summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/skia/include/core/SkScalar.h
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/skia/include/core/SkScalar.h')
-rw-r--r--chromium/third_party/skia/include/core/SkScalar.h411
1 files changed, 160 insertions, 251 deletions
diff --git a/chromium/third_party/skia/include/core/SkScalar.h b/chromium/third_party/skia/include/core/SkScalar.h
index cc1cf99ac80..b37cf5c998f 100644
--- a/chromium/third_party/skia/include/core/SkScalar.h
+++ b/chromium/third_party/skia/include/core/SkScalar.h
@@ -1,4 +1,3 @@
-
/*
* Copyright 2006 The Android Open Source Project
*
@@ -6,265 +5,185 @@
* found in the LICENSE file.
*/
-
#ifndef SkScalar_DEFINED
#define SkScalar_DEFINED
#include "SkFixed.h"
#include "SkFloatingPoint.h"
-/** \file SkScalar.h
-
- Types and macros for the data type SkScalar. This is the fractional numeric type
- that, depending on the compile-time flag SK_SCALAR_IS_FLOAT, may be implemented
- either as an IEEE float, or as a 16.16 SkFixed. The macros in this file are written
- to allow the calling code to manipulate SkScalar values without knowing which representation
- is in effect.
-*/
-
-#ifdef SK_SCALAR_IS_FLOAT
-
- /** SkScalar is our type for fractional values and coordinates. Depending on
- compile configurations, it is either represented as an IEEE float, or
- as a 16.16 fixed point integer.
- */
- typedef float SkScalar;
-
- /** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
- */
- #define SK_Scalar1 (1.0f)
- /** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
- */
- #define SK_ScalarHalf (0.5f)
- /** SK_ScalarInfinity is defined to be infinity as an SkScalar
- */
- #define SK_ScalarInfinity SK_FloatInfinity
- /** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
- */
- #define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
- /** SK_ScalarMax is defined to be the largest value representable as an SkScalar
- */
- #define SK_ScalarMax (3.402823466e+38f)
- /** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
- */
- #define SK_ScalarMin (-SK_ScalarMax)
- /** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
- */
- #define SK_ScalarNaN SK_FloatNaN
- /** SkScalarIsNaN(n) returns true if argument is not a number
- */
- static inline bool SkScalarIsNaN(float x) { return x != x; }
-
- /** Returns true if x is not NaN and not infinite */
- static inline bool SkScalarIsFinite(float x) {
- // We rely on the following behavior of infinities and nans
- // 0 * finite --> 0
- // 0 * infinity --> NaN
- // 0 * NaN --> NaN
- float prod = x * 0;
- // At this point, prod will either be NaN or 0
- // Therefore we can return (prod == prod) or (0 == prod).
- return prod == prod;
- }
-
- /** SkIntToScalar(n) returns its integer argument as an SkScalar
- */
- #define SkIntToScalar(n) ((float)(n))
- /** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
- */
- #define SkFixedToScalar(x) SkFixedToFloat(x)
- /** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
- */
- #define SkScalarToFixed(x) SkFloatToFixed(x)
-
- #define SkScalarToFloat(n) (n)
-#ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
- #define SkFloatToScalar(n) (n)
-#endif
-
- #define SkScalarToDouble(n) (double)(n)
- #define SkDoubleToScalar(n) (float)(n)
-
- /** SkScalarFraction(x) returns the signed fractional part of the argument
- */
- #define SkScalarFraction(x) sk_float_mod(x, 1.0f)
-
- #define SkScalarFloorToScalar(x) sk_float_floor(x)
- #define SkScalarCeilToScalar(x) sk_float_ceil(x)
- #define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f)
-
- #define SkScalarFloorToInt(x) sk_float_floor2int(x)
- #define SkScalarCeilToInt(x) sk_float_ceil2int(x)
- #define SkScalarRoundToInt(x) sk_float_round2int(x)
- #define SkScalarTruncToInt(x) static_cast<int>(x)
+//#define SK_SUPPORT_DEPRECATED_SCALARROUND
- /** Returns the absolute value of the specified SkScalar
- */
- #define SkScalarAbs(x) sk_float_abs(x)
- /** Return x with the sign of y
- */
- #define SkScalarCopySign(x, y) sk_float_copysign(x, y)
- /** Returns the value pinned between 0 and max inclusive
- */
- inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
- return x < 0 ? 0 : x > max ? max : x;
- }
