summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/skia/experimental/Intersection/CubicUtilities.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/skia/experimental/Intersection/CubicUtilities.cpp')
-rw-r--r--chromium/third_party/skia/experimental/Intersection/CubicUtilities.cpp424
1 files changed, 424 insertions, 0 deletions
diff --git a/chromium/third_party/skia/experimental/Intersection/CubicUtilities.cpp b/chromium/third_party/skia/experimental/Intersection/CubicUtilities.cpp
new file mode 100644
index 00000000000..c9881c14809
--- /dev/null
+++ b/chromium/third_party/skia/experimental/Intersection/CubicUtilities.cpp
@@ -0,0 +1,424 @@
+/*
+ * Copyright 2012 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "CubicUtilities.h"
+#include "Extrema.h"
+#include "LineUtilities.h"
+#include "QuadraticUtilities.h"
+
+const int gPrecisionUnit = 256; // FIXME: arbitrary -- should try different values in test framework
+
+// FIXME: cache keep the bounds and/or precision with the caller?
+double calcPrecision(const Cubic& cubic) {
+ _Rect dRect;
+ dRect.setBounds(cubic); // OPTIMIZATION: just use setRawBounds ?
+ double width = dRect.right - dRect.left;
+ double height = dRect.bottom - dRect.top;
+ return (width > height ? width : height) / gPrecisionUnit;
+}
+
+#if SK_DEBUG
+double calcPrecision(const Cubic& cubic, double t, double scale) {
+ Cubic part;
+ sub_divide(cubic, SkTMax(0., t - scale), SkTMin(1., t + scale), part);
+ return calcPrecision(part);
+}
+#endif
+
+bool clockwise(const Cubic& c) {
+ double sum = (c[0].x - c[3].x) * (c[0].y + c[3].y);
+ for (int idx = 0; idx < 3; ++idx){
+ sum += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
+ }
+ return sum <= 0;
+}
+
+void coefficients(const double* cubic, double& A, double& B, double& C, double& D) {
+ A = cubic[6]; // d
+ B = cubic[4] * 3; // 3*c
+ C = cubic[2] * 3; // 3*b
+ D = cubic[0]; // a
+ A -= D - C + B; // A = -a + 3*b - 3*c + d
+ B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c
+ C -= 3 * D; // C = -3*a + 3*b
+}
+
+bool controls_contained_by_ends(const Cubic& c) {
+ _Vector startTan = c[1] - c[0];
+ if (startTan.x == 0 && startTan.y == 0) {
+ startTan = c[2] - c[0];
+ }
+ _Vector endTan = c[2] - c[3];
+ if (endTan.x == 0 && endTan.y == 0) {
+ endTan = c[1] - c[3];
+ }
+ if (startTan.dot(endTan) >= 0) {
+ return false;
+ }
+ _Line startEdge = {c[0], c[0]};
+ startEdge[1].x -= startTan.y;
+ startEdge[1].y += startTan.x;
+ _Line endEdge = {c[3], c[3]};
+ endEdge[1].x -= endTan.y;
+ endEdge[1].y += endTan.x;
+ double leftStart1 = is_left(startEdge, c[1]);
+ if (leftStart1 * is_left(startEdge, c[2]) < 0) {
+ return false;
+ }
+ double leftEnd1 = is_left(endEdge, c[1]);
+ if (leftEnd1 * is_left(endEdge, c[2]) < 0) {
+ return false;
+ }
+ return leftStart1 * leftEnd1 >= 0;
+}
+
+bool ends_are_extrema_in_x_or_y(const Cubic& c) {
+ return (between(c[0].x, c[1].x, c[3].x) && between(c[0].x, c[2].x, c[3].x))
+ || (between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y));
+}
+
+bool monotonic_in_y(const Cubic& c) {
+ return between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y);
+}
+
+bool serpentine(const Cubic& c) {
+ if (!controls_contained_by_ends(c)) {
+ return false;
+ }
+ double wiggle = (c[0].x - c[2].x) * (c[0].y + c[2].y);
+ for (int idx = 0; idx < 2; ++idx){
+ wiggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
+ }
+ double waggle = (c[1].x - c[3].x) * (c[1].y + c[3].y);
+ for (int idx = 1; idx < 3; ++idx){
+ waggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
+ }
+ return wiggle * waggle < 0;
+}
+
+// cubic roots
+
+const double PI = 4 * atan(1);
+
+// from SkGeometry.cpp (and Numeric Solutions, 5.6)
+int cubicRootsValidT(double A, double B, double C, double D, double t[3]) {
+#if 0
+ if (approximately_zero(A)) { // we're just a quadratic
+ return quadraticRootsValidT(B, C, D, t);
+ }
+ double a, b, c;
+ {
+ double invA = 1 / A;
+ a = B * invA;
+ b = C * invA;
+ c = D * invA;
+ }
+ double a2 = a * a;
+ double Q = (a2 - b * 3) / 9;
