summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/glslang/src/hlsl/hlslParseHelper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/glslang/src/hlsl/hlslParseHelper.cpp')
-rwxr-xr-xchromium/third_party/glslang/src/hlsl/hlslParseHelper.cpp3805
1 files changed, 3805 insertions, 0 deletions
diff --git a/chromium/third_party/glslang/src/hlsl/hlslParseHelper.cpp b/chromium/third_party/glslang/src/hlsl/hlslParseHelper.cpp
new file mode 100755
index 00000000000..2a2fe1a16b9
--- /dev/null
+++ b/chromium/third_party/glslang/src/hlsl/hlslParseHelper.cpp
@@ -0,0 +1,3805 @@
+//
+//Copyright (C) 2016 Google, Inc.
+//Copyright (C) 2016 LunarG, Inc.
+//
+//All rights reserved.
+//
+//Redistribution and use in source and binary forms, with or without
+//modification, are permitted provided that the following conditions
+//are met:
+//
+// Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+//
+// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+//POSSIBILITY OF SUCH DAMAGE.
+//
+
+#include "hlslParseHelper.h"
+#include "hlslScanContext.h"
+#include "hlslGrammar.h"
+
+#include "../glslang/MachineIndependent/Scan.h"
+#include "../glslang/MachineIndependent/preprocessor/PpContext.h"
+
+#include "../glslang/OSDependent/osinclude.h"
+
+#include <stdarg.h>
+#include <algorithm>
+
+namespace glslang {
+
+HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool /*parsingBuiltins*/,
+ int version, EProfile profile, int spv, int vulkan, EShLanguage language, TInfoSink& infoSink,
+ bool forwardCompatible, EShMessages messages) :
+ TParseContextBase(symbolTable, interm, version, profile, spv, vulkan, language, infoSink, forwardCompatible, messages),
+ contextPragma(true, false), loopNestingLevel(0), structNestingLevel(0), controlFlowNestingLevel(0),
+ postMainReturn(false),
+ limits(resources.limits),
+ afterEOF(false)
+{
+ // ensure we always have a linkage node, even if empty, to simplify tree topology algorithms
+ linkage = new TIntermAggregate;
+
+ globalUniformDefaults.clear();
+ globalUniformDefaults.layoutMatrix = ElmColumnMajor;
+ globalUniformDefaults.layoutPacking = vulkan > 0 ? ElpStd140 : ElpShared;
+
+ globalBufferDefaults.clear();
+ globalBufferDefaults.layoutMatrix = ElmColumnMajor;
+ globalBufferDefaults.layoutPacking = vulkan > 0 ? ElpStd430 : ElpShared;
+
+ globalInputDefaults.clear();
+ globalOutputDefaults.clear();
+
+ // "Shaders in the transform
+ // feedback capturing mode have an initial global default of
+ // layout(xfb_buffer = 0) out;"
+ if (language == EShLangVertex ||
+ language == EShLangTessControl ||
+ language == EShLangTessEvaluation ||
+ language == EShLangGeometry)
+ globalOutputDefaults.layoutXfbBuffer = 0;
+
+ if (language == EShLangGeometry)
+ globalOutputDefaults.layoutStream = 0;
+}
+
+HlslParseContext::~HlslParseContext()
+{
+}
+
+void HlslParseContext::setLimits(const TBuiltInResource& r)
+{
+ resources = r;
+ intermediate.setLimits(resources);
+}
+
+//
+// Parse an array of strings using the parser in HlslRules.
+//
+// Returns true for successful acceptance of the shader, false if any errors.
+//
+bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
+{
+ currentScanner = &input;
+ ppContext.setInput(input, versionWillBeError);
+
+ HlslScanContext::fillInKeywordMap(); // TODO: right place, and include the delete too
+
+ HlslScanContext scanContext(*this, ppContext);
+ HlslGrammar grammar(scanContext, *this);
+ if (! grammar.parse())
+ printf("HLSL translation failed.\n");
+
+ return numErrors == 0;
+}
+
+void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
+{
+ if (pragmaCallback)
+ pragmaCallback(loc.line, tokens);
+
+ if (tokens.size() == 0)
+ return;
+}
+
+//
+// Look at a '.' field selector string and change it into offsets
+// for a vector or scalar
+//
+// Returns true if there is no error.
+//
+bool HlslParseContext::parseVectorFields(const TSourceLoc& loc, const TString& compString, int vecSize, TVectorFields& fields)
+{
+ fields.num = (int)compString.size();
+ if (fields.num > 4) {
+ error(loc, "illegal vector field selection", compString.c_str(), "");
+ return false;
+ }
+
+ enum {
+ exyzw,
+ ergba,
+ estpq,
+ } fieldSet[4];
+
+ for (int i = 0; i < fields.num; ++i) {
+ switch (compString[i]) {
+ case 'x':
+ fields.offsets[i] = 0;
+ fieldSet[i] = exyzw;
+ break;
+ case 'r':
+ fields.offsets[i] = 0;
+ fieldSet[i] = ergba;
+ break;
+ case 's':
+ fields.offsets[i] = 0;
+ fieldSet[i] = estpq;
+ break;
+ case 'y':
+ fields.offsets[i] = 1;
+ fieldSet[i] = exyzw;
+ break;
+ case 'g':
+ fields.offsets[i] = 1;
+ fieldSet[i] = ergba;
+ break;
+ case 't':
+ fields.offsets[i] = 1;
+ fieldSet[i] = estpq;
+ break;
+ case 'z':
+ fields.offsets[i] = 2;
+ fieldSet[i] = exyzw;
+ break;
+ case 'b':
+ fields.offsets[i] = 2;
+ fieldSet[i] = ergba;
+ break;
+ case 'p':
+ fields.offsets[i] = 2;
+ fieldSet[i] = estpq;
+ break;
+
+ case 'w':
+ fields.offsets[i] = 3;
+ fieldSet[i] = exyzw;
+ break;
+ case 'a':
+ fields.offsets[i] = 3;
+ fieldSet[i] = ergba;
+ break;
+ case 'q':
+ fields.offsets[i] = 3;
+ fieldSet[i] = estpq;
+ break;
+ default:
+ error(loc, "illegal vector field selection", compString.c_str(), "");
+ return false;
+ }
+ }
+
+ for (int i = 0; i < fields.num; ++i) {
+ if (fields.offsets[i] >= vecSize) {
+ error(loc, "vector field selection out of range", compString.c_str(), "");
+ return false;
+ }
+
+ if (i > 0) {
+ if (fieldSet[i] != fieldSet[i - 1]) {
+ error(loc, "illegal - vector component fields not from the same set", compString.c_str(), "");
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+//
+// Used to output syntax, parsing, and semantic errors.
+//
+
+void HlslParseContext::outputMessage(const TSourceLoc& loc, const char* szReason,
+ const char* szToken,
+ const char* szExtraInfoFormat,
+ TPrefixType prefix, va_list args)
+{
+ const int maxSize = MaxTokenLength + 200;
+ char szExtraInfo[maxSize];
+
+ safe_vsprintf(szExtraInfo, maxSize, szExtraInfoFormat, args);
+
+ infoSink.info.prefix(prefix);
+ infoSink.info.location(loc);
+ infoSink.info << "'" << szToken << "' : " << szReason << " " << szExtraInfo << "\n";
+
+ if (prefix == EPrefixError) {
+ ++numErrors;
+ }
+}
+
+void C_DECL HlslParseContext::error(const TSourceLoc& loc, const char* szReason, const char* szToken,
+ const char* szExtraInfoFormat, ...)
+{
+ if (messages & EShMsgOnlyPreprocessor)
+ return;
+ va_list args;
+ va_start(args, szExtraInfoFormat);
+ outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixError, args);
+ va_end(args);
+}
+
+void C_DECL HlslParseContext::warn(const TSourceLoc& loc, const char* szReason, const char* szToken,
+ const char* szExtraInfoFormat, ...)
+{
+ if (suppressWarnings())
+ return;
+ va_list args;
+ va_start(args, szExtraInfoFormat);
+ outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixWarning, args);
+ va_end(args);
+}
+
+void C_DECL HlslParseContext::ppError(const TSourceLoc& loc, const char* szReason, const char* szToken,
+ const char* szExtraInfoFormat, ...)
+{
+ va_list args;
+ va_start(args, szExtraInfoFormat);
+ outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixError, args);
+ va_end(args);
+}
+
+void C_DECL HlslParseContext::ppWarn(const TSourceLoc& loc, const char* szReason, const char* szToken,
+ const char* szExtraInfoFormat, ...)
+{
+ va_list args;
+ va_start(args, szExtraInfoFormat);
+ outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixWarning, args);
+ va_end(args);
+}
+
+//
+// Handle seeing a variable identifier in the grammar.
+//
+TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, TSymbol* symbol, const TString* string)
+{
+ if (symbol == nullptr)
+ symbol = symbolTable.find(*string);
+ if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
+ error(loc, "expected symbol, not user-defined type", string->c_str(), "");
+ return nullptr;
+ }
+
+ // Error check for requiring specific extensions present.
+ if (symbol && symbol->getNumExtensions())
+ requireExtensions(loc, symbol->getNumExtensions(), symbol->getExtensions(), symbol->getName().c_str());
+
+ if (symbol && symbol->isReadOnly()) {
+ // All shared things containing an implicitly sized array must be copied up
+ // on first use, so that all future references will share its array structure,
+ // so that editing the implicit size will effect all nodes consuming it,
+ // and so that editing the implicit size won't change the shared one.
+ //
+ // If this is a variable or a block, check it and all it contains, but if this
+ // is a member of an anonymous block, check the whole block, as the whole block
+ // will need to be copied up if it contains an implicitly-sized array.
+ if (symbol->getType().containsImplicitlySizedArray() || (symbol->getAsAnonMember() && symbol->getAsAnonMember()->getAnonContainer().getType().containsImplicitlySizedArray()))
+ makeEditable(symbol);
+ }
+
+ const TVariable* variable;
+ const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
+ TIntermTyped* node = nullptr;
+ if (anon) {
+ // It was a member of an anonymous container.
+
+ // Create a subtree for its dereference.
+ variable = anon->getAnonContainer().getAsVariable();
+ TIntermTyped* container = intermediate.addSymbol(*variable, loc);
+ TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
+ node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
+
+ node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
+ if (node->getType().hiddenMember())
+ error(loc, "member of nameless block was not redeclared", string->c_str(), "");
+ } else {
+ // Not a member of an anonymous container.
+
+ // The symbol table search was done in the lexical phase.
+ // See if it was a variable.
+ variable = symbol ? symbol->getAsVariable() : nullptr;
+ if (variable) {
+ if ((variable->getType().getBasicType() == EbtBlock ||
+ variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
+ error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
+ variable = nullptr;
+ }
+ } else {
+ if (symbol)
+ error(loc, "variable name expected", string->c_str(), "");
+ }
+
+ // Recovery, if it wasn't found or was not a variable.
+ if (! variable)
+ variable = new TVariable(string, TType(EbtVoid));
+
+ if (variable->getType().getQualifier().isFrontEndConstant())
+ node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
+ else
+ node = intermediate.addSymbol(*variable, loc);
+ }
+
+ if (variable->getType().getQualifier().isIo())
+ intermediate.addIoAccessed(*string);
+
+ return node;
+}
+
+//
+// Handle seeing a base[index] dereference in the grammar.
+//
+TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
+{
+ TIntermTyped* result = nullptr;
+
+ int indexValue = 0;
+ if (index->getQualifier().storage == EvqConst) {
+ indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
+ checkIndex(loc, base->getType(), indexValue);
+ }
+
+ variableCheck(base);
+ if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
+ if (base->getAsSymbolNode())
+ error(loc, " left of '[' is not of type array, matrix, or vector ", base->getAsSymbolNode()->getName().c_str(), "");
+ else
+ error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
+ } else if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
+ return intermediate.foldDereference(base, indexValue, loc);
+ else {
+ // at least one of base and index is variable...
+
+ if (base->getAsSymbolNode() && isIoResizeArray(base->getType()))
+ handleIoResizeArrayAccess(loc, base);
+
+ if (index->getQualifier().storage == EvqConst) {
+ if (base->getType().isImplicitlySizedArray())
+ updateImplicitArraySize(loc, base, indexValue);
+ result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
+ } else {
+ result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
+ }
+ }
+
+ if (result == nullptr) {
+ // Insert dummy error-recovery result
+ result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
+ } else {
+ // Insert valid dereferenced result
+ TType newType(base->getType(), 0); // dereferenced type
+ if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
+ newType.getQualifier().storage = EvqConst;
+ else
+ newType.getQualifier().storage = EvqTemporary;
+ result->setType(newType);
+ }
+
+ return result;
+}
+
+void HlslParseContext::checkIndex(const TSourceLoc& loc, const TType& type, int& index)
+{
+ // HLSL todo: any rules for index fixups?
+}
+
+// Make a shared symbol have a non-shared version that can be edited by the current
+// compile, such that editing its type will not change the shared version and will
+// effect all nodes sharing it.
+void HlslParseContext::makeEditable(TSymbol*& symbol)
+{
+ // copyUp() does a deep copy of the type.
+ symbol = symbolTable.copyUp(symbol);
+
+ // Also, see if it's tied to IO resizing
+ if (isIoResizeArray(symbol->getType()))
+ ioArraySymbolResizeList.push_back(symbol);
+
+ // Also, save it in the AST for linker use.
+ intermediate.addSymbolLinkageNode(linkage, *symbol);
+}
+
+TVariable* HlslParseContext::getEditableVariable(const char* name)
+{
+ bool builtIn;
+ TSymbol* symbol = symbolTable.find(name, &builtIn);
+ if (builtIn)
+ makeEditable(symbol);
+
+ return symbol->getAsVariable();
+}
+
+// Return true if this is a geometry shader input array or tessellation control output array.
+bool HlslParseContext::isIoResizeArray(const TType& type) const
+{
+ return type.isArray() &&
+ ((language == EShLangGeometry && type.getQualifier().storage == EvqVaryingIn) ||
+ (language == EShLangTessControl && type.getQualifier().storage == EvqVaryingOut && ! type.getQualifier().patch));
+}
+
+// If an array is not isIoResizeArray() but is an io array, make sure it has the right size
+void HlslParseContext::fixIoArraySize(const TSourceLoc& loc, TType& type)
+{
+ if (! type.isArray() || type.getQualifier().patch || symbolTable.atBuiltInLevel())
+ return;
+
+ assert(! isIoResizeArray(type));
+
+ if (type.getQualifier().storage != EvqVaryingIn || type.getQualifier().patch)
+ return;
+
+ if (language == EShLangTessControl || language == EShLangTessEvaluation) {
+ if (type.getOuterArraySize() != resources.maxPatchVertices) {
+ if (type.isExplicitlySizedArray())
+ error(loc, "tessellation input array size must be gl_MaxPatchVertices or implicitly sized", "[]", "");
+ type.changeOuterArraySize(resources.maxPatchVertices);
+ }
+ }
+}
+
+// Handle a dereference of a geometry shader input array or tessellation control output array.
+// See ioArraySymbolResizeList comment in ParseHelper.h.
+//
+void HlslParseContext::handleIoResizeArrayAccess(const TSourceLoc& /*loc*/, TIntermTyped* base)
+{
+ TIntermSymbol* symbolNode = base->getAsSymbolNode();
+ assert(symbolNode);
+ if (! symbolNode)
+ return;
+
+ // fix array size, if it can be fixed and needs to be fixed (will allow variable indexing)
+ if (symbolNode->getType().isImplicitlySizedArray()) {
+ int newSize = getIoArrayImplicitSize();
+ if (newSize > 0)
+ symbolNode->getWritableType().changeOuterArraySize(newSize);
+ }
+}
+
+// If there has been an input primitive declaration (geometry shader) or an output
+// number of vertices declaration(tessellation shader), make sure all input array types
+// match it in size. Types come either from nodes in the AST or symbols in the
+// symbol table.
