const char ObjectAccesschainDelimiter = '/';
+
+// Mapping from Symbol IDs of symbol nodes, to their defining operation
+// nodes.
+typedef std::unordered_multimap<ObjectAccessChain, glslang::TIntermOperator*> NodeMapping;
+// Mapping from object nodes to their access chain info string.
+typedef std::unordered_map<glslang::TIntermTyped*, ObjectAccessChain> AccessChainMapping;
+
+// Set of object IDs.
+typedef std::unordered_set<ObjectAccessChain> ObjectAccesschainSet;
+// Set of return branch nodes.
+typedef std::unordered_set<glslang::TIntermBranch*> ReturnBranchNodeSet;
+
+// A helper function to tell whether a node is 'noContraction'. Returns true if
+// the node has 'noContraction' qualifier, otherwise false.
+bool isPreciseObjectNode(glslang::TIntermTyped* node)
+{
+ return node->getType().getQualifier().noContraction;
+}
+
+// Returns true if the opcode is a dereferencing one.
+bool isDereferenceOperation(glslang::TOperator op)
+{
+ switch (op) {
+ case glslang::EOpIndexDirect:
+ case glslang::EOpIndexDirectStruct:
+ case glslang::EOpIndexIndirect:
+ case glslang::EOpVectorSwizzle:
+ return true;
+ default:
+ return false;
+ }
+}
+
+// Returns true if the opcode leads to an assignment operation.
+bool isAssignOperation(glslang::TOperator op)
+{
+ switch (op) {
+ case glslang::EOpAssign:
+ case glslang::EOpAddAssign:
+ case glslang::EOpSubAssign:
+ case glslang::EOpMulAssign:
+ case glslang::EOpVectorTimesMatrixAssign:
+ case glslang::EOpVectorTimesScalarAssign:
+ case glslang::EOpMatrixTimesScalarAssign:
+ case glslang::EOpMatrixTimesMatrixAssign:
+ case glslang::EOpDivAssign:
+ case glslang::EOpModAssign:
+ case glslang::EOpAndAssign:
+ case glslang::EOpLeftShiftAssign:
+ case glslang::EOpRightShiftAssign:
+ case glslang::EOpInclusiveOrAssign:
+ case glslang::EOpExclusiveOrAssign:
+
+ case glslang::EOpPostIncrement:
+ case glslang::EOpPostDecrement:
+ case glslang::EOpPreIncrement:
+ case glslang::EOpPreDecrement:
+ return true;
+ default:
+ return false;
+ }
+}
+
+// A helper function to get the unsigned int from a given constant union node.
+// Note the node should only hold a uint scalar.
+unsigned getStructIndexFromConstantUnion(glslang::TIntermTyped* node)
+{
+ assert(node->getAsConstantUnion() && node->getAsConstantUnion()->isScalar());
+ unsigned struct_dereference_index = node->getAsConstantUnion()->getConstArray()[0].getUConst();
+ return struct_dereference_index;
+}
+
+// A helper function to generate symbol_label.
+ObjectAccessChain generateSymbolLabel(glslang::TIntermSymbol* node)
+{
+ ObjectAccessChain symbol_id =
+ std::to_string(node->getId()) + "(" + node->getName().c_str() + ")";
+ return symbol_id;
+}
+
+// Returns true if the operation is an arithmetic operation and valid for
+// the 'NoContraction' decoration.
+bool isArithmeticOperation(glslang::TOperator op)
+{
+ switch (op) {
+ case glslang::EOpAddAssign:
+ case glslang::EOpSubAssign:
+ case glslang::EOpMulAssign:
+ case glslang::EOpVectorTimesMatrixAssign:
+ case glslang::EOpVectorTimesScalarAssign:
+ case glslang::EOpMatrixTimesScalarAssign:
+ case glslang::EOpMatrixTimesMatrixAssign:
+ case glslang::EOpDivAssign:
+ case glslang::EOpModAssign:
+
+ case glslang::EOpNegative:
+
+ case glslang::EOpAdd:
+ case glslang::EOpSub:
+ case glslang::EOpMul:
+ case glslang::EOpDiv:
+ case glslang::EOpMod:
+
+ case glslang::EOpVectorTimesScalar:
+ case glslang::EOpVectorTimesMatrix:
+ case glslang::EOpMatrixTimesVector:
+ case glslang::EOpMatrixTimesScalar:
+ case glslang::EOpMatrixTimesMatrix:
+
+ case glslang::EOpDot:
+
+ case glslang::EOpPostIncrement:
+ case glslang::EOpPostDecrement:
+ case glslang::EOpPreIncrement:
+ case glslang::EOpPreDecrement:
+ return true;
+ default:
+ return false;
+ }
+}
+
+// A helper class to help manage the populating_initial_no_contraction_ flag.
