summaryrefslogtreecommitdiffstats
path: root/chromium/v8/src/x87/macro-assembler-x87.cc
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/v8/src/x87/macro-assembler-x87.cc')
-rw-r--r--chromium/v8/src/x87/macro-assembler-x87.cc3301
1 files changed, 3301 insertions, 0 deletions
diff --git a/chromium/v8/src/x87/macro-assembler-x87.cc b/chromium/v8/src/x87/macro-assembler-x87.cc
new file mode 100644
index 00000000000..06bd774a552
--- /dev/null
+++ b/chromium/v8/src/x87/macro-assembler-x87.cc
@@ -0,0 +1,3301 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/bootstrapper.h"
+#include "src/codegen.h"
+#include "src/cpu-profiler.h"
+#include "src/debug.h"
+#include "src/isolate-inl.h"
+#include "src/runtime.h"
+#include "src/serialize.h"
+
+namespace v8 {
+namespace internal {
+
+// -------------------------------------------------------------------------
+// MacroAssembler implementation.
+
+MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
+ : Assembler(arg_isolate, buffer, size),
+ generating_stub_(false),
+ has_frame_(false) {
+ if (isolate() != NULL) {
+ // TODO(titzer): should we just use a null handle here instead?
+ code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
+ isolate());
+ }
+}
+
+
+void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
+ ASSERT(!r.IsDouble());
+ if (r.IsInteger8()) {
+ movsx_b(dst, src);
+ } else if (r.IsUInteger8()) {
+ movzx_b(dst, src);
+ } else if (r.IsInteger16()) {
+ movsx_w(dst, src);
+ } else if (r.IsUInteger16()) {
+ movzx_w(dst, src);
+ } else {
+ mov(dst, src);
+ }
+}
+
+
+void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
+ ASSERT(!r.IsDouble());
+ if (r.IsInteger8() || r.IsUInteger8()) {
+ mov_b(dst, src);
+ } else if (r.IsInteger16() || r.IsUInteger16()) {
+ mov_w(dst, src);
+ } else {
+ if (r.IsHeapObject()) {
+ AssertNotSmi(src);
+ } else if (r.IsSmi()) {
+ AssertSmi(src);
+ }
+ mov(dst, src);
+ }
+}
+
+
+void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
+ if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
+ Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
+ mov(destination, value);
+ return;
+ }
+ ExternalReference roots_array_start =
+ ExternalReference::roots_array_start(isolate());
+ mov(destination, Immediate(index));
+ mov(destination, Operand::StaticArray(destination,
+ times_pointer_size,
+ roots_array_start));
+}
+
+
+void MacroAssembler::StoreRoot(Register source,
+ Register scratch,
+ Heap::RootListIndex index) {
+ ASSERT(Heap::RootCanBeWrittenAfterInitialization(index));
+ ExternalReference roots_array_start =
+ ExternalReference::roots_array_start(isolate());
+ mov(scratch, Immediate(index));
+ mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
+ source);
+}
+
+
+void MacroAssembler::CompareRoot(Register with,
+ Register scratch,
+ Heap::RootListIndex index) {
+ ExternalReference roots_array_start =
+ ExternalReference::roots_array_start(isolate());
+ mov(scratch, Immediate(index));
+ cmp(with, Operand::StaticArray(scratch,
+ times_pointer_size,
+ roots_array_start));
+}
+
+
+void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
+ ASSERT(isolate()->heap()->RootCanBeTreatedAsConstant(index));
+ Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
+ cmp(with, value);
+}
+
+
+void MacroAssembler::CompareRoot(const Operand& with,
+ Heap::RootListIndex index) {
+ ASSERT(isolate()->heap()->RootCanBeTreatedAsConstant(index));
+ Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
+ cmp(with, value);
+}
+
+
+void MacroAssembler::InNewSpace(
+ Register object,
+ Register scratch,
+ Condition cc,
+ Label* condition_met,
+ Label::Distance condition_met_distance) {
+ ASSERT(cc == equal || cc == not_equal);
+ if (scratch.is(object)) {
+ and_(scratch, Immediate(~Page::kPageAlignmentMask));
+ } else {
+ mov(scratch, Immediate(~Page::kPageAlignmentMask));
+ and_(scratch, object);
+ }
+ // Check that we can use a test_b.
+ ASSERT(MemoryChunk::IN_FROM_SPACE < 8);
+ ASSERT(MemoryChunk::IN_TO_SPACE < 8);
+ int mask = (1 << MemoryChunk::IN_FROM_SPACE)
+ | (1 << MemoryChunk::IN_TO_SPACE);
+ // If non-zero, the page belongs to new-space.
