summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/skia/experimental/Intersection/DataTypes.h
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/skia/experimental/Intersection/DataTypes.h')
-rw-r--r--chromium/third_party/skia/experimental/Intersection/DataTypes.h418
1 files changed, 418 insertions, 0 deletions
diff --git a/chromium/third_party/skia/experimental/Intersection/DataTypes.h b/chromium/third_party/skia/experimental/Intersection/DataTypes.h
new file mode 100644
index 00000000000..20dbef87513
--- /dev/null
+++ b/chromium/third_party/skia/experimental/Intersection/DataTypes.h
@@ -0,0 +1,418 @@
+/*
+ * Copyright 2012 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#ifndef __DataTypes_h__
+#define __DataTypes_h__
+
+#include <float.h> // for FLT_EPSILON
+#include <math.h> // for fabs, sqrt
+
+#include "SkPoint.h"
+
+#define FORCE_RELEASE 0 // set force release to 1 for multiple thread -- no debugging
+#define ONE_OFF_DEBUG 1
+#define ONE_OFF_DEBUG_MATHEMATICA 0
+
+// FIXME: move these into SkTypes.h
+template <typename T> inline T SkTMax(T a, T b) {
+ if (a < b)
+ a = b;
+ return a;
+}
+
+template <typename T> inline T SkTMin(T a, T b) {
+ if (a > b)
+ a = b;
+ return a;
+}
+
+extern bool AlmostEqualUlps(float A, float B);
+inline bool AlmostEqualUlps(double A, double B) { return AlmostEqualUlps((float) A, (float) B); }
+
+// FIXME: delete
+int UlpsDiff(float A, float B);
+
+// FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23)
+// DBL_EPSILON == 2.22045e-16
+const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON;
+const double FLT_EPSILON_HALF = FLT_EPSILON / 2;
+const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON;
+const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON);
+const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON;
+const double DBL_EPSILON_ERR = DBL_EPSILON * 4; // tune -- allow a few bits of error
+const double ROUGH_EPSILON = FLT_EPSILON * 64;
+const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256;
+
+inline bool approximately_zero(double x) {
+ return fabs(x) < FLT_EPSILON;
+}
+
+inline bool precisely_zero(double x) {
+ return fabs(x) < DBL_EPSILON_ERR;
+}
+
+inline bool approximately_zero(float x) {
+ return fabs(x) < FLT_EPSILON;
+}
+
+inline bool approximately_zero_cubed(double x) {
+ return fabs(x) < FLT_EPSILON_CUBED;
+}
+
+inline bool approximately_zero_half(double x) {
+ return fabs(x) < FLT_EPSILON_HALF;
+}
+
+inline bool approximately_zero_squared(double x) {
+ return fabs(x) < FLT_EPSILON_SQUARED;
+}
+
+inline bool approximately_zero_sqrt(double x) {
+ return fabs(x) < FLT_EPSILON_SQRT;
+}
+
+inline bool approximately_zero_inverse(double x) {
+ return fabs(x) > FLT_EPSILON_INVERSE;
+}
+
+// FIXME: if called multiple times with the same denom, we want to pass 1/y instead
+inline bool approximately_zero_when_compared_to(double x, double y) {
+ return x == 0 || fabs(x / y) < FLT_EPSILON;
+}
+
+// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use
+// AlmostEqualUlps instead.
+inline bool approximately_equal(double x, double y) {
+#if 1
+ return approximately_zero(x - y);
+#else
+// see http://visualstudiomagazine.com/blogs/tool-tracker/2011/11/compare-floating-point-numbers.aspx
+// this allows very small (e.g. degenerate) values to compare unequally, but in this case,
+// AlmostEqualUlps should be used instead.