+template <typename T> class StateSettingGuard {
+public:
+ StateSettingGuard(T* state_ptr, T new_state_value)
+ : state_ptr_(state_ptr), previous_state_(*state_ptr)
+ {
+ *state_ptr = new_state_value;
+ }
+ StateSettingGuard(T* state_ptr) : state_ptr_(state_ptr), previous_state_(*state_ptr) {}
+ void setState(T new_state_value) { *state_ptr_ = new_state_value; }
+ ~StateSettingGuard() { *state_ptr_ = previous_state_; }
+
+private:
+ T* state_ptr_;
+ T previous_state_;
+};
+
+// A helper function to get the front element from a given ObjectAccessChain
+ObjectAccessChain getFrontElement(const ObjectAccessChain& chain)
+{
+ size_t pos_delimiter = chain.find(ObjectAccesschainDelimiter);
+ return pos_delimiter == std::string::npos ? chain : chain.substr(0, pos_delimiter);
+}
+
+// A helper function to get the access chain starting from the second element.
+ObjectAccessChain subAccessChainFromSecondElement(const ObjectAccessChain& chain)
+{
+ size_t pos_delimiter = chain.find(ObjectAccesschainDelimiter);
+ return pos_delimiter == std::string::npos ? "" : chain.substr(pos_delimiter + 1);
+}
+
+// A helper function to get the access chain after removing a given prefix.
+ObjectAccessChain getSubAccessChainAfterPrefix(const ObjectAccessChain& chain,
+ const ObjectAccessChain& prefix)
+{
+ size_t pos = chain.find(prefix);
+ if (pos != 0)
+ return chain;
+ return chain.substr(prefix.length() + sizeof(ObjectAccesschainDelimiter));
+}
+
+//
+// A traverser which traverses the whole AST and populates:
+// 1) A mapping from symbol nodes' IDs to their defining operation nodes.
+// 2) A set of access chains of the initial precise object nodes.
+//
+class TSymbolDefinitionCollectingTraverser : public glslang::TIntermTraverser {
+public:
+ TSymbolDefinitionCollectingTraverser(NodeMapping* symbol_definition_mapping,
+ AccessChainMapping* accesschain_mapping,
+ ObjectAccesschainSet* precise_objects,
+ ReturnBranchNodeSet* precise_return_nodes);
+
+ bool visitUnary(glslang::TVisit, glslang::TIntermUnary*) override;
+ bool visitBinary(glslang::TVisit, glslang::TIntermBinary*) override;
+ void visitSymbol(glslang::TIntermSymbol*) override;
+ bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate*) override;
+ bool visitBranch(glslang::TVisit, glslang::TIntermBranch*) override;
+
+protected:
+ // The mapping from symbol node IDs to their defining nodes. This should be
+ // populated along traversing the AST.
+ NodeMapping& symbol_definition_mapping_;
+ // The set of symbol node IDs for precise symbol nodes, the ones marked as
+ // 'noContraction'.
+ ObjectAccesschainSet& precise_objects_;
+ // The set of precise return nodes.
+ ReturnBranchNodeSet& precise_return_nodes_;
+ // A temporary cache of the symbol node whose defining node is to be found
+ // currently along traversing the AST.
+ ObjectAccessChain current_object_;
+ // A map from object node to its access chain. This traverser stores
+ // the built access chains into this map for each object node it has
+ // visited.
+ AccessChainMapping& accesschain_mapping_;
+ // The pointer to the Function Definition node, so we can get the
+ // preciseness of the return expression from it when we traverse the
+ // return branch node.
+ glslang::TIntermAggregate* current_function_definition_node_;
+};
+
+TSymbolDefinitionCollectingTraverser::TSymbolDefinitionCollectingTraverser(
+ NodeMapping* symbol_definition_mapping, AccessChainMapping* accesschain_mapping,
+ ObjectAccesschainSet* precise_objects,
+ std::unordered_set<glslang::TIntermBranch*>* precise_return_nodes)
+ : TIntermTraverser(true, false, false), symbol_definition_mapping_(*symbol_definition_mapping),
+ precise_objects_(*precise_objects), current_object_(),
+ accesschain_mapping_(*accesschain_mapping), current_function_definition_node_(nullptr),
+ precise_return_nodes_(*precise_return_nodes) {}
+
+// Visits a symbol node, set the current_object_ to the
+// current node symbol ID, and record a mapping from this node to the current
+// current_object_, which is the just obtained symbol
+// ID.