- /** Returns the value pinned between min and max inclusive
- */
- inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
- return x < min ? min : x > max ? max : x;
- }
- /** Returns the specified SkScalar squared (x*x)
- */
- inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
- /** Returns the product of two SkScalars
- */
- #define SkScalarMul(a, b) ((float)(a) * (b))
- /** Returns the product of two SkScalars plus a third SkScalar
- */
- #define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
- /** Returns the product of a SkScalar and an int rounded to the nearest integer value
- */
- #define SkScalarMulRound(a, b) SkScalarRound((float)(a) * (b))
- /** Returns the product of a SkScalar and an int promoted to the next larger int
- */
- #define SkScalarMulCeil(a, b) SkScalarCeil((float)(a) * (b))
- /** Returns the product of a SkScalar and an int truncated to the next smaller int
- */
- #define SkScalarMulFloor(a, b) SkScalarFloor((float)(a) * (b))
- /** Returns the quotient of two SkScalars (a/b)
- */
- #define SkScalarDiv(a, b) ((float)(a) / (b))
- /** Returns the mod of two SkScalars (a mod b)
- */
- #define SkScalarMod(x,y) sk_float_mod(x,y)
- /** Returns the product of the first two arguments, divided by the third argument
- */
- #define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
- /** Returns the multiplicative inverse of the SkScalar (1/x)
- */
- #define SkScalarInvert(x) (SK_Scalar1 / (x))
- #define SkScalarFastInvert(x) (SK_Scalar1 / (x))
- /** Returns the square root of the SkScalar
- */
- #define SkScalarSqrt(x) sk_float_sqrt(x)
- /** Returns b to the e
- */
- #define SkScalarPow(b, e) sk_float_pow(b, e)
- /** Returns the average of two SkScalars (a+b)/2
- */
- #define SkScalarAve(a, b) (((a) + (b)) * 0.5f)
- /** Returns the geometric mean of two SkScalars
- */
- #define SkScalarMean(a, b) sk_float_sqrt((float)(a) * (b))
- /** Returns one half of the specified SkScalar
- */
- #define SkScalarHalf(a) ((a) * 0.5f)
-
- #define SK_ScalarSqrt2 1.41421356f
- #define SK_ScalarPI 3.14159265f
- #define SK_ScalarTanPIOver8 0.414213562f
- #define SK_ScalarRoot2Over2 0.707106781f
-
- #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
- float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
- #define SkScalarSin(radians) (float)sk_float_sin(radians)
- #define SkScalarCos(radians) (float)sk_float_cos(radians)
- #define SkScalarTan(radians) (float)sk_float_tan(radians)
- #define SkScalarASin(val) (float)sk_float_asin(val)
- #define SkScalarACos(val) (float)sk_float_acos(val)
- #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
- #define SkScalarExp(x) (float)sk_float_exp(x)
- #define SkScalarLog(x) (float)sk_float_log(x)
-
- inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
- inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
+typedef float SkScalar;
- static inline bool SkScalarIsInt(SkScalar x) {
- return x == (float)(int)x;
- }
-#else
- typedef SkFixed SkScalar;
+/** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
+*/
+#define SK_Scalar1 (1.0f)
+/** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
+*/
+#define SK_ScalarHalf (0.5f)
+/** SK_ScalarInfinity is defined to be infinity as an SkScalar
+*/
+#define SK_ScalarInfinity SK_FloatInfinity
+/** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
+*/
+#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
+/** SK_ScalarMax is defined to be the largest value representable as an SkScalar
+*/
+#define SK_ScalarMax (3.402823466e+38f)
+/** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
+*/
+#define SK_ScalarMin (-SK_ScalarMax)
+/** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
+*/
+#define SK_ScalarNaN SK_FloatNaN
+/** SkScalarIsNaN(n) returns true if argument is not a number
+*/
+static inline bool SkScalarIsNaN(float x) { return x != x; }
+
+/** Returns true if x is not NaN and not infinite */
+static inline bool SkScalarIsFinite(float x) {
+ // We rely on the following behavior of infinities and nans
+ // 0 * finite --> 0
+ // 0 * infinity --> NaN
+ // 0 * NaN --> NaN
+ float prod = x * 0;
+ // At this point, prod will either be NaN or 0
+ // Therefore we can return (prod == prod) or (0 == prod).