+ test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
+ static_cast<uint8_t>(mask));
+ j(cc, condition_met, condition_met_distance);
+}
+
+
+void MacroAssembler::RememberedSetHelper(
+ Register object, // Only used for debug checks.
+ Register addr,
+ Register scratch,
+ MacroAssembler::RememberedSetFinalAction and_then) {
+ Label done;
+ if (emit_debug_code()) {
+ Label ok;
+ JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
+ int3();
+ bind(&ok);
+ }
+ // Load store buffer top.
+ ExternalReference store_buffer =
+ ExternalReference::store_buffer_top(isolate());
+ mov(scratch, Operand::StaticVariable(store_buffer));
+ // Store pointer to buffer.
+ mov(Operand(scratch, 0), addr);
+ // Increment buffer top.
+ add(scratch, Immediate(kPointerSize));
+ // Write back new top of buffer.
+ mov(Operand::StaticVariable(store_buffer), scratch);
+ // Call stub on end of buffer.
+ // Check for end of buffer.
+ test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
+ if (and_then == kReturnAtEnd) {
+ Label buffer_overflowed;
+ j(not_equal, &buffer_overflowed, Label::kNear);
+ ret(0);
+ bind(&buffer_overflowed);
+ } else {
+ ASSERT(and_then == kFallThroughAtEnd);
+ j(equal, &done, Label::kNear);
+ }
+ StoreBufferOverflowStub store_buffer_overflow =
+ StoreBufferOverflowStub(isolate());
+ CallStub(&store_buffer_overflow);
+ if (and_then == kReturnAtEnd) {
+ ret(0);
+ } else {
+ ASSERT(and_then == kFallThroughAtEnd);
+ bind(&done);
+ }
+}
+
+
+void MacroAssembler::ClampUint8(Register reg) {
+ Label done;
+ test(reg, Immediate(0xFFFFFF00));
+ j(zero, &done, Label::kNear);
+ setcc(negative, reg); // 1 if negative, 0 if positive.
+ dec_b(reg); // 0 if negative, 255 if positive.
+ bind(&done);
+}
+
+
+void MacroAssembler::SlowTruncateToI(Register result_reg,
+ Register input_reg,
+ int offset) {
+ DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
+ call(stub.GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+void MacroAssembler::TruncateX87TOSToI(Register result_reg) {
+ sub(esp, Immediate(kDoubleSize));
+ fst_d(MemOperand(esp, 0));
+ SlowTruncateToI(result_reg, esp, 0);
+ add(esp, Immediate(kDoubleSize));
+}
+
+
+void MacroAssembler::X87TOSToI(Register result_reg,
+ MinusZeroMode minus_zero_mode,
+ Label* conversion_failed,
+ Label::Distance dst) {
+ Label done;
+ sub(esp, Immediate(kPointerSize));
+ fld(0);
+ fist_s(MemOperand(esp, 0));
+ fild_s(MemOperand(esp, 0));
+ pop(result_reg);
+ FCmp();
+ j(not_equal, conversion_failed, dst);
+ j(parity_even, conversion_failed, dst);
+ if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
+ test(result_reg, Operand(result_reg));
+ j(not_zero, &done, Label::kNear);
+ // To check for minus zero, we load the value again as float, and check
+ // if that is still 0.
+ sub(esp, Immediate(kPointerSize));
+ fst_s(MemOperand(esp, 0));
+ pop(result_reg);
+ test(result_reg, Operand(result_reg));
+ j(not_zero, conversion_failed, dst);
+ }
+ bind(&done);
+}
+
+
+void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
+ Register input_reg) {
+ Label done, slow_case;
+
+ SlowTruncateToI(result_reg, input_reg);
+ bind(&done);
+}
+
+
+void MacroAssembler::TaggedToI(Register result_reg,
+ Register input_reg,
+ MinusZeroMode minus_zero_mode,
+ Label* lost_precision) {
+ Label done;
+
+ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
+ isolate()->factory()->heap_number_map());
+ j(not_equal, lost_precision, Label::kNear);
+
+ // TODO(olivf) Converting a number on the fpu is actually quite slow. We
+ // should first try a fast conversion and then bailout to this slow case.
+ Label lost_precision_pop, zero_check;
+ Label* lost_precision_int = (minus_zero_mode == FAIL_ON_MINUS_ZERO)
+ ? &lost_precision_pop : lost_precision;
+ sub(esp, Immediate(kPointerSize));
+ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
+ if (minus_zero_mode == FAIL_ON_MINUS_ZERO) fld(0);
+ fist_s(MemOperand(esp, 0));
+ fild_s(MemOperand(esp, 0));
+ FCmp();
+ pop(result_reg);
+ j(not_equal, lost_precision_int, Label::kNear);
+ j(parity_even, lost_precision_int, Label::kNear); // NaN.