+void TSymbolDefinitionCollectingTraverser::visitSymbol(glslang::TIntermSymbol* node)
+{
+ current_object_ = generateSymbolLabel(node);
+ accesschain_mapping_[node] = current_object_;
+}
+
+// Visits an aggregate node, traverses all of its children.
+bool TSymbolDefinitionCollectingTraverser::visitAggregate(glslang::TVisit,
+ glslang::TIntermAggregate* node)
+{
+ // This aggregate node might be a function definition node, in which case we need to
+ // cache this node, so we can get the preciseness information of the return value
+ // of this function later.
+ StateSettingGuard<glslang::TIntermAggregate*> current_function_definition_node_setting_guard(
+ &current_function_definition_node_);
+ if (node->getOp() == glslang::EOpFunction) {
+ // This is function definition node, we need to cache this node so that we can
+ // get the preciseness of the return value later.
+ current_function_definition_node_setting_guard.setState(node);
+ }
+ // Traverse the items in the sequence.
+ glslang::TIntermSequence& seq = node->getSequence();
+ for (int i = 0; i < (int)seq.size(); ++i) {
+ current_object_.clear();
+ seq[i]->traverse(this);
+ }
+ return false;
+}
+
+bool TSymbolDefinitionCollectingTraverser::visitBranch(glslang::TVisit,
+ glslang::TIntermBranch* node)
+{
+ if (node->getFlowOp() == glslang::EOpReturn && node->getExpression() &&
+ current_function_definition_node_ &&
+ current_function_definition_node_->getType().getQualifier().noContraction) {
+ // This node is a return node with an expression, and its function has a
+ // precise return value. We need to find the involved objects in its
+ // expression and add them to the set of initial precise objects.
+ precise_return_nodes_.insert(node);
+ node->getExpression()->traverse(this);
+ }
+ return false;
+}
+
+// Visits a unary node. This might be an implicit assignment like i++, i--. etc.
+bool TSymbolDefinitionCollectingTraverser::visitUnary(glslang::TVisit /* visit */,
+ glslang::TIntermUnary* node)
+{
+ current_object_.clear();
+ node->getOperand()->traverse(this);
+ if (isAssignOperation(node->getOp())) {
+ // We should always be able to get an access chain of the operand node.
+ assert(!current_object_.empty());
+
+ // If the operand node object is 'precise', we collect its access chain
+ // for the initial set of 'precise' objects.
+ if (isPreciseObjectNode(node->getOperand())) {
+ // The operand node is an 'precise' object node, add its
+ // access chain to the set of 'precise' objects. This is to collect
+ // the initial set of 'precise' objects.
+ precise_objects_.insert(current_object_);
+ }
+ // Gets the symbol ID from the object's access chain.
+ ObjectAccessChain id_symbol = getFrontElement(current_object_);
+ // Add a mapping from the symbol ID to this assignment operation node.
+ symbol_definition_mapping_.insert(std::make_pair(id_symbol, node));
+ }
+ // A unary node is not a dereference node, so we clear the access chain which
+ // is under construction.
+ current_object_.clear();
+ return false;
+}
+
+// Visits a binary node and updates the mapping from symbol IDs to the definition
+// nodes. Also collects the access chains for the initial precise objects.
+bool TSymbolDefinitionCollectingTraverser::visitBinary(glslang::TVisit /* visit */,
+ glslang::TIntermBinary* node)
+{
+ // Traverses the left node to build the access chain info for the object.
+ current_object_.clear();
+ node->getLeft()->traverse(this);
+
+ if (isAssignOperation(node->getOp())) {
+ // We should always be able to get an access chain for the left node.
+ assert(!current_object_.empty());
+
+ // If the left node object is 'precise', it is an initial precise object
+ // specified in the shader source. Adds it to the initial work list to
+ // process later.
+ if (isPreciseObjectNode(node->getLeft())) {
+ // The left node is an 'precise' object node, add its access chain to
+ // the set of 'precise' objects. This is to collect the initial set
+ // of 'precise' objects.
+ precise_objects_.insert(current_object_);
+ }
+ // Gets the symbol ID from the object access chain, which should be the
+ // first element recorded in the access chain.
