summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/skia/experimental/Intersection/LineIntersection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/skia/experimental/Intersection/LineIntersection.cpp')
-rw-r--r--chromium/third_party/skia/experimental/Intersection/LineIntersection.cpp338
1 files changed, 338 insertions, 0 deletions
diff --git a/chromium/third_party/skia/experimental/Intersection/LineIntersection.cpp b/chromium/third_party/skia/experimental/Intersection/LineIntersection.cpp
new file mode 100644
index 00000000000..ca6a8e40817
--- /dev/null
+++ b/chromium/third_party/skia/experimental/Intersection/LineIntersection.cpp
@@ -0,0 +1,338 @@
+/*
+ * Copyright 2012 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "CurveIntersection.h"
+#include "Intersections.h"
+#include "LineIntersection.h"
+#include "LineUtilities.h"
+
+/* Determine the intersection point of two lines. This assumes the lines are not parallel,
+ and that that the lines are infinite.
+ From http://en.wikipedia.org/wiki/Line-line_intersection
+ */
+void lineIntersect(const _Line& a, const _Line& b, _Point& p) {
+ double axLen = a[1].x - a[0].x;
+ double ayLen = a[1].y - a[0].y;
+ double bxLen = b[1].x - b[0].x;
+ double byLen = b[1].y - b[0].y;
+ double denom = byLen * axLen - ayLen * bxLen;
+ SkASSERT(denom);
+ double term1 = a[1].x * a[0].y - a[1].y * a[0].x;
+ double term2 = b[1].x * b[0].y - b[1].y * b[0].x;
+ p.x = (term1 * bxLen - axLen * term2) / denom;
+ p.y = (term1 * byLen - ayLen * term2) / denom;
+}
+
+static int computePoints(const _Line& a, int used, Intersections& i) {
+ i.fPt[0] = xy_at_t(a, i.fT[0][0]);
+ if ((i.fUsed = used) == 2) {
+ i.fPt[1] = xy_at_t(a, i.fT[0][1]);
+ }
+ return i.fUsed;
+}
+
+/*
+ Determine the intersection point of two line segments
+ Return FALSE if the lines don't intersect
+ from: http://paulbourke.net/geometry/lineline2d/
+ */
+
+int intersect(const _Line& a, const _Line& b, Intersections& i) {
+ double axLen = a[1].x - a[0].x;
+ double ayLen = a[1].y - a[0].y;
+ double bxLen = b[1].x - b[0].x;
+ double byLen = b[1].y - b[0].y;
+ /* Slopes match when denom goes to zero:
+ axLen / ayLen == bxLen / byLen
+ (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
+ byLen * axLen == ayLen * bxLen
+ byLen * axLen - ayLen * bxLen == 0 ( == denom )
+ */
+ double denom = byLen * axLen - ayLen * bxLen;
+ double ab0y = a[0].y - b[0].y;
+ double ab0x = a[0].x - b[0].x;
+ double numerA = ab0y * bxLen - byLen * ab0x;
+ double numerB = ab0y * axLen - ayLen * ab0x;
+ bool mayNotOverlap = (numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA)
+ || (numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB);
+ numerA /= denom;
+ numerB /= denom;
+ if ((!approximately_zero(denom) || (!approximately_zero_inverse(numerA)
+ && !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA)
+ && !sk_double_isnan(numerB)) {
+ if (mayNotOverlap) {
+ return 0;
+ }
+ i.fT[0][0] = numerA;
+ i.fT[1][0] = numerB;
+ i.fPt[0] = xy_at_t(a, numerA);
+ return computePoints(a, 1, i);
+ }
+ /* See if the axis intercepts match:
+ ay - ax * ayLen / axLen == by - bx * ayLen / axLen
+ axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
+ axLen * ay - ax * ayLen == axLen * by - bx * ayLen
+ */
+ // FIXME: need to use AlmostEqualUlps variant instead
+ if (!approximately_equal_squared(axLen * a[0].y - ayLen * a[0].x,
+ axLen * b[0].y - ayLen * b[0].x)) {
+ return 0;
+ }
+ const double* aPtr;
+ const double* bPtr;
+ if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) {
+ aPtr = &a[0].x;
+ bPtr = &b[0].x;
+ } else {
+ aPtr = &a[0].y;
+ bPtr = &b[0].y;
+ }
+ double a0 = aPtr[0];
+ double a1 = aPtr[2];
+ double b0 = bPtr[0];
+ double b1 = bPtr[2];
+ // OPTIMIZATION: restructure to reject before the divide
+ // e.g., if ((a0 - b0) * (a0 - a1) < 0 || abs(a0 - b0) > abs(a0 - a1))