+//
+// Types without an array size will be given one.
+// Types already having a size that is wrong will get an error.
+//
+void HlslParseContext::checkIoArraysConsistency(const TSourceLoc& loc, bool tailOnly)
+{
+ int requiredSize = getIoArrayImplicitSize();
+ if (requiredSize == 0)
+ return;
+
+ const char* feature;
+ if (language == EShLangGeometry)
+ feature = TQualifier::getGeometryString(intermediate.getInputPrimitive());
+ else if (language == EShLangTessControl)
+ feature = "vertices";
+ else
+ feature = "unknown";
+
+ if (tailOnly) {
+ checkIoArrayConsistency(loc, requiredSize, feature, ioArraySymbolResizeList.back()->getWritableType(), ioArraySymbolResizeList.back()->getName());
+ return;
+ }
+
+ for (size_t i = 0; i < ioArraySymbolResizeList.size(); ++i)
+ checkIoArrayConsistency(loc, requiredSize, feature, ioArraySymbolResizeList[i]->getWritableType(), ioArraySymbolResizeList[i]->getName());
+}
+
+int HlslParseContext::getIoArrayImplicitSize() const
+{
+ if (language == EShLangGeometry)
+ return TQualifier::mapGeometryToSize(intermediate.getInputPrimitive());
+ else if (language == EShLangTessControl)
+ return intermediate.getVertices() != TQualifier::layoutNotSet ? intermediate.getVertices() : 0;
+ else
+ return 0;
+}
+
+void HlslParseContext::checkIoArrayConsistency(const TSourceLoc& loc, int requiredSize, const char* feature, TType& type, const TString& name)
+{
+ if (type.isImplicitlySizedArray())
+ type.changeOuterArraySize(requiredSize);
+}
+
+// Handle seeing a binary node with a math operation.
+TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* left, TIntermTyped* right)
+{
+ TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
+ if (! result)
+ binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
+
+ return result;
+}
+
+// Handle seeing a unary node with a math operation.
+TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* childNode)
+{
+ TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
+
+ if (result)
+ return result;
+ else
+ unaryOpError(loc, str, childNode->getCompleteString());
+
+ return childNode;
+}
+
+//
+// Handle seeing a base.field dereference in the grammar.
+//
+TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
+{
+ variableCheck(base);
+
+ //
+ // .length() can't be resolved until we later see the function-calling syntax.
+ // Save away the name in the AST for now. Processing is completed in
+ // handleLengthMethod().
+ //
+ if (field == "length") {
+ return intermediate.addMethod(base, TType(EbtInt), &field, loc);
+ }
+
+ // It's not .length() if we get to here.
+
+ if (base->isArray()) {
+ error(loc, "cannot apply to an array:", ".", field.c_str());
+
+ return base;
+ }
+
+ // It's neither an array nor .length() if we get here,
+ // leaving swizzles and struct/block dereferences.
+
+ TIntermTyped* result = base;
+ if (base->isVector() || base->isScalar()) {
+ TVectorFields fields;
+ if (! parseVectorFields(loc, field, base->getVectorSize(), fields)) {
+ fields.num = 1;
+ fields.offsets[0] = 0;
+ }
+
+ if (base->isScalar()) {
+ if (fields.num == 1)
+ return result;
+ else {
+ TType type(base->getBasicType(), EvqTemporary, fields.num);
+ return addConstructor(loc, base, type, mapTypeToConstructorOp(type));
+ }
+ }
+
+ if (base->getType().getQualifier().isFrontEndConstant())
+ result = intermediate.foldSwizzle(base, fields, loc);
+ else {
+ if (fields.num == 1) {
+ TIntermTyped* index = intermediate.addConstantUnion(fields.offsets[0], loc);
+ result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
+ result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision));
+ } else {
+ TString vectorString = field;
+ TIntermTyped* index = intermediate.addSwizzle(fields, loc);
+ result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
+ result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, (int)vectorString.size()));
+ }
+ }
+ } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
+ const TTypeList* fields = base->getType().getStruct();
+ bool fieldFound = false;
+ int member;
+ for (member = 0; member < (int)fields->size(); ++member) {
+ if ((*fields)[member].type->getFieldName() == field) {
+ fieldFound = true;
+ break;
+ }
+ }
+ if (fieldFound) {
+ if (base->getType().getQualifier().storage == EvqConst)
+ result = intermediate.foldDereference(base, member, loc);
+ else {
+ TIntermTyped* index = intermediate.addConstantUnion(member, loc);
+ result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
+ result->setType(*(*fields)[member].type);
+ }
+ } else
+ error(loc, "no such field in structure", field.c_str(), "");
+ } else
+ error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
+
+ return result;
+}
+
+//
+// Handle seeing a function declarator in the grammar. This is the precursor
+// to recognizing a function prototype or function definition.
+//
+TFunction* HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
+{
+ //
+ // Multiple declarations of the same function name are allowed.
+ //
+ // If this is a definition, the definition production code will check for redefinitions
+ // (we don't know at this point if it's a definition or not).
+ //
+ // Redeclarations (full signature match) are allowed. But, return types and parameter qualifiers must also match.
+ // - except ES 100, which only allows a single prototype
+ //
+ // ES 100 does not allow redefining, but does allow overloading of built-in functions.
+ // ES 300 does not allow redefining or overloading of built-in functions.
+ //
+ bool builtIn;
+ TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
+ const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
+
+ if (prototype) {
+ // All built-in functions are defined, even though they don't have a body.
+ // Count their prototype as a definition instead.
+ if (symbolTable.atBuiltInLevel())
+ function.setDefined();
+ else {
+ if (prevDec && ! builtIn)
+ symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const
+ function.setPrototyped();
+ }
+ }
+
+ // This insert won't actually insert it if it's a duplicate signature, but it will still check for
+ // other forms of name collisions.
+ if (! symbolTable.insert(function))
+ error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
+
+ //
+ // If this is a redeclaration, it could also be a definition,
+ // in which case, we need to use the parameter names from this one, and not the one that's
+ // being redeclared. So, pass back this declaration, not the one in the symbol table.
+ //
+ return &function;
+}
+
+//
+// Handle seeing the function prototype in front of a function definition in the grammar.
+// The body is handled after this function returns.
+//
+TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function)
+{
+ currentCaller = function.getMangledName();
+ TSymbol* symbol = symbolTable.find(function.getMangledName());
+ TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
+
+ if (! prevDec)
+ error(loc, "can't find function", function.getName().c_str(), "");
+ // Note: 'prevDec' could be 'function' if this is the first time we've seen function
+ // as it would have just been put in the symbol table. Otherwise, we're looking up
+ // an earlier occurrence.
+
+ if (prevDec && prevDec->isDefined()) {
+ // Then this function already has a body.
+ error(loc, "function already has a body", function.getName().c_str(), "");
+ }
+ if (prevDec && ! prevDec->isDefined()) {
+ prevDec->setDefined();
+
+ // Remember the return type for later checking for RETURN statements.
+ currentFunctionType = &(prevDec->getType());
+ } else
+ currentFunctionType = new TType(EbtVoid);
+ functionReturnsValue = false;
+
+ inEntrypoint = (function.getName() == intermediate.getEntryPoint().c_str());
+
+ //
+ // New symbol table scope for body of function plus its arguments
+ //
+ pushScope();
+
+ //
+ // Insert parameters into the symbol table.
+ // If the parameter has no name, it's not an error, just don't insert it
+ // (could be used for unused args).
+ //
+ // Also, accumulate the list of parameters into the HIL, so lower level code
+ // knows where to find parameters.
+ //
+ TIntermAggregate* paramNodes = new TIntermAggregate;
+ for (int i = 0; i < function.getParamCount(); i++) {
+ TParameter& param = function[i];
+ if (param.name != nullptr) {
+ TVariable *variable = new TVariable(param.name, *param.type);
+
+ // Insert the parameters with name in the symbol table.
+ if (! symbolTable.insert(*variable))
+ error(loc, "redefinition", variable->getName().c_str(), "");
+ else {
+ // Transfer ownership of name pointer to symbol table.
+ param.name = nullptr;
+
+ // Add the parameter to the HIL
+ paramNodes = intermediate.growAggregate(paramNodes,
+ intermediate.addSymbol(*variable, loc),
+ loc);
+ }
+ } else
+ paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
+ }
+ intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
+ loopNestingLevel = 0;
+ controlFlowNestingLevel = 0;
+ postMainReturn = false;
+
+ return paramNodes;
+}
+
+void HlslParseContext::handleFunctionArgument(TFunction* function, TIntermTyped*& arguments, TIntermTyped* newArg)
+{
+ TParameter param = { 0, new TType };
+ param.type->shallowCopy(newArg->getType());
+ function->addParameter(param);
+ if (arguments)
+ arguments = intermediate.growAggregate(arguments, newArg);
+ else
+ arguments = newArg;
+}
+
+// Optionally decompose intrinsics to AST opcodes.
+//
+void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
+{
+ // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST
+ // opcodes for compatibility with existing software stacks.
+ static const bool decomposeHlslIntrinsics = true;
+
+ if (!decomposeHlslIntrinsics || !node || !node->getAsOperator())
+ return;
+
+ const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
+ TIntermUnary* fnUnary = node->getAsUnaryNode();
+ const TOperator op = node->getAsOperator()->getOp();
+
+ switch (op) {
+ case EOpGenMul:
+ {
+ // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul
+ TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
+
+ if (arg0->isVector() && arg1->isVector()) { // vec * vec
+ node->getAsAggregate()->setOperator(EOpDot);
+ } else {
+ node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1);
+ }
+
+ break;
+ }
+
+ case EOpRcp:
+ {
+ // rcp(a) -> 1 / a
+ TIntermTyped* arg0 = fnUnary->getOperand();
+ TBasicType type0 = arg0->getBasicType();
+ TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true);
+ node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0);
+
+ break;
+ }
+
+ case EOpSaturate:
+ {
+ // saturate(a) -> clamp(a,0,1)
+ TIntermTyped* arg0 = fnUnary->getOperand();
+ TBasicType type0 = arg0->getBasicType();
+ TIntermAggregate* clamp = new TIntermAggregate(EOpClamp);
+
+ clamp->getSequence().push_back(arg0);
+ clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true));
+ clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true));
+ clamp->setLoc(loc);
+ clamp->setType(node->getType());
+ node = clamp;
+
+ break;
+ }
+
+ case EOpSinCos:
+ {
+ // sincos(a,b,c) -> b = sin(a), c = cos(a)
+ TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
+ TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();
+
+ TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0);
+ TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0);
+ TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc);
+ TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc);
+
+ TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc);
+ compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign);
+ compoundStatement->setOperator(EOpSequence);
+ compoundStatement->setLoc(loc);
+
+ node = compoundStatement;
+
+ break;
+ }
+
+ case EOpClip:
+ {
+ // clip(a) -> if (any(a<0)) discard;
+ TIntermTyped* arg0 = fnUnary->getOperand();
+ TBasicType type0 = arg0->getBasicType();
+ TIntermTyped* compareNode = nullptr;
+
+ // For non-scalars: per experiment with FXC compiler, discard if any component < 0.
+ if (!arg0->isScalar()) {
+ // component-wise compare: a < 0
+ TIntermAggregate* less = new TIntermAggregate(EOpLessThan);
+ less->getSequence().push_back(arg0);
+ less->setLoc(loc);
+
+ // make vec or mat of bool matching dimensions of input
+ less->setType(TType(EbtBool, EvqTemporary,
+ arg0->getType().getVectorSize(),
+ arg0->getType().getMatrixCols(),
+ arg0->getType().getMatrixRows(),
+ arg0->getType().isVector()));
+
+ // calculate # of components for comparison const
+ const int constComponentCount =
+ std::max(arg0->getType().getVectorSize(), 1) *
+ std::max(arg0->getType().getMatrixCols(), 1) *
+ std::max(arg0->getType().getMatrixRows(), 1);
+
+ TConstUnion zero;
+ zero.setDConst(0.0);
+ TConstUnionArray zeros(constComponentCount, zero);
+
+ less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true));
+
+ compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool));
+ } else {
+ TIntermTyped* zero = intermediate.addConstantUnion(0, type0, loc, true);
+ compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero);
+ }
+
+ TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc);
+
+ node = new TIntermSelection(compareNode, killNode, nullptr);
+ node->setLoc(loc);
+
+ break;
+ }
+
+ case EOpLog10:
+ {
+ // log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10))
+ TIntermTyped* arg0 = fnUnary->getOperand();
+ TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0);
+ TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true);
+
+ node = handleBinaryMath(loc, "mul", EOpMul, log2, base);
+
+ break;
+ }
+
+ case EOpDst:
+ {
+ // dest.x = 1;
+ // dest.y = src0.y * src1.y;
+ // dest.z = src0.z;
+ // dest.w = src1.w;
+
+ TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
+ TBasicType type0 = arg0->getBasicType();
+
+ TIntermTyped* x = intermediate.addConstantUnion(0, loc, true);
+ TIntermTyped* y = intermediate.addConstantUnion(1, loc, true);
+ TIntermTyped* z = intermediate.addConstantUnion(2, loc, true);
+ TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
+
+ TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc);
+ TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc);
+ TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc);
+ TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
+
+ TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
+
+ dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
+ dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y));
+ dst->getSequence().push_back(src0z);
+ dst->getSequence().push_back(src1w);
+ dst->setLoc(loc);
+ node = dst;
+
+ break;
+ }
+
+ default:
+ break; // most pass through unchanged
+ }
+}
+
+//
+// Handle seeing function call syntax in the grammar, which could be any of
+// - .length() method
+// - constructor
+// - a call to a built-in function mapped to an operator
+// - a call to a built-in function that will remain a function call (e.g., texturing)
+// - user function
+// - subroutine call (not implemented yet)
+//
+TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermNode* arguments)
+{
+ TIntermTyped* result = nullptr;
+
+ TOperator op = function->getBuiltInOp();
+ if (op == EOpArrayLength)
+ result = handleLengthMethod(loc, function, arguments);
+ else if (op != EOpNull) {
+ //
+ // Then this should be a constructor.
+ // Don't go through the symbol table for constructors.
+ // Their parameters will be verified algorithmically.
+ //
+ TType type(EbtVoid); // use this to get the type back
+ if (! constructorError(loc, arguments, *function, op, type)) {
+ //
+ // It's a constructor, of type 'type'.
+ //
+ result = addConstructor(loc, arguments, type, op);
+ if (result == nullptr)
+ error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
+ }
+ } else {
+ //
+ // Find it in the symbol table.
+ //
+ const TFunction* fnCandidate;
+ bool builtIn;
+ fnCandidate = findFunction(loc, *function, builtIn);
+ if (fnCandidate) {
+ // This is a declared function that might map to
+ // - a built-in operator,
+ // - a built-in function not mapped to an operator, or
+ // - a user function.
+
+ // Error check for a function requiring specific extensions present.
+ if (builtIn && fnCandidate->getNumExtensions())
+ requireExtensions(loc, fnCandidate->getNumExtensions(), fnCandidate->getExtensions(), fnCandidate->getName().c_str());
+
+ if (arguments) {
+ // Make sure qualifications work for these arguments.
+ TIntermAggregate* aggregate = arguments->getAsAggregate();
+ for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
+ // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
+ // is the single argument itself or its children are the arguments. Only one argument
+ // means take 'arguments' itself as the one argument.
+ TIntermNode* arg = fnCandidate->getParamCount() == 1 ? arguments : (aggregate ? aggregate->getSequence()[i] : arguments);
+ TQualifier& formalQualifier = (*fnCandidate)[i].type->getQualifier();
+ TQualifier& argQualifier = arg->getAsTyped()->getQualifier();
+ }
+
+ // Convert 'in' arguments
+ addInputArgumentConversions(*fnCandidate, arguments); // arguments may be modified if it's just a single argument node
+ }
+
+ op = fnCandidate->getBuiltInOp();
+ if (builtIn && op != EOpNull) {
+ // A function call mapped to a built-in operation.