+ if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
+ test(result_reg, Operand(result_reg));
+ j(zero, &zero_check, Label::kNear);
+ fstp(0);
+ jmp(&done, Label::kNear);
+ bind(&zero_check);
+ // To check for minus zero, we load the value again as float, and check
+ // if that is still 0.
+ sub(esp, Immediate(kPointerSize));
+ fstp_s(Operand(esp, 0));
+ pop(result_reg);
+ test(result_reg, Operand(result_reg));
+ j(zero, &done, Label::kNear);
+ jmp(lost_precision, Label::kNear);
+
+ bind(&lost_precision_pop);
+ fstp(0);
+ jmp(lost_precision, Label::kNear);
+ }
+ bind(&done);
+}
+
+
+void MacroAssembler::LoadUint32NoSSE2(Register src) {
+ Label done;
+ push(src);
+ fild_s(Operand(esp, 0));
+ cmp(src, Immediate(0));
+ j(not_sign, &done, Label::kNear);
+ ExternalReference uint32_bias =
+ ExternalReference::address_of_uint32_bias();
+ fld_d(Operand::StaticVariable(uint32_bias));
+ faddp(1);
+ bind(&done);
+ add(esp, Immediate(kPointerSize));
+}
+
+
+void MacroAssembler::RecordWriteArray(
+ Register object,
+ Register value,
+ Register index,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check,
+ PointersToHereCheck pointers_to_here_check_for_value) {
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis.
+ Label done;
+
+ // Skip barrier if writing a smi.
+ if (smi_check == INLINE_SMI_CHECK) {
+ ASSERT_EQ(0, kSmiTag);
+ test(value, Immediate(kSmiTagMask));
+ j(zero, &done);
+ }
+
+ // Array access: calculate the destination address in the same manner as
+ // KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset
+ // into an array of words.
+ Register dst = index;
+ lea(dst, Operand(object, index, times_half_pointer_size,
+ FixedArray::kHeaderSize - kHeapObjectTag));
+
+ RecordWrite(object, dst, value, remembered_set_action, OMIT_SMI_CHECK,
+ pointers_to_here_check_for_value);
+
+ bind(&done);
+
+ // Clobber clobbered input registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(value, Immediate(BitCast<int32_t>(kZapValue)));
+ mov(index, Immediate(BitCast<int32_t>(kZapValue)));
+ }
+}
+
+
+void MacroAssembler::RecordWriteField(
+ Register object,
+ int offset,
+ Register value,
+ Register dst,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check,
+ PointersToHereCheck pointers_to_here_check_for_value) {
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis.
+ Label done;
+
+ // Skip barrier if writing a smi.
+ if (smi_check == INLINE_SMI_CHECK) {
+ JumpIfSmi(value, &done, Label::kNear);
+ }
+
+ // Although the object register is tagged, the offset is relative to the start
+ // of the object, so so offset must be a multiple of kPointerSize.
+ ASSERT(IsAligned(offset, kPointerSize));
+
+ lea(dst, FieldOperand(object, offset));
+ if (emit_debug_code()) {
+ Label ok;
+ test_b(dst, (1 << kPointerSizeLog2) - 1);
+ j(zero, &ok, Label::kNear);
+ int3();
+ bind(&ok);
+ }
+
+ RecordWrite(object, dst, value, remembered_set_action, OMIT_SMI_CHECK,
+ pointers_to_here_check_for_value);
+
+ bind(&done);
+
+ // Clobber clobbered input registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(value, Immediate(BitCast<int32_t>(kZapValue)));
+ mov(dst, Immediate(BitCast<int32_t>(kZapValue)));
+ }
+}
+
+
+void MacroAssembler::RecordWriteForMap(
+ Register object,
+ Handle<Map> map,
+ Register scratch1,
+ Register scratch2) {
+ Label done;
+
+ Register address = scratch1;
+ Register value = scratch2;
+ if (emit_debug_code()) {
+ Label ok;
+ lea(address, FieldOperand(object, HeapObject::kMapOffset));
+ test_b(address, (1 << kPointerSizeLog2) - 1);
+ j(zero, &ok, Label::kNear);
+ int3();
+ bind(&ok);
+ }
+
+ ASSERT(!object.is(value));
+ ASSERT(!object.is(address));
+ ASSERT(!value.is(address));
+ AssertNotSmi(object);
+
+ if (!FLAG_incremental_marking) {
+ return;
+ }
+
+ // Compute the address.
+ lea(address, FieldOperand(object, HeapObject::kMapOffset));
+
+ // Count number of write barriers in generated code.