+ ObjectAccessChain id_symbol = getFrontElement(current_object_);
+ // Adds a mapping from the symbol ID to this assignment operation node.
+ symbol_definition_mapping_.insert(std::make_pair(id_symbol, node));
+
+ // Traverses the right node, there may be other 'assignment'
+ // operations in the right.
+ current_object_.clear();
+ node->getRight()->traverse(this);
+
+ } else if (isDereferenceOperation(node->getOp())) {
+ // The left node (parent node) is a struct type object. We need to
+ // record the access chain information of the current node into its
+ // object id.
+ if (node->getOp() == glslang::EOpIndexDirectStruct) {
+ unsigned struct_dereference_index = getStructIndexFromConstantUnion(node->getRight());
+ current_object_.push_back(ObjectAccesschainDelimiter);
+ current_object_.append(std::to_string(struct_dereference_index));
+ }
+ accesschain_mapping_[node] = current_object_;
+
+ // For a dereference node, there is no need to traverse the right child
+ // node as the right node should always be an integer type object.
+
+ } else {
+ // For other binary nodes, still traverse the right node.
+ current_object_.clear();
+ node->getRight()->traverse(this);
+ }
+ return false;
+}
+
+// Traverses the AST and returns a tuple of four members:
+// 1) a mapping from symbol IDs to the definition nodes (aka. assignment nodes) of these symbols.
+// 2) a mapping from object nodes in the AST to the access chains of these objects.
+// 3) a set of access chains of precise objects.
+// 4) a set of return nodes with precise expressions.
+std::tuple<NodeMapping, AccessChainMapping, ObjectAccesschainSet, ReturnBranchNodeSet>
+getSymbolToDefinitionMappingAndPreciseSymbolIDs(const glslang::TIntermediate& intermediate)
+{
+ auto result_tuple = std::make_tuple(NodeMapping(), AccessChainMapping(), ObjectAccesschainSet(),
+ ReturnBranchNodeSet());
+
+ TIntermNode* root = intermediate.getTreeRoot();
+ if (root == 0)
+ return result_tuple;
+
+ NodeMapping& symbol_definition_mapping = std::get<0>(result_tuple);
+ AccessChainMapping& accesschain_mapping = std::get<1>(result_tuple);
+ ObjectAccesschainSet& precise_objects = std::get<2>(result_tuple);
+ ReturnBranchNodeSet& precise_return_nodes = std::get<3>(result_tuple);
+
+ // Traverses the AST and populate the results.
+ TSymbolDefinitionCollectingTraverser collector(&symbol_definition_mapping, &accesschain_mapping,
+ &precise_objects, &precise_return_nodes);
+ root->traverse(&collector);
+
+ return result_tuple;
+}
+
+//
+// A traverser that determine whether the left node (or operand node for unary
+// node) of an assignment node is 'precise', containing 'precise' or not,
+// according to the access chain a given precise object which share the same
+// symbol as the left node.
+//
+// Post-orderly traverses the left node subtree of an binary assignment node and:
+//
+// 1) Propagates the 'precise' from the left object nodes to this object node.
+//
+// 2) Builds object access chain along the traversal, and also compares with
+// the access chain of the given 'precise' object along with the traversal to
+// tell if the node to be defined is 'precise' or not.
+//
+class TNoContractionAssigneeCheckingTraverser : public glslang::TIntermTraverser {
+
+ enum DecisionStatus {
+ // The object node to be assigned to may contain 'precise' objects and also not 'precise' objects.
+ Mixed = 0,
+ // The object node to be assigned to is either a 'precise' object or a struct objects whose members are all 'precise'.
+ Precise = 1,
+ // The object node to be assigned to is not a 'precise' object.
+ NotPreicse = 2,
+ };
+
+public:
+ TNoContractionAssigneeCheckingTraverser(const AccessChainMapping& accesschain_mapping)
+ : TIntermTraverser(true, false, false), accesschain_mapping_(accesschain_mapping),
+ precise_object_(nullptr) {}
+
+ // Checks the preciseness of a given assignment node with a precise object
+ // represented as access chain. The precise object shares the same symbol
+ // with the assignee of the given assignment node. Return a tuple of two:
+ //
+ // 1) The preciseness of the assignee node of this assignment node. True
+ // if the assignee contains 'precise' objects or is 'precise', false if
+ // the assignee is not 'precise' according to the access chain of the given
+ // precise object.
+ //
+ // 2) The incremental access chain from the assignee node to its nested
+ // 'precise' object, according to the access chain of the given precise
+ // object. This incremental access chain can be empty, which means the
+ // assignee is 'precise'. Otherwise it shows the path to the nested
+ // precise object.