+ result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments, fnCandidate->getType());
+ if (result == nullptr) {
+ error(arguments->getLoc(), " wrong operand type", "Internal Error",
+ "built in unary operator function. Type: %s",
+ static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
+ } else if (result->getAsOperator()) {
+ builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
+ }
+ } else {
+ // This is a function call not mapped to built-in operator.
+ // It could still be a built-in function, but only if PureOperatorBuiltins == false.
+ result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
+ TIntermAggregate* call = result->getAsAggregate();
+ call->setName(fnCandidate->getMangledName());
+
+ // this is how we know whether the given function is a built-in function or a user-defined function
+ // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
+ // if builtIn == true, it's definitely a built-in function with EOpNull
+ if (! builtIn) {
+ call->setUserDefined();
+ intermediate.addToCallGraph(infoSink, currentCaller, fnCandidate->getMangledName());
+ }
+ }
+
+ // Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore.
+ // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
+ // Also, build the qualifier list for user function calls, which are always called with an aggregate.
+ if (result->getAsAggregate()) {
+ TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
+ for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
+ TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
+ qualifierList.push_back(qual);
+ }
+ result = addOutputArgumentConversions(*fnCandidate, *result->getAsAggregate());
+ }
+
+ decomposeIntrinsic(loc, result, arguments);
+ }
+ }
+
+ // generic error recovery
+ // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to reduce cascades
+ if (result == nullptr)
+ result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
+
+ return result;
+}
+
+// Finish processing object.length(). This started earlier in handleDotDereference(), where
+// the ".length" part was recognized and semantically checked, and finished here where the
+// function syntax "()" is recognized.
+//
+// Return resulting tree node.
+TIntermTyped* HlslParseContext::handleLengthMethod(const TSourceLoc& loc, TFunction* function, TIntermNode* intermNode)
+{
+ int length = 0;
+
+ if (function->getParamCount() > 0)
+ error(loc, "method does not accept any arguments", function->getName().c_str(), "");
+ else {
+ const TType& type = intermNode->getAsTyped()->getType();
+ if (type.isArray()) {
+ if (type.isRuntimeSizedArray()) {
+ // Create a unary op and let the back end handle it
+ return intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, intermNode, TType(EbtInt));
+ } else if (type.isImplicitlySizedArray()) {
+ if (intermNode->getAsSymbolNode() && isIoResizeArray(type)) {
+ // We could be between a layout declaration that gives a built-in io array implicit size and
+ // a user redeclaration of that array, meaning we have to substitute its implicit size here
+ // without actually redeclaring the array. (It is an error to use a member before the
+ // redeclaration, but not an error to use the array name itself.)
+ const TString& name = intermNode->getAsSymbolNode()->getName();
+ if (name == "gl_in" || name == "gl_out")
+ length = getIoArrayImplicitSize();
+ }
+ if (length == 0) {
+ if (intermNode->getAsSymbolNode() && isIoResizeArray(type))
+ error(loc, "", function->getName().c_str(), "array must first be sized by a redeclaration or layout qualifier");
+ else
+ error(loc, "", function->getName().c_str(), "array must be declared with a size before using this method");
+ }
+ } else
+ length = type.getOuterArraySize();
+ } else if (type.isMatrix())
+ length = type.getMatrixCols();
+ else if (type.isVector())
+ length = type.getVectorSize();
+ else {
+ // we should not get here, because earlier semantic checking should have prevented this path
+ error(loc, ".length()", "unexpected use of .length()", "");
+ }
+ }
+
+ if (length == 0)
+ length = 1;
+
+ return intermediate.addConstantUnion(length, loc);
+}
+
+//
+// Add any needed implicit conversions for function-call arguments to input parameters.
+//
+void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermNode*& arguments) const
+{
+ TIntermAggregate* aggregate = arguments->getAsAggregate();
+
+ // Process each argument's conversion
+ for (int i = 0; i < function.getParamCount(); ++i) {
+ // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
+ // is the single argument itself or its children are the arguments. Only one argument
+ // means take 'arguments' itself as the one argument.
+ TIntermTyped* arg = function.getParamCount() == 1 ? arguments->getAsTyped() : (aggregate ? aggregate->getSequence()[i]->getAsTyped() : arguments->getAsTyped());
+ if (*function[i].type != arg->getType()) {
+ if (function[i].type->getQualifier().isParamInput()) {
+ // In-qualified arguments just need an extra node added above the argument to
+ // convert to the correct type.
+ arg = intermediate.addConversion(EOpFunctionCall, *function[i].type, arg);
+ if (arg) {
+ if (function.getParamCount() == 1)
+ arguments = arg;
+ else {
+ if (aggregate)
+ aggregate->getSequence()[i] = arg;
+ else
+ arguments = arg;
+ }
+ }
+ }
+ }
+ }
+}
+
+//
+// Add any needed implicit output conversions for function-call arguments. This
+// can require a new tree topology, complicated further by whether the function
+// has a return value.
+//
+// Returns a node of a subtree that evaluates to the return value of the function.
+//
+TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermAggregate& intermNode) const
+{
+ TIntermSequence& arguments = intermNode.getSequence();
+
+ // Will there be any output conversions?
+ bool outputConversions = false;
+ for (int i = 0; i < function.getParamCount(); ++i) {
+ if (*function[i].type != arguments[i]->getAsTyped()->getType() && function[i].type->getQualifier().storage == EvqOut) {
+ outputConversions = true;
+ break;
+ }
+ }
+
+ if (! outputConversions)
+ return &intermNode;
+
+ // Setup for the new tree, if needed:
+ //
+ // Output conversions need a different tree topology.
+ // Out-qualified arguments need a temporary of the correct type, with the call
+ // followed by an assignment of the temporary to the original argument:
+ // void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...)
+ // ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
+ // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
+ TIntermTyped* conversionTree = nullptr;
+ TVariable* tempRet = nullptr;
+ if (intermNode.getBasicType() != EbtVoid) {
+ // do the "tempRet = function(...), " bit from above
+ tempRet = makeInternalVariable("tempReturn", intermNode.getType());
+ TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc());
+ conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, intermNode.getLoc());
+ } else
+ conversionTree = &intermNode;
+
+ conversionTree = intermediate.makeAggregate(conversionTree);
+
+ // Process each argument's conversion
+ for (int i = 0; i < function.getParamCount(); ++i) {
+ if (*function[i].type != arguments[i]->getAsTyped()->getType()) {
+ if (function[i].type->getQualifier().isParamOutput()) {
+ // Out-qualified arguments need to use the topology set up above.
+ // do the " ...(tempArg, ...), arg = tempArg" bit from above
+ TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
+ tempArg->getWritableType().getQualifier().makeTemporary();
+ TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, intermNode.getLoc());
+ TIntermTyped* tempAssign = intermediate.addAssign(EOpAssign, arguments[i]->getAsTyped(), tempArgNode, arguments[i]->getLoc());
+ conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
+ // replace the argument with another node for the same tempArg variable
+ arguments[i] = intermediate.addSymbol(*tempArg, intermNode.getLoc());
+ }
+ }
+ }
+
+ // Finalize the tree topology (see bigger comment above).
+ if (tempRet) {
+ // do the "..., tempRet" bit from above
+ TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc());
+ conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, intermNode.getLoc());
+ }
+ conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), intermNode.getLoc());
+
+ return conversionTree;
+}
+
+//
+// Do additional checking of built-in function calls that is not caught
+// by normal semantic checks on argument type, extension tagging, etc.
+//
+// Assumes there has been a semantically correct match to a built-in function prototype.
+//
+void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
+{
+ // Set up convenience accessors to the argument(s). There is almost always
+ // multiple arguments for the cases below, but when there might be one,
+ // check the unaryArg first.
+ const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference
+ const TIntermTyped* unaryArg = nullptr;
+ const TIntermTyped* arg0 = nullptr;
+ if (callNode.getAsAggregate()) {
+ argp = &callNode.getAsAggregate()->getSequence();
+ if (argp->size() > 0)
+ arg0 = (*argp)[0]->getAsTyped();
+ } else {
+ assert(callNode.getAsUnaryNode());
+ unaryArg = callNode.getAsUnaryNode()->getOperand();
+ arg0 = unaryArg;
+ }
+ const TIntermSequence& aggArgs = *argp; // only valid when unaryArg is nullptr
+
+ // built-in texturing functions get their return value precision from the precision of the sampler
+ if (fnCandidate.getType().getQualifier().precision == EpqNone &&
+ fnCandidate.getParamCount() > 0 && fnCandidate[0].type->getBasicType() == EbtSampler)
+ callNode.getQualifier().precision = arg0->getQualifier().precision;
+
+ switch (callNode.getOp()) {
+ case EOpTextureGather:
+ case EOpTextureGatherOffset:
+ case EOpTextureGatherOffsets:
+ {
+ // Figure out which variants are allowed by what extensions,
+ // and what arguments must be constant for which situations.
+
+ TString featureString = fnCandidate.getName() + "(...)";
+ const char* feature = featureString.c_str();
+ int compArg = -1; // track which argument, if any, is the constant component argument
+ switch (callNode.getOp()) {
+ case EOpTextureGather:
+ // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
+ // otherwise, need GL_ARB_texture_gather.
+ if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) {
+ if (! fnCandidate[0].type->getSampler().shadow)
+ compArg = 2;
+ }
+ break;
+ case EOpTextureGatherOffset:
+ // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
+ if (! fnCandidate[0].type->getSampler().shadow)
+ compArg = 3;
+ break;
+ case EOpTextureGatherOffsets:
+ if (! fnCandidate[0].type->getSampler().shadow)
+ compArg = 3;
+ break;
+ default:
+ break;
+ }
+
+ if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
+ if (aggArgs[compArg]->getAsConstantUnion()) {
+ int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
+ if (value < 0 || value > 3)
+ error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
+ } else
+ error(loc, "must be a compile-time constant:", feature, "component argument");
+ }
+
+ break;
+ }
+
+ case EOpTextureOffset:
+ case EOpTextureFetchOffset:
+ case EOpTextureProjOffset:
+ case EOpTextureLodOffset:
+ case EOpTextureProjLodOffset:
+ case EOpTextureGradOffset:
+ case EOpTextureProjGradOffset:
+ {
+ // Handle texture-offset limits checking
+ // Pick which argument has to hold constant offsets
+ int arg = -1;
+ switch (callNode.getOp()) {
+ case EOpTextureOffset: arg = 2; break;
+ case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
+ case EOpTextureProjOffset: arg = 2; break;
+ case EOpTextureLodOffset: arg = 3; break;
+ case EOpTextureProjLodOffset: arg = 3; break;
+ case EOpTextureGradOffset: arg = 4; break;
+ case EOpTextureProjGradOffset: arg = 4; break;
+ default:
+ assert(0);
+ break;
+ }
+
+ if (arg > 0) {
+ if (! aggArgs[arg]->getAsConstantUnion())
+ error(loc, "argument must be compile-time constant", "texel offset", "");
+ else {
+ const TType& type = aggArgs[arg]->getAsTyped()->getType();
+ for (int c = 0; c < type.getVectorSize(); ++c) {
+ int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
+ if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
+ error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
+ }
+ }
+ }
+
+ break;
+ }
+
+ case EOpTextureQuerySamples:
+ case EOpImageQuerySamples:
+ break;
+
+ case EOpImageAtomicAdd:
+ case EOpImageAtomicMin:
+ case EOpImageAtomicMax:
+ case EOpImageAtomicAnd:
+ case EOpImageAtomicOr:
+ case EOpImageAtomicXor:
+ case EOpImageAtomicExchange:
+ case EOpImageAtomicCompSwap:
+ break;
+
+ case EOpInterpolateAtCentroid:
+ case EOpInterpolateAtSample:
+ case EOpInterpolateAtOffset:
+ // "For the interpolateAt* functions, the call will return a precision
+ // qualification matching the precision of the 'interpolant' argument to
+ // the function call."
+ callNode.getQualifier().precision = arg0->getQualifier().precision;
+
+ // Make sure the first argument is an interpolant, or an array element of an interpolant
+ if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
+ // It might still be an array element.
+ //
+ // We could check more, but the semantics of the first argument are already met; the
+ // only way to turn an array into a float/vec* is array dereference and swizzle.
+ //
+ // ES and desktop 4.3 and earlier: swizzles may not be used
+ // desktop 4.4 and later: swizzles may be used
+ const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
+ if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
+ error(loc, "first argument must be an interpolant, or interpolant-array element", fnCandidate.getName().c_str(), "");
+ }
+ break;
+
+ default:
+ break;
+ }
+}
+
+//
+// Handle seeing a built-in constructor in a grammar production.
+//
+TFunction* HlslParseContext::handleConstructorCall(const TSourceLoc& loc, const TType& type)
+{
+ TOperator op = mapTypeToConstructorOp(type);
+
+ if (op == EOpNull) {
+ error(loc, "cannot construct this type", type.getBasicString(), "");
+ return nullptr;
+ }
+
+ TString empty("");
+
+ return new TFunction(&empty, type, op);
+}
+
+//
+// Handle seeing a "COLON semantic" at the end of a type declaration,
+// by updating the type according to the semantic.
+//
+void HlslParseContext::handleSemantic(TType& type, const TString& semantic)
+{
+ // TODO: need to know if it's an input or an output
+ // The following sketches what needs to be done, but can't be right
+ // without taking into account stage and input/output.
+
+ if (semantic == "PSIZE")
+ type.getQualifier().builtIn = EbvPointSize;
+ else if (semantic == "POSITION")
+ type.getQualifier().builtIn = EbvPosition;
+ else if (semantic == "FOG")
+ type.getQualifier().builtIn = EbvFogFragCoord;
+ else if (semantic == "DEPTH" || semantic == "SV_Depth")
+ type.getQualifier().builtIn = EbvFragDepth;
+ else if (semantic == "VFACE" || semantic == "SV_IsFrontFace")
+ type.getQualifier().builtIn = EbvFace;
+ else if (semantic == "VPOS" || semantic == "SV_Position")
+ type.getQualifier().builtIn = EbvFragCoord;
+ else if (semantic == "SV_ClipDistance")
+ type.getQualifier().builtIn = EbvClipDistance;
+ else if (semantic == "SV_CullDistance")
+ type.getQualifier().builtIn = EbvCullDistance;
+ else if (semantic == "SV_VertexID")
+ type.getQualifier().builtIn = EbvVertexId;
+ else if (semantic == "SV_ViewportArrayIndex")
+ type.getQualifier().builtIn = EbvViewportIndex;
+}
+
+//
+// Given a type, find what operation would fully construct it.