+ isolate()->counters()->write_barriers_static()->Increment();
+ IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
+
+ // A single check of the map's pages interesting flag suffices, since it is
+ // only set during incremental collection, and then it's also guaranteed that
+ // the from object's page's interesting flag is also set. This optimization
+ // relies on the fact that maps can never be in new space.
+ ASSERT(!isolate()->heap()->InNewSpace(*map));
+ CheckPageFlagForMap(map,
+ MemoryChunk::kPointersToHereAreInterestingMask,
+ zero,
+ &done,
+ Label::kNear);
+
+ RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET);
+ CallStub(&stub);
+
+ bind(&done);
+
+ // Clobber clobbered input registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(value, Immediate(BitCast<int32_t>(kZapValue)));
+ mov(scratch1, Immediate(BitCast<int32_t>(kZapValue)));
+ mov(scratch2, Immediate(BitCast<int32_t>(kZapValue)));
+ }
+}
+
+
+void MacroAssembler::RecordWrite(
+ Register object,
+ Register address,
+ Register value,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check,
+ PointersToHereCheck pointers_to_here_check_for_value) {
+ ASSERT(!object.is(value));
+ ASSERT(!object.is(address));
+ ASSERT(!value.is(address));
+ AssertNotSmi(object);
+
+ if (remembered_set_action == OMIT_REMEMBERED_SET &&
+ !FLAG_incremental_marking) {
+ return;
+ }
+
+ if (emit_debug_code()) {
+ Label ok;
+ cmp(value, Operand(address, 0));
+ j(equal, &ok, Label::kNear);
+ int3();
+ bind(&ok);
+ }
+
+ // Count number of write barriers in generated code.
+ isolate()->counters()->write_barriers_static()->Increment();
+ IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
+
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis and stores into young gen.
+ Label done;
+
+ if (smi_check == INLINE_SMI_CHECK) {
+ // Skip barrier if writing a smi.
+ JumpIfSmi(value, &done, Label::kNear);
+ }
+
+ if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
+ CheckPageFlag(value,
+ value, // Used as scratch.
+ MemoryChunk::kPointersToHereAreInterestingMask,
+ zero,
+ &done,
+ Label::kNear);
+ }
+ CheckPageFlag(object,
+ value, // Used as scratch.
+ MemoryChunk::kPointersFromHereAreInterestingMask,
+ zero,
+ &done,
+ Label::kNear);
+
+ RecordWriteStub stub(isolate(), object, value, address,
+ remembered_set_action);
+ CallStub(&stub);
+
+ bind(&done);
+
+ // Clobber clobbered registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(address, Immediate(BitCast<int32_t>(kZapValue)));
+ mov(value, Immediate(BitCast<int32_t>(kZapValue)));
+ }
+}
+
+
+void MacroAssembler::DebugBreak() {
+ Move(eax, Immediate(0));
+ mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
+ CEntryStub ces(isolate(), 1);
+ call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
+}
+
+
+bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
+ static const int kMaxImmediateBits = 17;
+ if (!RelocInfo::IsNone(x.rmode_)) return false;
+ return !is_intn(x.x_, kMaxImmediateBits);
+}
+
+
+void MacroAssembler::SafeMove(Register dst, const Immediate& x) {
+ if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
+ Move(dst, Immediate(x.x_ ^ jit_cookie()));
+ xor_(dst, jit_cookie());
+ } else {
+ Move(dst, x);
+ }
+}
+
+
+void MacroAssembler::SafePush(const Immediate& x) {
+ if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
+ push(Immediate(x.x_ ^ jit_cookie()));
+ xor_(Operand(esp, 0), Immediate(jit_cookie()));
+ } else {
+ push(x);
+ }
+}
+
+
+void MacroAssembler::CmpObjectType(Register heap_object,
+ InstanceType type,
+ Register map) {
+ mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
+ CmpInstanceType(map, type);
+}
+
+
+void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
+ cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
+ static_cast<int8_t>(type));
+}
+
+
+void MacroAssembler::CheckFastElements(Register map,
+ Label* fail,
+ Label::Distance distance) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ STATIC_ASSERT(FAST_ELEMENTS == 2);
+ STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+ cmpb(FieldOperand(map, Map::kBitField2Offset),
+ Map::kMaximumBitField2FastHoleyElementValue);
+ j(above, fail, distance);
+}
+
+
+void MacroAssembler::CheckFastObjectElements(Register map,
+ Label* fail,
+ Label::Distance distance) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ STATIC_ASSERT(FAST_ELEMENTS == 2);
+ STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+ cmpb(FieldOperand(map, Map::kBitField2Offset),
+ Map::kMaximumBitField2FastHoleySmiElementValue);
+ j(below_equal, fail, distance);
+ cmpb(FieldOperand(map, Map::kBitField2Offset),
+ Map::kMaximumBitField2FastHoleyElementValue);
+ j(above, fail, distance);
+}
+
+
+void MacroAssembler::CheckFastSmiElements(Register map,
+ Label* fail,
+ Label::Distance distance) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ cmpb(FieldOperand(map, Map::kBitField2Offset),
+ Map::kMaximumBitField2FastHoleySmiElementValue);
+ j(above, fail, distance);
+}
+
+
+void MacroAssembler::StoreNumberToDoubleElements(
+ Register maybe_number,
+ Register elements,
+ Register key,
+ Register scratch,
+ Label* fail,
+ int elements_offset) {
+ Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value;
+ JumpIfSmi(maybe_number, &smi_value, Label::kNear);
+
+ CheckMap(maybe_number,
+ isolate()->factory()->heap_number_map(),
+ fail,
+ DONT_DO_SMI_CHECK);
+
+ // Double value, canonicalize NaN.
+ uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
+ cmp(FieldOperand(maybe_number, offset),
+ Immediate(kNaNOrInfinityLowerBoundUpper32));
+ j(greater_equal, &maybe_nan, Label::kNear);
+
+ bind(&not_nan);
+ ExternalReference canonical_nan_reference =
+ ExternalReference::address_of_canonical_non_hole_nan();
+ fld_d(FieldOperand(maybe_number, HeapNumber::kValueOffset));
+ bind(&have_double_value);
+ fstp_d(FieldOperand(elements, key, times_4,
+ FixedDoubleArray::kHeaderSize - elements_offset));
+ jmp(&done);
+
+ bind(&maybe_nan);
+ // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
+ // it's an Infinity, and the non-NaN code path applies.
+ j(greater, &is_nan, Label::kNear);
+ cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
+ j(zero, &not_nan);
+ bind(&is_nan);
+ fld_d(Operand::StaticVariable(canonical_nan_reference));
+ jmp(&have_double_value, Label::kNear);
+
+ bind(&smi_value);
+ // Value is a smi. Convert to a double and store.
+ // Preserve original value.
+ mov(scratch, maybe_number);
+ SmiUntag(scratch);
+ push(scratch);
+ fild_s(Operand(esp, 0));
+ pop(scratch);
+ fstp_d(FieldOperand(elements, key, times_4,
+ FixedDoubleArray::kHeaderSize - elements_offset));
+ bind(&done);
+}
+
+
+void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
+ cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
+}
+
+
+void MacroAssembler::CheckMap(Register obj,
+ Handle<Map> map,
+ Label* fail,
+ SmiCheckType smi_check_type) {
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, fail);
+ }
+
+ CompareMap(obj, map);
+ j(not_equal, fail);
+}
+
+
+void MacroAssembler::DispatchMap(Register obj,
+ Register unused,
+ Handle<Map> map,
+ Handle<Code> success,
+ SmiCheckType smi_check_type) {
+ Label fail;
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, &fail);
+ }
+ cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
+ j(equal, success);
+
+ bind(&fail);
+}
+
+
+Condition MacroAssembler::IsObjectStringType(Register heap_object,
+ Register map,
+ Register instance_type) {
+ mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
+ movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kNotStringTag != 0);
+ test(instance_type, Immediate(kIsNotStringMask));
+ return zero;
+}
+
+
+Condition MacroAssembler::IsObjectNameType(Register heap_object,
+ Register map,
+ Register instance_type) {
+ mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
+ movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
+ cmpb(instance_type, static_cast<uint8_t>(LAST_NAME_TYPE));
+ return below_equal;
+}
+
+
+void MacroAssembler::IsObjectJSObjectType(Register heap_object,
+ Register map,
+ Register scratch,
+ Label* fail) {
+ mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
+ IsInstanceJSObjectType(map, scratch, fail);
+}
+
+
+void MacroAssembler::IsInstanceJSObjectType(Register map,
+ Register scratch,
+ Label* fail) {
+ movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
+ sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ cmp(scratch,
+ LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
+ j(above, fail);
+}
+
+
+void MacroAssembler::FCmp() {
+ fucompp();
+ push(eax);
+ fnstsw_ax();
+ sahf();
+ pop(eax);
+}
+
+
+void MacroAssembler::AssertNumber(Register object) {
+ if (emit_debug_code()) {
+ Label ok;
+ JumpIfSmi(object, &ok);
+ cmp(FieldOperand(object, HeapObject::kMapOffset),
+ isolate()->factory()->heap_number_map());
+ Check(equal, kOperandNotANumber);
+ bind(&ok);
+ }
+}
+
+
+void MacroAssembler::AssertSmi(Register object) {
+ if (emit_debug_code()) {
+ test(object, Immediate(kSmiTagMask));
+ Check(equal, kOperandIsNotASmi);
+ }
+}
+
+
+void MacroAssembler::AssertString(Register object) {
+ if (emit_debug_code()) {
+ test(object, Immediate(kSmiTagMask));