+ // (except efficient)
+ double aDenom = a0 - a1;
+ if (approximately_zero(aDenom)) {
+ if (!between(b0, a0, b1)) {
+ return 0;
+ }
+ i.fT[0][0] = i.fT[0][1] = 0;
+ } else {
+ double at0 = (a0 - b0) / aDenom;
+ double at1 = (a0 - b1) / aDenom;
+ if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
+ return 0;
+ }
+ i.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
+ i.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
+ }
+ double bDenom = b0 - b1;
+ if (approximately_zero(bDenom)) {
+ i.fT[1][0] = i.fT[1][1] = 0;
+ } else {
+ int bIn = aDenom * bDenom < 0;
+ i.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / bDenom, 1.0), 0.0);
+ i.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / bDenom, 1.0), 0.0);
+ }
+ bool second = fabs(i.fT[0][0] - i.fT[0][1]) > FLT_EPSILON;
+ SkASSERT((fabs(i.fT[1][0] - i.fT[1][1]) <= FLT_EPSILON) ^ second);
+ return computePoints(a, 1 + second, i);
+}
+
+int horizontalIntersect(const _Line& line, double y, double tRange[2]) {
+ double min = line[0].y;
+ double max = line[1].y;
+ if (min > max) {
+ SkTSwap(min, max);
+ }
+ if (min > y || max < y) {
+ return 0;
+ }
+ if (AlmostEqualUlps(min, max)) {
+ tRange[0] = 0;
+ tRange[1] = 1;
+ return 2;
+ }
+ tRange[0] = (y - line[0].y) / (line[1].y - line[0].y);
+ return 1;
+}
+
+// OPTIMIZATION Given: dy = line[1].y - line[0].y
+// and: xIntercept / (y - line[0].y) == (line[1].x - line[0].x) / dy
+// then: xIntercept * dy == (line[1].x - line[0].x) * (y - line[0].y)
+// Assuming that dy is always > 0, the line segment intercepts if:
+// left * dy <= xIntercept * dy <= right * dy
+// thus: left * dy <= (line[1].x - line[0].x) * (y - line[0].y) <= right * dy
+// (clever as this is, it does not give us the t value, so may be useful only
+// as a quick reject -- and maybe not then; it takes 3 muls, 3 adds, 2 cmps)
+int horizontalLineIntersect(const _Line& line, double left, double right,
+ double y, double tRange[2]) {
+ int result = horizontalIntersect(line, y, tRange);
+ if (result != 1) {
+ // FIXME: this is incorrect if result == 2
+ return result;
+ }
+ double xIntercept = line[0].x + tRange[0] * (line[1].x - line[0].x);
+ if (xIntercept > right || xIntercept < left) {
+ return 0;
+ }
+ return result;
+}
+
+int horizontalIntersect(const _Line& line, double left, double right,
+ double y, bool flipped, Intersections& intersections) {
+ int result = horizontalIntersect(line, y, intersections.fT[0]);
+ switch (result) {
+ case 0:
+ break;
+ case 1: {
+ double xIntercept = line[0].x + intersections.fT[0][0]
+ * (line[1].x - line[0].x);
+ if (xIntercept > right || xIntercept < left) {
+ return 0;
+ }
+ intersections.fT[1][0] = (xIntercept - left) / (right - left);
+ break;
+ }
+ case 2:
+ #if 0 // sorting edges fails to preserve original direction
+ double lineL = line[0].x;
+ double lineR = line[1].x;
+ if (lineL > lineR) {
+ SkTSwap(lineL, lineR);
+ }
+ double overlapL = SkTMax(left, lineL);
+ double overlapR = SkTMin(right, lineR);
+ if (overlapL > overlapR) {
+ return 0;
+ }
+ if (overlapL == overlapR) {
+ result = 1;
+ }
+ intersections.fT[0][0] = (overlapL - line[0].x) / (line[1].x - line[0].x);
+ intersections.fT[1][0] = (overlapL - left) / (right - left);
+ if (result > 1) {
+ intersections.fT[0][1] = (overlapR - line[0].x) / (line[1].x - line[0].x);
+ intersections.fT[1][1] = (overlapR - left) / (right - left);
+ }
+ #else
+ double a0 = line[0].x;
+ double a1 = line[1].x;
+ double b0 = flipped ? right : left;
+ double b1 = flipped ? left : right;
+ // FIXME: share common code below
+ double at0 = (a0 - b0) / (a0 - a1);
+ double at1 = (a0 - b1) / (a0 - a1);
+ if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
+ return 0;
+ }
+ intersections.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
+ intersections.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