+//
+TOperator HlslParseContext::mapTypeToConstructorOp(const TType& type) const
+{
+ TOperator op = EOpNull;
+
+ switch (type.getBasicType()) {
+ case EbtStruct:
+ op = EOpConstructStruct;
+ break;
+ case EbtSampler:
+ if (type.getSampler().combined)
+ op = EOpConstructTextureSampler;
+ break;
+ case EbtFloat:
+ if (type.isMatrix()) {
+ switch (type.getMatrixCols()) {
+ case 2:
+ switch (type.getMatrixRows()) {
+ case 2: op = EOpConstructMat2x2; break;
+ case 3: op = EOpConstructMat2x3; break;
+ case 4: op = EOpConstructMat2x4; break;
+ default: break; // some compilers want this
+ }
+ break;
+ case 3:
+ switch (type.getMatrixRows()) {
+ case 2: op = EOpConstructMat3x2; break;
+ case 3: op = EOpConstructMat3x3; break;
+ case 4: op = EOpConstructMat3x4; break;
+ default: break; // some compilers want this
+ }
+ break;
+ case 4:
+ switch (type.getMatrixRows()) {
+ case 2: op = EOpConstructMat4x2; break;
+ case 3: op = EOpConstructMat4x3; break;
+ case 4: op = EOpConstructMat4x4; break;
+ default: break; // some compilers want this
+ }
+ break;
+ default: break; // some compilers want this
+ }
+ } else {
+ switch (type.getVectorSize()) {
+ case 1: op = EOpConstructFloat; break;
+ case 2: op = EOpConstructVec2; break;
+ case 3: op = EOpConstructVec3; break;
+ case 4: op = EOpConstructVec4; break;
+ default: break; // some compilers want this
+ }
+ }
+ break;
+ case EbtDouble:
+ if (type.getMatrixCols()) {
+ switch (type.getMatrixCols()) {
+ case 2:
+ switch (type.getMatrixRows()) {
+ case 2: op = EOpConstructDMat2x2; break;
+ case 3: op = EOpConstructDMat2x3; break;
+ case 4: op = EOpConstructDMat2x4; break;
+ default: break; // some compilers want this
+ }
+ break;
+ case 3:
+ switch (type.getMatrixRows()) {
+ case 2: op = EOpConstructDMat3x2; break;
+ case 3: op = EOpConstructDMat3x3; break;
+ case 4: op = EOpConstructDMat3x4; break;
+ default: break; // some compilers want this
+ }
+ break;
+ case 4:
+ switch (type.getMatrixRows()) {
+ case 2: op = EOpConstructDMat4x2; break;
+ case 3: op = EOpConstructDMat4x3; break;
+ case 4: op = EOpConstructDMat4x4; break;
+ default: break; // some compilers want this
+ }
+ break;
+ }
+ } else {
+ switch (type.getVectorSize()) {
+ case 1: op = EOpConstructDouble; break;
+ case 2: op = EOpConstructDVec2; break;
+ case 3: op = EOpConstructDVec3; break;
+ case 4: op = EOpConstructDVec4; break;
+ default: break; // some compilers want this
+ }
+ }
+ break;
+ case EbtInt:
+ switch (type.getVectorSize()) {
+ case 1: op = EOpConstructInt; break;
+ case 2: op = EOpConstructIVec2; break;
+ case 3: op = EOpConstructIVec3; break;
+ case 4: op = EOpConstructIVec4; break;
+ default: break; // some compilers want this
+ }
+ break;
+ case EbtUint:
+ switch (type.getVectorSize()) {
+ case 1: op = EOpConstructUint; break;
+ case 2: op = EOpConstructUVec2; break;
+ case 3: op = EOpConstructUVec3; break;
+ case 4: op = EOpConstructUVec4; break;
+ default: break; // some compilers want this
+ }
+ break;
+ case EbtBool:
+ switch (type.getVectorSize()) {
+ case 1: op = EOpConstructBool; break;
+ case 2: op = EOpConstructBVec2; break;
+ case 3: op = EOpConstructBVec3; break;
+ case 4: op = EOpConstructBVec4; break;
+ default: break; // some compilers want this
+ }
+ break;
+ default:
+ break;
+ }
+
+ return op;
+}
+
+//
+// Same error message for all places assignments don't work.
+//
+void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
+{
+ error(loc, "", op, "cannot convert from '%s' to '%s'",
+ right.c_str(), left.c_str());
+}
+
+//
+// Same error message for all places unary operations don't work.
+//
+void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
+{
+ error(loc, " wrong operand type", op,
+ "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
+ op, operand.c_str());
+}
+
+//
+// Same error message for all binary operations don't work.
+//
+void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
+{
+ error(loc, " wrong operand types:", op,
+ "no operation '%s' exists that takes a left-hand operand of type '%s' and "
+ "a right operand of type '%s' (or there is no acceptable conversion)",
+ op, left.c_str(), right.c_str());
+}
+
+//
+// A basic type of EbtVoid is a key that the name string was seen in the source, but
+// it was not found as a variable in the symbol table. If so, give the error
+// message and insert a dummy variable in the symbol table to prevent future errors.
+//
+void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
+{
+ TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
+ if (! symbol)
+ return;
+
+ if (symbol->getType().getBasicType() == EbtVoid) {
+ error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
+
+ // Add to symbol table to prevent future error messages on the same name
+ if (symbol->getName().size() > 0) {
+ TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
+ symbolTable.insert(*fakeVariable);
+
+ // substitute a symbol node for this new variable
+ nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
+ }
+ }
+}
+
+//
+// Both test, and if necessary spit out an error, to see if the node is really
+// a constant.
+//
+void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
+{
+ if (node->getQualifier().storage != EvqConst)
+ error(node->getLoc(), "constant expression required", token, "");
+}
+
+//
+// Both test, and if necessary spit out an error, to see if the node is really
+// an integer.
+//
+void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
+{
+ if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
+ return;
+
+ error(node->getLoc(), "scalar integer expression required", token, "");
+}
+
+//
+// Both test, and if necessary spit out an error, to see if we are currently
+// globally scoped.
+//
+void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
+{
+ if (! symbolTable.atGlobalLevel())
+ error(loc, "not allowed in nested scope", token, "");
+}
+
+
+bool HlslParseContext::builtInName(const TString& identifier)
+{
+ return false;
+}
+
+//
+// Make sure there is enough data and not too many arguments provided to the
+// constructor to build something of the type of the constructor. Also returns
+// the type of the constructor.
+//
+// Returns true if there was an error in construction.
+//
+bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function, TOperator op, TType& type)
+{
+ type.shallowCopy(function.getType());
+
+ bool constructingMatrix = false;
+ switch (op) {
+ case EOpConstructTextureSampler:
+ return constructorTextureSamplerError(loc, function);
+ case EOpConstructMat2x2:
+ case EOpConstructMat2x3:
+ case EOpConstructMat2x4:
+ case EOpConstructMat3x2:
+ case EOpConstructMat3x3:
+ case EOpConstructMat3x4:
+ case EOpConstructMat4x2:
+ case EOpConstructMat4x3:
+ case EOpConstructMat4x4:
+ case EOpConstructDMat2x2:
+ case EOpConstructDMat2x3:
+ case EOpConstructDMat2x4:
+ case EOpConstructDMat3x2:
+ case EOpConstructDMat3x3:
+ case EOpConstructDMat3x4:
+ case EOpConstructDMat4x2:
+ case EOpConstructDMat4x3:
+ case EOpConstructDMat4x4:
+ constructingMatrix = true;
+ break;
+ default:
+ break;
+ }
+
+ //
+ // Walk the arguments for first-pass checks and collection of information.
+ //
+
+ int size = 0;
+ bool constType = true;
+ bool full = false;
+ bool overFull = false;
+ bool matrixInMatrix = false;
+ bool arrayArg = false;
+ for (int arg = 0; arg < function.getParamCount(); ++arg) {
+ if (function[arg].type->isArray()) {
+ if (! function[arg].type->isExplicitlySizedArray()) {
+ // Can't construct from an unsized array.
+ error(loc, "array argument must be sized", "constructor", "");
+ return true;
+ }
+ arrayArg = true;
+ }
+ if (constructingMatrix && function[arg].type->isMatrix())
+ matrixInMatrix = true;
+
+ // 'full' will go to true when enough args have been seen. If we loop
+ // again, there is an extra argument.
+ if (full) {
+ // For vectors and matrices, it's okay to have too many components
+ // available, but not okay to have unused arguments.
+ overFull = true;
+ }
+
+ size += function[arg].type->computeNumComponents();
+ if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
+ full = true;
+
+ if (function[arg].type->getQualifier().storage != EvqConst)
+ constType = false;
+ }
+
+ if (constType)
+ type.getQualifier().storage = EvqConst;
+
+ if (type.isArray()) {
+ if (function.getParamCount() == 0) {
+ error(loc, "array constructor must have at least one argument", "constructor", "");
+ return true;
+ }
+
+ if (type.isImplicitlySizedArray()) {
+ // auto adapt the constructor type to the number of arguments
+ type.changeOuterArraySize(function.getParamCount());
+ } else if (type.getOuterArraySize() != function.getParamCount()) {
+ error(loc, "array constructor needs one argument per array element", "constructor", "");
+ return true;
+ }
+
+ if (type.isArrayOfArrays()) {
+ // Types have to match, but we're still making the type.
+ // Finish making the type, and the comparison is done later
+ // when checking for conversion.
+ TArraySizes& arraySizes = type.getArraySizes();
+
+ // At least the dimensionalities have to match.
+ if (! function[0].type->isArray() || arraySizes.getNumDims() != function[0].type->getArraySizes().getNumDims() + 1) {
+ error(loc, "array constructor argument not correct type to construct array element", "constructior", "");
+ return true;
+ }
+
+ if (arraySizes.isInnerImplicit()) {
+ // "Arrays of arrays ..., and the size for any dimension is optional"
+ // That means we need to adopt (from the first argument) the other array sizes into the type.
+ for (int d = 1; d < arraySizes.getNumDims(); ++d) {
+ if (arraySizes.getDimSize(d) == UnsizedArraySize) {
+ arraySizes.setDimSize(d, function[0].type->getArraySizes().getDimSize(d - 1));
+ }
+ }
+ }
+ }
+ }
+
+ if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
+ error(loc, "constructing non-array constituent from array argument", "constructor", "");
+ return true;
+ }
+
+ if (matrixInMatrix && ! type.isArray()) {
+ return false;
+ }
+
+ if (overFull) {
+ error(loc, "too many arguments", "constructor", "");
+ return true;
+ }
+
+ if (op == EOpConstructStruct && ! type.isArray() && (int)type.getStruct()->size() != function.getParamCount()) {
+ error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
+ return true;
+ }
+
+ if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
+ (op == EOpConstructStruct && size < type.computeNumComponents())) {
+ error(loc, "not enough data provided for construction", "constructor", "");
+ return true;
+ }
+
+ TIntermTyped* typed = node->getAsTyped();
+
+ return false;
+}
+
+// Verify all the correct semantics for constructing a combined texture/sampler.
+// Return true if the semantics are incorrect.
+bool HlslParseContext::constructorTextureSamplerError(const TSourceLoc& loc, const TFunction& function)
+{
+ TString constructorName = function.getType().getBasicTypeString(); // TODO: performance: should not be making copy; interface needs to change
+ const char* token = constructorName.c_str();
+
+ // exactly two arguments needed
+ if (function.getParamCount() != 2) {
+ error(loc, "sampler-constructor requires two arguments", token, "");
+ return true;
+ }
+
+ // For now, not allowing arrayed constructors, the rest of this function
+ // is set up to allow them, if this test is removed:
+ if (function.getType().isArray()) {
+ error(loc, "sampler-constructor cannot make an array of samplers", token, "");
+ return true;
+ }
+
+ // first argument
+ // * the constructor's first argument must be a texture type
+ // * the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array)
+ // of the texture type must match that of the constructed sampler type
+ // (that is, the suffixes of the type of the first argument and the
+ // type of the constructor will be spelled the same way)
+ if (function[0].type->getBasicType() != EbtSampler ||
+ ! function[0].type->getSampler().isTexture() ||
+ function[0].type->isArray()) {
+ error(loc, "sampler-constructor first argument must be a scalar textureXXX type", token, "");
+ return true;
+ }
+ // simulate the first argument's impact on the result type, so it can be compared with the encapsulated operator!=()
+ TSampler texture = function.getType().getSampler();
+ texture.combined = false;
+ texture.shadow = false;
+ if (texture != function[0].type->getSampler()) {
+ error(loc, "sampler-constructor first argument must match type and dimensionality of constructor type", token, "");
+ return true;
+ }
+
+ // second argument
+ // * the constructor's second argument must be a scalar of type
+ // *sampler* or *samplerShadow*
+ // * the presence or absence of depth comparison (Shadow) must match
+ // between the constructed sampler type and the type of the second argument
+ if (function[1].type->getBasicType() != EbtSampler ||
+ ! function[1].type->getSampler().isPureSampler() ||
+ function[1].type->isArray()) {
+ error(loc, "sampler-constructor second argument must be a scalar type 'sampler'", token, "");
+ return true;
+ }
+ if (function.getType().getSampler().shadow != function[1].type->getSampler().shadow) {
+ error(loc, "sampler-constructor second argument presence of shadow must match constructor presence of shadow", token, "");
+ return true;
+ }
+
+ return false;
+}
+
+// Checks to see if a void variable has been declared and raise an error message for such a case
+//
+// returns true in case of an error
+//
+bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
+{
+ if (basicType == EbtVoid) {
+ error(loc, "illegal use of type 'void'", identifier.c_str(), "");
+ return true;
+ }
+
+ return false;
+}
+
+// Checks to see if the node (for the expression) contains a scalar boolean expression or not
+void HlslParseContext::boolCheck(const TSourceLoc& loc, const TIntermTyped* type)
+{
+ if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector())
+ error(loc, "boolean expression expected", "", "");
+}
+
+//
+// Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
+//
+void HlslParseContext::globalQualifierFix(const TSourceLoc& loc, TQualifier& qualifier)
+{
+ // move from parameter/unknown qualifiers to pipeline in/out qualifiers
+ switch (qualifier.storage) {
+ case EvqIn:
+ qualifier.storage = EvqVaryingIn;
+ break;
+ case EvqOut:
+ qualifier.storage = EvqVaryingOut;
+ break;
+ default:
+ break;
+ }
+}
+
+//
+// Merge characteristics of the 'src' qualifier into the 'dst'.
+// If there is duplication, issue error messages, unless 'force'
+// is specified, which means to just override default settings.
+//
+// Also, when force is false, it will be assumed that 'src' follows
+// 'dst', for the purpose of error checking order for versions
+// that require specific orderings of qualifiers.
+//
+void HlslParseContext::mergeQualifiers(const TSourceLoc& loc, TQualifier& dst, const TQualifier& src, bool force)
+{
+ // Storage qualification
+ if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
+ dst.storage = src.storage;
+ else if ((dst.storage == EvqIn && src.storage == EvqOut) ||
+ (dst.storage == EvqOut && src.storage == EvqIn))
+ dst.storage = EvqInOut;
+ else if ((dst.storage == EvqIn && src.storage == EvqConst) ||
+ (dst.storage == EvqConst && src.storage == EvqIn))
+ dst.storage = EvqConstReadOnly;
+ else if (src.storage != EvqTemporary && src.storage != EvqGlobal)
+ error(loc, "too many storage qualifiers", GetStorageQualifierString(src.storage), "");
+
+ // Precision qualifiers
+ if (dst.precision == EpqNone || (force && src.precision != EpqNone))
+ dst.precision = src.precision;
+
+ // Layout qualifiers
+ mergeObjectLayoutQualifiers(dst, src, false);
+
+ // individual qualifiers
+ bool repeated = false;
+#define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field;
+ MERGE_SINGLETON(invariant);
+ MERGE_SINGLETON(noContraction);
+ MERGE_SINGLETON(centroid);
+ MERGE_SINGLETON(smooth);
+ MERGE_SINGLETON(flat);
+ MERGE_SINGLETON(nopersp);
+ MERGE_SINGLETON(patch);
+ MERGE_SINGLETON(sample);
+ MERGE_SINGLETON(coherent);
+ MERGE_SINGLETON(volatil);
+ MERGE_SINGLETON(restrict);
+ MERGE_SINGLETON(readonly);
+ MERGE_SINGLETON(writeonly);
+ MERGE_SINGLETON(specConstant);
+}
+
+// used to flatten the sampler type space into a single dimension
+// correlates with the declaration of defaultSamplerPrecision[]
+int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
+{
+ int arrayIndex = sampler.arrayed ? 1 : 0;
+ int shadowIndex = sampler.shadow ? 1 : 0;
+ int externalIndex = sampler.external ? 1 : 0;
+
+ return EsdNumDims * (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
+}
+
+//
+// Do size checking for an array type's size.