+ std::tuple<bool, ObjectAccessChain>
+ getPrecisenessAndRemainedAccessChain(glslang::TIntermOperator* node,
+ const ObjectAccessChain& precise_object)
+ {
+ assert(isAssignOperation(node->getOp()));
+ precise_object_ = &precise_object;
+ ObjectAccessChain assignee_object;
+ if (glslang::TIntermBinary* BN = node->getAsBinaryNode()) {
+ // This is a binary assignment node, we need to check the
+ // preciseness of the left node.
+ assert(accesschain_mapping_.count(BN->getLeft()));
+ // The left node (assignee node) is an object node, traverse the
+ // node to let the 'precise' of nesting objects being transfered to
+ // nested objects.
+ BN->getLeft()->traverse(this);
+ // After traversing the left node, if the left node is 'precise',
+ // we can conclude this assignment should propagate 'precise'.
+ if (isPreciseObjectNode(BN->getLeft())) {
+ return make_tuple(true, ObjectAccessChain());
+ }
+ // If the preciseness of the left node (assignee node) can not
+ // be determined by now, we need to compare the access chain string
+ // of the assignee object with the given precise object.
+ assignee_object = accesschain_mapping_.at(BN->getLeft());
+
+ } else if (glslang::TIntermUnary* UN = node->getAsUnaryNode()) {
+ // This is a unary assignment node, we need to check the
+ // preciseness of the operand node. For unary assignment node, the
+ // operand node should always be an object node.
+ assert(accesschain_mapping_.count(UN->getOperand()));
+ // Traverse the operand node to let the 'precise' being propagated
+ // from lower nodes to upper nodes.
+ UN->getOperand()->traverse(this);
+ // After traversing the operand node, if the operand node is
+ // 'precise', this assignment should propagate 'precise'.
+ if (isPreciseObjectNode(UN->getOperand())) {
+ return make_tuple(true, ObjectAccessChain());
+ }
+ // If the preciseness of the operand node (assignee node) can not
+ // be determined by now, we need to compare the access chain string
+ // of the assignee object with the given precise object.
+ assignee_object = accesschain_mapping_.at(UN->getOperand());
+ } else {
+ // Not a binary or unary node, should not happen.
+ assert(false);
+ }
+
+ // Compare the access chain string of the assignee node with the given
+ // precise object to determine if this assignment should propagate
+ // 'precise'.
+ if (assignee_object.find(precise_object) == 0) {
+ // The access chain string of the given precise object is a prefix
+ // of assignee's access chain string. The assignee should be
+ // 'precise'.
+ return make_tuple(true, ObjectAccessChain());
+ } else if (precise_object.find(assignee_object) == 0) {
+ // The assignee's access chain string is a prefix of the given
+ // precise object, the assignee object contains 'precise' object,
+ // and we need to pass the remained access chain to the object nodes
+ // in the right.
+ return make_tuple(true, getSubAccessChainAfterPrefix(precise_object, assignee_object));
+ } else {
+ // The access chain strings do not match, the assignee object can
+ // not be labeled as 'precise' according to the given precise
+ // object.
+ return make_tuple(false, ObjectAccessChain());
+ }
+ }
+
+protected:
+ bool visitBinary(glslang::TVisit, glslang::TIntermBinary* node) override;
+ void visitSymbol(glslang::TIntermSymbol* node) override;
+
+ // A map from object nodes to their access chain string (used as object ID).
+ const AccessChainMapping& accesschain_mapping_;
+ // A given precise object, represented in it access chain string. This
+ // precise object is used to be compared with the assignee node to tell if
+ // the assignee node is 'precise', contains 'precise' object or not
+ // 'precise'.
+ const ObjectAccessChain* precise_object_;
+};
+
+// Visits a binary node. If the node is an object node, it must be a dereference
+// node. In such cases, if the left node is 'precise', this node should also be
+// 'precise'.
+bool TNoContractionAssigneeCheckingTraverser::visitBinary(glslang::TVisit,
+ glslang::TIntermBinary* node)
+{
+ // Traverses the left so that we transfer the 'precise' from nesting object
+ // to its nested object.
+ node->getLeft()->traverse(this);
+ // If this binary node is an object node, we should have it in the
+ // accesschain_mapping_.
+ if (accesschain_mapping_.count(node)) {
+ // A binary object node must be a dereference node.