+ return prod == prod;
+}
- #define SK_Scalar1 SK_Fixed1
- #define SK_ScalarHalf SK_FixedHalf
- #define SK_ScalarInfinity SK_FixedMax
- #define SK_ScalarNegativeInfinity SK_FixedMin
- #define SK_ScalarMax SK_FixedMax
- #define SK_ScalarMin SK_FixedMin
- #define SK_ScalarNaN SK_FixedNaN
- #define SkScalarIsNaN(x) ((x) == SK_FixedNaN)
- #define SkScalarIsFinite(x) ((x) != SK_FixedNaN)
+/** SkIntToScalar(n) returns its integer argument as an SkScalar
+*/
+#define SkIntToScalar(n) ((float)(n))
+/** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
+*/
+#define SkFixedToScalar(x) SkFixedToFloat(x)
+/** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
+*/
+#define SkScalarToFixed(x) SkFloatToFixed(x)
- #define SkIntToScalar(n) SkIntToFixed(n)
- #define SkFixedToScalar(x) (x)
- #define SkScalarToFixed(x) (x)
- #define SkScalarToFloat(n) SkFixedToFloat(n)
+#define SkScalarToFloat(n) (n)
#ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
- #define SkFloatToScalar(n) SkFloatToFixed(n)
+#define SkFloatToScalar(n) (n)
#endif
- #define SkScalarToDouble(n) SkFixedToDouble(n)
- #define SkDoubleToScalar(n) SkDoubleToFixed(n)
- #define SkScalarFraction(x) SkFixedFraction(x)
-
- #define SkScalarFloorToScalar(x) SkFixedFloorToFixed(x)
- #define SkScalarCeilToScalar(x) SkFixedCeilToFixed(x)
- #define SkScalarRoundToScalar(x) SkFixedRoundToFixed(x)
-
- #define SkScalarFloorToInt(x) SkFixedFloorToInt(x)
- #define SkScalarCeilToInt(x) SkFixedCeilToInt(x)
- #define SkScalarRoundToInt(x) SkFixedRoundToInt(x)
- #define SkScalarTruncToInt(x) (((x) < 0) ? SkScalarCeilToInt(x) : SkScalarFloorToInt(x))
+#define SkScalarToDouble(n) (double)(n)
+#define SkDoubleToScalar(n) (float)(n)
- #define SkScalarAbs(x) SkFixedAbs(x)
- #define SkScalarCopySign(x, y) SkCopySign32(x, y)
- #define SkScalarClampMax(x, max) SkClampMax(x, max)
- #define SkScalarPin(x, min, max) SkPin32(x, min, max)
- #define SkScalarSquare(x) SkFixedSquare(x)
- #define SkScalarMul(a, b) SkFixedMul(a, b)
- #define SkScalarMulAdd(a, b, c) SkFixedMulAdd(a, b, c)
- #define SkScalarMulRound(a, b) SkFixedMulCommon(a, b, SK_FixedHalf)