+//
+void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
+{
+ bool isConst = false;
+ sizePair.size = 1;
+ sizePair.node = nullptr;
+
+ TIntermConstantUnion* constant = expr->getAsConstantUnion();
+ if (constant) {
+ // handle true (non-specialization) constant
+ sizePair.size = constant->getConstArray()[0].getIConst();
+ isConst = true;
+ } else {
+ // see if it's a specialization constant instead
+ if (expr->getQualifier().isSpecConstant()) {
+ isConst = true;
+ sizePair.node = expr;
+ TIntermSymbol* symbol = expr->getAsSymbolNode();
+ if (symbol && symbol->getConstArray().size() > 0)
+ sizePair.size = symbol->getConstArray()[0].getIConst();
+ }
+ }
+
+ if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
+ error(loc, "array size must be a constant integer expression", "", "");
+ return;
+ }
+
+ if (sizePair.size <= 0) {
+ error(loc, "array size must be a positive integer", "", "");
+ return;
+ }
+}
+
+//
+// Require array to be completely sized
+//
+void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
+{
+ if (arraySizes.isImplicit())
+ error(loc, "array size required", "", "");
+}
+
+void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
+{
+ const TTypeList& structure = *type.getStruct();
+ for (int m = 0; m < (int)structure.size(); ++m) {
+ const TType& member = *structure[m].type;
+ if (member.isArray())
+ arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
+ }
+}
+
+// Merge array dimensions listed in 'sizes' onto the type's array dimensions.
+//
+// From the spec: "vec4[2] a[3]; // size-3 array of size-2 array of vec4"
+//
+// That means, the 'sizes' go in front of the 'type' as outermost sizes.
+// 'type' is the type part of the declaration (to the left)
+// 'sizes' is the arrayness tagged on the identifier (to the right)
+//
+void HlslParseContext::arrayDimMerge(TType& type, const TArraySizes* sizes)
+{
+ if (sizes)
+ type.addArrayOuterSizes(*sizes);
+}
+
+//
+// Do all the semantic checking for declaring or redeclaring an array, with and
+// without a size, and make the right changes to the symbol table.
+//
+void HlslParseContext::declareArray(const TSourceLoc& loc, TString& identifier, const TType& type, TSymbol*& symbol, bool& newDeclaration)
+{
+ if (! symbol) {
+ bool currentScope;
+ symbol = symbolTable.find(identifier, nullptr, &currentScope);
+
+ if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
+ // bad shader (errors already reported) trying to redeclare a built-in name as an array
+ return;
+ }
+ if (symbol == nullptr || ! currentScope) {
+ //
+ // Successfully process a new definition.
+ // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
+ //
+ symbol = new TVariable(&identifier, type);
+ symbolTable.insert(*symbol);
+ newDeclaration = true;
+
+ if (! symbolTable.atBuiltInLevel()) {
+ if (isIoResizeArray(type)) {
+ ioArraySymbolResizeList.push_back(symbol);
+ checkIoArraysConsistency(loc, true);
+ } else
+ fixIoArraySize(loc, symbol->getWritableType());
+ }
+
+ return;
+ }
+ if (symbol->getAsAnonMember()) {
+ error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
+ symbol = nullptr;
+ return;
+ }
+ }
+
+ //
+ // Process a redeclaration.
+ //
+
+ if (! symbol) {
+ error(loc, "array variable name expected", identifier.c_str(), "");
+ return;
+ }
+
+ // redeclareBuiltinVariable() should have already done the copyUp()
+ TType& existingType = symbol->getWritableType();
+
+
+ if (existingType.isExplicitlySizedArray()) {
+ // be more lenient for input arrays to geometry shaders and tessellation control outputs, where the redeclaration is the same size
+ if (! (isIoResizeArray(type) && existingType.getOuterArraySize() == type.getOuterArraySize()))
+ error(loc, "redeclaration of array with size", identifier.c_str(), "");
+ return;
+ }
+
+ existingType.updateArraySizes(type);
+
+ if (isIoResizeArray(type))
+ checkIoArraysConsistency(loc);
+}
+
+void HlslParseContext::updateImplicitArraySize(const TSourceLoc& loc, TIntermNode *node, int index)
+{
+ // maybe there is nothing to do...
+ TIntermTyped* typedNode = node->getAsTyped();
+ if (typedNode->getType().getImplicitArraySize() > index)
+ return;
+
+ // something to do...
+
+ // Figure out what symbol to lookup, as we will use its type to edit for the size change,
+ // as that type will be shared through shallow copies for future references.
+ TSymbol* symbol = nullptr;
+ int blockIndex = -1;
+ const TString* lookupName = nullptr;
+ if (node->getAsSymbolNode())
+ lookupName = &node->getAsSymbolNode()->getName();
+ else if (node->getAsBinaryNode()) {
+ const TIntermBinary* deref = node->getAsBinaryNode();
+ // This has to be the result of a block dereference, unless it's bad shader code
+ // If it's a uniform block, then an error will be issued elsewhere, but
+ // return early now to avoid crashing later in this function.
+ if (! deref->getLeft()->getAsSymbolNode() || deref->getLeft()->getBasicType() != EbtBlock ||
+ deref->getLeft()->getType().getQualifier().storage == EvqUniform ||
+ deref->getRight()->getAsConstantUnion() == nullptr)
+ return;
+
+ blockIndex = deref->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
+
+ lookupName = &deref->getLeft()->getAsSymbolNode()->getName();
+ if (IsAnonymous(*lookupName))
+ lookupName = &(*deref->getLeft()->getType().getStruct())[blockIndex].type->getFieldName();
+ }
+
+ // Lookup the symbol, should only fail if shader code is incorrect
+ symbol = symbolTable.find(*lookupName);
+ if (symbol == nullptr)
+ return;
+
+ if (symbol->getAsFunction()) {
+ error(loc, "array variable name expected", symbol->getName().c_str(), "");
+ return;
+ }
+
+ symbol->getWritableType().setImplicitArraySize(index + 1);
+}
+
+//
+// See if the identifier is a built-in symbol that can be redeclared, and if so,
+// copy the symbol table's read-only built-in variable to the current
+// global level, where it can be modified based on the passed in type.
+//
+// Returns nullptr if no redeclaration took place; meaning a normal declaration still
+// needs to occur for it, not necessarily an error.
+//
+// Returns a redeclared and type-modified variable if a redeclared occurred.
+//
+TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& loc, const TString& identifier, const TQualifier& qualifier, const TShaderQualifiers& publicType, bool& newDeclaration)
+{
+ if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
+ return nullptr;
+
+ return nullptr;
+}
+
+//
+// Either redeclare the requested block, or give an error message why it can't be done.
+//
+// TODO: functionality: explicitly sizing members of redeclared blocks is not giving them an explicit size
+void HlslParseContext::redeclareBuiltinBlock(const TSourceLoc& loc, TTypeList& newTypeList, const TString& blockName, const TString* instanceName, TArraySizes* arraySizes)
+{
+ // Redeclaring a built-in block...
+
+ // Blocks with instance names are easy to find, lookup the instance name,
+ // Anonymous blocks need to be found via a member.
+ bool builtIn;
+ TSymbol* block;
+ if (instanceName)
+ block = symbolTable.find(*instanceName, &builtIn);
+ else
+ block = symbolTable.find(newTypeList.front().type->getFieldName(), &builtIn);
+
+ // If the block was not found, this must be a version/profile/stage
+ // that doesn't have it, or the instance name is wrong.
+ const char* errorName = instanceName ? instanceName->c_str() : newTypeList.front().type->getFieldName().c_str();
+ if (! block) {
+ error(loc, "no declaration found for redeclaration", errorName, "");
+ return;
+ }
+ // Built-in blocks cannot be redeclared more than once, which if happened,
+ // we'd be finding the already redeclared one here, rather than the built in.
+ if (! builtIn) {
+ error(loc, "can only redeclare a built-in block once, and before any use", blockName.c_str(), "");
+ return;
+ }
+
+ // Copy the block to make a writable version, to insert into the block table after editing.
+ block = symbolTable.copyUpDeferredInsert(block);
+
+ if (block->getType().getBasicType() != EbtBlock) {
+ error(loc, "cannot redeclare a non block as a block", errorName, "");
+ return;
+ }
+
+ // Edit and error check the container against the redeclaration
+ // - remove unused members
+ // - ensure remaining qualifiers/types match
+ TType& type = block->getWritableType();
+ TTypeList::iterator member = type.getWritableStruct()->begin();
+ size_t numOriginalMembersFound = 0;
+ while (member != type.getStruct()->end()) {
+ // look for match
+ bool found = false;
+ TTypeList::const_iterator newMember;
+ TSourceLoc memberLoc;
+ memberLoc.init();
+ for (newMember = newTypeList.begin(); newMember != newTypeList.end(); ++newMember) {
+ if (member->type->getFieldName() == newMember->type->getFieldName()) {
+ found = true;
+ memberLoc = newMember->loc;
+ break;
+ }
+ }
+
+ if (found) {
+ ++numOriginalMembersFound;
+ // - ensure match between redeclared members' types
+ // - check for things that can't be changed
+ // - update things that can be changed
+ TType& oldType = *member->type;
+ const TType& newType = *newMember->type;
+ if (! newType.sameElementType(oldType))
+ error(memberLoc, "cannot redeclare block member with a different type", member->type->getFieldName().c_str(), "");
+ if (oldType.isArray() != newType.isArray())
+ error(memberLoc, "cannot change arrayness of redeclared block member", member->type->getFieldName().c_str(), "");
+ else if (! oldType.sameArrayness(newType) && oldType.isExplicitlySizedArray())
+ error(memberLoc, "cannot change array size of redeclared block member", member->type->getFieldName().c_str(), "");
+ if (newType.getQualifier().isMemory())
+ error(memberLoc, "cannot add memory qualifier to redeclared block member", member->type->getFieldName().c_str(), "");
+ if (newType.getQualifier().hasLayout())
+ error(memberLoc, "cannot add layout to redeclared block member", member->type->getFieldName().c_str(), "");
+ if (newType.getQualifier().patch)
+ error(memberLoc, "cannot add patch to redeclared block member", member->type->getFieldName().c_str(), "");
+ oldType.getQualifier().centroid = newType.getQualifier().centroid;
+ oldType.getQualifier().sample = newType.getQualifier().sample;
+ oldType.getQualifier().invariant = newType.getQualifier().invariant;
+ oldType.getQualifier().noContraction = newType.getQualifier().noContraction;
+ oldType.getQualifier().smooth = newType.getQualifier().smooth;
+ oldType.getQualifier().flat = newType.getQualifier().flat;
+ oldType.getQualifier().nopersp = newType.getQualifier().nopersp;
+
+ // go to next member
+ ++member;
+ } else {
+ // For missing members of anonymous blocks that have been redeclared,
+ // hide the original (shared) declaration.
+ // Instance-named blocks can just have the member removed.
+ if (instanceName)
+ member = type.getWritableStruct()->erase(member);
+ else {
+ member->type->hideMember();
+ ++member;
+ }
+ }
+ }
+
+ if (numOriginalMembersFound < newTypeList.size())
+ error(loc, "block redeclaration has extra members", blockName.c_str(), "");
+ if (type.isArray() != (arraySizes != nullptr))
+ error(loc, "cannot change arrayness of redeclared block", blockName.c_str(), "");
+ else if (type.isArray()) {
+ if (type.isExplicitlySizedArray() && arraySizes->getOuterSize() == UnsizedArraySize)
+ error(loc, "block already declared with size, can't redeclare as implicitly-sized", blockName.c_str(), "");
+ else if (type.isExplicitlySizedArray() && type.getArraySizes() != *arraySizes)
+ error(loc, "cannot change array size of redeclared block", blockName.c_str(), "");
+ else if (type.isImplicitlySizedArray() && arraySizes->getOuterSize() != UnsizedArraySize)
+ type.changeOuterArraySize(arraySizes->getOuterSize());
+ }
+
+ symbolTable.insert(*block);
+
+ // Tracking for implicit sizing of array
+ if (isIoResizeArray(block->getType())) {
+ ioArraySymbolResizeList.push_back(block);
+ checkIoArraysConsistency(loc, true);
+ } else if (block->getType().isArray())
+ fixIoArraySize(loc, block->getWritableType());
+
+ // Save it in the AST for linker use.
+ intermediate.addSymbolLinkageNode(linkage, *block);
+}
+
+void HlslParseContext::paramCheckFix(const TSourceLoc& loc, const TStorageQualifier& qualifier, TType& type)
+{
+ switch (qualifier) {
+ case EvqConst:
+ case EvqConstReadOnly:
+ type.getQualifier().storage = EvqConstReadOnly;
+ break;
+ case EvqIn:
+ case EvqOut:
+ case EvqInOut:
+ type.getQualifier().storage = qualifier;
+ break;
+ case EvqGlobal:
+ case EvqTemporary:
+ type.getQualifier().storage = EvqIn;
+ break;
+ default:
+ type.getQualifier().storage = EvqIn;
+ error(loc, "storage qualifier not allowed on function parameter", GetStorageQualifierString(qualifier), "");
+ break;
+ }
+}
+
+void HlslParseContext::paramCheckFix(const TSourceLoc& loc, const TQualifier& qualifier, TType& type)
+{
+ if (qualifier.isMemory()) {
+ type.getQualifier().volatil = qualifier.volatil;
+ type.getQualifier().coherent = qualifier.coherent;
+ type.getQualifier().readonly = qualifier.readonly;
+ type.getQualifier().writeonly = qualifier.writeonly;
+ type.getQualifier().restrict = qualifier.restrict;
+ }
+
+ paramCheckFix(loc, qualifier.storage, type);
+}
+
+void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
+{
+ if (type.containsSpecializationSize())
+ error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
+}
+
+//
+// Layout qualifier stuff.
+//
+
+// Put the id's layout qualification into the public type, for qualifiers not having a number set.
+// This is before we know any type information for error checking.
+void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id)
+{
+ std::transform(id.begin(), id.end(), id.begin(), ::tolower);
+
+ if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
+ publicType.qualifier.layoutMatrix = ElmColumnMajor;
+ return;
+ }
+ if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
+ publicType.qualifier.layoutMatrix = ElmRowMajor;
+ return;
+ }
+ if (id == TQualifier::getLayoutPackingString(ElpPacked)) {
+ if (vulkan > 0)
+ vulkanRemoved(loc, "packed");
+ publicType.qualifier.layoutPacking = ElpPacked;
+ return;
+ }
+ if (id == TQualifier::getLayoutPackingString(ElpShared)) {
+ if (vulkan > 0)
+ vulkanRemoved(loc, "shared");
+ publicType.qualifier.layoutPacking = ElpShared;
+ return;
+ }
+ if (id == "push_constant") {
+ requireVulkan(loc, "push_constant");
+ publicType.qualifier.layoutPushConstant = true;
+ return;
+ }
+ if (language == EShLangGeometry || language == EShLangTessEvaluation) {
+ if (id == TQualifier::getGeometryString(ElgTriangles)) {
+ publicType.shaderQualifiers.geometry = ElgTriangles;
+ return;
+ }
+ if (language == EShLangGeometry) {
+ if (id == TQualifier::getGeometryString(ElgPoints)) {
+ publicType.shaderQualifiers.geometry = ElgPoints;
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgLineStrip)) {
+ publicType.shaderQualifiers.geometry = ElgLineStrip;
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgLines)) {
+ publicType.shaderQualifiers.geometry = ElgLines;
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
+ publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
+ publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
+ publicType.shaderQualifiers.geometry = ElgTriangleStrip;
+ return;
+ }
+ } else {
+ assert(language == EShLangTessEvaluation);
+
+ // input primitive
+ if (id == TQualifier::getGeometryString(ElgTriangles)) {
+ publicType.shaderQualifiers.geometry = ElgTriangles;
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgQuads)) {
+ publicType.shaderQualifiers.geometry = ElgQuads;
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgIsolines)) {
+ publicType.shaderQualifiers.geometry = ElgIsolines;
+ return;
+ }
+
+ // vertex spacing
+ if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
+ publicType.shaderQualifiers.spacing = EvsEqual;
+ return;
+ }
+ if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
+ publicType.shaderQualifiers.spacing = EvsFractionalEven;
+ return;
+ }
+ if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
+ publicType.shaderQualifiers.spacing = EvsFractionalOdd;
+ return;
+ }
+
+ // triangle order
+ if (id == TQualifier::getVertexOrderString(EvoCw)) {
+ publicType.shaderQualifiers.order = EvoCw;
+ return;
+ }
+ if (id == TQualifier::getVertexOrderString(EvoCcw)) {
+ publicType.shaderQualifiers.order = EvoCcw;
+ return;
+ }
+
+ // point mode
+ if (id == "point_mode") {
+ publicType.shaderQualifiers.pointMode = true;
+ return;
+ }
+ }
+ }
+ if (language == EShLangFragment) {
+ if (id == "origin_upper_left") {
+ publicType.shaderQualifiers.originUpperLeft = true;
+ return;
+ }
+ if (id == "pixel_center_integer") {
+ publicType.shaderQualifiers.pixelCenterInteger = true;
+ return;
+ }
+ if (id == "early_fragment_tests") {
+ publicType.shaderQualifiers.earlyFragmentTests = true;
+ return;
+ }
+ for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
+ if (id == TQualifier::getLayoutDepthString(depth)) {
+ publicType.shaderQualifiers.layoutDepth = depth;
+ return;
+ }
+ }
+ if (id.compare(0, 13, "blend_support") == 0) {
+ bool found = false;
+ for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
+ if (id == TQualifier::getBlendEquationString(be)) {
+ requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
+ intermediate.addBlendEquation(be);
+ publicType.shaderQualifiers.blendEquation = true;
+ found = true;
+ break;
+ }
+ }
+ if (! found)
+ error(loc, "unknown blend equation", "blend_support", "");
+ return;
+ }
+ }
+ error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
+}
+
+// Put the id's layout qualifier value into the public type, for qualifiers having a number set.