+ assert(isDereferenceOperation(node->getOp()));
+ // If the left node is 'precise', this node should also be precise,
+ // otherwise, compare with the given precise_object_. If the
+ // access chain of this node matches with the given precise_object_,
+ // this node should be marked as 'precise'.
+ if (isPreciseObjectNode(node->getLeft())) {
+ node->getWritableType().getQualifier().noContraction = true;
+ } else if (accesschain_mapping_.at(node) == *precise_object_) {
+ node->getWritableType().getQualifier().noContraction = true;
+ }
+ }
+ return false;
+}
+
+// Visits a symbol node, if the symbol node ID (its access chain string) matches
+// with the given precise object, this node should be 'precise'.
+void TNoContractionAssigneeCheckingTraverser::visitSymbol(glslang::TIntermSymbol* node)
+{
+ // A symbol node should always be an object node, and should have been added
+ // to the map from object nodes to their access chain strings.
+ assert(accesschain_mapping_.count(node));
+ if (accesschain_mapping_.at(node) == *precise_object_) {
+ node->getWritableType().getQualifier().noContraction = true;
+ }
+}
+
+//
+// A traverser that only traverses the right side of binary assignment nodes
+// and the operand node of unary assignment nodes.
+//
+// 1) Marks arithmetic operations as 'NoContraction'.
+//
+// 2) Find the object which should be marked as 'precise' in the right and
+// update the 'precise' object work list.
+//
+class TNoContractionPropagator : public glslang::TIntermTraverser {
+public:
+ TNoContractionPropagator(ObjectAccesschainSet* precise_objects,
+ const AccessChainMapping& accesschain_mapping)
+ : TIntermTraverser(true, false, false), remained_accesschain_(),
+ precise_objects_(*precise_objects), accesschain_mapping_(accesschain_mapping),
+ added_precise_object_ids_() {}
+
+ // Propagates 'precise' in the right nodes of a given assignment node with
+ // access chain record from the assignee node to a 'precise' object it
+ // contains.
+ void
+ propagateNoContractionInOneExpression(glslang::TIntermTyped* defining_node,
+ const ObjectAccessChain& assignee_remained_accesschain)
+ {
+ remained_accesschain_ = assignee_remained_accesschain;
+ if (glslang::TIntermBinary* BN = defining_node->getAsBinaryNode()) {
+ assert(isAssignOperation(BN->getOp()));
+ BN->getRight()->traverse(this);
+ if (isArithmeticOperation(BN->getOp())) {
+ BN->getWritableType().getQualifier().noContraction = true;
+ }
+ } else if (glslang::TIntermUnary* UN = defining_node->getAsUnaryNode()) {
+ assert(isAssignOperation(UN->getOp()));
+ UN->getOperand()->traverse(this);
+ if (isArithmeticOperation(UN->getOp())) {
+ UN->getWritableType().getQualifier().noContraction = true;
+ }
+ }
+ }
+
+ // Propagates 'precise' in a given precise return node.
+ void propagateNoContractionInReturnNode(glslang::TIntermBranch* return_node)
+ {
+ remained_accesschain_ = "";
+ assert(return_node->getFlowOp() == glslang::EOpReturn && return_node->getExpression());
+ return_node->getExpression()->traverse(this);
+ }
+
+protected:
+ // Visits an aggregate node. The node can be a initializer list, in which
+ // case we need to find the 'precise' or 'precise' containing object node
+ // with the access chain record. In other cases, just need to traverse all
+ // the children nodes.
+ bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate* node) override
+ {
+ if (!remained_accesschain_.empty() && node->getOp() == glslang::EOpConstructStruct) {
+ // This is a struct initializer node, and the remained
+ // access chain is not empty, we need to refer to the
+ // assignee_remained_access_chain_ to find the nested
+ // 'precise' object. And we don't need to visit other nodes in this
+ // aggregate node.
+
+ // Gets the struct dereference index that leads to 'precise' object.
+ ObjectAccessChain precise_accesschain_index_str =
+ getFrontElement(remained_accesschain_);
+ unsigned precise_accesschain_index = strtoul(precise_accesschain_index_str.c_str(), nullptr, 10);
+ // Gets the node pointed by the access chain index extracted before.
+ glslang::TIntermTyped* potential_precise_node =
+ node->getSequence()[precise_accesschain_index]->getAsTyped();
+ assert(potential_precise_node);
+ // Pop the front access chain index from the path, and visit the nested node.
