summaryrefslogtreecommitdiffstats
path: root/chromium/v8/src/arm64/macro-assembler-arm64.h
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/v8/src/arm64/macro-assembler-arm64.h')
-rw-r--r--chromium/v8/src/arm64/macro-assembler-arm64.h2327
1 files changed, 2327 insertions, 0 deletions
diff --git a/chromium/v8/src/arm64/macro-assembler-arm64.h b/chromium/v8/src/arm64/macro-assembler-arm64.h
new file mode 100644
index 00000000000..34182c02707
--- /dev/null
+++ b/chromium/v8/src/arm64/macro-assembler-arm64.h
@@ -0,0 +1,2327 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
+#define V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
+
+#include <vector>
+
+#include "src/globals.h"
+
+#include "src/arm64/assembler-arm64-inl.h"
+
+namespace v8 {
+namespace internal {
+
+#define LS_MACRO_LIST(V) \
+ V(Ldrb, Register&, rt, LDRB_w) \
+ V(Strb, Register&, rt, STRB_w) \
+ V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
+ V(Ldrh, Register&, rt, LDRH_w) \
+ V(Strh, Register&, rt, STRH_w) \
+ V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
+ V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
+ V(Str, CPURegister&, rt, StoreOpFor(rt)) \
+ V(Ldrsw, Register&, rt, LDRSW_x)
+
+
+// ----------------------------------------------------------------------------
+// Static helper functions
+
+// Generate a MemOperand for loading a field from an object.
+inline MemOperand FieldMemOperand(Register object, int offset);
+inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
+
+// Generate a MemOperand for loading a SMI from memory.
+inline MemOperand UntagSmiMemOperand(Register object, int offset);
+
+
+// ----------------------------------------------------------------------------
+// MacroAssembler
+
+enum BranchType {
+ // Copies of architectural conditions.
+ // The associated conditions can be used in place of those, the code will
+ // take care of reinterpreting them with the correct type.
+ integer_eq = eq,
+ integer_ne = ne,
+ integer_hs = hs,
+ integer_lo = lo,
+ integer_mi = mi,
+ integer_pl = pl,
+ integer_vs = vs,
+ integer_vc = vc,
+ integer_hi = hi,
+ integer_ls = ls,
+ integer_ge = ge,
+ integer_lt = lt,
+ integer_gt = gt,
+ integer_le = le,
+ integer_al = al,
+ integer_nv = nv,
+
+ // These two are *different* from the architectural codes al and nv.
+ // 'always' is used to generate unconditional branches.
+ // 'never' is used to not generate a branch (generally as the inverse
+ // branch type of 'always).
+ always, never,
+ // cbz and cbnz
+ reg_zero, reg_not_zero,
+ // tbz and tbnz
+ reg_bit_clear, reg_bit_set,
+
+ // Aliases.
+ kBranchTypeFirstCondition = eq,
+ kBranchTypeLastCondition = nv,
+ kBranchTypeFirstUsingReg = reg_zero,
+ kBranchTypeFirstUsingBit = reg_bit_clear
+};
+
+inline BranchType InvertBranchType(BranchType type) {
+ if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
+ return static_cast<BranchType>(
+ NegateCondition(static_cast<Condition>(type)));
+ } else {
+ return static_cast<BranchType>(type ^ 1);
+ }
+}
+
+enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
+enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
+enum PointersToHereCheck {
+ kPointersToHereMaybeInteresting,
+ kPointersToHereAreAlwaysInteresting
+};
+enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
+enum TargetAddressStorageMode {
+ CAN_INLINE_TARGET_ADDRESS,
+ NEVER_INLINE_TARGET_ADDRESS
+};
+enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
+enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
+enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
+enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
+enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
+
+class MacroAssembler : public Assembler {
+ public:
+ MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size);
+
+ inline Handle<Object> CodeObject();
+
+ // Instruction set functions ------------------------------------------------
+ // Logical macros.
+ inline void And(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Ands(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Bics(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Orr(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Orn(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Eor(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Eon(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Tst(const Register& rn, const Operand& operand);
+ void LogicalMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ LogicalOp op);
+
+ // Add and sub macros.
+ inline void Add(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Adds(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Subs(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Cmn(const Register& rn, const Operand& operand);
+ inline void Cmp(const Register& rn, const Operand& operand);
+ inline void Neg(const Register& rd,
+ const Operand& operand);
+ inline void Negs(const Register& rd,
+ const Operand& operand);
+
+ void AddSubMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op);
+
+ // Add/sub with carry macros.
+ inline void Adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Adcs(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Sbcs(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ inline void Ngc(const Register& rd,
+ const Operand& operand);
+ inline void Ngcs(const Register& rd,
+ const Operand& operand);
+ void AddSubWithCarryMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op);
+
+ // Move macros.
+ void Mov(const Register& rd,
+ const Operand& operand,
+ DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
+ void Mov(const Register& rd, uint64_t imm);
+ inline void Mvn(const Register& rd, uint64_t imm);
+ void Mvn(const Register& rd, const Operand& operand);
+ static bool IsImmMovn(uint64_t imm, unsigned reg_size);
+ static bool IsImmMovz(uint64_t imm, unsigned reg_size);
+ static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
+
+ // Conditional macros.
+ inline void Ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+ inline void Ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+ void ConditionalCompareMacro(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op);
+ void Csel(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ Condition cond);
+
+ // Load/store macros.
+#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
+ inline void FN(const REGTYPE REG, const MemOperand& addr);
+ LS_MACRO_LIST(DECLARE_FUNCTION)
+#undef DECLARE_FUNCTION
+
+ void LoadStoreMacro(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op);
+
+ // V8-specific load/store helpers.
+ void Load(const Register& rt, const MemOperand& addr, Representation r);
+ void Store(const Register& rt, const MemOperand& addr, Representation r);
+
+ enum AdrHint {
+ // The target must be within the immediate range of adr.
+ kAdrNear,
+ // The target may be outside of the immediate range of adr. Additional
+ // instructions may be emitted.
+ kAdrFar
+ };
+ void Adr(const Register& rd, Label* label, AdrHint = kAdrNear);
+
+ // Remaining instructions are simple pass-through calls to the assembler.
+ inline void Asr(const Register& rd, const Register& rn, unsigned shift);
+ inline void Asr(const Register& rd, const Register& rn, const Register& rm);
+
+ // Branch type inversion relies on these relations.
+ STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) &&
+ (reg_bit_clear == (reg_bit_set ^ 1)) &&
+ (always == (never ^ 1)));
+
+ void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
+
+ inline void B(Label* label);
+ inline void B(Condition cond, Label* label);
+ void B(Label* label, Condition cond);
+ inline void Bfi(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width);
+ inline void Bfxil(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width);
+ inline void Bind(Label* label);
+ inline void Bl(Label* label);
+ inline void Blr(const Register& xn);
+ inline void Br(const Register& xn);
+ inline void Brk(int code);
+ void Cbnz(const Register& rt, Label* label);
+ void Cbz(const Register& rt, Label* label);
+ inline void Cinc(const Register& rd, const Register& rn, Condition cond);
+ inline void Cinv(const Register& rd, const Register& rn, Condition cond);
+ inline void Cls(const Register& rd, const Register& rn);
+ inline void Clz(const Register& rd, const Register& rn);
+ inline void Cneg(const Register& rd, const Register& rn, Condition cond);
+ inline void CzeroX(const Register& rd, Condition cond);
+ inline void CmovX(const Register& rd, const Register& rn, Condition cond);
+ inline void Cset(const Register& rd, Condition cond);
+ inline void Csetm(const Register& rd, Condition cond);
+ inline void Csinc(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+ inline void Csinv(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+ inline void Csneg(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+ inline void Dmb(BarrierDomain domain, BarrierType type);
+ inline void Dsb(BarrierDomain domain, BarrierType type);
+ inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
+ inline void Extr(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ unsigned lsb);
+ inline void Fabs(const FPRegister& fd, const FPRegister& fn);
+ inline void Fadd(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm);
+ inline void Fccmp(const FPRegister& fn,
+ const FPRegister& fm,
+ StatusFlags nzcv,
+ Condition cond);
+ inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
+ inline void Fcmp(const FPRegister& fn, double value);
+ inline void Fcsel(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ Condition cond);
+ inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
+ inline void Fcvtas(const Register& rd, const FPRegister& fn);
+ inline void Fcvtau(const Register& rd, const FPRegister& fn);
+ inline void Fcvtms(const Register& rd, const FPRegister& fn);
+ inline void Fcvtmu(const Register& rd, const FPRegister& fn);
+ inline void Fcvtns(const Register& rd, const FPRegister& fn);
+ inline void Fcvtnu(const Register& rd, const FPRegister& fn);
+ inline void Fcvtzs(const Register& rd, const FPRegister& fn);
+ inline void Fcvtzu(const Register& rd, const FPRegister& fn);
+ inline void Fdiv(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm);
+ inline void Fmadd(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa);
+ inline void Fmax(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm);
+ inline void Fmaxnm(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm);
+ inline void Fmin(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm);
+ inline void Fminnm(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm);
+ inline void Fmov(FPRegister fd, FPRegister fn);
+ inline void Fmov(FPRegister fd, Register rn);
+ // Provide explicit double and float interfaces for FP immediate moves, rather
+ // than relying on implicit C++ casts. This allows signalling NaNs to be
+ // preserved when the immediate matches the format of fd. Most systems convert
+ // signalling NaNs to quiet NaNs when converting between float and double.