+// This is before we know any type information for error checking.
+void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id, const TIntermTyped* node)
+{
+ const char* feature = "layout-id value";
+ const char* nonLiteralFeature = "non-literal layout-id value";
+
+ integerCheck(node, feature);
+ const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
+ int value = 0;
+ if (constUnion) {
+ value = constUnion->getConstArray()[0].getIConst();
+ }
+
+ std::transform(id.begin(), id.end(), id.begin(), ::tolower);
+
+ if (id == "offset") {
+ publicType.qualifier.layoutOffset = value;
+ return;
+ } else if (id == "align") {
+ // "The specified alignment must be a power of 2, or a compile-time error results."
+ if (! IsPow2(value))
+ error(loc, "must be a power of 2", "align", "");
+ else
+ publicType.qualifier.layoutAlign = value;
+ return;
+ } else if (id == "location") {
+ if ((unsigned int)value >= TQualifier::layoutLocationEnd)
+ error(loc, "location is too large", id.c_str(), "");
+ else
+ publicType.qualifier.layoutLocation = value;
+ return;
+ } else if (id == "set") {
+ if ((unsigned int)value >= TQualifier::layoutSetEnd)
+ error(loc, "set is too large", id.c_str(), "");
+ else
+ publicType.qualifier.layoutSet = value;
+ return;
+ } else if (id == "binding") {
+ if ((unsigned int)value >= TQualifier::layoutBindingEnd)
+ error(loc, "binding is too large", id.c_str(), "");
+ else
+ publicType.qualifier.layoutBinding = value;
+ return;
+ } else if (id == "component") {
+ if ((unsigned)value >= TQualifier::layoutComponentEnd)
+ error(loc, "component is too large", id.c_str(), "");
+ else
+ publicType.qualifier.layoutComponent = value;
+ return;
+ } else if (id.compare(0, 4, "xfb_") == 0) {
+ // "Any shader making any static use (after preprocessing) of any of these
+ // *xfb_* qualifiers will cause the shader to be in a transform feedback
+ // capturing mode and hence responsible for describing the transform feedback
+ // setup."
+ intermediate.setXfbMode();
+ if (id == "xfb_buffer") {
+ // "It is a compile-time error to specify an *xfb_buffer* that is greater than
+ // the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
+ if (value >= resources.maxTransformFeedbackBuffers)
+ error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", resources.maxTransformFeedbackBuffers);
+ if (value >= (int)TQualifier::layoutXfbBufferEnd)
+ error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
+ else
+ publicType.qualifier.layoutXfbBuffer = value;
+ return;
+ } else if (id == "xfb_offset") {
+ if (value >= (int)TQualifier::layoutXfbOffsetEnd)
+ error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
+ else
+ publicType.qualifier.layoutXfbOffset = value;
+ return;
+ } else if (id == "xfb_stride") {
+ // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
+ // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
+ if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
+ error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d", resources.maxTransformFeedbackInterleavedComponents);
+ else if (value >= (int)TQualifier::layoutXfbStrideEnd)
+ error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
+ if (value < (int)TQualifier::layoutXfbStrideEnd)
+ publicType.qualifier.layoutXfbStride = value;
+ return;
+ }
+ }
+
+ if (id == "input_attachment_index") {
+ requireVulkan(loc, "input_attachment_index");
+ if (value >= (int)TQualifier::layoutAttachmentEnd)
+ error(loc, "attachment index is too large", id.c_str(), "");
+ else
+ publicType.qualifier.layoutAttachment = value;
+ return;
+ }
+ if (id == "constant_id") {
+ requireSpv(loc, "constant_id");
+ if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
+ error(loc, "specialization-constant id is too large", id.c_str(), "");
+ } else {
+ publicType.qualifier.layoutSpecConstantId = value;
+ publicType.qualifier.specConstant = true;
+ if (! intermediate.addUsedConstantId(value))
+ error(loc, "specialization-constant id already used", id.c_str(), "");
+ }
+ return;
+ }
+
+ switch (language) {
+ case EShLangVertex:
+ break;
+
+ case EShLangTessControl:
+ if (id == "vertices") {
+ if (value == 0)
+ error(loc, "must be greater than 0", "vertices", "");
+ else
+ publicType.shaderQualifiers.vertices = value;
+ return;
+ }
+ break;
+
+ case EShLangTessEvaluation:
+ break;
+
+ case EShLangGeometry:
+ if (id == "invocations") {
+ if (value == 0)
+ error(loc, "must be at least 1", "invocations", "");
+ else
+ publicType.shaderQualifiers.invocations = value;
+ return;
+ }
+ if (id == "max_vertices") {
+ publicType.shaderQualifiers.vertices = value;
+ if (value > resources.maxGeometryOutputVertices)
+ error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
+ return;
+ }
+ if (id == "stream") {
+ publicType.qualifier.layoutStream = value;
+ return;
+ }
+ break;
+
+ case EShLangFragment:
+ if (id == "index") {
+ const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location };
+ publicType.qualifier.layoutIndex = value;
+ return;
+ }
+ break;
+
+ case EShLangCompute:
+ if (id.compare(0, 11, "local_size_") == 0) {
+ if (id == "local_size_x") {
+ publicType.shaderQualifiers.localSize[0] = value;
+ return;
+ }
+ if (id == "local_size_y") {
+ publicType.shaderQualifiers.localSize[1] = value;
+ return;
+ }
+ if (id == "local_size_z") {
+ publicType.shaderQualifiers.localSize[2] = value;
+ return;
+ }
+ if (spv > 0) {
+ if (id == "local_size_x_id") {
+ publicType.shaderQualifiers.localSizeSpecId[0] = value;
+ return;
+ }
+ if (id == "local_size_y_id") {
+ publicType.shaderQualifiers.localSizeSpecId[1] = value;
+ return;
+ }
+ if (id == "local_size_z_id") {
+ publicType.shaderQualifiers.localSizeSpecId[2] = value;
+ return;
+ }
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
+}
+
+// Merge any layout qualifier information from src into dst, leaving everything else in dst alone
+//
+// "More than one layout qualifier may appear in a single declaration.
+// Additionally, the same layout-qualifier-name can occur multiple times
+// within a layout qualifier or across multiple layout qualifiers in the
+// same declaration. When the same layout-qualifier-name occurs
+// multiple times, in a single declaration, the last occurrence overrides
+// the former occurrence(s). Further, if such a layout-qualifier-name
+// will effect subsequent declarations or other observable behavior, it
+// is only the last occurrence that will have any effect, behaving as if
+// the earlier occurrence(s) within the declaration are not present.
+// This is also true for overriding layout-qualifier-names, where one
+// overrides the other (e.g., row_major vs. column_major); only the last
+// occurrence has any effect."
+//
+void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
+{
+ if (src.hasMatrix())
+ dst.layoutMatrix = src.layoutMatrix;
+ if (src.hasPacking())
+ dst.layoutPacking = src.layoutPacking;
+
+ if (src.hasStream())
+ dst.layoutStream = src.layoutStream;
+
+ if (src.hasFormat())
+ dst.layoutFormat = src.layoutFormat;
+
+ if (src.hasXfbBuffer())
+ dst.layoutXfbBuffer = src.layoutXfbBuffer;
+
+ if (src.hasAlign())
+ dst.layoutAlign = src.layoutAlign;
+
+ if (! inheritOnly) {
+ if (src.hasLocation())
+ dst.layoutLocation = src.layoutLocation;
+ if (src.hasComponent())
+ dst.layoutComponent = src.layoutComponent;
+ if (src.hasIndex())
+ dst.layoutIndex = src.layoutIndex;
+
+ if (src.hasOffset())
+ dst.layoutOffset = src.layoutOffset;
+
+ if (src.hasSet())
+ dst.layoutSet = src.layoutSet;
+ if (src.layoutBinding != TQualifier::layoutBindingEnd)
+ dst.layoutBinding = src.layoutBinding;
+
+ if (src.hasXfbStride())
+ dst.layoutXfbStride = src.layoutXfbStride;
+ if (src.hasXfbOffset())
+ dst.layoutXfbOffset = src.layoutXfbOffset;
+ if (src.hasAttachment())
+ dst.layoutAttachment = src.layoutAttachment;
+ if (src.hasSpecConstantId())
+ dst.layoutSpecConstantId = src.layoutSpecConstantId;
+
+ if (src.layoutPushConstant)
+ dst.layoutPushConstant = true;
+ }
+}
+
+//
+// Look up a function name in the symbol table, and make sure it is a function.
+//
+// Return the function symbol if found, otherwise nullptr.
+//
+const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFunction& call, bool& builtIn)
+{
+ const TFunction* function = nullptr;
+
+ if (symbolTable.isFunctionNameVariable(call.getName())) {
+ error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
+ return nullptr;
+ }
+
+ // first, look for an exact match
+ TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn);
+ if (symbol)
+ return symbol->getAsFunction();
+
+ // exact match not found, look through a list of overloaded functions of the same name
+
+ const TFunction* candidate = nullptr;
+ TVector<TFunction*> candidateList;
+ symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
+
+ for (TVector<TFunction*>::const_iterator it = candidateList.begin(); it != candidateList.end(); ++it) {
+ const TFunction& function = *(*it);
+
+ // to even be a potential match, number of arguments has to match
+ if (call.getParamCount() != function.getParamCount())
+ continue;
+
+ bool possibleMatch = true;
+ for (int i = 0; i < function.getParamCount(); ++i) {
+ // same types is easy
+ if (*function[i].type == *call[i].type)
+ continue;
+
+ // We have a mismatch in type, see if it is implicitly convertible
+
+ if (function[i].type->isArray() || call[i].type->isArray() ||
+ ! function[i].type->sameElementShape(*call[i].type))
+ possibleMatch = false;
+ else {
+ // do direction-specific checks for conversion of basic type
+ if (function[i].type->getQualifier().isParamInput()) {
+ if (! intermediate.canImplicitlyPromote(call[i].type->getBasicType(), function[i].type->getBasicType()))
+ possibleMatch = false;
+ }
+ if (function[i].type->getQualifier().isParamOutput()) {
+ if (! intermediate.canImplicitlyPromote(function[i].type->getBasicType(), call[i].type->getBasicType()))
+ possibleMatch = false;
+ }
+ }
+ if (! possibleMatch)
+ break;
+ }
+ if (possibleMatch) {
+ if (candidate) {
+ // our second match, meaning ambiguity
+ error(loc, "ambiguous function signature match: multiple signatures match under implicit type conversion", call.getName().c_str(), "");
+ } else
+ candidate = &function;
+ }
+ }
+
+ if (candidate == nullptr)
+ error(loc, "no matching overloaded function found", call.getName().c_str(), "");
+
+ return candidate;
+}
+
+//
+// Do everything necessary to handle a variable (non-block) declaration.
+// Either redeclaring a variable, or making a new one, updating the symbol
+// table, and all error checking.
+//
+// Returns a subtree node that computes an initializer, if needed.
+// Returns nullptr if there is no code to execute for initialization.
+//
+// 'publicType' is the type part of the declaration (to the left)
+// 'arraySizes' is the arrayness tagged on the identifier (to the right)
+//
+TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, TString& identifier, const TType& parseType, TArraySizes* arraySizes, TIntermTyped* initializer)
+{
+ TType type;
+ type.shallowCopy(parseType);
+ if (type.isImplicitlySizedArray()) {
+ // Because "int[] a = int[2](...), b = int[3](...)" makes two arrays a and b
+ // of different sizes, for this case sharing the shallow copy of arrayness
+ // with the publicType oversubscribes it, so get a deep copy of the arrayness.
+ type.newArraySizes(*parseType.getArraySizes());
+ }
+
+ if (voidErrorCheck(loc, identifier, type.getBasicType()))
+ return nullptr;
+
+ // Check for redeclaration of built-ins and/or attempting to declare a reserved name
+ bool newDeclaration = false; // true if a new entry gets added to the symbol table
+ TSymbol* symbol = nullptr; // = redeclareBuiltinVariable(loc, identifier, type.getQualifier(), publicType.shaderQualifiers, newDeclaration);
+
+ inheritGlobalDefaults(type.getQualifier());
+
+ // Declare the variable
+ if (arraySizes || type.isArray()) {
+ // Arrayness is potentially coming both from the type and from the
+ // variable: "int[] a[];" or just one or the other.
+ // Merge it all to the type, so all arrayness is part of the type.
+ arrayDimMerge(type, arraySizes);
+ declareArray(loc, identifier, type, symbol, newDeclaration);
+ } else {
+ // non-array case
+ if (! symbol)
+ symbol = declareNonArray(loc, identifier, type, newDeclaration);
+ else if (type != symbol->getType())
+ error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
+ }
+
+ if (! symbol)
+ return nullptr;
+
+ // Deal with initializer
+ TIntermNode* initNode = nullptr;
+ if (symbol && initializer) {
+ TVariable* variable = symbol->getAsVariable();
+ if (! variable) {
+ error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
+ return nullptr;
+ }
+ initNode = executeInitializer(loc, initializer, variable);
+ }
+
+ // see if it's a linker-level object to track
+ if (newDeclaration && symbolTable.atGlobalLevel())
+ intermediate.addSymbolLinkageNode(linkage, *symbol);
+
+ return initNode;
+}
+
+// Pick up global defaults from the provide global defaults into dst.
+void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
+{
+ if (dst.storage == EvqVaryingOut) {
+ if (! dst.hasStream() && language == EShLangGeometry)
+ dst.layoutStream = globalOutputDefaults.layoutStream;
+ if (! dst.hasXfbBuffer())
+ dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
+ }
+}
+
+//
+// Make an internal-only variable whose name is for debug purposes only
+// and won't be searched for. Callers will only use the return value to use
+// the variable, not the name to look it up. It is okay if the name
+// is the same as other names; there won't be any conflict.
+//
+TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
+{
+ TString* nameString = new TString(name);
+ TVariable* variable = new TVariable(nameString, type);
+ symbolTable.makeInternalVariable(*variable);
+
+ return variable;
+}
+
+//
+// Declare a non-array variable, the main point being there is no redeclaration
+// for resizing allowed.
+//
+// Return the successfully declared variable.