+ Check(not_equal, kOperandIsASmiAndNotAString);
+ push(object);
+ mov(object, FieldOperand(object, HeapObject::kMapOffset));
+ CmpInstanceType(object, FIRST_NONSTRING_TYPE);
+ pop(object);
+ Check(below, kOperandIsNotAString);
+ }
+}
+
+
+void MacroAssembler::AssertName(Register object) {
+ if (emit_debug_code()) {
+ test(object, Immediate(kSmiTagMask));
+ Check(not_equal, kOperandIsASmiAndNotAName);
+ push(object);
+ mov(object, FieldOperand(object, HeapObject::kMapOffset));
+ CmpInstanceType(object, LAST_NAME_TYPE);
+ pop(object);
+ Check(below_equal, kOperandIsNotAName);
+ }
+}
+
+
+void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
+ if (emit_debug_code()) {
+ Label done_checking;
+ AssertNotSmi(object);
+ cmp(object, isolate()->factory()->undefined_value());
+ j(equal, &done_checking);
+ cmp(FieldOperand(object, 0),
+ Immediate(isolate()->factory()->allocation_site_map()));
+ Assert(equal, kExpectedUndefinedOrCell);
+ bind(&done_checking);
+ }
+}
+
+
+void MacroAssembler::AssertNotSmi(Register object) {
+ if (emit_debug_code()) {
+ test(object, Immediate(kSmiTagMask));
+ Check(not_equal, kOperandIsASmi);
+ }
+}
+
+
+void MacroAssembler::StubPrologue() {
+ push(ebp); // Caller's frame pointer.
+ mov(ebp, esp);
+ push(esi); // Callee's context.
+ push(Immediate(Smi::FromInt(StackFrame::STUB)));
+}
+
+
+void MacroAssembler::Prologue(bool code_pre_aging) {
+ PredictableCodeSizeScope predictible_code_size_scope(this,
+ kNoCodeAgeSequenceLength);
+ if (code_pre_aging) {
+ // Pre-age the code.
+ call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
+ RelocInfo::CODE_AGE_SEQUENCE);
+ Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
+ } else {
+ push(ebp); // Caller's frame pointer.
+ mov(ebp, esp);
+ push(esi); // Callee's context.
+ push(edi); // Callee's JS function.
+ }
+}
+
+
+void MacroAssembler::EnterFrame(StackFrame::Type type) {
+ push(ebp);
+ mov(ebp, esp);
+ push(esi);
+ push(Immediate(Smi::FromInt(type)));
+ push(Immediate(CodeObject()));
+ if (emit_debug_code()) {
+ cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
+ Check(not_equal, kCodeObjectNotProperlyPatched);
+ }
+}
+
+
+void MacroAssembler::LeaveFrame(StackFrame::Type type) {
+ if (emit_debug_code()) {
+ cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
+ Immediate(Smi::FromInt(type)));
+ Check(equal, kStackFrameTypesMustMatch);
+ }
+ leave();
+}
+
+
+void MacroAssembler::EnterExitFramePrologue() {
+ // Set up the frame structure on the stack.
+ ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
+ ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
+ ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
+ push(ebp);
+ mov(ebp, esp);
+
+ // Reserve room for entry stack pointer and push the code object.
+ ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
+ push(Immediate(0)); // Saved entry sp, patched before call.
+ push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot.
+
+ // Save the frame pointer and the context in top.
+ ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
+ ExternalReference context_address(Isolate::kContextAddress, isolate());
+ mov(Operand::StaticVariable(c_entry_fp_address), ebp);
+ mov(Operand::StaticVariable(context_address), esi);
+}
+
+
+void MacroAssembler::EnterExitFrameEpilogue(int argc) {
+ sub(esp, Immediate(argc * kPointerSize));
+
+ // Get the required frame alignment for the OS.
+ const int kFrameAlignment = OS::ActivationFrameAlignment();
+ if (kFrameAlignment > 0) {
+ ASSERT(IsPowerOf2(kFrameAlignment));
+ and_(esp, -kFrameAlignment);
+ }
+
+ // Patch the saved entry sp.
+ mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
+}
+
+
+void MacroAssembler::EnterExitFrame() {
+ EnterExitFramePrologue();
+
+ // Set up argc and argv in callee-saved registers.