+ int bIn = (a0 - a1) * (b0 - b1) < 0;
+ intersections.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1),
+ 1.0), 0.0);
+ intersections.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1),
+ 1.0), 0.0);
+ bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1])
+ > FLT_EPSILON;
+ SkASSERT((fabs(intersections.fT[1][0] - intersections.fT[1][1])
+ <= FLT_EPSILON) ^ second);
+ return computePoints(line, 1 + second, intersections);
+ #endif
+ break;
+ }
+ if (flipped) {
+ // OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x
+ for (int index = 0; index < result; ++index) {
+ intersections.fT[1][index] = 1 - intersections.fT[1][index];
+ }
+ }
+ return computePoints(line, result, intersections);
+}
+
+static int verticalIntersect(const _Line& line, double x, double tRange[2]) {
+ double min = line[0].x;
+ double max = line[1].x;
+ if (min > max) {
+ SkTSwap(min, max);
+ }
+ if (min > x || max < x) {
+ return 0;
+ }
+ if (AlmostEqualUlps(min, max)) {
+ tRange[0] = 0;
+ tRange[1] = 1;
+ return 2;
+ }
+ tRange[0] = (x - line[0].x) / (line[1].x - line[0].x);
+ return 1;
+}
+
+int verticalIntersect(const _Line& line, double top, double bottom,
+ double x, bool flipped, Intersections& intersections) {
+ int result = verticalIntersect(line, x, intersections.fT[0]);
+ switch (result) {
+ case 0:
+ break;
+ case 1: {
+ double yIntercept = line[0].y + intersections.fT[0][0]
+ * (line[1].y - line[0].y);
+ if (yIntercept > bottom || yIntercept < top) {
+ return 0;
+ }
+ intersections.fT[1][0] = (yIntercept - top) / (bottom - top);
+ break;
+ }
+ case 2:
+ #if 0 // sorting edges fails to preserve original direction
+ double lineT = line[0].y;
+ double lineB = line[1].y;
+ if (lineT > lineB) {
+ SkTSwap(lineT, lineB);
+ }
+ double overlapT = SkTMax(top, lineT);
+ double overlapB = SkTMin(bottom, lineB);
+ if (overlapT > overlapB) {
+ return 0;
+ }
+ if (overlapT == overlapB) {
+ result = 1;
+ }
+ intersections.fT[0][0] = (overlapT - line[0].y) / (line[1].y - line[0].y);
+ intersections.fT[1][0] = (overlapT - top) / (bottom - top);
+ if (result > 1) {
+ intersections.fT[0][1] = (overlapB - line[0].y) / (line[1].y - line[0].y);
+ intersections.fT[1][1] = (overlapB - top) / (bottom - top);
+ }
+ #else
+ double a0 = line[0].y;
+ double a1 = line[1].y;
+ double b0 = flipped ? bottom : top;
+ double b1 = flipped ? top : bottom;
+ // FIXME: share common code above
+ double at0 = (a0 - b0) / (a0 - a1);
+ double at1 = (a0 - b1) / (a0 - a1);
+ if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
+ return 0;
+ }
+ intersections.fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
+ intersections.fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
+ int bIn = (a0 - a1) * (b0 - b1) < 0;
+ intersections.fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1),
+ 1.0), 0.0);
+ intersections.fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1),
+ 1.0), 0.0);
+ bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1])
+ > FLT_EPSILON;
+ SkASSERT((fabs(intersections.fT[1][0] - intersections.fT[1][1])
+ <= FLT_EPSILON) ^ second);
+ return computePoints(line, 1 + second, intersections);
+ #endif
+ break;
+ }
+ if (flipped) {
+ // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
+ for (int index = 0; index < result; ++index) {
+ intersections.fT[1][index] = 1 - intersections.fT[1][index];
+ }
+ }
+ return computePoints(line, result, intersections);
+}
+
+// from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py
+// 4 subs, 2 muls, 1 cmp
+static bool ccw(const _Point& A, const _Point& B, const _Point& C) {
+ return (C.y - A.y) * (B.x - A.x) > (B.y - A.y) * (C.x - A.x);
+}
+
+// 16 subs, 8 muls, 6 cmps
+bool testIntersect(const _Line& a, const _Line& b) {
+ return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1])
+ && ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]);
+}