+ {
+ ObjectAccessChain next_level_accesschain =
+ subAccessChainFromSecondElement(remained_accesschain_);
+ StateSettingGuard<ObjectAccessChain> setup_remained_accesschain_for_next_level(
+ &remained_accesschain_, next_level_accesschain);
+ potential_precise_node->traverse(this);
+ }
+ return false;
+ }
+ return true;
+ }
+
+ // Visits a binary node. A binary node can be an object node, e.g. a dereference node.
+ // As only the top object nodes in the right side of an assignment needs to be visited
+ // and added to 'precise' work list, this traverser won't visit the children nodes of
+ // an object node. If the binary node does not represent an object node, it should
+ // go on to traverse its children nodes and if it is an arithmetic operation node, this
+ // operation should be marked as 'noContraction'.
+ bool visitBinary(glslang::TVisit, glslang::TIntermBinary* node) override
+ {
+ if (isDereferenceOperation(node->getOp())) {
+ // This binary node is an object node. Need to update the precise
+ // object set with the access chain of this node + remained
+ // access chain .
+ ObjectAccessChain new_precise_accesschain = accesschain_mapping_.at(node);
+ if (remained_accesschain_.empty()) {
+ node->getWritableType().getQualifier().noContraction = true;
+ } else {
+ new_precise_accesschain += ObjectAccesschainDelimiter + remained_accesschain_;
+ }
+ // Cache the access chain as added precise object, so we won't add the
+ // same object to the work list again.
+ if (!added_precise_object_ids_.count(new_precise_accesschain)) {
+ precise_objects_.insert(new_precise_accesschain);
+ added_precise_object_ids_.insert(new_precise_accesschain);
+ }
+ // Only the upper-most object nodes should be visited, so do not
+ // visit children of this object node.
+ return false;
+ }
+ // If this is an arithmetic operation, marks this node as 'noContraction'.
+ if (isArithmeticOperation(node->getOp()) && node->getBasicType() != glslang::EbtInt) {
+ node->getWritableType().getQualifier().noContraction = true;
+ }
+ // As this node is not an object node, need to traverse the children nodes.
+ return true;
+ }
+
+ // Visits a unary node. A unary node can not be an object node. If the operation
+ // is an arithmetic operation, need to mark this node as 'noContraction'.
+ bool visitUnary(glslang::TVisit /* visit */, glslang::TIntermUnary* node) override
+ {
+ // If this is an arithmetic operation, marks this with 'noContraction'
+ if (isArithmeticOperation(node->getOp())) {
+ node->getWritableType().getQualifier().noContraction = true;
+ }
+ return true;
+ }
+
+ // Visits a symbol node. A symbol node is always an object node. So we
+ // should always be able to find its in our collected mapping from object
+ // nodes to access chains. As an object node, a symbol node can be either
+ // 'precise' or containing 'precise' objects according to unused
+ // access chain information we have when we visit this node.
+ void visitSymbol(glslang::TIntermSymbol* node) override
+ {
+ // Symbol nodes are object nodes and should always have an
+ // access chain collected before matches with it.
+ assert(accesschain_mapping_.count(node));
+ ObjectAccessChain new_precise_accesschain = accesschain_mapping_.at(node);
+ // If the unused access chain is empty, this symbol node should be
+ // marked as 'precise'. Otherwise, the unused access chain should be
+ // appended to the symbol ID to build a new access chain which points to
+ // the nested 'precise' object in this symbol object.
+ if (remained_accesschain_.empty()) {
+ node->getWritableType().getQualifier().noContraction = true;
+ } else {
+ new_precise_accesschain += ObjectAccesschainDelimiter + remained_accesschain_;
+ }
+ // Add the new 'precise' access chain to the work list and make sure we
+ // don't visit it again.
+ if (!added_precise_object_ids_.count(new_precise_accesschain)) {
+ precise_objects_.insert(new_precise_accesschain);
+ added_precise_object_ids_.insert(new_precise_accesschain);
+ }
+ }
+
+ // A set of precise objects, represented as access chains.
+ ObjectAccesschainSet& precise_objects_;
+ // Visited symbol nodes, should not revisit these nodes.
+ ObjectAccesschainSet added_precise_object_ids_;
+ // The left node of an assignment operation might be an parent of 'precise' objects.
+ // This means the left node might not be an 'precise' object node, but it may contains
+ // 'precise' qualifier which should be propagated to the corresponding child node in
+ // the right. So we need the path from the left node to its nested 'precise' node to
+ // tell us how to find the corresponding 'precise' node in the right.