+ inline void Fmov(FPRegister fd, double imm);
+ inline void Fmov(FPRegister fd, float imm);
+ // Provide a template to allow other types to be converted automatically.
+ template<typename T>
+ void Fmov(FPRegister fd, T imm) {
+ ASSERT(allow_macro_instructions_);
+ Fmov(fd, static_cast<double>(imm));
+ }
+ inline void Fmov(Register rd, FPRegister fn);
+ inline void Fmsub(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa);
+ inline void Fmul(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm);
+ inline void Fneg(const FPRegister& fd, const FPRegister& fn);
+ inline void Fnmadd(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa);
+ inline void Fnmsub(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa);
+ inline void Frinta(const FPRegister& fd, const FPRegister& fn);
+ inline void Frintm(const FPRegister& fd, const FPRegister& fn);
+ inline void Frintn(const FPRegister& fd, const FPRegister& fn);
+ inline void Frintz(const FPRegister& fd, const FPRegister& fn);
+ inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
+ inline void Fsub(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm);
+ inline void Hint(SystemHint code);
+ inline void Hlt(int code);
+ inline void Isb();
+ inline void Ldnp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& src);
+ inline void Ldp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& src);
+ inline void Ldpsw(const Register& rt,
+ const Register& rt2,
+ const MemOperand& src);
+ // Load a literal from the inline constant pool.
+ inline void Ldr(const CPURegister& rt, const Immediate& imm);
+ // Helper function for double immediate.
+ inline void Ldr(const CPURegister& rt, double imm);
+ inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
+ inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
+ inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
+ inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
+ inline void Madd(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+ inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
+ inline void Mov(const Register& rd, const Register& rm);
+ inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
+ inline void Mrs(const Register& rt, SystemRegister sysreg);
+ inline void Msr(SystemRegister sysreg, const Register& rt);
+ inline void Msub(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+ inline void Mul(const Register& rd, const Register& rn, const Register& rm);
+ inline void Nop() { nop(); }
+ inline void Rbit(const Register& rd, const Register& rn);
+ inline void Ret(const Register& xn = lr);
+ inline void Rev(const Register& rd, const Register& rn);
+ inline void Rev16(const Register& rd, const Register& rn);
+ inline void Rev32(const Register& rd, const Register& rn);
+ inline void Ror(const Register& rd, const Register& rs, unsigned shift);
+ inline void Ror(const Register& rd, const Register& rn, const Register& rm);
+ inline void Sbfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width);
+ inline void Sbfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width);
+ inline void Scvtf(const FPRegister& fd,
+ const Register& rn,
+ unsigned fbits = 0);
+ inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
+ inline void Smaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+ inline void Smsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+ inline void Smull(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+ inline void Smulh(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+ inline void Stnp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& dst);
+ inline void Stp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& dst);
+ inline void Sxtb(const Register& rd, const Register& rn);
+ inline void Sxth(const Register& rd, const Register& rn);
+ inline void Sxtw(const Register& rd, const Register& rn);
+ void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
+ void Tbz(const Register& rt, unsigned bit_pos, Label* label);
+ inline void Ubfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width);
+ inline void Ubfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width);
+ inline void Ucvtf(const FPRegister& fd,
+ const Register& rn,
+ unsigned fbits = 0);
+ inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
+ inline void Umaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+ inline void Umsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+ inline void Uxtb(const Register& rd, const Register& rn);
+ inline void Uxth(const Register& rd, const Register& rn);
+ inline void Uxtw(const Register& rd, const Register& rn);
+
+ // Pseudo-instructions ------------------------------------------------------
+
+ // Compute rd = abs(rm).
+ // This function clobbers the condition flags. On output the overflow flag is
+ // set iff the negation overflowed.
+ //
+ // If rm is the minimum representable value, the result is not representable.
+ // Handlers for each case can be specified using the relevant labels.
+ void Abs(const Register& rd, const Register& rm,
+ Label * is_not_representable = NULL,
+ Label * is_representable = NULL);
+
+ // Push or pop up to 4 registers of the same width to or from the stack,
+ // using the current stack pointer as set by SetStackPointer.
+ //
+ // If an argument register is 'NoReg', all further arguments are also assumed
+ // to be 'NoReg', and are thus not pushed or popped.
+ //
+ // Arguments are ordered such that "Push(a, b);" is functionally equivalent
+ // to "Push(a); Push(b);".
+ //
+ // It is valid to push the same register more than once, and there is no
+ // restriction on the order in which registers are specified.
+ //
+ // It is not valid to pop into the same register more than once in one
+ // operation, not even into the zero register.
+ //
+ // If the current stack pointer (as set by SetStackPointer) is csp, then it
+ // must be aligned to 16 bytes on entry and the total size of the specified
+ // registers must also be a multiple of 16 bytes.
+ //
+ // Even if the current stack pointer is not the system stack pointer (csp),
+ // Push (and derived methods) will still modify the system stack pointer in
+ // order to comply with ABI rules about accessing memory below the system
+ // stack pointer.
+ //
+ // Other than the registers passed into Pop, the stack pointer and (possibly)
+ // the system stack pointer, these methods do not modify any other registers.
+ void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
+ const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
+ void Push(const CPURegister& src0, const CPURegister& src1,
+ const CPURegister& src2, const CPURegister& src3,
+ const CPURegister& src4, const CPURegister& src5 = NoReg,
+ const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
+ void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
+ const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
+
+ // Alternative forms of Push and Pop, taking a RegList or CPURegList that
+ // specifies the registers that are to be pushed or popped. Higher-numbered
+ // registers are associated with higher memory addresses (as in the A32 push
+ // and pop instructions).
+ //
+ // (Push|Pop)SizeRegList allow you to specify the register size as a
+ // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
+ // kSRegSizeInBits are supported.
+ //
+ // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
+ void PushCPURegList(CPURegList registers);
+ void PopCPURegList(CPURegList registers);
+
+ inline void PushSizeRegList(RegList registers, unsigned reg_size,
+ CPURegister::RegisterType type = CPURegister::kRegister) {
+ PushCPURegList(CPURegList(type, reg_size, registers));
+ }
+ inline void PopSizeRegList(RegList registers, unsigned reg_size,
+ CPURegister::RegisterType type = CPURegister::kRegister) {
+ PopCPURegList(CPURegList(type, reg_size, registers));
+ }
+ inline void PushXRegList(RegList regs) {
+ PushSizeRegList(regs, kXRegSizeInBits);
+ }
+ inline void PopXRegList(RegList regs) {
+ PopSizeRegList(regs, kXRegSizeInBits);
+ }
+ inline void PushWRegList(RegList regs) {
+ PushSizeRegList(regs, kWRegSizeInBits);
+ }
+ inline void PopWRegList(RegList regs) {
+ PopSizeRegList(regs, kWRegSizeInBits);
+ }
+ inline void PushDRegList(RegList regs) {
+ PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
+ }
+ inline void PopDRegList(RegList regs) {
+ PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
+ }
+ inline void PushSRegList(RegList regs) {
+ PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
+ }
+ inline void PopSRegList(RegList regs) {
+ PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
+ }
+
+ // Push the specified register 'count' times.
+ void PushMultipleTimes(CPURegister src, Register count);
+ void PushMultipleTimes(CPURegister src, int count);
+
+ // This is a convenience method for pushing a single Handle<Object>.
+ inline void Push(Handle<Object> handle);
+ void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
+
+ // Aliases of Push and Pop, required for V8 compatibility.
+ inline void push(Register src) {
+ Push(src);
+ }
+ inline void pop(Register dst) {
+ Pop(dst);
+ }
+
+ // Sometimes callers need to push or pop multiple registers in a way that is
+ // difficult to structure efficiently for fixed Push or Pop calls. This scope
+ // allows push requests to be queued up, then flushed at once. The
+ // MacroAssembler will try to generate the most efficient sequence required.
+ //
+ // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
+ // register sizes and types.
+ class PushPopQueue {
+ public:
+ explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
+
+ ~PushPopQueue() {
+ ASSERT(queued_.empty());
+ }
+
+ void Queue(const CPURegister& rt) {
+ size_ += rt.SizeInBytes();
+ queued_.push_back(rt);
+ }
+
+ enum PreambleDirective {
+ WITH_PREAMBLE,
+ SKIP_PREAMBLE
+ };
+ void PushQueued(PreambleDirective preamble_directive = WITH_PREAMBLE);
+ void PopQueued();
+
+ private:
+ MacroAssembler* masm_;
+ int size_;
+ std::vector<CPURegister> queued_;
+ };
+
+ // Poke 'src' onto the stack. The offset is in bytes.
+ //
+ // If the current stack pointer (according to StackPointer()) is csp, then
+ // csp must be aligned to 16 bytes.
+ void Poke(const CPURegister& src, const Operand& offset);
+
+ // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
+ //
+ // If the current stack pointer (according to StackPointer()) is csp, then
+ // csp must be aligned to 16 bytes.
+ void Peek(const CPURegister& dst, const Operand& offset);
+
+ // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
+ // with 'src2' at a higher address than 'src1'. The offset is in bytes.
+ //
+ // If the current stack pointer (according to StackPointer()) is csp, then
+ // csp must be aligned to 16 bytes.
+ void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
+
+ // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
+ // values peeked will be adjacent, with the value in 'dst2' being from a
+ // higher address than 'dst1'. The offset is in bytes.
+ //
+ // If the current stack pointer (according to StackPointer()) is csp, then
+ // csp must be aligned to 16 bytes.