+//
+TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, TString& identifier, TType& type, bool& newDeclaration)
+{
+ // make a new variable
+ TVariable* variable = new TVariable(&identifier, type);
+
+ // add variable to symbol table
+ if (! symbolTable.insert(*variable)) {
+ error(loc, "redefinition", variable->getName().c_str(), "");
+ return nullptr;
+ } else {
+ newDeclaration = true;
+ return variable;
+ }
+}
+
+//
+// Handle all types of initializers from the grammar.
+//
+// Returning nullptr just means there is no code to execute to handle the
+// initializer, which will, for example, be the case for constant initializers.
+//
+TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
+{
+ //
+ // Identifier must be of type constant, a global, or a temporary, and
+ // starting at version 120, desktop allows uniforms to have initializers.
+ //
+ TStorageQualifier qualifier = variable->getType().getQualifier().storage;
+
+ //
+ // If the initializer was from braces { ... }, we convert the whole subtree to a
+ // constructor-style subtree, allowing the rest of the code to operate
+ // identically for both kinds of initializers.
+ //
+ initializer = convertInitializerList(loc, variable->getType(), initializer);
+ if (! initializer) {
+ // error recovery; don't leave const without constant values
+ if (qualifier == EvqConst)
+ variable->getWritableType().getQualifier().storage = EvqTemporary;
+ return nullptr;
+ }
+
+ // Fix outer arrayness if variable is unsized, getting size from the initializer
+ if (initializer->getType().isExplicitlySizedArray() &&
+ variable->getType().isImplicitlySizedArray())
+ variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
+
+ // Inner arrayness can also get set by an initializer
+ if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
+ initializer->getType().getArraySizes()->getNumDims() ==
+ variable->getType().getArraySizes()->getNumDims()) {
+ // adopt unsized sizes from the initializer's sizes
+ for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
+ if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize)
+ variable->getWritableType().getArraySizes().setDimSize(d, initializer->getType().getArraySizes()->getDimSize(d));
+ }
+ }
+
+ // Uniform and global consts require a constant initializer
+ if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
+ error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
+ variable->getWritableType().getQualifier().storage = EvqTemporary;
+ return nullptr;
+ }
+ if (qualifier == EvqConst && symbolTable.atGlobalLevel() && initializer->getType().getQualifier().storage != EvqConst) {
+ error(loc, "global const initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
+ variable->getWritableType().getQualifier().storage = EvqTemporary;
+ return nullptr;
+ }
+
+ // Const variables require a constant initializer, depending on version
+ if (qualifier == EvqConst) {
+ if (initializer->getType().getQualifier().storage != EvqConst) {
+ variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
+ qualifier = EvqConstReadOnly;
+ }
+ }
+
+ if (qualifier == EvqConst || qualifier == EvqUniform) {
+ // Compile-time tagging of the variable with its constant value...
+
+ initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
+ if (! initializer || ! initializer->getAsConstantUnion() || variable->getType() != initializer->getType()) {
+ error(loc, "non-matching or non-convertible constant type for const initializer",
+ variable->getType().getStorageQualifierString(), "");
+ variable->getWritableType().getQualifier().storage = EvqTemporary;
+ return nullptr;
+ }
+
+ variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
+ } else {
+ // normal assigning of a value to a variable...
+ specializationCheck(loc, initializer->getType(), "initializer");
+ TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
+ TIntermNode* initNode = intermediate.addAssign(EOpAssign, intermSymbol, initializer, loc);
+ if (! initNode)
+ assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
+
+ return initNode;
+ }
+
+ return nullptr;
+}
+
+//
+// Reprocess any initializer-list { ... } parts of the initializer.
+// Need to hierarchically assign correct types and implicit
+// conversions. Will do this mimicking the same process used for
+// creating a constructor-style initializer, ensuring we get the
+// same form.
+//
+TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, TIntermTyped* initializer)
+{
+ // Will operate recursively. Once a subtree is found that is constructor style,
+ // everything below it is already good: Only the "top part" of the initializer
+ // can be an initializer list, where "top part" can extend for several (or all) levels.
+
+ // see if we have bottomed out in the tree within the initializer-list part
+ TIntermAggregate* initList = initializer->getAsAggregate();
+ if (! initList || initList->getOp() != EOpNull)
+ return initializer;
+
+ // Of the initializer-list set of nodes, need to process bottom up,
+ // so recurse deep, then process on the way up.
+
+ // Go down the tree here...
+ if (type.isArray()) {
+ // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
+ // Later on, initializer execution code will deal with array size logic.
+ TType arrayType;
+ arrayType.shallowCopy(type); // sharing struct stuff is fine
+ arrayType.newArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below
+
+ // edit array sizes to fill in unsized dimensions
+ arrayType.changeOuterArraySize((int)initList->getSequence().size());
+ TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
+ if (arrayType.isArrayOfArrays() && firstInit->getType().isArray() &&
+ arrayType.getArraySizes().getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
+ for (int d = 1; d < arrayType.getArraySizes().getNumDims(); ++d) {
+ if (arrayType.getArraySizes().getDimSize(d) == UnsizedArraySize)
+ arrayType.getArraySizes().setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
+ }
+ }
+
+ TType elementType(arrayType, 0); // dereferenced type
+ for (size_t i = 0; i < initList->getSequence().size(); ++i) {
+ initList->getSequence()[i] = convertInitializerList(loc, elementType, initList->getSequence()[i]->getAsTyped());
+ if (initList->getSequence()[i] == nullptr)
+ return nullptr;
+ }
+
+ return addConstructor(loc, initList, arrayType, mapTypeToConstructorOp(arrayType));
+ } else if (type.isStruct()) {
+ if (type.getStruct()->size() != initList->getSequence().size()) {
+ error(loc, "wrong number of structure members", "initializer list", "");
+ return nullptr;
+ }
+ for (size_t i = 0; i < type.getStruct()->size(); ++i) {
+ initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, initList->getSequence()[i]->getAsTyped());
+ if (initList->getSequence()[i] == nullptr)
+ return nullptr;
+ }
+ } else if (type.isMatrix()) {
+ if (type.getMatrixCols() != (int)initList->getSequence().size()) {
+ error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
+ return nullptr;
+ }
+ TType vectorType(type, 0); // dereferenced type
+ for (int i = 0; i < type.getMatrixCols(); ++i) {
+ initList->getSequence()[i] = convertInitializerList(loc, vectorType, initList->getSequence()[i]->getAsTyped());
+ if (initList->getSequence()[i] == nullptr)
+ return nullptr;
+ }
+ } else if (type.isVector()) {
+ if (type.getVectorSize() != (int)initList->getSequence().size()) {
+ error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", type.getCompleteString().c_str());
+ return nullptr;
+ }
+ } else {
+ error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
+ return nullptr;
+ }
+
+ // now that the subtree is processed, process this node
+ return addConstructor(loc, initList, type, mapTypeToConstructorOp(type));
+}
+
+//
+// Test for the correctness of the parameters passed to various constructor functions
+// and also convert them to the right data type, if allowed and required.
+//
+// Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
+//
+TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermNode* node, const TType& type, TOperator op)
+{
+ if (node == nullptr || node->getAsTyped() == nullptr)
+ return nullptr;
+
+ TIntermAggregate* aggrNode = node->getAsAggregate();
+
+ // Combined texture-sampler constructors are completely semantic checked
+ // in constructorTextureSamplerError()
+ if (op == EOpConstructTextureSampler)
+ return intermediate.setAggregateOperator(aggrNode, op, type, loc);
+
+ TTypeList::const_iterator memberTypes;
+ if (op == EOpConstructStruct)
+ memberTypes = type.getStruct()->begin();
+
+ TType elementType;
+ if (type.isArray()) {
+ TType dereferenced(type, 0);
+ elementType.shallowCopy(dereferenced);
+ } else
+ elementType.shallowCopy(type);
+
+ bool singleArg;
+ if (aggrNode) {
+ if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
+ singleArg = true;
+ else
+ singleArg = false;
+ } else
+ singleArg = true;
+
+ TIntermTyped *newNode;
+ if (singleArg) {
+ // If structure constructor or array constructor is being called
+ // for only one parameter inside the structure, we need to call constructAggregate function once.
+ if (type.isArray())
+ newNode = constructAggregate(node, elementType, 1, node->getLoc());
+ else if (op == EOpConstructStruct)
+ newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
+ else
+ newNode = constructBuiltIn(type, op, node->getAsTyped(), node->getLoc(), false);
+
+ if (newNode && (type.isArray() || op == EOpConstructStruct))
+ newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
+
+ return newNode;
+ }
+
+ //
+ // Handle list of arguments.
+ //
+ TIntermSequence &sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor
+ // if the structure constructor contains more than one parameter, then construct
+ // each parameter
+
+ int paramCount = 0; // keeps a track of the constructor parameter number being checked
+
+ // for each parameter to the constructor call, check to see if the right type is passed or convert them
+ // to the right type if possible (and allowed).
+ // for structure constructors, just check if the right type is passed, no conversion is allowed.
+
+ for (TIntermSequence::iterator p = sequenceVector.begin();
+ p != sequenceVector.end(); p++, paramCount++) {
+ if (type.isArray())
+ newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
+ else if (op == EOpConstructStruct)
+ newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
+ else
+ newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
+
+ if (newNode)
+ *p = newNode;
+ else
+ return nullptr;
+ }
+
+ TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
+
+ return constructor;
+}
+
+// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
+// for the parameter to the constructor (passed to this function). Essentially, it converts
+// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
+// float, then float is converted to int.
+//
+// Returns nullptr for an error or the constructed node.
+//
+TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, const TSourceLoc& loc, bool subset)
+{
+ TIntermTyped* newNode;
+ TOperator basicOp;
+
+ //
+ // First, convert types as needed.
+ //
+ switch (op) {
+ case EOpConstructVec2:
+ case EOpConstructVec3:
+ case EOpConstructVec4:
+ case EOpConstructMat2x2:
+ case EOpConstructMat2x3:
+ case EOpConstructMat2x4:
+ case EOpConstructMat3x2:
+ case EOpConstructMat3x3:
+ case EOpConstructMat3x4:
+ case EOpConstructMat4x2:
+ case EOpConstructMat4x3:
+ case EOpConstructMat4x4:
+ case EOpConstructFloat:
+ basicOp = EOpConstructFloat;
+ break;
+
+ case EOpConstructDVec2:
+ case EOpConstructDVec3:
+ case EOpConstructDVec4:
+ case EOpConstructDMat2x2:
+ case EOpConstructDMat2x3:
+ case EOpConstructDMat2x4:
+ case EOpConstructDMat3x2:
+ case EOpConstructDMat3x3:
+ case EOpConstructDMat3x4:
+ case EOpConstructDMat4x2:
+ case EOpConstructDMat4x3:
+ case EOpConstructDMat4x4:
+ case EOpConstructDouble:
+ basicOp = EOpConstructDouble;
+ break;
+
+ case EOpConstructIVec2:
+ case EOpConstructIVec3:
+ case EOpConstructIVec4:
+ case EOpConstructInt:
+ basicOp = EOpConstructInt;
+ break;
+
+ case EOpConstructUVec2:
+ case EOpConstructUVec3:
+ case EOpConstructUVec4:
+ case EOpConstructUint:
+ basicOp = EOpConstructUint;
+ break;
+
+ case EOpConstructBVec2:
+ case EOpConstructBVec3:
+ case EOpConstructBVec4:
+ case EOpConstructBool:
+ basicOp = EOpConstructBool;
+ break;
+
+ default:
+ error(loc, "unsupported construction", "", "");
+
+ return nullptr;
+ }
+ newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
+ if (newNode == nullptr) {
+ error(loc, "can't convert", "constructor", "");
+ return nullptr;
+ }
+
+ //
+ // Now, if there still isn't an operation to do the construction, and we need one, add one.
+ //
+
+ // Otherwise, skip out early.
+ if (subset || (newNode != node && newNode->getType() == type))
+ return newNode;
+
+ // setAggregateOperator will insert a new node for the constructor, as needed.
+ return intermediate.setAggregateOperator(newNode, op, type, loc);
+}
+
+// This function tests for the type of the parameters to the structure or array constructor. Raises
+// an error message if the expected type does not match the parameter passed to the constructor.
+//
+// Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
+//
+TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, const TSourceLoc& loc)
+{
+ TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
+ if (! converted || converted->getType() != type) {
+ error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
+ node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
+
+ return nullptr;
+ }
+
+ return converted;
+}
+
+//
+// Do everything needed to add an interface block.
+//
+void HlslParseContext::declareBlock(const TSourceLoc& loc, TTypeList& typeList, const TString* instanceName, TArraySizes* arraySizes)
+{
+ // fix and check for member storage qualifiers and types that don't belong within a block
+ for (unsigned int member = 0; member < typeList.size(); ++member) {
+ TType& memberType = *typeList[member].type;
+ TQualifier& memberQualifier = memberType.getQualifier();
+ const TSourceLoc& memberLoc = typeList[member].loc;
+ globalQualifierFix(memberLoc, memberQualifier);
+ memberQualifier.storage = currentBlockQualifier.storage;
+ }
+
+ // This might be a redeclaration of a built-in block. If so, redeclareBuiltinBlock() will
+ // do all the rest.
+ if (! symbolTable.atBuiltInLevel() && builtInName(*blockName)) {
+ redeclareBuiltinBlock(loc, typeList, *blockName, instanceName, arraySizes);
+ return;
+ }
+
+ // Make default block qualification, and adjust the member qualifications
+
+ TQualifier defaultQualification;
+ switch (currentBlockQualifier.storage) {
+ case EvqUniform: defaultQualification = globalUniformDefaults; break;
+ case EvqBuffer: defaultQualification = globalBufferDefaults; break;
+ case EvqVaryingIn: defaultQualification = globalInputDefaults; break;
+ case EvqVaryingOut: defaultQualification = globalOutputDefaults; break;
+ default: defaultQualification.clear(); break;
+ }
+
+ // Special case for "push_constant uniform", which has a default of std430,
+ // contrary to normal uniform defaults, and can't have a default tracked for it.
+ if (currentBlockQualifier.layoutPushConstant && ! currentBlockQualifier.hasPacking())
+ currentBlockQualifier.layoutPacking = ElpStd430;
+
+ // fix and check for member layout qualifiers
+
+ mergeObjectLayoutQualifiers(defaultQualification, currentBlockQualifier, true);
+
+ bool memberWithLocation = false;
+ bool memberWithoutLocation = false;
+ for (unsigned int member = 0; member < typeList.size(); ++member) {
+ TQualifier& memberQualifier = typeList[member].type->getQualifier();
+ const TSourceLoc& memberLoc = typeList[member].loc;
+ if (memberQualifier.hasStream()) {
+ if (defaultQualification.layoutStream != memberQualifier.layoutStream)
+ error(memberLoc, "member cannot contradict block", "stream", "");
+ }
+
+ // "This includes a block's inheritance of the
+ // current global default buffer, a block member's inheritance of the block's
+ // buffer, and the requirement that any *xfb_buffer* declared on a block
+ // member must match the buffer inherited from the block."