+ int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
+ mov(edi, eax);
+ lea(esi, Operand(ebp, eax, times_4, offset));
+
+ // Reserve space for argc, argv and isolate.
+ EnterExitFrameEpilogue(3);
+}
+
+
+void MacroAssembler::EnterApiExitFrame(int argc) {
+ EnterExitFramePrologue();
+ EnterExitFrameEpilogue(argc);
+}
+
+
+void MacroAssembler::LeaveExitFrame() {
+ // Get the return address from the stack and restore the frame pointer.
+ mov(ecx, Operand(ebp, 1 * kPointerSize));
+ mov(ebp, Operand(ebp, 0 * kPointerSize));
+
+ // Pop the arguments and the receiver from the caller stack.
+ lea(esp, Operand(esi, 1 * kPointerSize));
+
+ // Push the return address to get ready to return.
+ push(ecx);
+
+ LeaveExitFrameEpilogue(true);
+}
+
+
+void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
+ // Restore current context from top and clear it in debug mode.
+ ExternalReference context_address(Isolate::kContextAddress, isolate());
+ if (restore_context) {
+ mov(esi, Operand::StaticVariable(context_address));
+ }
+#ifdef DEBUG
+ mov(Operand::StaticVariable(context_address), Immediate(0));
+#endif
+
+ // Clear the top frame.
+ ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
+ isolate());
+ mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
+}
+
+
+void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
+ mov(esp, ebp);
+ pop(ebp);
+
+ LeaveExitFrameEpilogue(restore_context);
+}
+
+
+void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
+ int handler_index) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+ // We will build up the handler from the bottom by pushing on the stack.
+ // First push the frame pointer and context.
+ if (kind == StackHandler::JS_ENTRY) {
+ // The frame pointer does not point to a JS frame so we save NULL for
+ // ebp. We expect the code throwing an exception to check ebp before
+ // dereferencing it to restore the context.
+ push(Immediate(0)); // NULL frame pointer.
+ push(Immediate(Smi::FromInt(0))); // No context.
+ } else {
+ push(ebp);
+ push(esi);
+ }
+ // Push the state and the code object.
+ unsigned state =
+ StackHandler::IndexField::encode(handler_index) |
+ StackHandler::KindField::encode(kind);
+ push(Immediate(state));
+ Push(CodeObject());
+
+ // Link the current handler as the next handler.
+ ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
+ push(Operand::StaticVariable(handler_address));
+ // Set this new handler as the current one.
+ mov(Operand::StaticVariable(handler_address), esp);
+}
+
+
+void MacroAssembler::PopTryHandler() {
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
+ pop(Operand::StaticVariable(handler_address));
+ add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
+}
+
+
+void MacroAssembler::JumpToHandlerEntry() {
+ // Compute the handler entry address and jump to it. The handler table is
+ // a fixed array of (smi-tagged) code offsets.
+ // eax = exception, edi = code object, edx = state.
+ mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset));
+ shr(edx, StackHandler::kKindWidth);
+ mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize));
+ SmiUntag(edx);
+ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
+ jmp(edi);
+}
+
+
+void MacroAssembler::Throw(Register value) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+ // The exception is expected in eax.
+ if (!value.is(eax)) {
+ mov(eax, value);
+ }
+ // Drop the stack pointer to the top of the top handler.
+ ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
+ mov(esp, Operand::StaticVariable(handler_address));
+ // Restore the next handler.
+ pop(Operand::StaticVariable(handler_address));
+
+ // Remove the code object and state, compute the handler address in edi.
+ pop(edi); // Code object.
+ pop(edx); // Index and state.
+
+ // Restore the context and frame pointer.
+ pop(esi); // Context.
+ pop(ebp); // Frame pointer.
+
+ // If the handler is a JS frame, restore the context to the frame.
+ // (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either
+ // ebp or esi.
+ Label skip;
+ test(esi, esi);
+ j(zero, &skip, Label::kNear);
+ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
+ bind(&skip);
+
+ JumpToHandlerEntry();
+}
+
+
+void MacroAssembler::ThrowUncatchable(Register value) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+ // The exception is expected in eax.
+ if (!value.is(eax)) {
+ mov(eax, value);
+ }
+ // Drop the stack pointer to the top of the top stack handler.
+ ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
+ mov(esp, Operand::StaticVariable(handler_address));
+
+ // Unwind the handlers until the top ENTRY handler is found.
+ Label fetch_next, check_kind;
+ jmp(&check_kind, Label::kNear);
+ bind(&fetch_next);
+ mov(esp, Operand(esp, StackHandlerConstants::kNextOffset));
+
+ bind(&check_kind);
+ STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
+ test(Operand(esp, StackHandlerConstants::kStateOffset),
+ Immediate(StackHandler::KindField::kMask));
+ j(not_zero, &fetch_next);
+
+ // Set the top handler address to next handler past the top ENTRY handler.