+ if (x == y) {
+ return true;
+ }
+ double absY = fabs(y);
+ if (x == 0) {
+ return absY < FLT_EPSILON;
+ }
+ double absX = fabs(x);
+ if (y == 0) {
+ return absX < FLT_EPSILON;
+ }
+ return fabs(x - y) < (absX > absY ? absX : absY) * FLT_EPSILON;
+#endif
+}
+
+inline bool precisely_equal(double x, double y) {
+ return precisely_zero(x - y);
+}
+
+inline bool approximately_equal_half(double x, double y) {
+ return approximately_zero_half(x - y);
+}
+
+inline bool approximately_equal_squared(double x, double y) {
+ return approximately_equal(x, y);
+}
+
+inline bool approximately_greater(double x, double y) {
+ return x - FLT_EPSILON >= y;
+}
+
+inline bool approximately_greater_or_equal(double x, double y) {
+ return x + FLT_EPSILON > y;
+}
+
+inline bool approximately_lesser(double x, double y) {
+ return x + FLT_EPSILON <= y;
+}
+
+inline bool approximately_lesser_or_equal(double x, double y) {
+ return x - FLT_EPSILON < y;
+}
+
+inline double approximately_pin(double x) {
+ return approximately_zero(x) ? 0 : x;
+}
+
+inline float approximately_pin(float x) {
+ return approximately_zero(x) ? 0 : x;
+}
+
+inline bool approximately_greater_than_one(double x) {
+ return x > 1 - FLT_EPSILON;
+}
+
+inline bool precisely_greater_than_one(double x) {
+ return x > 1 - DBL_EPSILON_ERR;
+}
+
+inline bool approximately_less_than_zero(double x) {
+ return x < FLT_EPSILON;
+}
+
+inline bool precisely_less_than_zero(double x) {
+ return x < DBL_EPSILON_ERR;
+}
+
+inline bool approximately_negative(double x) {
+ return x < FLT_EPSILON;
+}
+
+inline bool precisely_negative(double x) {
+ return x < DBL_EPSILON_ERR;
+}
+
+inline bool approximately_one_or_less(double x) {
+ return x < 1 + FLT_EPSILON;
+}
+
+inline bool approximately_positive(double x) {
+ return x > -FLT_EPSILON;
+}
+
+inline bool approximately_positive_squared(double x) {
+ return x > -(FLT_EPSILON_SQUARED);
+}
+
+inline bool approximately_zero_or_more(double x) {
+ return x > -FLT_EPSILON;
+}
+
+inline bool approximately_between(double a, double b, double c) {
+ return a <= c ? approximately_negative(a - b) && approximately_negative(b - c)
+ : approximately_negative(b - a) && approximately_negative(c - b);
+}
+
+// returns true if (a <= b <= c) || (a >= b >= c)
+inline bool between(double a, double b, double c) {
+ SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0));
+ return (a - b) * (c - b) <= 0;
+}
+
+inline bool more_roughly_equal(double x, double y) {
+ return fabs(x - y) < MORE_ROUGH_EPSILON;
+}
+
+inline bool roughly_equal(double x, double y) {
+ return fabs(x - y) < ROUGH_EPSILON;
+}
+
+struct _Point;
+
+struct _Vector {
+ double x;
+ double y;
+
+ friend _Point operator+(const _Point& a, const _Vector& b);
+
+ void operator+=(const _Vector& v) {
+ x += v.x;
+ y += v.y;
+ }
+
+ void operator-=(const _Vector& v) {
+ x -= v.x;
+ y -= v.y;
+ }
+
+ void operator/=(const double s) {
+ x /= s;
+ y /= s;
+ }
+
+ void operator*=(const double s) {
+ x *= s;
+ y *= s;
+ }
+
+ double cross(const _Vector& a) const {
+ return x * a.y - y * a.x;
+ }
+
+ double dot(const _Vector& a) const {
+ return x * a.x + y * a.y;
+ }
+
+ double length() const {
+ return sqrt(lengthSquared());
+ }
+
+ double lengthSquared() const {
+ return x * x + y * y;
+ }
+
+ SkVector asSkVector() const {
+ SkVector v = {SkDoubleToScalar(x), SkDoubleToScalar(y)};
+ return v;
+ }
+};
+
+struct _Point {
+ double x;
+ double y;
+
+ friend _Vector operator-(const _Point& a, const _Point& b);
+
+ void operator+=(const _Vector& v) {
+ x += v.x;
+ y += v.y;
+ }
+
+ void operator-=(const _Vector& v) {
+ x -= v.x;
+ y -= v.y;
+ }
+
+ friend bool operator==(const _Point& a, const _Point& b) {