+ void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
+
+ // Claim or drop stack space without actually accessing memory.
+ //
+ // In debug mode, both of these will write invalid data into the claimed or
+ // dropped space.
+ //
+ // If the current stack pointer (according to StackPointer()) is csp, then it
+ // must be aligned to 16 bytes and the size claimed or dropped must be a
+ // multiple of 16 bytes.
+ //
+ // Note that unit_size must be specified in bytes. For variants which take a
+ // Register count, the unit size must be a power of two.
+ inline void Claim(uint64_t count, uint64_t unit_size = kXRegSize);
+ inline void Claim(const Register& count,
+ uint64_t unit_size = kXRegSize);
+ inline void Drop(uint64_t count, uint64_t unit_size = kXRegSize);
+ inline void Drop(const Register& count,
+ uint64_t unit_size = kXRegSize);
+
+ // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
+ // register.
+ inline void ClaimBySMI(const Register& count_smi,
+ uint64_t unit_size = kXRegSize);
+ inline void DropBySMI(const Register& count_smi,
+ uint64_t unit_size = kXRegSize);
+
+ // Compare a register with an operand, and branch to label depending on the
+ // condition. May corrupt the status flags.
+ inline void CompareAndBranch(const Register& lhs,
+ const Operand& rhs,
+ Condition cond,
+ Label* label);
+
+ // Test the bits of register defined by bit_pattern, and branch if ANY of
+ // those bits are set. May corrupt the status flags.
+ inline void TestAndBranchIfAnySet(const Register& reg,
+ const uint64_t bit_pattern,
+ Label* label);
+
+ // Test the bits of register defined by bit_pattern, and branch if ALL of
+ // those bits are clear (ie. not set.) May corrupt the status flags.
+ inline void TestAndBranchIfAllClear(const Register& reg,
+ const uint64_t bit_pattern,
+ Label* label);
+
+ // Insert one or more instructions into the instruction stream that encode
+ // some caller-defined data. The instructions used will be executable with no
+ // side effects.
+ inline void InlineData(uint64_t data);
+
+ // Insert an instrumentation enable marker into the instruction stream.
+ inline void EnableInstrumentation();
+
+ // Insert an instrumentation disable marker into the instruction stream.
+ inline void DisableInstrumentation();
+
+ // Insert an instrumentation event marker into the instruction stream. These
+ // will be picked up by the instrumentation system to annotate an instruction
+ // profile. The argument marker_name must be a printable two character string;
+ // it will be encoded in the event marker.
+ inline void AnnotateInstrumentation(const char* marker_name);
+
+ // If emit_debug_code() is true, emit a run-time check to ensure that
+ // StackPointer() does not point below the system stack pointer.
+ //
+ // Whilst it is architecturally legal for StackPointer() to point below csp,
+ // it can be evidence of a potential bug because the ABI forbids accesses
+ // below csp.
+ //
+ // If StackPointer() is the system stack pointer (csp) or ALWAYS_ALIGN_CSP is
+ // enabled, then csp will be dereferenced to cause the processor
+ // (or simulator) to abort if it is not properly aligned.
+ //
+ // If emit_debug_code() is false, this emits no code.
+ void AssertStackConsistency();
+
+ // Preserve the callee-saved registers (as defined by AAPCS64).
+ //
+ // Higher-numbered registers are pushed before lower-numbered registers, and
+ // thus get higher addresses.
+ // Floating-point registers are pushed before general-purpose registers, and
+ // thus get higher addresses.
+ //
+ // Note that registers are not checked for invalid values. Use this method
+ // only if you know that the GC won't try to examine the values on the stack.
+ //
+ // This method must not be called unless the current stack pointer (as set by
+ // SetStackPointer) is the system stack pointer (csp), and is aligned to
+ // ActivationFrameAlignment().
+ void PushCalleeSavedRegisters();
+
+ // Restore the callee-saved registers (as defined by AAPCS64).
+ //
+ // Higher-numbered registers are popped after lower-numbered registers, and
+ // thus come from higher addresses.
+ // Floating-point registers are popped after general-purpose registers, and
+ // thus come from higher addresses.
+ //
+ // This method must not be called unless the current stack pointer (as set by
+ // SetStackPointer) is the system stack pointer (csp), and is aligned to
+ // ActivationFrameAlignment().
+ void PopCalleeSavedRegisters();
+
+ // Set the current stack pointer, but don't generate any code.
+ inline void SetStackPointer(const Register& stack_pointer) {
+ ASSERT(!TmpList()->IncludesAliasOf(stack_pointer));
+ sp_ = stack_pointer;
+ }
+
+ // Return the current stack pointer, as set by SetStackPointer.
+ inline const Register& StackPointer() const {
+ return sp_;
+ }
+
+ // Align csp for a frame, as per ActivationFrameAlignment, and make it the
+ // current stack pointer.
+ inline void AlignAndSetCSPForFrame() {
+ int sp_alignment = ActivationFrameAlignment();
+ // AAPCS64 mandates at least 16-byte alignment.
+ ASSERT(sp_alignment >= 16);
+ ASSERT(IsPowerOf2(sp_alignment));
+ Bic(csp, StackPointer(), sp_alignment - 1);
+ SetStackPointer(csp);
+ }
+
+ // Push the system stack pointer (csp) down to allow the same to be done to
+ // the current stack pointer (according to StackPointer()). This must be
+ // called _before_ accessing the memory.
+ //
+ // This is necessary when pushing or otherwise adding things to the stack, to
+ // satisfy the AAPCS64 constraint that the memory below the system stack
+ // pointer is not accessed. The amount pushed will be increased as necessary
+ // to ensure csp remains aligned to 16 bytes.
+ //
+ // This method asserts that StackPointer() is not csp, since the call does
+ // not make sense in that context.
+ inline void BumpSystemStackPointer(const Operand& space);
+
+ // Re-synchronizes the system stack pointer (csp) with the current stack
+ // pointer (according to StackPointer()). This function will ensure the
+ // new value of the system stack pointer is remains aligned to 16 bytes, and
+ // is lower than or equal to the value of the current stack pointer.
+ //
+ // This method asserts that StackPointer() is not csp, since the call does
+ // not make sense in that context.
+ inline void SyncSystemStackPointer();
+
+ // Helpers ------------------------------------------------------------------
+ // Root register.
+ inline void InitializeRootRegister();
+
+ void AssertFPCRState(Register fpcr = NoReg);
+ void ConfigureFPCR();
+ void CanonicalizeNaN(const FPRegister& dst, const FPRegister& src);
+ void CanonicalizeNaN(const FPRegister& reg) {
+ CanonicalizeNaN(reg, reg);
+ }
+
+ // Load an object from the root table.
+ void LoadRoot(CPURegister destination,
+ Heap::RootListIndex index);
+ // Store an object to the root table.
+ void StoreRoot(Register source,
+ Heap::RootListIndex index);
+
+ // Load both TrueValue and FalseValue roots.
+ void LoadTrueFalseRoots(Register true_root, Register false_root);
+
+ void LoadHeapObject(Register dst, Handle<HeapObject> object);
+
+ void LoadObject(Register result, Handle<Object> object) {
+ AllowDeferredHandleDereference heap_object_check;
+ if (object->IsHeapObject()) {
+ LoadHeapObject(result, Handle<HeapObject>::cast(object));
+ } else {
+ ASSERT(object->IsSmi());
+ Mov(result, Operand(object));
+ }
+ }
+
+ static int SafepointRegisterStackIndex(int reg_code);
+
+ // This is required for compatibility with architecture independant code.
+ // Remove if not needed.
+ inline void Move(Register dst, Register src) { Mov(dst, src); }
+
+ void LoadInstanceDescriptors(Register map,
+ Register descriptors);
+ void EnumLengthUntagged(Register dst, Register map);
+ void EnumLengthSmi(Register dst, Register map);
+ void NumberOfOwnDescriptors(Register dst, Register map);
+
+ template<typename Field>
+ void DecodeField(Register dst, Register src) {
+ static const uint64_t shift = Field::kShift;
+ static const uint64_t setbits = CountSetBits(Field::kMask, 32);
+ Ubfx(dst, src, shift, setbits);
+ }
+
+ template<typename Field>
+ void DecodeField(Register reg) {
+ DecodeField<Field>(reg, reg);
+ }
+
+ // ---- SMI and Number Utilities ----
+
+ inline void SmiTag(Register dst, Register src);
+ inline void SmiTag(Register smi);
+ inline void SmiUntag(Register dst, Register src);
+ inline void SmiUntag(Register smi);
+ inline void SmiUntagToDouble(FPRegister dst,
+ Register src,
+ UntagMode mode = kNotSpeculativeUntag);
+ inline void SmiUntagToFloat(FPRegister dst,
+ Register src,
+ UntagMode mode = kNotSpeculativeUntag);
+
+ // Tag and push in one step.
+ inline void SmiTagAndPush(Register src);
+ inline void SmiTagAndPush(Register src1, Register src2);
+
+ // Compute the absolute value of 'smi' and leave the result in 'smi'
+ // register. If 'smi' is the most negative SMI, the absolute value cannot
+ // be represented as a SMI and a jump to 'slow' is done.
