summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/skia/src/core/SkGeometry.h
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/skia/src/core/SkGeometry.h')
-rw-r--r--chromium/third_party/skia/src/core/SkGeometry.h316
1 files changed, 316 insertions, 0 deletions
diff --git a/chromium/third_party/skia/src/core/SkGeometry.h b/chromium/third_party/skia/src/core/SkGeometry.h
new file mode 100644
index 00000000000..119cfc68db5
--- /dev/null
+++ b/chromium/third_party/skia/src/core/SkGeometry.h
@@ -0,0 +1,316 @@
+
+/*
+ * Copyright 2006 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+
+#ifndef SkGeometry_DEFINED
+#define SkGeometry_DEFINED
+
+#include "SkMatrix.h"
+
+/** An XRay is a half-line that runs from the specific point/origin to
+ +infinity in the X direction. e.g. XRay(3,5) is the half-line
+ (3,5)....(infinity, 5)
+ */
+typedef SkPoint SkXRay;
+
+/** Given a line segment from pts[0] to pts[1], and an xray, return true if
+ they intersect. Optional outgoing "ambiguous" argument indicates
+ whether the answer is ambiguous because the query occurred exactly at
+ one of the endpoints' y coordinates, indicating that another query y
+ coordinate is preferred for robustness.
+*/
+bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2],
+ bool* ambiguous = NULL);
+
+/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
+ equation.
+*/
+int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
+
+///////////////////////////////////////////////////////////////////////////////
+
+/** Set pt to the point on the src quadratic specified by t. t must be
+ 0 <= t <= 1.0
+*/
+void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
+ SkVector* tangent = NULL);
+void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt,
+ SkVector* tangent = NULL);
+
+/** Given a src quadratic bezier, chop it at the specified t value,
+ where 0 < t < 1, and return the two new quadratics in dst:
+ dst[0..2] and dst[2..4]
+*/
+void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
+
+/** Given a src quadratic bezier, chop it at the specified t == 1/2,
+ The new quads are returned in dst[0..2] and dst[2..4]
+*/
+void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
+
+/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
+ for extrema, and return the number of t-values that are found that represent
+ these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
+ function returns 0.
+ Returned count tValues[]
+ 0 ignored
+ 1 0 < tValues[0] < 1
+*/
+int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
+
+/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
+ the resulting beziers are monotonic in Y. This is called by the scan converter.
+ Depending on what is returned, dst[] is treated as follows
+ 0 dst[0..2] is the original quad
+ 1 dst[0..2] and dst[2..4] are the two new quads
+*/
+int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
+int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
+
+/** Given 3 points on a quadratic bezier, if the point of maximum
+ curvature exists on the segment, returns the t value for this
+ point along the curve. Otherwise it will return a value of 0.
+*/
+float SkFindQuadMaxCurvature(const SkPoint src[3]);
+
+/** Given 3 points on a quadratic bezier, divide it into 2 quadratics
+ if the point of maximum curvature exists on the quad segment.
+ Depending on what is returned, dst[] is treated as follows
+ 1 dst[0..2] is the original quad
+ 2 dst[0..2] and dst[2..4] are the two new quads
+ If dst == null, it is ignored and only the count is returned.
+*/
+int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
+
+/** Given 3 points on a quadratic bezier, use degree elevation to
+ convert it into the cubic fitting the same curve. The new cubic
+ curve is returned in dst[0..3].
+*/
+SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
+
+///////////////////////////////////////////////////////////////////////////////
+
+/** Convert from parametric from (pts) to polynomial coefficients
+ coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
+*/
+void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
+
+/** Set pt to the point on the src cubic specified by t. t must be
+ 0 <= t <= 1.0
+*/
+void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
+ SkVector* tangentOrNull, SkVector* curvatureOrNull);
+
+/** Given a src cubic bezier, chop it at the specified t value,
+ where 0 < t < 1, and return the two new cubics in dst:
+ dst[0..3] and dst[3..6]
+*/
+void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
+/** Given a src cubic bezier, chop it at the specified t values,
+ where 0 < t < 1, and return the new cubics in dst:
+ dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
+*/
+void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
+ int t_count);
+
+/** Given a src cubic bezier, chop it at the specified t == 1/2,
+ The new cubics are returned in dst[0..3] and dst[3..6]
+*/
+void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
+
+/** Given the 4 coefficients for a cubic bezier (either X or Y values), look
+ for extrema, and return the number of t-values that are found that represent
+ these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
+ function returns 0.
+ Returned count tValues[]
+ 0 ignored
+ 1 0 < tValues[0] < 1
+ 2 0 < tValues[0] < tValues[1] < 1
+*/
+int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
+ SkScalar tValues[2]);
+
+/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
+ the resulting beziers are monotonic in Y. This is called by the scan converter.
+ Depending on what is returned, dst[] is treated as follows
+ 0 dst[0..3] is the original cubic
+ 1 dst[0..3] and dst[3..6] are the two new cubics
+ 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
+ If dst == null, it is ignored and only the count is returned.
+*/
+int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
+int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
+
+/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
+ inflection points.
+*/
+int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
+
+/** Return 1 for no chop, 2 for having chopped the cubic at a single
+ inflection point, 3 for having chopped at 2 inflection points.