+ return a.x == b.x && a.y == b.y;
+ }
+
+ friend bool operator!=(const _Point& a, const _Point& b) {
+ return a.x != b.x || a.y != b.y;
+ }
+
+ // note: this can not be implemented with
+ // return approximately_equal(a.y, y) && approximately_equal(a.x, x);
+ // because that will not take the magnitude of the values
+ bool approximatelyEqual(const _Point& a) const {
+ double denom = SkTMax(fabs(x), SkTMax(fabs(y), SkTMax(fabs(a.x), fabs(a.y))));
+ if (denom == 0) {
+ return true;
+ }
+ double inv = 1 / denom;
+ return approximately_equal(x * inv, a.x * inv) && approximately_equal(y * inv, a.y * inv);
+ }
+
+ bool approximatelyEqual(const SkPoint& a) const {
+ double denom = SkTMax(fabs(x), SkTMax(fabs(y), SkTMax(fabs(a.fX), fabs(a.fY))));
+ if (denom == 0) {
+ return true;
+ }
+ double inv = 1 / denom;
+ return approximately_equal(x * inv, a.fX * inv) && approximately_equal(y * inv, a.fY * inv);
+ }
+
+ bool approximatelyEqualHalf(const _Point& a) const {
+ double denom = SkTMax(fabs(x), SkTMax(fabs(y), SkTMax(fabs(a.x), fabs(a.y))));
+ if (denom == 0) {
+ return true;
+ }
+ double inv = 1 / denom;
+ return approximately_equal_half(x * inv, a.x * inv)
+ && approximately_equal_half(y * inv, a.y * inv);
+ }
+
+ bool approximatelyZero() const {
+ return approximately_zero(x) && approximately_zero(y);
+ }
+
+ SkPoint asSkPoint() const {
+ SkPoint pt = {SkDoubleToScalar(x), SkDoubleToScalar(y)};
+ return pt;
+ }
+
+ double distance(const _Point& a) const {
+ _Vector temp = *this - a;
+ return temp.length();
+ }
+
+ double distanceSquared(const _Point& a) const {
+ _Vector temp = *this - a;
+ return temp.lengthSquared();
+ }
+
+ double moreRoughlyEqual(const _Point& a) const {
+ return more_roughly_equal(a.y, y) && more_roughly_equal(a.x, x);
+ }
+
+ double roughlyEqual(const _Point& a) const {
+ return roughly_equal(a.y, y) && roughly_equal(a.x, x);
+ }
+};
+
+typedef _Point _Line[2];
+typedef _Point Quadratic[3];
+typedef _Point Triangle[3];
+typedef _Point Cubic[4];
+
+struct _Rect {
+ double left;
+ double top;
+ double right;
+ double bottom;
+
+ void add(const _Point& pt) {
+ if (left > pt.x) {
+ left = pt.x;
+ }
+ if (top > pt.y) {
+ top = pt.y;
+ }
+ if (right < pt.x) {
+ right = pt.x;
+ }
+ if (bottom < pt.y) {
+ bottom = pt.y;
+ }
+ }
+
+ // FIXME: used by debugging only ?
+ bool contains(const _Point& pt) const {
+ return approximately_between(left, pt.x, right)
+ && approximately_between(top, pt.y, bottom);
+ }
+
+ bool intersects(_Rect& r) const {
+ SkASSERT(left <= right);
+ SkASSERT(top <= bottom);
+ SkASSERT(r.left <= r.right);
+ SkASSERT(r.top <= r.bottom);
+ return r.left <= right && left <= r.right && r.top <= bottom && top <= r.bottom;
+ }
+
+ void set(const _Point& pt) {
+ left = right = pt.x;
+ top = bottom = pt.y;
+ }
+
+ void setBounds(const _Line& line) {
+ set(line[0]);
+ add(line[1]);
+ }
+
+ void setBounds(const Cubic& );
+ void setBounds(const Quadratic& );
+ void setRawBounds(const Cubic& );
+ void setRawBounds(const Quadratic& );
+};
+
+struct CubicPair {
+ const Cubic& first() const { return (const Cubic&) pts[0]; }
+ const Cubic& second() const { return (const Cubic&) pts[3]; }
+ _Point pts[7];
+};
+
+struct QuadraticPair {
+ const Quadratic& first() const { return (const Quadratic&) pts[0]; }
+ const Quadratic& second() const { return (const Quadratic&) pts[2]; }
+ _Point pts[5];
+};
+
+// FIXME: move these into SkFloatingPoint.h
+#include "SkFloatingPoint.h"
+
+#define sk_double_isnan(a) sk_float_isnan(a)
+
+// FIXME: move these to debugging file
+#if SK_DEBUG
+void mathematica_ize(char* str, size_t bufferSize);
+bool valid_wind(int winding);
+void winding_printf(int winding);
+#endif
+
+#endif // __DataTypes_h__