- #define SkScalarMulCeil(a, b) SkFixedMulCommon(a, b, SK_Fixed1 - 1)
- #define SkScalarMulFloor(a, b) SkFixedMulCommon(a, b, 0)
- #define SkScalarDiv(a, b) SkFixedDiv(a, b)
- #define SkScalarMod(a, b) SkFixedMod(a, b)
- #define SkScalarMulDiv(a, b, c) SkMulDiv(a, b, c)
- #define SkScalarInvert(x) SkFixedInvert(x)
- #define SkScalarFastInvert(x) SkFixedFastInvert(x)
- #define SkScalarSqrt(x) SkFixedSqrt(x)
- #define SkScalarAve(a, b) SkFixedAve(a, b)
- #define SkScalarMean(a, b) SkFixedMean(a, b)
- #define SkScalarHalf(a) ((a) >> 1)
+/** SkScalarFraction(x) returns the signed fractional part of the argument
+*/
+#define SkScalarFraction(x) sk_float_mod(x, 1.0f)
- #define SK_ScalarSqrt2 SK_FixedSqrt2
- #define SK_ScalarPI SK_FixedPI
- #define SK_ScalarTanPIOver8 SK_FixedTanPIOver8
- #define SK_ScalarRoot2Over2 SK_FixedRoot2Over2
+#define SkScalarFloorToScalar(x) sk_float_floor(x)
+#define SkScalarCeilToScalar(x) sk_float_ceil(x)
+#define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f)
- #define SkDegreesToRadians(degrees) SkFractMul(degrees, SK_FractPIOver180)
- #define SkScalarSinCos(radians, cosPtr) SkFixedSinCos(radians, cosPtr)
- #define SkScalarSin(radians) SkFixedSin(radians)
- #define SkScalarCos(radians) SkFixedCos(radians)
- #define SkScalarTan(val) SkFixedTan(val)
- #define SkScalarASin(val) SkFixedASin(val)
- #define SkScalarACos(val) SkFixedACos(val)
- #define SkScalarATan2(y, x) SkFixedATan2(y,x)
- #define SkScalarExp(x) SkFixedExp(x)
- #define SkScalarLog(x) SkFixedLog(x)
+#define SkScalarFloorToInt(x) sk_float_floor2int(x)
+#define SkScalarCeilToInt(x) sk_float_ceil2int(x)
+#define SkScalarRoundToInt(x) sk_float_round2int(x)
+#define SkScalarTruncToInt(x) static_cast<int>(x)
- #define SkMaxScalar(a, b) SkMax32(a, b)
- #define SkMinScalar(a, b) SkMin32(a, b)
+/**
+ * Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using
+ * double, to avoid possibly losing the low bit(s) of the answer before calling floor().
+ *
+ * This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the
+ * extra precision is known to be valuable.