+ if (memberQualifier.hasXfbBuffer()) {
+ if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
+ error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
+ }
+
+ if (memberQualifier.hasPacking())
+ error(memberLoc, "member of block cannot have a packing layout qualifier", typeList[member].type->getFieldName().c_str(), "");
+ if (memberQualifier.hasLocation()) {
+ switch (currentBlockQualifier.storage) {
+ case EvqVaryingIn:
+ case EvqVaryingOut:
+ memberWithLocation = true;
+ break;
+ default:
+ break;
+ }
+ } else
+ memberWithoutLocation = true;
+ if (memberQualifier.hasAlign()) {
+ if (defaultQualification.layoutPacking != ElpStd140 && defaultQualification.layoutPacking != ElpStd430)
+ error(memberLoc, "can only be used with std140 or std430 layout packing", "align", "");
+ }
+
+ TQualifier newMemberQualification = defaultQualification;
+ mergeQualifiers(memberLoc, newMemberQualification, memberQualifier, false);
+ memberQualifier = newMemberQualification;
+ }
+
+ // Process the members
+ fixBlockLocations(loc, currentBlockQualifier, typeList, memberWithLocation, memberWithoutLocation);
+ fixBlockXfbOffsets(currentBlockQualifier, typeList);
+ fixBlockUniformOffsets(currentBlockQualifier, typeList);
+
+ // reverse merge, so that currentBlockQualifier now has all layout information
+ // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
+ mergeObjectLayoutQualifiers(currentBlockQualifier, defaultQualification, true);
+
+ //
+ // Build and add the interface block as a new type named 'blockName'
+ //
+
+ TType blockType(&typeList, *blockName, currentBlockQualifier);
+ if (arraySizes)
+ blockType.newArraySizes(*arraySizes);
+
+ //
+ // Don't make a user-defined type out of block name; that will cause an error
+ // if the same block name gets reused in a different interface.
+ //
+ // "Block names have no other use within a shader
+ // beyond interface matching; it is a compile-time error to use a block name at global scope for anything
+ // other than as a block name (e.g., use of a block name for a global variable name or function name is
+ // currently reserved)."
+ //
+ // Use the symbol table to prevent normal reuse of the block's name, as a variable entry,
+ // whose type is EbtBlock, but without all the structure; that will come from the type
+ // the instances point to.
+ //
+ TType blockNameType(EbtBlock, blockType.getQualifier().storage);
+ TVariable* blockNameVar = new TVariable(blockName, blockNameType);
+ if (! symbolTable.insert(*blockNameVar)) {
+ TSymbol* existingName = symbolTable.find(*blockName);
+ if (existingName->getType().getBasicType() == EbtBlock) {
+ if (existingName->getType().getQualifier().storage == blockType.getQualifier().storage) {
+ error(loc, "Cannot reuse block name within the same interface:", blockName->c_str(), blockType.getStorageQualifierString());
+ return;
+ }
+ } else {
+ error(loc, "block name cannot redefine a non-block name", blockName->c_str(), "");
+ return;
+ }
+ }
+
+ // Add the variable, as anonymous or named instanceName.
+ // Make an anonymous variable if no name was provided.
+ if (! instanceName)
+ instanceName = NewPoolTString("");
+
+ TVariable& variable = *new TVariable(instanceName, blockType);
+ if (! symbolTable.insert(variable)) {
+ if (*instanceName == "")
+ error(loc, "nameless block contains a member that already has a name at global scope", blockName->c_str(), "");
+ else
+ error(loc, "block instance name redefinition", variable.getName().c_str(), "");
+
+ return;
+ }
+
+ if (isIoResizeArray(blockType)) {
+ ioArraySymbolResizeList.push_back(&variable);
+ checkIoArraysConsistency(loc, true);
+ } else
+ fixIoArraySize(loc, variable.getWritableType());
+
+ // Save it in the AST for linker use.
+ intermediate.addSymbolLinkageNode(linkage, variable);
+}
+
+//
+// "For a block, this process applies to the entire block, or until the first member
+// is reached that has a location layout qualifier. When a block member is declared with a location
+// qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
+// declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
+// until the next member declared with a location qualifier. The values used for locations do not have to be
+// declared in increasing order."
+void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
+{
+ // "If a block has no block-level location layout qualifier, it is required that either all or none of its members
+ // have a location layout qualifier, or a compile-time error results."
+ if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
+ error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
+ else {
+ if (memberWithLocation) {
+ // remove any block-level location and make it per *every* member
+ int nextLocation = 0; // by the rule above, initial value is not relevant
+ if (qualifier.hasAnyLocation()) {
+ nextLocation = qualifier.layoutLocation;
+ qualifier.layoutLocation = TQualifier::layoutLocationEnd;
+ if (qualifier.hasComponent()) {
+ // "It is a compile-time error to apply the *component* qualifier to a ... block"
+ error(loc, "cannot apply to a block", "component", "");
+ }
+ if (qualifier.hasIndex()) {
+ error(loc, "cannot apply to a block", "index", "");
+ }
+ }
+ for (unsigned int member = 0; member < typeList.size(); ++member) {
+ TQualifier& memberQualifier = typeList[member].type->getQualifier();
+ const TSourceLoc& memberLoc = typeList[member].loc;
+ if (! memberQualifier.hasLocation()) {
+ if (nextLocation >= (int)TQualifier::layoutLocationEnd)
+ error(memberLoc, "location is too large", "location", "");
+ memberQualifier.layoutLocation = nextLocation;
+ memberQualifier.layoutComponent = 0;
+ }
+ nextLocation = memberQualifier.layoutLocation + intermediate.computeTypeLocationSize(*typeList[member].type);
+ }
+ }
+ }
+}
+
+void HlslParseContext::fixBlockXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
+{
+ // "If a block is qualified with xfb_offset, all its
+ // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
+ // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
+ // offsets."
+
+ if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
+ return;
+
+ int nextOffset = qualifier.layoutXfbOffset;
+ for (unsigned int member = 0; member < typeList.size(); ++member) {
+ TQualifier& memberQualifier = typeList[member].type->getQualifier();
+ bool containsDouble = false;
+ int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, containsDouble);
+ // see if we need to auto-assign an offset to this member
+ if (! memberQualifier.hasXfbOffset()) {
+ // "if applied to an aggregate containing a double, the offset must also be a multiple of 8"
+ if (containsDouble)
+ RoundToPow2(nextOffset, 8);
+ memberQualifier.layoutXfbOffset = nextOffset;
+ } else
+ nextOffset = memberQualifier.layoutXfbOffset;
+ nextOffset += memberSize;
+ }
+
+ // The above gave all block members an offset, so we can take it off the block now,
+ // which will avoid double counting the offset usage.
+ qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
+}
+
+// Calculate and save the offset of each block member, using the recursively
+// defined block offset rules and the user-provided offset and align.
+//
+// Also, compute and save the total size of the block. For the block's size, arrayness
+// is not taken into account, as each element is backed by a separate buffer.
+//
+void HlslParseContext::fixBlockUniformOffsets(TQualifier& qualifier, TTypeList& typeList)
+{
+ if (! qualifier.isUniformOrBuffer())
+ return;
+ if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430)
+ return;
+
+ int offset = 0;
+ int memberSize;
+ for (unsigned int member = 0; member < typeList.size(); ++member) {
+ TQualifier& memberQualifier = typeList[member].type->getQualifier();
+ const TSourceLoc& memberLoc = typeList[member].loc;
+
+ // "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
+
+ // modify just the children's view of matrix layout, if there is one for this member
+ TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
+ int dummyStride;
+ int memberAlignment = intermediate.getBaseAlignment(*typeList[member].type, memberSize, dummyStride, qualifier.layoutPacking == ElpStd140,
+ subMatrixLayout != ElmNone ? subMatrixLayout == ElmRowMajor : qualifier.layoutMatrix == ElmRowMajor);
+ if (memberQualifier.hasOffset()) {
+ // "The specified offset must be a multiple
+ // of the base alignment of the type of the block member it qualifies, or a compile-time error results."
+ if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
+ error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
+
+ // "It is a compile-time error to specify an offset that is smaller than the offset of the previous
+ // member in the block or that lies within the previous member of the block"
+ if (memberQualifier.layoutOffset < offset)
+ error(memberLoc, "cannot lie in previous members", "offset", "");
+
+ // "The offset qualifier forces the qualified member to start at or after the specified
+ // integral-constant expression, which will be its byte offset from the beginning of the buffer.
+ // "The actual offset of a member is computed as
+ // follows: If offset was declared, start with that offset, otherwise start with the next available offset."
+ offset = std::max(offset, memberQualifier.layoutOffset);
+ }
+
+ // "The actual alignment of a member will be the greater of the specified align alignment and the standard
+ // (e.g., std140) base alignment for the member's type."
+ if (memberQualifier.hasAlign())
+ memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
+
+ // "If the resulting offset is not a multiple of the actual alignment,
+ // increase it to the first offset that is a multiple of
+ // the actual alignment."
+ RoundToPow2(offset, memberAlignment);
+ typeList[member].type->getQualifier().layoutOffset = offset;
+ offset += memberSize;
+ }
+}
+
+// For an identifier that is already declared, add more qualification to it.
+void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
+{
+ TSymbol* symbol = symbolTable.find(identifier);
+ if (! symbol) {
+ error(loc, "identifier not previously declared", identifier.c_str(), "");
+ return;
+ }
+ if (symbol->getAsFunction()) {
+ error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
+ return;
+ }
+
+ if (qualifier.isAuxiliary() ||
+ qualifier.isMemory() ||
+ qualifier.isInterpolation() ||
+ qualifier.hasLayout() ||
+ qualifier.storage != EvqTemporary ||
+ qualifier.precision != EpqNone) {
+ error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
+ return;
+ }
+
+ // For read-only built-ins, add a new symbol for holding the modified qualifier.
+ // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
+ if (symbol->isReadOnly())
+ symbol = symbolTable.copyUp(symbol);
+
+ if (qualifier.invariant) {
+ if (intermediate.inIoAccessed(identifier))
+ error(loc, "cannot change qualification after use", "invariant", "");
+ symbol->getWritableType().getQualifier().invariant = true;
+ } else if (qualifier.noContraction) {
+ if (intermediate.inIoAccessed(identifier))
+ error(loc, "cannot change qualification after use", "precise", "");
+ symbol->getWritableType().getQualifier().noContraction = true;
+ } else if (qualifier.specConstant) {
+ symbol->getWritableType().getQualifier().makeSpecConstant();
+ if (qualifier.hasSpecConstantId())
+ symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
+ } else
+ warn(loc, "unknown requalification", "", "");
+}
+
+void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
+{
+ for (unsigned int i = 0; i < identifiers.size(); ++i)
+ addQualifierToExisting(loc, qualifier, *identifiers[i]);
+}
+
+//
+// Updating default qualifier for the case of a declaration with just a qualifier,
+// no type, block, or identifier.
+//
+void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
+{
+ if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
+ assert(language == EShLangTessControl || language == EShLangGeometry);
+ const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
+
+ if (language == EShLangTessControl)
+ checkIoArraysConsistency(loc);
+ }
+ if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
+ if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
+ error(loc, "cannot change previously set layout value", "invocations", "");
+ }
+ if (publicType.shaderQualifiers.geometry != ElgNone) {
+ if (publicType.qualifier.storage == EvqVaryingIn) {
+ switch (publicType.shaderQualifiers.geometry) {
+ case ElgPoints:
+ case ElgLines:
+ case ElgLinesAdjacency:
+ case ElgTriangles:
+ case ElgTrianglesAdjacency:
+ case ElgQuads:
+ case ElgIsolines:
+ if (intermediate.setInputPrimitive(publicType.shaderQualifiers.geometry)) {
+ if (language == EShLangGeometry)
+ checkIoArraysConsistency(loc);
+ } else
+ error(loc, "cannot change previously set input primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
+ break;
+ default:
+ error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
+ }
+ } else if (publicType.qualifier.storage == EvqVaryingOut) {
+ switch (publicType.shaderQualifiers.geometry) {
+ case ElgPoints:
+ case ElgLineStrip:
+ case ElgTriangleStrip:
+ if (! intermediate.setOutputPrimitive(publicType.shaderQualifiers.geometry))
+ error(loc, "cannot change previously set output primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
+ break;
+ default:
+ error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
+ }
+ } else
+ error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), GetStorageQualifierString(publicType.qualifier.storage));
+ }
+ if (publicType.shaderQualifiers.spacing != EvsNone)
+ intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
+ if (publicType.shaderQualifiers.order != EvoNone)
+ intermediate.setVertexOrder(publicType.shaderQualifiers.order);
+ if (publicType.shaderQualifiers.pointMode)
+ intermediate.setPointMode();
+ for (int i = 0; i < 3; ++i) {
+ if (publicType.shaderQualifiers.localSize[i] > 1) {
+ int max = 0;
+ switch (i) {
+ case 0: max = resources.maxComputeWorkGroupSizeX; break;
+ case 1: max = resources.maxComputeWorkGroupSizeY; break;
+ case 2: max = resources.maxComputeWorkGroupSizeZ; break;
+ default: break;
+ }
+ if (intermediate.getLocalSize(i) > (unsigned int)max)
+ error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
+
+ // Fix the existing constant gl_WorkGroupSize with this new information.
+ TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
+ workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
+ }
+ if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
+ intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
+ // Set the workgroup built-in variable as a specialization constant
+ TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
+ workGroupSize->getWritableType().getQualifier().specConstant = true;
+ }
+ }
+ if (publicType.shaderQualifiers.earlyFragmentTests)
+ intermediate.setEarlyFragmentTests();
+
+ const TQualifier& qualifier = publicType.qualifier;
+
+ switch (qualifier.storage) {
+ case EvqUniform:
+ if (qualifier.hasMatrix())
+ globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
+ if (qualifier.hasPacking())
+ globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
+ break;
+ case EvqBuffer:
+ if (qualifier.hasMatrix())
+ globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
+ if (qualifier.hasPacking())
+ globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
+ break;
+ case EvqVaryingIn:
+ break;
+ case EvqVaryingOut:
+ if (qualifier.hasStream())
+ globalOutputDefaults.layoutStream = qualifier.layoutStream;
+ if (qualifier.hasXfbBuffer())
+ globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
+ if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
+ if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
+ error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer);
+ }
+ break;
+ default:
+ error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
+ return;
+ }
+}
+
+//
+// Take the sequence of statements that has been built up since the last case/default,
+// put it on the list of top-level nodes for the current (inner-most) switch statement,
+// and follow that by the case/default we are on now. (See switch topology comment on
+// TIntermSwitch.)
+//
+void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
+{
+ TIntermSequence* switchSequence = switchSequenceStack.back();
+
+ if (statements) {
+ if (switchSequence->size() == 0)
+ error(statements->getLoc(), "cannot have statements before first case/default label", "switch", "");
+ statements->setOperator(EOpSequence);
+ switchSequence->push_back(statements);
+ }
+ if (branchNode) {
+ // check all previous cases for the same label (or both are 'default')
+ for (unsigned int s = 0; s < switchSequence->size(); ++s) {
+ TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
+ if (prevBranch) {
+ TIntermTyped* prevExpression = prevBranch->getExpression();
+ TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
+ if (prevExpression == nullptr && newExpression == nullptr)
+ error(branchNode->getLoc(), "duplicate label", "default", "");
+ else if (prevExpression != nullptr &&
+ newExpression != nullptr &&
+ prevExpression->getAsConstantUnion() &&
+ newExpression->getAsConstantUnion() &&
+ prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
+ newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
+ error(branchNode->getLoc(), "duplicated value", "case", "");
+ }
+ }
+ switchSequence->push_back(branchNode);
+ }
+}
+
+//
+// Turn the top-level node sequence built up of wrapupSwitchSubsequence
+// into a switch node.
+//
+TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, TIntermAggregate* lastStatements)
+{
+ wrapupSwitchSubsequence(lastStatements, nullptr);
+
+ if (expression == nullptr ||
+ (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
+ expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
+ error(loc, "condition must be a scalar integer expression", "switch", "");
+
+ // If there is nothing to do, drop the switch but still execute the expression
+ TIntermSequence* switchSequence = switchSequenceStack.back();
+ if (switchSequence->size() == 0)
+ return expression;
+
+ if (lastStatements == nullptr) {
+ // emulate a break for error recovery
+ lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
+ lastStatements->setOperator(EOpSequence);
+ switchSequence->push_back(lastStatements);
+ }
+
+ TIntermAggregate* body = new TIntermAggregate(EOpSequence);
+ body->getSequence() = *switchSequenceStack.back();
+ body->setLoc(loc);
+
+ TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
+ switchNode->setLoc(loc);
+
+ return switchNode;
+}
+
+} // end namespace glslang