+ double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
+ double Q3 = Q * Q * Q;
+ double R2MinusQ3 = R * R - Q3;
+ double adiv3 = a / 3;
+ double* roots = t;
+ double r;
+
+ if (R2MinusQ3 < 0) // we have 3 real roots
+ {
+ double theta = acos(R / sqrt(Q3));
+ double neg2RootQ = -2 * sqrt(Q);
+
+ r = neg2RootQ * cos(theta / 3) - adiv3;
+ if (is_unit_interval(r))
+ *roots++ = r;
+
+ r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
+ if (is_unit_interval(r))
+ *roots++ = r;
+
+ r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
+ if (is_unit_interval(r))
+ *roots++ = r;
+ }
+ else // we have 1 real root
+ {
+ double A = fabs(R) + sqrt(R2MinusQ3);
+ A = cube_root(A);
+ if (R > 0) {
+ A = -A;
+ }
+ if (A != 0) {
+ A += Q / A;
+ }
+ r = A - adiv3;
+ if (is_unit_interval(r))
+ *roots++ = r;
+ }
+ return (int)(roots - t);
+#else
+ double s[3];
+ int realRoots = cubicRootsReal(A, B, C, D, s);
+ int foundRoots = add_valid_ts(s, realRoots, t);
+ return foundRoots;
+#endif
+}
+
+int cubicRootsReal(double A, double B, double C, double D, double s[3]) {
+#if SK_DEBUG
+ // create a string mathematica understands
+ // GDB set print repe 15 # if repeated digits is a bother
+ // set print elements 400 # if line doesn't fit
+ char str[1024];
+ bzero(str, sizeof(str));
+ sprintf(str, "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", A, B, C, D);
+ mathematica_ize(str, sizeof(str));
+#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
+ SkDebugf("%s\n", str);
+#endif
+#endif
+ if (approximately_zero(A)
+ && approximately_zero_when_compared_to(A, B)
+ && approximately_zero_when_compared_to(A, C)
+ && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic
+ return quadraticRootsReal(B, C, D, s);
+ }
+ if (approximately_zero_when_compared_to(D, A)
+ && approximately_zero_when_compared_to(D, B)
+ && approximately_zero_when_compared_to(D, C)) { // 0 is one root
+ int num = quadraticRootsReal(A, B, C, s);
+ for (int i = 0; i < num; ++i) {
+ if (approximately_zero(s[i])) {
+ return num;
+ }
+ }
+ s[num++] = 0;
+ return num;
+ }
+ if (approximately_zero(A + B + C + D)) { // 1 is one root
+ int num = quadraticRootsReal(A, A + B, -D, s);
+ for (int i = 0; i < num; ++i) {
+ if (AlmostEqualUlps(s[i], 1)) {
+ return num;
+ }
+ }
+ s[num++] = 1;
+ return num;
+ }
+ double a, b, c;
+ {
+ double invA = 1 / A;
+ a = B * invA;
+ b = C * invA;
+ c = D * invA;
+ }
+ double a2 = a * a;
+ double Q = (a2 - b * 3) / 9;
+ double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
+ double R2 = R * R;
+ double Q3 = Q * Q * Q;
+ double R2MinusQ3 = R2 - Q3;
+ double adiv3 = a / 3;
+ double r;
+ double* roots = s;
+#if 0
+ if (approximately_zero_squared(R2MinusQ3) && AlmostEqualUlps(R2, Q3)) {
+ if (approximately_zero_squared(R)) {/* one triple solution */
+ *roots++ = -adiv3;
+ } else { /* one single and one double solution */
+
+ double u = cube_root(-R);
+ *roots++ = 2 * u - adiv3;
+ *roots++ = -u - adiv3;
+ }
+ }
+ else
+#endif
+ if (R2MinusQ3 < 0) // we have 3 real roots
+ {
+ double theta = acos(R / sqrt(Q3));
+ double neg2RootQ = -2 * sqrt(Q);
+
+ r = neg2RootQ * cos(theta / 3) - adiv3;
+ *roots++ = r;
+
+ r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
+ if (!AlmostEqualUlps(s[0], r)) {
+ *roots++ = r;
+ }
+ r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
+ if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) {
+ *roots++ = r;
+ }
+ }
+ else // we have 1 real root
+ {
+ double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
+ double A = fabs(R) + sqrtR2MinusQ3;
+ A = cube_root(A);
+ if (R > 0) {
+ A = -A;
+ }
+ if (A != 0) {
+ A += Q / A;
+ }
+ r = A - adiv3;
+ *roots++ = r;
+ if (AlmostEqualUlps(R2, Q3)) {
+ r = -A / 2 - adiv3;
+ if (!AlmostEqualUlps(s[0], r)) {
+ *roots++ = r;
+ }
+ }
+ }
+ return (int)(roots - s);
+}
+
+// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
+// c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
+// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
+// = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
+static double derivativeAtT(const double* cubic, double t) {
+ double one_t = 1 - t;
+ double a = cubic[0];
+ double b = cubic[2];
+ double c = cubic[4];
+ double d = cubic[6];
+ return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
+}
+
+double dx_at_t(const Cubic& cubic, double t) {
+ return derivativeAtT(&cubic[0].x, t);
+}
+
+double dy_at_t(const Cubic& cubic, double t) {
+ return derivativeAtT(&cubic[0].y, t);
+}
+
+// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
+_Vector dxdy_at_t(const Cubic& cubic, double t) {
+ _Vector result = { derivativeAtT(&cubic[0].x, t), derivativeAtT(&cubic[0].y, t) };
+ return result;
+}
+
+// OPTIMIZE? share code with formulate_F1DotF2
+int find_cubic_inflections(const Cubic& src, double tValues[])
+{
+ double Ax = src[1].x - src[0].x;
+ double Ay = src[1].y - src[0].y;
+ double Bx = src[2].x - 2 * src[1].x + src[0].x;
+ double By = src[2].y - 2 * src[1].y + src[0].y;
+ double Cx = src[3].x + 3 * (src[1].x - src[2].x) - src[0].x;
+ double Cy = src[3].y + 3 * (src[1].y - src[2].y) - src[0].y;
+ return quadraticRootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
+}
+
+static void formulate_F1DotF2(const double src[], double coeff[4])
+{
+ double a = src[2] - src[0];
+ double b = src[4] - 2 * src[2] + src[0];
+ double c = src[6] + 3 * (src[2] - src[4]) - src[0];
+ coeff[0] = c * c;
+ coeff[1] = 3 * b * c;
+ coeff[2] = 2 * b * b + c * a;
+ coeff[3] = a * b;
+}
+
+/* from SkGeometry.cpp
+ Looking for F' dot F'' == 0
+
+ A = b - a
+ B = c - 2b + a
+ C = d - 3c + 3b - a
+
+ F' = 3Ct^2 + 6Bt + 3A
+ F'' = 6Ct + 6B
+
+ F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
+*/
+int find_cubic_max_curvature(const Cubic& src, double tValues[])
+{
+ double coeffX[4], coeffY[4];
+ int i;
+ formulate_F1DotF2(&src[0].x, coeffX);
+ formulate_F1DotF2(&src[0].y, coeffY);
+ for (i = 0; i < 4; i++) {
+ coeffX[i] = coeffX[i] + coeffY[i];
+ }
+ return cubicRootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
+}
+
+
+bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) {
+ double dy = cubic[index].y - cubic[zero].y;
+ double dx = cubic[index].x - cubic[zero].x;
+ if (approximately_zero(dy)) {
+ if (approximately_zero(dx)) {
+ return false;
+ }
+ memcpy(rotPath, cubic, sizeof(Cubic));
+ return true;
+ }
+ for (int index = 0; index < 4; ++index) {
+ rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy;
+ rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy;
+ }
+ return true;
+}
+
+#if 0 // unused for now
+double secondDerivativeAtT(const double* cubic, double t) {
+ double a = cubic[0];
+ double b = cubic[2];
+ double c = cubic[4];
+ double d = cubic[6];
+ return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t;
+}
+#endif
+
+_Point top(const Cubic& cubic, double startT, double endT) {
+ Cubic sub;
+ sub_divide(cubic, startT, endT, sub);
+ _Point topPt = sub[0];
+ if (topPt.y > sub[3].y || (topPt.y == sub[3].y && topPt.x > sub[3].x)) {
+ topPt = sub[3];
+ }
+ double extremeTs[2];
+ if (!monotonic_in_y(sub)) {
+ int roots = findExtrema(sub[0].y, sub[1].y, sub[2].y, sub[3].y, extremeTs);
+ for (int index = 0; index < roots; ++index) {
+ _Point mid;
+ double t = startT + (endT - startT) * extremeTs[index];
+ xy_at_t(cubic, t, mid.x, mid.y);
+ if (topPt.y > mid.y || (topPt.y == mid.y && topPt.x > mid.x)) {
+ topPt = mid;
+ }
+ }
+ }
+ return topPt;
+}
+
+// OPTIMIZE: avoid computing the unused half
+void xy_at_t(const Cubic& cubic, double t, double& x, double& y) {
+ _Point xy = xy_at_t(cubic, t);
+ if (&x) {
+ x = xy.x;
+ }
+ if (&y) {
+ y = xy.y;
+ }
+}
+
+_Point xy_at_t(const Cubic& cubic, double t) {
+ double one_t = 1 - t;
+ double one_t2 = one_t * one_t;
+ double a = one_t2 * one_t;
+ double b = 3 * one_t2 * t;
+ double t2 = t * t;
+ double c = 3 * one_t * t2;
+ double d = t2 * t;
+ _Point result = {a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x,
+ a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y};
+ return result;
+}