+ dst will hold the resulting 1, 2, or 3 cubics.
+*/
+int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
+
+int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
+int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
+ SkScalar tValues[3] = NULL);
+
+/** Given a monotonic cubic bezier, determine whether an xray intersects the
+ cubic.
+ By definition the cubic is open at the starting point; in other
+ words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
+ left of the curve, the line is not considered to cross the curve,
+ but if it is equal to cubic[3].fY then it is considered to
+ cross.
+ Optional outgoing "ambiguous" argument indicates whether the answer is
+ ambiguous because the query occurred exactly at one of the endpoints' y
+ coordinates, indicating that another query y coordinate is preferred
+ for robustness.
+ */
+bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4],
+ bool* ambiguous = NULL);
+
+/** Given an arbitrary cubic bezier, return the number of times an xray crosses
+ the cubic. Valid return values are [0..3]
+ By definition the cubic is open at the starting point; in other
+ words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
+ left of the curve, the line is not considered to cross the curve,
+ but if it is equal to cubic[3].fY then it is considered to
+ cross.
+ Optional outgoing "ambiguous" argument indicates whether the answer is
+ ambiguous because the query occurred exactly at one of the endpoints' y
+ coordinates or at a tangent point, indicating that another query y
+ coordinate is preferred for robustness.
+ */
+int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4],
+ bool* ambiguous = NULL);
+
+///////////////////////////////////////////////////////////////////////////////
+
+enum SkRotationDirection {
+ kCW_SkRotationDirection,
+ kCCW_SkRotationDirection
+};
+
+/** Maximum number of points needed in the quadPoints[] parameter for
+ SkBuildQuadArc()
+*/
+#define kSkBuildQuadArcStorage 17
+
+/** Given 2 unit vectors and a rotation direction, fill out the specified
+ array of points with quadratic segments. Return is the number of points
+ written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
+
+ matrix, if not null, is appled to the points before they are returned.
+*/
+int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
+ SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);
+
+// experimental
+struct SkConic {
+ SkPoint fPts[3];
+ SkScalar fW;
+
+ void set(const SkPoint pts[3], SkScalar w) {
+ memcpy(fPts, pts, 3 * sizeof(SkPoint));
+ fW = w;
+ }
+
+ /**
+ * Given a t-value [0...1] return its position and/or tangent.
+ * If pos is not null, return its position at the t-value.
+ * If tangent is not null, return its tangent at the t-value. NOTE the
+ * tangent value's length is arbitrary, and only its direction should
+ * be used.
+ */
+ void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = NULL) const;
+ void chopAt(SkScalar t, SkConic dst[2]) const;
+ void chop(SkConic dst[2]) const;
+
+ void computeAsQuadError(SkVector* err) const;
+ bool asQuadTol(SkScalar tol) const;
+
+ /**
+ * return the power-of-2 number of quads needed to approximate this conic
+ * with a sequence of quads. Will be >= 0.
+ */
+ int computeQuadPOW2(SkScalar tol) const;
+
+ /**
+ * Chop this conic into N quads, stored continguously in pts[], where
+ * N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
+ */
+ int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
+
+ bool findXExtrema(SkScalar* t) const;
+ bool findYExtrema(SkScalar* t) const;
+ bool chopAtXExtrema(SkConic dst[2]) const;
+ bool chopAtYExtrema(SkConic dst[2]) const;
+
+ void computeTightBounds(SkRect* bounds) const;
+ void computeFastBounds(SkRect* bounds) const;
+
+ /** Find the parameter value where the conic takes on its maximum curvature.
+ *
+ * @param t output scalar for max curvature. Will be unchanged if
+ * max curvature outside 0..1 range.
+ *
+ * @return true if max curvature found inside 0..1 range, false otherwise
+ */
+ bool findMaxCurvature(SkScalar* t) const;
+};
+
+#include "SkTemplates.h"
+
+/**
+ * Help class to allocate storage for approximating a conic with N quads.
+ */
+class SkAutoConicToQuads {
+public:
+ SkAutoConicToQuads() : fQuadCount(0) {}
+
+ /**
+ * Given a conic and a tolerance, return the array of points for the
+ * approximating quad(s). Call countQuads() to know the number of quads
+ * represented in these points.
+ *
+ * The quads are allocated to share end-points. e.g. if there are 4 quads,
+ * there will be 9 points allocated as follows
+ * quad[0] == pts[0..2]
+ * quad[1] == pts[2..4]
+ * quad[2] == pts[4..6]
+ * quad[3] == pts[6..8]
+ */
+ const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
+ int pow2 = conic.computeQuadPOW2(tol);
+ fQuadCount = 1 << pow2;
+ SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
+ conic.chopIntoQuadsPOW2(pts, pow2);
+ return pts;
+ }
+
+ const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
+ SkScalar tol) {
+ SkConic conic;
+ conic.set(pts, weight);
+ return computeQuads(conic, tol);
+ }
+
+ int countQuads() const { return fQuadCount; }
+
+private:
+ enum {
+ kQuadCount = 8, // should handle most conics
+ kPointCount = 1 + 2 * kQuadCount,
+ };
+ SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
+ int fQuadCount; // #quads for current usage
+};
+
+#endif