+ void SmiAbs(const Register& smi, Label* slow);
+
+ inline void JumpIfSmi(Register value,
+ Label* smi_label,
+ Label* not_smi_label = NULL);
+ inline void JumpIfNotSmi(Register value, Label* not_smi_label);
+ inline void JumpIfBothSmi(Register value1,
+ Register value2,
+ Label* both_smi_label,
+ Label* not_smi_label = NULL);
+ inline void JumpIfEitherSmi(Register value1,
+ Register value2,
+ Label* either_smi_label,
+ Label* not_smi_label = NULL);
+ inline void JumpIfEitherNotSmi(Register value1,
+ Register value2,
+ Label* not_smi_label);
+ inline void JumpIfBothNotSmi(Register value1,
+ Register value2,
+ Label* not_smi_label);
+
+ // Abort execution if argument is a smi, enabled via --debug-code.
+ void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
+ void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
+
+ inline void ObjectTag(Register tagged_obj, Register obj);
+ inline void ObjectUntag(Register untagged_obj, Register obj);
+
+ // Abort execution if argument is not a name, enabled via --debug-code.
+ void AssertName(Register object);
+
+ // Abort execution if argument is not undefined or an AllocationSite, enabled
+ // via --debug-code.
+ void AssertUndefinedOrAllocationSite(Register object, Register scratch);
+
+ // Abort execution if argument is not a string, enabled via --debug-code.
+ void AssertString(Register object);
+
+ void JumpForHeapNumber(Register object,
+ Register heap_number_map,
+ Label* on_heap_number,
+ Label* on_not_heap_number = NULL);
+ void JumpIfHeapNumber(Register object,
+ Label* on_heap_number,
+ Register heap_number_map = NoReg);
+ void JumpIfNotHeapNumber(Register object,
+ Label* on_not_heap_number,
+ Register heap_number_map = NoReg);
+
+ // Sets the vs flag if the input is -0.0.
+ void TestForMinusZero(DoubleRegister input);
+
+ // Jump to label if the input double register contains -0.0.
+ void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
+
+ // Jump to label if the input integer register contains the double precision
+ // floating point representation of -0.0.
+ void JumpIfMinusZero(Register input, Label* on_negative_zero);
+
+ // Generate code to do a lookup in the number string cache. If the number in
+ // the register object is found in the cache the generated code falls through
+ // with the result in the result register. The object and the result register
+ // can be the same. If the number is not found in the cache the code jumps to
+ // the label not_found with only the content of register object unchanged.
+ void LookupNumberStringCache(Register object,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* not_found);
+
+ // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
+ // output.
+ void ClampInt32ToUint8(Register in_out);
+ void ClampInt32ToUint8(Register output, Register input);
+
+ // Saturate a double in input to an unsigned 8-bit integer in output.
+ void ClampDoubleToUint8(Register output,
+ DoubleRegister input,
+ DoubleRegister dbl_scratch);
+
+ // Try to represent a double as a signed 32-bit int.
+ // This succeeds if the result compares equal to the input, so inputs of -0.0
+ // are represented as 0 and handled as a success.
+ //
+ // On output the Z flag is set if the operation was successful.
+ void TryRepresentDoubleAsInt32(Register as_int,
+ FPRegister value,
+ FPRegister scratch_d,
+ Label* on_successful_conversion = NULL,
+ Label* on_failed_conversion = NULL) {
+ ASSERT(as_int.Is32Bits());
+ TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
+ on_failed_conversion);
+ }
+
+ // Try to represent a double as a signed 64-bit int.
+ // This succeeds if the result compares equal to the input, so inputs of -0.0
+ // are represented as 0 and handled as a success.
+ //
+ // On output the Z flag is set if the operation was successful.
+ void TryRepresentDoubleAsInt64(Register as_int,
+ FPRegister value,
+ FPRegister scratch_d,
+ Label* on_successful_conversion = NULL,
+ Label* on_failed_conversion = NULL) {
+ ASSERT(as_int.Is64Bits());
+ TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
+ on_failed_conversion);
+ }
+
+ // ---- Object Utilities ----
+
+ // Copy fields from 'src' to 'dst', where both are tagged objects.
+ // The 'temps' list is a list of X registers which can be used for scratch
+ // values. The temps list must include at least one register.
+ //
+ // Currently, CopyFields cannot make use of more than three registers from
+ // the 'temps' list.
+ //
+ // CopyFields expects to be able to take at least two registers from
+ // MacroAssembler::TmpList().
+ void CopyFields(Register dst, Register src, CPURegList temps, unsigned count);
+
+ // Starting at address in dst, initialize field_count 64-bit fields with
+ // 64-bit value in register filler. Register dst is corrupted.
+ void FillFields(Register dst,
+ Register field_count,
+ Register filler);
+
+ // Copies a number of bytes from src to dst. All passed registers are
+ // clobbered. On exit src and dst will point to the place just after where the
+ // last byte was read or written and length will be zero. Hint may be used to
+ // determine which is the most efficient algorithm to use for copying.
+ void CopyBytes(Register dst,
+ Register src,
+ Register length,
+ Register scratch,
+ CopyHint hint = kCopyUnknown);
+
+ // ---- String Utilities ----
+
+
+ // Jump to label if either object is not a sequential ASCII string.
+ // Optionally perform a smi check on the objects first.
+ void JumpIfEitherIsNotSequentialAsciiStrings(
+ Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure,
+ SmiCheckType smi_check = DO_SMI_CHECK);
+
+ // Check if instance type is sequential ASCII string and jump to label if
+ // it is not.
+ void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
+ Register scratch,
+ Label* failure);
+
+ // Checks if both instance types are sequential ASCII strings and jumps to
+ // label if either is not.
+ void JumpIfEitherInstanceTypeIsNotSequentialAscii(
+ Register first_object_instance_type,
+ Register second_object_instance_type,
+ Register scratch1,
+ Register scratch2,
+ Label* failure);
+
+ // Checks if both instance types are sequential ASCII strings and jumps to
+ // label if either is not.
+ void JumpIfBothInstanceTypesAreNotSequentialAscii(
+ Register first_object_instance_type,
+ Register second_object_instance_type,
+ Register scratch1,
+ Register scratch2,
+ Label* failure);
+
+ void JumpIfNotUniqueName(Register type, Label* not_unique_name);
+
+ // ---- Calling / Jumping helpers ----
+
+ // This is required for compatibility in architecture indepenedant code.
+ inline void jmp(Label* L) { B(L); }
+
+ // Passes thrown value to the handler of top of the try handler chain.
+ // Register value must be x0.
+ void Throw(Register value,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4);
+
+ // Propagates an uncatchable exception to the top of the current JS stack's
+ // handler chain. Register value must be x0.
+ void ThrowUncatchable(Register value,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4);
+
+ void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
+ void TailCallStub(CodeStub* stub);
+
+ void CallRuntime(const Runtime::Function* f,
+ int num_arguments,
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs);
+
+ void CallRuntime(Runtime::FunctionId id,
+ int num_arguments,
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
+ CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
+ }
+
+ void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
+ const Runtime::Function* function = Runtime::FunctionForId(id);
+ CallRuntime(function, function->nargs, kSaveFPRegs);
+ }
+
+ void TailCallRuntime(Runtime::FunctionId fid,
+ int num_arguments,
+ int result_size);
+
+ int ActivationFrameAlignment();
+
+ // Calls a C function.
+ // The called function is not allowed to trigger a
+ // garbage collection, since that might move the code and invalidate the
+ // return address (unless this is somehow accounted for by the called
+ // function).
+ void CallCFunction(ExternalReference function,
+ int num_reg_arguments);
+ void CallCFunction(ExternalReference function,
+ int num_reg_arguments,
+ int num_double_arguments);
+ void CallCFunction(Register function,
+ int num_reg_arguments,
+ int num_double_arguments);
+
+ // Calls an API function. Allocates HandleScope, extracts returned value
+ // from handle and propagates exceptions.
+ // 'stack_space' is the space to be unwound on exit (includes the call JS
+ // arguments space and the additional space allocated for the fast call).
+ // 'spill_offset' is the offset from the stack pointer where
+ // CallApiFunctionAndReturn can spill registers.
+ void CallApiFunctionAndReturn(Register function_address,
+ ExternalReference thunk_ref,
+ int stack_space,
+ int spill_offset,
+ MemOperand return_value_operand,
+ MemOperand* context_restore_operand);
+
+ // The number of register that CallApiFunctionAndReturn will need to save on
+ // the stack. The space for these registers need to be allocated in the
+ // ExitFrame before calling CallApiFunctionAndReturn.
+ static const int kCallApiFunctionSpillSpace = 4;
+
+ // Jump to a runtime routine.
+ void JumpToExternalReference(const ExternalReference& builtin);
+ // Tail call of a runtime routine (jump).
+ // Like JumpToExternalReference, but also takes care of passing the number
+ // of parameters.
+ void TailCallExternalReference(const ExternalReference& ext,
+ int num_arguments,
+ int result_size);
+ void CallExternalReference(const ExternalReference& ext,
+ int num_arguments);
+
+
+ // Invoke specified builtin JavaScript function. Adds an entry to
+ // the unresolved list if the name does not resolve.
+ void InvokeBuiltin(Builtins::JavaScript id,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper = NullCallWrapper());
+
+ // Store the code object for the given builtin in the target register and
+ // setup the function in the function register.
+ void GetBuiltinEntry(Register target,
+ Register function,
+ Builtins::JavaScript id);
+
+ // Store the function for the given builtin in the target register.