+ ObjectAccessChain remained_accesschain_;
+ // A map from node pointers to their access chains.
+ const AccessChainMapping& accesschain_mapping_;
+};
+}
+
+namespace glslang {
+
+void PropagateNoContraction(const glslang::TIntermediate& intermediate)
+{
+ // First, traverses the AST, records symbols with their defining operations
+ // and collects the initial set of precise symbols (symbol nodes that marked
+ // as 'noContraction') and precise return nodes.
+ auto mappings_and_precise_objects =
+ getSymbolToDefinitionMappingAndPreciseSymbolIDs(intermediate);
+
+ // The mapping of symbol node IDs to their defining nodes. This enables us
+ // to get the defining node directly from a given symbol ID without
+ // traversing the tree again.
+ NodeMapping& symbol_definition_mapping = std::get<0>(mappings_and_precise_objects);
+
+ // The mapping of object nodes to their access chains recorded.
+ AccessChainMapping& accesschain_mapping = std::get<1>(mappings_and_precise_objects);
+
+ // The initial set of 'precise' objects which are represented as the
+ // access chain toward them.
+ ObjectAccesschainSet& precise_object_accesschains = std::get<2>(mappings_and_precise_objects);
+
+ // The set of 'precise' return nodes.
+ ReturnBranchNodeSet& precise_return_nodes = std::get<3>(mappings_and_precise_objects);
+
+ // Second, uses the initial set of precise objects as a work list, pops an
+ // access chain, extract the symbol ID from it. Then:
+ // 1) Check the assignee object, see if it is 'precise' object node or
+ // contains 'precise' object. Obtain the incremental access chain from the
+ // assignee node to its nested 'precise' node (if any).
+ // 2) If the assignee object node is 'precise' or it contains 'precise'
+ // objects, traverses the right side of the assignment operation
+ // expression to mark arithmetic operations as 'noContration' and update
+ // 'precise' access chain work list with new found object nodes.
+ // Repeat above steps until the work list is empty.
+ TNoContractionAssigneeCheckingTraverser checker(accesschain_mapping);
+ TNoContractionPropagator propagator(&precise_object_accesschains, accesschain_mapping);
+
+ // We have two initial precise work lists to handle:
+ // 1) precise return nodes
+ // 2) precise object access chains
+ // We should process the precise return nodes first and the involved
+ // objects in the return expression should be added to the precise object
+ // access chain set.
+ while (!precise_return_nodes.empty()) {
+ glslang::TIntermBranch* precise_return_node = *precise_return_nodes.begin();
+ propagator.propagateNoContractionInReturnNode(precise_return_node);
+ precise_return_nodes.erase(precise_return_node);
+ }
+
+ while (!precise_object_accesschains.empty()) {
+ // Get the access chain of a precise object from the work list.
+ ObjectAccessChain precise_object_accesschain = *precise_object_accesschains.begin();
+ // Get the symbol id from the access chain.
+ ObjectAccessChain symbol_id = getFrontElement(precise_object_accesschain);
+ // Get all the defining nodes of that symbol ID.
+ std::pair<NodeMapping::iterator, NodeMapping::iterator> range =
+ symbol_definition_mapping.equal_range(symbol_id);
+ // Visits all the assignment nodes of that symbol ID and
+ // 1) Check if the assignee node is 'precise' or contains 'precise'
+ // objects.
+ // 2) Propagate the 'precise' to the top layer object nodes
+ // in the right side of the assignment operation, update the 'precise'
+ // work list with new access chains representing the new 'precise'
+ // objects, and mark arithmetic operations as 'noContraction'.
+ for (NodeMapping::iterator defining_node_iter = range.first;
+ defining_node_iter != range.second; defining_node_iter++) {
+ TIntermOperator* defining_node = defining_node_iter->second;
+ // Check the assignee node.
+ auto checker_result = checker.getPrecisenessAndRemainedAccessChain(
+ defining_node, precise_object_accesschain);
+ bool& contain_precise = std::get<0>(checker_result);
+ ObjectAccessChain& remained_accesschain = std::get<1>(checker_result);
+ // If the assignee node is 'precise' or contains 'precise', propagate the
+ // 'precise' to the right. Otherwise just skip this assignment node.
+ if (contain_precise) {
+ propagator.propagateNoContractionInOneExpression(defining_node,
+ remained_accesschain);
+ }
+ }
+ // Remove the last processed 'precise' object from the work list.
+ precise_object_accesschains.erase(precise_object_accesschain);
+ }
+}
+};