+ *
+ * In particular, this catches the following case:
+ * SkScalar x = 0.49999997;
+ * int ix = SkScalarRoundToInt(x);
+ * SkASSERT(0 == ix); // <--- fails
+ * ix = SkDScalarRoundToInt(x);
+ * SkASSERT(0 == ix); // <--- succeeds
+ */
+static inline int SkDScalarRoundToInt(SkScalar x) {
+ double xx = x;
+ xx += 0.5;
+ return (int)floor(xx);
+}
- static inline bool SkScalarIsInt(SkFixed x) {
- return 0 == (x & 0xffff);
- }
-#endif
+/** Returns the absolute value of the specified SkScalar
+*/
+#define SkScalarAbs(x) sk_float_abs(x)
+/** Return x with the sign of y
+ */
+#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
+/** Returns the value pinned between 0 and max inclusive
+*/
+inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
+ return x < 0 ? 0 : x > max ? max : x;
+}
+/** Returns the value pinned between min and max inclusive
+*/
+inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
+ return x < min ? min : x > max ? max : x;
+}
+/** Returns the specified SkScalar squared (x*x)
+*/
+inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
+/** Returns the product of two SkScalars
+*/
+#define SkScalarMul(a, b) ((float)(a) * (b))
+/** Returns the product of two SkScalars plus a third SkScalar
+*/
+#define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
+/** Returns the quotient of two SkScalars (a/b)
+*/
+#define SkScalarDiv(a, b) ((float)(a) / (b))
+/** Returns the mod of two SkScalars (a mod b)
+*/
+#define SkScalarMod(x,y) sk_float_mod(x,y)
+/** Returns the product of the first two arguments, divided by the third argument
+*/
+#define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
+/** Returns the multiplicative inverse of the SkScalar (1/x)
+*/
+#define SkScalarInvert(x) (SK_Scalar1 / (x))
+#define SkScalarFastInvert(x) (SK_Scalar1 / (x))
+/** Returns the square root of the SkScalar
+*/
+#define SkScalarSqrt(x) sk_float_sqrt(x)
+/** Returns b to the e
+*/
+#define SkScalarPow(b, e) sk_float_pow(b, e)
+/** Returns the average of two SkScalars (a+b)/2
+*/
+#define SkScalarAve(a, b) (((a) + (b)) * 0.5f)
+/** Returns one half of the specified SkScalar
+*/
+#define SkScalarHalf(a) ((a) * 0.5f)
+
+#define SK_ScalarSqrt2 1.41421356f
+#define SK_ScalarPI 3.14159265f
+#define SK_ScalarTanPIOver8 0.414213562f
+#define SK_ScalarRoot2Over2 0.707106781f
+
+#define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
+#define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
+float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
+#define SkScalarSin(radians) (float)sk_float_sin(radians)
+#define SkScalarCos(radians) (float)sk_float_cos(radians)
+#define SkScalarTan(radians) (float)sk_float_tan(radians)
+#define SkScalarASin(val) (float)sk_float_asin(val)
+#define SkScalarACos(val) (float)sk_float_acos(val)
+#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
+#define SkScalarExp(x) (float)sk_float_exp(x)
+#define SkScalarLog(x) (float)sk_float_log(x)
+
+inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
+inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
+
+static inline bool SkScalarIsInt(SkScalar x) {
+ return x == (float)(int)x;
+}
// DEPRECATED : use ToInt or ToScalar variant
-#define SkScalarFloor(x) SkScalarFloorToInt(x)
-#define SkScalarCeil(x) SkScalarCeilToInt(x)
-#define SkScalarRound(x) SkScalarRoundToInt(x)
+#ifdef SK_SUPPORT_DEPRECATED_SCALARROUND
+# define SkScalarFloor(x) SkScalarFloorToInt(x)
+# define SkScalarCeil(x) SkScalarCeilToInt(x)
+# define SkScalarRound(x) SkScalarRoundToInt(x)
+#endif
/**
* Returns -1 || 0 || 1 depending on the sign of value:
@@ -303,13 +222,7 @@ static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y,
*/
static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) {
SkASSERT(t >= 0 && t <= SK_Scalar1);
- return A + SkScalarMul(B - A, t);
-}
-
-static inline SkScalar SkScalarLog2(SkScalar x) {
- static const SkScalar log2_conversion_factor = SkScalarDiv(1, SkScalarLog(2));
-
- return SkScalarMul(SkScalarLog(x), log2_conversion_factor);
+ return A + (B - A) * t;
}
/** Interpolate along the function described by (keys[length], values[length])
@@ -329,7 +242,6 @@ SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
* Helper to compare an array of scalars.
*/
static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
-#ifdef SK_SCALAR_IS_FLOAT
SkASSERT(n >= 0);
for (int i = 0; i < n; ++i) {
if (a[i] != b[i]) {
@@ -337,9 +249,6 @@ static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n)
}
}
return true;
-#else
- return 0 == memcmp(a, b, n * sizeof(SkScalar));
-#endif
}
#endif