+ void GetBuiltinFunction(Register target, Builtins::JavaScript id);
+
+ void Jump(Register target);
+ void Jump(Address target, RelocInfo::Mode rmode);
+ void Jump(Handle<Code> code, RelocInfo::Mode rmode);
+ void Jump(intptr_t target, RelocInfo::Mode rmode);
+
+ void Call(Register target);
+ void Call(Label* target);
+ void Call(Address target, RelocInfo::Mode rmode);
+ void Call(Handle<Code> code,
+ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
+ TypeFeedbackId ast_id = TypeFeedbackId::None());
+
+ // For every Call variant, there is a matching CallSize function that returns
+ // the size (in bytes) of the call sequence.
+ static int CallSize(Register target);
+ static int CallSize(Label* target);
+ static int CallSize(Address target, RelocInfo::Mode rmode);
+ static int CallSize(Handle<Code> code,
+ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
+ TypeFeedbackId ast_id = TypeFeedbackId::None());
+
+ // Registers used through the invocation chain are hard-coded.
+ // We force passing the parameters to ensure the contracts are correctly
+ // honoured by the caller.
+ // 'function' must be x1.
+ // 'actual' must use an immediate or x0.
+ // 'expected' must use an immediate or x2.
+ // 'call_kind' must be x5.
+ void InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual,
+ Handle<Code> code_constant,
+ Register code_reg,
+ Label* done,
+ InvokeFlag flag,
+ bool* definitely_mismatches,
+ const CallWrapper& call_wrapper);
+ void InvokeCode(Register code,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+ // Invoke the JavaScript function in the given register.
+ // Changes the current context to the context in the function before invoking.
+ void InvokeFunction(Register function,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+ void InvokeFunction(Register function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+ void InvokeFunction(Handle<JSFunction> function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+
+ // ---- Floating point helpers ----
+
+ // Perform a conversion from a double to a signed int64. If the input fits in
+ // range of the 64-bit result, execution branches to done. Otherwise,
+ // execution falls through, and the sign of the result can be used to
+ // determine if overflow was towards positive or negative infinity.
+ //
+ // On successful conversion, the least significant 32 bits of the result are
+ // equivalent to the ECMA-262 operation "ToInt32".
+ //
+ // Only public for the test code in test-code-stubs-arm64.cc.
+ void TryConvertDoubleToInt64(Register result,
+ DoubleRegister input,
+ Label* done);
+
+ // Performs a truncating conversion of a floating point number as used by
+ // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
+ // Exits with 'result' holding the answer.
+ void TruncateDoubleToI(Register result, DoubleRegister double_input);
+
+ // Performs a truncating conversion of a heap number as used by
+ // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
+ // must be different registers. Exits with 'result' holding the answer.
+ void TruncateHeapNumberToI(Register result, Register object);
+
+ // Converts the smi or heap number in object to an int32 using the rules
+ // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
+ // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
+ // different registers.
+ void TruncateNumberToI(Register object,
+ Register result,
+ Register heap_number_map,
+ Label* not_int32);
+
+ // ---- Code generation helpers ----
+
+ void set_generating_stub(bool value) { generating_stub_ = value; }
+ bool generating_stub() const { return generating_stub_; }
+#if DEBUG
+ void set_allow_macro_instructions(bool value) {
+ allow_macro_instructions_ = value;
+ }
+ bool allow_macro_instructions() const { return allow_macro_instructions_; }
+#endif
+ bool use_real_aborts() const { return use_real_aborts_; }
+ void set_has_frame(bool value) { has_frame_ = value; }
+ bool has_frame() const { return has_frame_; }
+ bool AllowThisStubCall(CodeStub* stub);
+
+ class NoUseRealAbortsScope {
+ public:
+ explicit NoUseRealAbortsScope(MacroAssembler* masm) :
+ saved_(masm->use_real_aborts_), masm_(masm) {
+ masm_->use_real_aborts_ = false;
+ }
+ ~NoUseRealAbortsScope() {
+ masm_->use_real_aborts_ = saved_;
+ }
+ private:
+ bool saved_;
+ MacroAssembler* masm_;
+ };
+
+ // ---------------------------------------------------------------------------
+ // Debugger Support
+
+ void DebugBreak();
+
+ // ---------------------------------------------------------------------------
+ // Exception handling
+
+ // Push a new try handler and link into try handler chain.
+ void PushTryHandler(StackHandler::Kind kind, int handler_index);
+
+ // Unlink the stack handler on top of the stack from the try handler chain.
+ // Must preserve the result register.
+ void PopTryHandler();
+
+
+ // ---------------------------------------------------------------------------
+ // Allocation support
+
+ // Allocate an object in new space or old pointer space. The object_size is
+ // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
+ // is passed. The allocated object is returned in result.
+ //
+ // If the new space is exhausted control continues at the gc_required label.
+ // In this case, the result and scratch registers may still be clobbered.
+ // If flags includes TAG_OBJECT, the result is tagged as as a heap object.
+ void Allocate(Register object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags);
+
+ void Allocate(int object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags);
+
+ // Undo allocation in new space. The object passed and objects allocated after
+ // it will no longer be allocated. The caller must make sure that no pointers
+ // are left to the object(s) no longer allocated as they would be invalid when
+ // allocation is undone.
+ void UndoAllocationInNewSpace(Register object, Register scratch);
+
+ void AllocateTwoByteString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required);
+ void AllocateAsciiString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required);
+ void AllocateTwoByteConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+ void AllocateAsciiConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+ void AllocateTwoByteSlicedString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+ void AllocateAsciiSlicedString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+
+ // Allocates a heap number or jumps to the gc_required label if the young
+ // space is full and a scavenge is needed.
+ // All registers are clobbered.
+ // If no heap_number_map register is provided, the function will take care of
+ // loading it.
+ void AllocateHeapNumber(Register result,
+ Label* gc_required,
+ Register scratch1,
+ Register scratch2,
+ CPURegister value = NoFPReg,
+ CPURegister heap_number_map = NoReg);
+
+ // ---------------------------------------------------------------------------
+ // Support functions.
+
+ // Try to get function prototype of a function and puts the value in the
+ // result register. Checks that the function really is a function and jumps
+ // to the miss label if the fast checks fail. The function register will be
+ // untouched; the other registers may be clobbered.
+ enum BoundFunctionAction {
+ kMissOnBoundFunction,
+ kDontMissOnBoundFunction
+ };
+
+ void TryGetFunctionPrototype(Register function,
+ Register result,
+ Register scratch,
+ Label* miss,
+ BoundFunctionAction action =
+ kDontMissOnBoundFunction);
+
+ // Compare object type for heap object. heap_object contains a non-Smi
+ // whose object type should be compared with the given type. This both
+ // sets the flags and leaves the object type in the type_reg register.
+ // It leaves the map in the map register (unless the type_reg and map register
+ // are the same register). It leaves the heap object in the heap_object
+ // register unless the heap_object register is the same register as one of the
+ // other registers.
+ void CompareObjectType(Register heap_object,
+ Register map,
+ Register type_reg,
+ InstanceType type);
+
+
+ // Compare object type for heap object, and branch if equal (or not.)
+ // heap_object contains a non-Smi whose object type should be compared with
+ // the given type. This both sets the flags and leaves the object type in
+ // the type_reg register. It leaves the map in the map register (unless the
+ // type_reg and map register are the same register). It leaves the heap
+ // object in the heap_object register unless the heap_object register is the
+ // same register as one of the other registers.
+ void JumpIfObjectType(Register object,
+ Register map,
+ Register type_reg,
+ InstanceType type,
+ Label* if_cond_pass,
+ Condition cond = eq);
+
+ void JumpIfNotObjectType(Register object,
+ Register map,
+ Register type_reg,
+ InstanceType type,
+ Label* if_not_object);
+
+ // Compare instance type in a map. map contains a valid map object whose
+ // object type should be compared with the given type. This both
+ // sets the flags and leaves the object type in the type_reg register.
+ void CompareInstanceType(Register map,
+ Register type_reg,
+ InstanceType type);
+
+ // Compare an object's map with the specified map. Condition flags are set
+ // with result of map compare.
+ void CompareMap(Register obj,
+ Register scratch,
+ Handle<Map> map);
+
+ // As above, but the map of the object is already loaded into the register
+ // which is preserved by the code generated.
+ void CompareMap(Register obj_map,
+ Handle<Map> map);
+
+ // Check if the map of an object is equal to a specified map and branch to
+ // label if not. Skip the smi check if not required (object is known to be a
+ // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
+ // against maps that are ElementsKind transition maps of the specified map.
+ void CheckMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Label* fail,
+ SmiCheckType smi_check_type);
+
+
+ void CheckMap(Register obj,
+ Register scratch,
+ Heap::RootListIndex index,
+ Label* fail,
+ SmiCheckType smi_check_type);
+
+ // As above, but the map of the object is already loaded into obj_map, and is
+ // preserved.
+ void CheckMap(Register obj_map,
+ Handle<Map> map,
+ Label* fail,
+ SmiCheckType smi_check_type);
+
+ // Check if the map of an object is equal to a specified map and branch to a
+ // specified target if equal. Skip the smi check if not required (object is
+ // known to be a heap object)
+ void DispatchMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Handle<Code> success,
+ SmiCheckType smi_check_type);
+
+ // Test the bitfield of the heap object map with mask and set the condition
+ // flags. The object register is preserved.
+ void TestMapBitfield(Register object, uint64_t mask);
+
+ // Load the elements kind field from a map, and return it in the result
+ // register.
+ void LoadElementsKindFromMap(Register result, Register map);
+
+ // Compare the object in a register to a value from the root list.
+ void CompareRoot(const Register& obj, Heap::RootListIndex index);
+
+ // Compare the object in a register to a value and jump if they are equal.
+ void JumpIfRoot(const Register& obj,
+ Heap::RootListIndex index,
+ Label* if_equal);
+
+ // Compare the object in a register to a value and jump if they are not equal.
+ void JumpIfNotRoot(const Register& obj,
+ Heap::RootListIndex index,
+ Label* if_not_equal);
+
+ // Load and check the instance type of an object for being a unique name.
+ // Loads the type into the second argument register.
+ // The object and type arguments can be the same register; in that case it
+ // will be overwritten with the type.
+ // Fall-through if the object was a string and jump on fail otherwise.
+ inline void IsObjectNameType(Register object, Register type, Label* fail);
+
+ inline void IsObjectJSObjectType(Register heap_object,
+ Register map,
+ Register scratch,
+ Label* fail);
+
+ // Check the instance type in the given map to see if it corresponds to a
+ // JS object type. Jump to the fail label if this is not the case and fall
+ // through otherwise. However if fail label is NULL, no branch will be
+ // performed and the flag will be updated. You can test the flag for "le"
+ // condition to test if it is a valid JS object type.
+ inline void IsInstanceJSObjectType(Register map,
+ Register scratch,
+ Label* fail);
+
+ // Load and check the instance type of an object for being a string.
+ // Loads the type into the second argument register.
+ // The object and type arguments can be the same register; in that case it
+ // will be overwritten with the type.
+ // Jumps to not_string or string appropriate. If the appropriate label is
+ // NULL, fall through.
+ inline void IsObjectJSStringType(Register object, Register type,
+ Label* not_string, Label* string = NULL);
+
+ // Compare the contents of a register with an operand, and branch to true,
+ // false or fall through, depending on condition.
+ void CompareAndSplit(const Register& lhs,
+ const Operand& rhs,
+ Condition cond,
+ Label* if_true,
+ Label* if_false,
+ Label* fall_through);
+
+ // Test the bits of register defined by bit_pattern, and branch to
+ // if_any_set, if_all_clear or fall_through accordingly.
+ void TestAndSplit(const Register& reg,
+ uint64_t bit_pattern,
+ Label* if_all_clear,
+ Label* if_any_set,
+ Label* fall_through);
+
+ // Check if a map for a JSObject indicates that the object has fast elements.
+ // Jump to the specified label if it does not.
+ void CheckFastElements(Register map, Register scratch, Label* fail);
+
+ // Check if a map for a JSObject indicates that the object can have both smi
+ // and HeapObject elements. Jump to the specified label if it does not.
+ void CheckFastObjectElements(Register map, Register scratch, Label* fail);
+
+ // Check to see if number can be stored as a double in FastDoubleElements.
+ // If it can, store it at the index specified by key_reg in the array,
+ // otherwise jump to fail.
+ void StoreNumberToDoubleElements(Register value_reg,
+ Register key_reg,
+ Register elements_reg,
+ Register scratch1,
+ FPRegister fpscratch1,
+ Label* fail,
+ int elements_offset = 0);
+
+ // Picks out an array index from the hash field.
+ // Register use:
+ // hash - holds the index's hash. Clobbered.
+ // index - holds the overwritten index on exit.
+ void IndexFromHash(Register hash, Register index);
+
+ // ---------------------------------------------------------------------------
+ // Inline caching support.
+
+ void EmitSeqStringSetCharCheck(Register string,
+ Register index,
+ SeqStringSetCharCheckIndexType index_type,
+ Register scratch,
+ uint32_t encoding_mask);
+
+ // Generate code for checking access rights - used for security checks
+ // on access to global objects across environments. The holder register
+ // is left untouched, whereas both scratch registers are clobbered.
+ void CheckAccessGlobalProxy(Register holder_reg,
+ Register scratch1,
+ Register scratch2,
+ Label* miss);
+
+ // Hash the interger value in 'key' register.
+ // It uses the same algorithm as ComputeIntegerHash in utils.h.
+ void GetNumberHash(Register key, Register scratch);
+
+ // Load value from the dictionary.
+ //
+ // elements - holds the slow-case elements of the receiver on entry.
+ // Unchanged unless 'result' is the same register.
+ //
+ // key - holds the smi key on entry.
+ // Unchanged unless 'result' is the same register.
+ //
+ // result - holds the result on exit if the load succeeded.
+ // Allowed to be the same as 'key' or 'result'.
+ // Unchanged on bailout so 'key' or 'result' can be used
+ // in further computation.
+ void LoadFromNumberDictionary(Label* miss,
+ Register elements,
+ Register key,
+ Register result,
+ Register scratch0,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3);
+
+ // ---------------------------------------------------------------------------
+ // Frames.
+
+ // Activation support.
+ void EnterFrame(StackFrame::Type type);
+ void LeaveFrame(StackFrame::Type type);
+
+ // Returns map with validated enum cache in object register.
+ void CheckEnumCache(Register object,
+ Register null_value,
+ Register scratch0,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* call_runtime);
+
+ // AllocationMemento support. Arrays may have an associated
+ // AllocationMemento object that can be checked for in order to pretransition
+ // to another type.
+ // On entry, receiver should point to the array object.
+ // If allocation info is present, the Z flag is set (so that the eq
+ // condition will pass).
+ void TestJSArrayForAllocationMemento(Register receiver,
+ Register scratch1,
+ Register scratch2,
+ Label* no_memento_found);
+
+ void JumpIfJSArrayHasAllocationMemento(Register receiver,
+ Register scratch1,
+ Register scratch2,
+ Label* memento_found) {
+ Label no_memento_found;
+ TestJSArrayForAllocationMemento(receiver, scratch1, scratch2,
+ &no_memento_found);
+ B(eq, memento_found);
+ Bind(&no_memento_found);
+ }
+
+ // The stack pointer has to switch between csp and jssp when setting up and
+ // destroying the exit frame. Hence preserving/restoring the registers is
+ // slightly more complicated than simple push/pop operations.
+ void ExitFramePreserveFPRegs();
+ void ExitFrameRestoreFPRegs();
+
+ // Generates function and stub prologue code.
+ void StubPrologue();
+ void Prologue(bool code_pre_aging);
+
+ // Enter exit frame. Exit frames are used when calling C code from generated
+ // (JavaScript) code.
+ //
+ // The stack pointer must be jssp on entry, and will be set to csp by this
+ // function. The frame pointer is also configured, but the only other
+ // registers modified by this function are the provided scratch register, and
+ // jssp.
+ //
+ // The 'extra_space' argument can be used to allocate some space in the exit
+ // frame that will be ignored by the GC. This space will be reserved in the
+ // bottom of the frame immediately above the return address slot.
+ //
+ // Set up a stack frame and registers as follows:
+ // fp[8]: CallerPC (lr)
+ // fp -> fp[0]: CallerFP (old fp)
+ // fp[-8]: SPOffset (new csp)
+ // fp[-16]: CodeObject()
+ // fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
+ // csp[8]: Memory reserved for the caller if extra_space != 0.
+ // Alignment padding, if necessary.
+ // csp -> csp[0]: Space reserved for the return address.
+ //
+ // This function also stores the new frame information in the top frame, so
+ // that the new frame becomes the current frame.
+ void EnterExitFrame(bool save_doubles,
+ const Register& scratch,
+ int extra_space = 0);
+
+ // Leave the current exit frame, after a C function has returned to generated
+ // (JavaScript) code.
+ //
+ // This effectively unwinds the operation of EnterExitFrame:
+ // * Preserved doubles are restored (if restore_doubles is true).
+ // * The frame information is removed from the top frame.
+ // * The exit frame is dropped.
+ // * The stack pointer is reset to jssp.
+ //
+ // The stack pointer must be csp on entry.
+ void LeaveExitFrame(bool save_doubles,
+ const Register& scratch,
+ bool restore_context);
+
+ void LoadContext(Register dst, int context_chain_length);
+
+ // Emit code for a truncating division by a constant. The dividend register is
+ // unchanged. Dividend and result must be different.
+ void TruncatingDiv(Register result, Register dividend, int32_t divisor);
+
+ // ---------------------------------------------------------------------------
+ // StatsCounter support
+
+ void SetCounter(StatsCounter* counter, int value, Register scratch1,
+ Register scratch2);
+ void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
+ Register scratch2);
+ void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
+ Register scratch2);
+
+ // ---------------------------------------------------------------------------
+ // Garbage collector support (GC).
+
+ enum RememberedSetFinalAction {
+ kReturnAtEnd,
+ kFallThroughAtEnd
+ };
+
+ // Record in the remembered set the fact that we have a pointer to new space
+ // at the address pointed to by the addr register. Only works if addr is not
+ // in new space.
+ void RememberedSetHelper(Register object, // Used for debug code.
+ Register addr,
+ Register scratch1,
+ SaveFPRegsMode save_fp,
+ RememberedSetFinalAction and_then);
+
+ // Push and pop the registers that can hold pointers, as defined by the
+ // RegList constant kSafepointSavedRegisters.
+ void PushSafepointRegisters();
+ void PopSafepointRegisters();
+
+ void PushSafepointRegistersAndDoubles();
+ void PopSafepointRegistersAndDoubles();
+
+ // Store value in register src in the safepoint stack slot for register dst.
+ void StoreToSafepointRegisterSlot(Register src, Register dst) {
+ Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
+ }
+
+ // Load the value of the src register from its safepoint stack slot
+ // into register dst.
+ void LoadFromSafepointRegisterSlot(Register dst, Register src) {
+ Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
+ }
+
+ void CheckPageFlagSet(const Register& object,
+ const Register& scratch,
+ int mask,
+ Label* if_any_set);
+
+ void CheckPageFlagClear(const Register& object,
+ const Register& scratch,
+ int mask,
+ Label* if_all_clear);
+
+ void CheckMapDeprecated(Handle<Map> map,
+ Register scratch,
+ Label* if_deprecated);
+
+ // Check if object is in new space and jump accordingly.
+ // Register 'object' is preserved.
+ void JumpIfNotInNewSpace(Register object,
+ Label* branch) {
+ InNewSpace(object, ne, branch);
+ }
+
+ void JumpIfInNewSpace(Register object,
+ Label* branch) {
+ InNewSpace(object, eq, branch);
+ }
+
+ // Notify the garbage collector that we wrote a pointer into an object.
+ // |object| is the object being stored into, |value| is the object being
+ // stored. value and scratch registers are clobbered by the operation.
+ // The offset is the offset from the start of the object, not the offset from
+ // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
+ void RecordWriteField(
+ Register object,
+ int offset,
+ Register value,
+ Register scratch,
+ LinkRegisterStatus lr_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting);
+
+ // As above, but the offset has the tag presubtracted. For use with
+ // MemOperand(reg, off).
+ inline void RecordWriteContextSlot(
+ Register context,
+ int offset,
+ Register value,
+ Register scratch,
+ LinkRegisterStatus lr_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting) {
+ RecordWriteField(context,
+ offset + kHeapObjectTag,
+ value,
+ scratch,
+ lr_status,
+ save_fp,
+ remembered_set_action,
+ smi_check,
+ pointers_to_here_check_for_value);
+ }
+
+ void RecordWriteForMap(
+ Register object,
+ Register map,
+ Register dst,
+ LinkRegisterStatus lr_status,
+ SaveFPRegsMode save_fp);
+
+ // For a given |object| notify the garbage collector that the slot |address|
+ // has been written. |value| is the object being stored. The value and
+ // address registers are clobbered by the operation.
+ void RecordWrite(
+ Register object,
+ Register address,
+ Register value,
+ LinkRegisterStatus lr_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting);
+
+ // Checks the color of an object. If the object is already grey or black
+ // then we just fall through, since it is already live. If it is white and
+ // we can determine that it doesn't need to be scanned, then we just mark it
+ // black and fall through. For the rest we jump to the label so the
+ // incremental marker can fix its assumptions.
+ void EnsureNotWhite(Register object,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4,
+ Label* object_is_white_and_not_data);
+
+ // Detects conservatively whether an object is data-only, i.e. it does need to
+ // be scanned by the garbage collector.
+ void JumpIfDataObject(Register value,
+ Register scratch,
+ Label* not_data_object);
+
+ // Helper for finding the mark bits for an address.
+ // Note that the behaviour slightly differs from other architectures.
+ // On exit:
+ // - addr_reg is unchanged.
+ // - The bitmap register points at the word with the mark bits.
+ // - The shift register contains the index of the first color bit for this
+ // object in the bitmap.
+ inline void GetMarkBits(Register addr_reg,
+ Register bitmap_reg,
+ Register shift_reg);
+
+ // Check if an object has a given incremental marking color.
+ void HasColor(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* has_color,
+ int first_bit,
+ int second_bit);
+
+ void JumpIfBlack(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* on_black);
+
+
+ // Get the location of a relocated constant (its address in the constant pool)
+ // from its load site.
+ void GetRelocatedValueLocation(Register ldr_location,
+ Register result);
+
+
+ // ---------------------------------------------------------------------------
+ // Debugging.
+
+ // Calls Abort(msg) if the condition cond is not satisfied.
+ // Use --debug_code to enable.
+ void Assert(Condition cond, BailoutReason reason);
+ void AssertRegisterIsClear(Register reg, BailoutReason reason);
+ void AssertRegisterIsRoot(
+ Register reg,
+ Heap::RootListIndex index,
+ BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
+ void AssertFastElements(Register elements);
+
+ // Abort if the specified register contains the invalid color bit pattern.
+ // The pattern must be in bits [1:0] of 'reg' register.
+ //
+ // If emit_debug_code() is false, this emits no code.
+ void AssertHasValidColor(const Register& reg);
+
+ // Abort if 'object' register doesn't point to a string object.
+ //
+ // If emit_debug_code() is false, this emits no code.
+ void AssertIsString(const Register& object);
+
+ // Like Assert(), but always enabled.
+ void Check(Condition cond, BailoutReason reason);
+ void CheckRegisterIsClear(Register reg, BailoutReason reason);
+
+ // Print a message to stderr and abort execution.
+ void Abort(BailoutReason reason);
+
+ // Conditionally load the cached Array transitioned map of type
+ // transitioned_kind from the native context if the map in register
+ // map_in_out is the cached Array map in the native context of
+ // expected_kind.
+ void LoadTransitionedArrayMapConditional(
+ ElementsKind expected_kind,
+ ElementsKind transitioned_kind,
+ Register map_in_out,
+ Register scratch1,
+ Register scratch2,
+ Label* no_map_match);
+
+ void LoadGlobalFunction(int index, Register function);
+
+ // Load the initial map from the global function. The registers function and
+ // map can be the same, function is then overwritten.
+ void LoadGlobalFunctionInitialMap(Register function,
+ Register map,
+ Register scratch);
+
+ CPURegList* TmpList() { return &tmp_list_; }
+ CPURegList* FPTmpList() { return &fptmp_list_; }
+
+ static CPURegList DefaultTmpList();
+ static CPURegList DefaultFPTmpList();
+
+ // Like printf, but print at run-time from generated code.
+ //
+ // The caller must ensure that arguments for floating-point placeholders
+ // (such as %e, %f or %g) are FPRegisters, and that arguments for integer
+ // placeholders are Registers.
+ //
+ // At the moment it is only possible to print the value of csp if it is the
+ // current stack pointer. Otherwise, the MacroAssembler will automatically
+ // update csp on every push (using BumpSystemStackPointer), so determining its
+ // value is difficult.
+ //
+ // Format placeholders that refer to more than one argument, or to a specific
+ // argument, are not supported. This includes formats like "%1$d" or "%.*d".
+ //
+ // This function automatically preserves caller-saved registers so that
+ // calling code can use Printf at any point without having to worry about
+ // corruption. The preservation mechanism generates a lot of code. If this is
+ // a problem, preserve the important registers manually and then call
+ // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
+ // implicitly preserved.
+ void Printf(const char * format,
+ CPURegister arg0 = NoCPUReg,
+ CPURegister arg1 = NoCPUReg,
+ CPURegister arg2 = NoCPUReg,
+ CPURegister arg3 = NoCPUReg);
+
+ // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
+ //
+ // The return code from the system printf call will be returned in x0.
+ void PrintfNoPreserve(const char * format,
+ const CPURegister& arg0 = NoCPUReg,
+ const CPURegister& arg1 = NoCPUReg,
+ const CPURegister& arg2 = NoCPUReg,
+ const CPURegister& arg3 = NoCPUReg);
+
+ // Code ageing support functions.
+
+ // Code ageing on ARM64 works similarly to on ARM. When V8 wants to mark a
+ // function as old, it replaces some of the function prologue (generated by
+ // FullCodeGenerator::Generate) with a call to a special stub (ultimately
+ // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
+ // function prologue to its initial young state (indicating that it has been
+ // recently run) and continues. A young function is therefore one which has a
+ // normal frame setup sequence, and an old function has a code age sequence
+ // which calls a code ageing stub.
+
+ // Set up a basic stack frame for young code (or code exempt from ageing) with
+ // type FUNCTION. It may be patched later for code ageing support. This is
+ // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
+ //
+ // This function takes an Assembler so it can be called from either a
+ // MacroAssembler or a PatchingAssembler context.
+ static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
+
+ // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
+ void EmitFrameSetupForCodeAgePatching();
+
+ // Emit a code age sequence that calls the relevant code age stub. The code
+ // generated by this sequence is expected to replace the code generated by
+ // EmitFrameSetupForCodeAgePatching, and represents an old function.
+ //
+ // If stub is NULL, this function generates the code age sequence but omits
+ // the stub address that is normally embedded in the instruction stream. This
+ // can be used by debug code to verify code age sequences.
+ static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
+
+ // Call EmitCodeAgeSequence from a MacroAssembler context.
+ void EmitCodeAgeSequence(Code* stub);
+
+ // Return true if the sequence is a young sequence geneated by
+ // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
+ // sequence is a code age sequence (emitted by EmitCodeAgeSequence).
+ static bool IsYoungSequence(Isolate* isolate, byte* sequence);
+
+ // Jumps to found label if a prototype map has dictionary elements.
+ void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
+ Register scratch1, Label* found);
+
+ // Perform necessary maintenance operations before a push or after a pop.
+ //
+ // Note that size is specified in bytes.
+ void PushPreamble(Operand total_size);
+ void PopPostamble(Operand total_size);
+
+ void PushPreamble(int count, int size) { PushPreamble(count * size); }
+ void PopPostamble(int count, int size) { PopPostamble(count * size); }
+
+ private:
+ // Helpers for CopyFields.
+ // These each implement CopyFields in a different way.
+ void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count,
+ Register scratch1, Register scratch2,
+ Register scratch3, Register scratch4,
+ Register scratch5);
+ void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count,
+ Register scratch1, Register scratch2,
+ Register scratch3, Register scratch4);
+ void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count,
+ Register scratch1, Register scratch2,
+ Register scratch3);
+
+ // The actual Push and Pop implementations. These don't generate any code
+ // other than that required for the push or pop. This allows
+ // (Push|Pop)CPURegList to bundle together run-time assertions for a large
+ // block of registers.
+ //
+ // Note that size is per register, and is specified in bytes.
+ void PushHelper(int count, int size,
+ const CPURegister& src0, const CPURegister& src1,
+ const CPURegister& src2, const CPURegister& src3);
+ void PopHelper(int count, int size,
+ const CPURegister& dst0, const CPURegister& dst1,
+ const CPURegister& dst2, const CPURegister& dst3);
+
+ // Call Printf. On a native build, a simple call will be generated, but if the
+ // simulator is being used then a suitable pseudo-instruction is used. The
+ // arguments and stack (csp) must be prepared by the caller as for a normal
+ // AAPCS64 call to 'printf'.
+ //
+ // The 'args' argument should point to an array of variable arguments in their
+ // proper PCS registers (and in calling order). The argument registers can
+ // have mixed types. The format string (x0) should not be included.
+ void CallPrintf(int arg_count = 0, const CPURegister * args = NULL);
+
+ // Helper for throwing exceptions. Compute a handler address and jump to
+ // it. See the implementation for register usage.
+ void JumpToHandlerEntry(Register exception,
+ Register object,
+ Register state,
+ Register scratch1,
+ Register scratch2);
+
+ // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
+ void InNewSpace(Register object,
+ Condition cond, // eq for new space, ne otherwise.
+ Label* branch);
+
+ // Try to represent a double as an int so that integer fast-paths may be
+ // used. Not every valid integer value is guaranteed to be caught.
+ // It supports both 32-bit and 64-bit integers depending whether 'as_int'
+ // is a W or X register.
+ //
+ // This does not distinguish between +0 and -0, so if this distinction is
+ // important it must be checked separately.
+ //
+ // On output the Z flag is set if the operation was successful.
+ void TryRepresentDoubleAsInt(Register as_int,
+ FPRegister value,
+ FPRegister scratch_d,
+ Label* on_successful_conversion = NULL,
+ Label* on_failed_conversion = NULL);
+
+ bool generating_stub_;
+#if DEBUG
+ // Tell whether any of the macro instruction can be used. When false the
+ // MacroAssembler will assert if a method which can emit a variable number
+ // of instructions is called.
+ bool allow_macro_instructions_;
+#endif
+ bool has_frame_;
+
+ // The Abort method should call a V8 runtime function, but the CallRuntime
+ // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
+ // use a simpler abort mechanism that doesn't depend on CEntryStub.
+ //
+ // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
+ // being generated.
+ bool use_real_aborts_;
+
+ // This handle will be patched with the code object on installation.
+ Handle<Object> code_object_;
+
+ // The register to use as a stack pointer for stack operations.
+ Register sp_;
+
+ // Scratch registers available for use by the MacroAssembler.
+ CPURegList tmp_list_;
+ CPURegList fptmp_list_;
+
+ void InitializeNewString(Register string,
+ Register length,
+ Heap::RootListIndex map_index,
+ Register scratch1,
+ Register scratch2);
+
+ public:
+ // Far branches resolving.
+ //
+ // The various classes of branch instructions with immediate offsets have
+ // different ranges. While the Assembler will fail to assemble a branch
+ // exceeding its range, the MacroAssembler offers a mechanism to resolve
+ // branches to too distant targets, either by tweaking the generated code to
+ // use branch instructions with wider ranges or generating veneers.
+ //
+ // Currently branches to distant targets are resolved using unconditional
+ // branch isntructions with a range of +-128MB. If that becomes too little
+ // (!), the mechanism can be extended to generate special veneers for really
+ // far targets.
+
+ // Helps resolve branching to labels potentially out of range.
+ // If the label is not bound, it registers the information necessary to later
+ // be able to emit a veneer for this branch if necessary.
+ // If the label is bound, it returns true if the label (or the previous link
+ // in the label chain) is out of range. In that case the caller is responsible
+ // for generating appropriate code.
+ // Otherwise it returns false.
+ // This function also checks wether veneers need to be emitted.
+ bool NeedExtraInstructionsOrRegisterBranch(Label *label,
+ ImmBranchType branch_type);
+};
+
+
+// Use this scope when you need a one-to-one mapping bewteen methods and
+// instructions. This scope prevents the MacroAssembler from being called and
+// literal pools from being emitted. It also asserts the number of instructions
+// emitted is what you specified when creating the scope.
+class InstructionAccurateScope BASE_EMBEDDED {
+ public:
+ InstructionAccurateScope(MacroAssembler* masm, size_t count = 0)
+ : masm_(masm)
+#ifdef DEBUG
+ ,
+ size_(count * kInstructionSize)
+#endif
+ {
+ // Before blocking the const pool, see if it needs to be emitted.
+ masm_->CheckConstPool(false, true);
+ masm_->CheckVeneerPool(false, true);
+
+ masm_->StartBlockPools();
+#ifdef DEBUG
+ if (count != 0) {
+ masm_->bind(&start_);
+ }
+ previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
+ masm_->set_allow_macro_instructions(false);
+#endif
+ }
+
+ ~InstructionAccurateScope() {
+ masm_->EndBlockPools();
+#ifdef DEBUG
+ if (start_.is_bound()) {
+ ASSERT(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
+ }
+ masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
+#endif
+ }
+
+ private:
+ MacroAssembler* masm_;
+#ifdef DEBUG
+ size_t size_;
+ Label start_;
+ bool previous_allow_macro_instructions_;
+#endif
+};
+
+
+// This scope utility allows scratch registers to be managed safely. The
+// MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
+// registers. These registers can be allocated on demand, and will be returned
+// at the end of the scope.
+//
+// When the scope ends, the MacroAssembler's lists will be restored to their
+// original state, even if the lists were modified by some other means.
+class UseScratchRegisterScope {
+ public:
+ explicit UseScratchRegisterScope(MacroAssembler* masm)
+ : available_(masm->TmpList()),
+ availablefp_(masm->FPTmpList()),
+ old_available_(available_->list()),
+ old_availablefp_(availablefp_->list()) {
+ ASSERT(available_->type() == CPURegister::kRegister);
+ ASSERT(availablefp_->type() == CPURegister::kFPRegister);
+ }
+
+ ~UseScratchRegisterScope();
+
+ // Take a register from the appropriate temps list. It will be returned
+ // automatically when the scope ends.
+ Register AcquireW() { return AcquireNextAvailable(available_).W(); }
+ Register AcquireX() { return AcquireNextAvailable(available_).X(); }
+ FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
+ FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
+
+ Register UnsafeAcquire(const Register& reg) {
+ return Register(UnsafeAcquire(available_, reg));
+ }
+
+ Register AcquireSameSizeAs(const Register& reg);
+ FPRegister AcquireSameSizeAs(const FPRegister& reg);
+
+ private:
+ static CPURegister AcquireNextAvailable(CPURegList* available);
+ static CPURegister UnsafeAcquire(CPURegList* available,
+ const CPURegister& reg);
+
+ // Available scratch registers.
+ CPURegList* available_; // kRegister
+ CPURegList* availablefp_; // kFPRegister
+
+ // The state of the available lists at the start of this scope.
+ RegList old_available_; // kRegister
+ RegList old_availablefp_; // kFPRegister
+};
+
+
+inline MemOperand ContextMemOperand(Register context, int index) {
+ return MemOperand(context, Context::SlotOffset(index));
+}
+
+inline MemOperand GlobalObjectMemOperand() {
+ return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX);
+}
+
+
+// Encode and decode information about patchable inline SMI checks.
+class InlineSmiCheckInfo {
+ public:
+ explicit InlineSmiCheckInfo(Address info);
+
+ bool HasSmiCheck() const {
+ return smi_check_ != NULL;
+ }
+
+ const Register& SmiRegister() const {
+ return reg_;
+ }
+
+ Instruction* SmiCheck() const {
+ return smi_check_;
+ }
+
+ // Use MacroAssembler::InlineData to emit information about patchable inline
+ // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
+ // indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
+ //
+ // The generated patch information can be read using the InlineSMICheckInfo
+ // class.
+ static void Emit(MacroAssembler* masm, const Register& reg,
+ const Label* smi_check);
+
+ // Emit information to indicate that there is no inline SMI check.
+ static void EmitNotInlined(MacroAssembler* masm) {
+ Label unbound;
+ Emit(masm, NoReg, &unbound);
+ }
+
+ private:
+ Register reg_;
+ Instruction* smi_check_;
+
+ // Fields in the data encoded by InlineData.
+
+ // A width of 5 (Rd_width) for the SMI register preclues the use of csp,
+ // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
+ // used in a patchable check. The Emit() method checks this.
+ //
+ // Note that the total size of the fields is restricted by the underlying
+ // storage size handled by the BitField class, which is a uint32_t.
+ class RegisterBits : public BitField<unsigned, 0, 5> {};
+ class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
+};
+
+} } // namespace v8::internal
+
+#ifdef GENERATED_CODE_COVERAGE
+#error "Unsupported option"
+#define CODE_COVERAGE_STRINGIFY(x) #x
+#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
+#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
+#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
+#else
+#define ACCESS_MASM(masm) masm->
+#endif
+
+#endif // V8_ARM64_MACRO_ASSEMBLER_ARM64_H_