+ pop(Operand::StaticVariable(handler_address));
+
+ // Remove the code object and state, compute the handler address in edi.
+ pop(edi); // Code object.
+ pop(edx); // Index and state.
+
+ // Clear the context pointer and frame pointer (0 was saved in the handler).
+ pop(esi);
+ pop(ebp);
+
+ JumpToHandlerEntry();
+}
+
+
+void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
+ Register scratch1,
+ Register scratch2,
+ Label* miss) {
+ Label same_contexts;
+
+ ASSERT(!holder_reg.is(scratch1));
+ ASSERT(!holder_reg.is(scratch2));
+ ASSERT(!scratch1.is(scratch2));
+
+ // Load current lexical context from the stack frame.
+ mov(scratch1, Operand(ebp, StandardFrameConstants::kContextOffset));
+
+ // When generating debug code, make sure the lexical context is set.
+ if (emit_debug_code()) {
+ cmp(scratch1, Immediate(0));
+ Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
+ }
+ // Load the native context of the current context.
+ int offset =
+ Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
+ mov(scratch1, FieldOperand(scratch1, offset));
+ mov(scratch1, FieldOperand(scratch1, GlobalObject::kNativeContextOffset));
+
+ // Check the context is a native context.
+ if (emit_debug_code()) {
+ // Read the first word and compare to native_context_map.
+ cmp(FieldOperand(scratch1, HeapObject::kMapOffset),
+ isolate()->factory()->native_context_map());
+ Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
+ }
+
+ // Check if both contexts are the same.
+ cmp(scratch1, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
+ j(equal, &same_contexts);
+
+ // Compare security tokens, save holder_reg on the stack so we can use it
+ // as a temporary register.
+ //
+ // Check that the security token in the calling global object is
+ // compatible with the security token in the receiving global
+ // object.
+ mov(scratch2,
+ FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
+
+ // Check the context is a native context.
+ if (emit_debug_code()) {
+ cmp(scratch2, isolate()->factory()->null_value());
+ Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
+
+ // Read the first word and compare to native_context_map(),
+ cmp(FieldOperand(scratch2, HeapObject::kMapOffset),
+ isolate()->factory()->native_context_map());
+ Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
+ }
+
+ int token_offset = Context::kHeaderSize +
+ Context::SECURITY_TOKEN_INDEX * kPointerSize;
+ mov(scratch1, FieldOperand(scratch1, token_offset));
+ cmp(scratch1, FieldOperand(scratch2, token_offset));
+ j(not_equal, miss);
+
+ bind(&same_contexts);
+}
+
+
+// Compute the hash code from the untagged key. This must be kept in sync with
+// ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
+// code-stub-hydrogen.cc
+//
+// Note: r0 will contain hash code
+void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
+ // Xor original key with a seed.
+ if (serializer_enabled()) {
+ ExternalReference roots_array_start =
+ ExternalReference::roots_array_start(isolate());
+ mov(scratch, Immediate(Heap::kHashSeedRootIndex));
+ mov(scratch,
+ Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
+ SmiUntag(scratch);
+ xor_(r0, scratch);
+ } else {
+ int32_t seed = isolate()->heap()->HashSeed();
+ xor_(r0, Immediate(seed));
+ }
+
+ // hash = ~hash + (hash << 15);
+ mov(scratch, r0);
+ not_(r0);
+ shl(scratch, 15);
+ add(r0, scratch);
+ // hash = hash ^ (hash >> 12);
+ mov(scratch, r0);
+ shr(scratch, 12);
+ xor_(r0, scratch);
+ // hash = hash + (hash << 2);
+ lea(r0, Operand(r0, r0, times_4, 0));
+ // hash = hash ^ (hash >> 4);
+ mov(scratch, r0);
+ shr(scratch, 4);
+ xor_(r0, scratch);
+ // hash = hash * 2057;
+ imul(r0, r0, 2057);
+ // hash = hash ^ (hash >> 16);
+ mov(scratch, r0);
+ shr(scratch, 16);
+ xor_(r0, scratch);
+}
+
+
+
+void MacroAssembler::LoadFromNumberDictionary(Label* miss,
+ Register elements,
+ Register key,
+ Register r0,
+ Register r1,
+ Register r2,
+ Register result) {
+ // Register use:
+ //
+ // elements - holds the slow-case elements of the receiver and is unchanged.
+ //
+ // key - holds the smi key on entry and is unchanged.
+ //
+ // Scratch registers:
+ //
+ // r0 - holds the untagged key on entry and holds the hash once computed.
+ //
+ // r1 - used to hold the capacity mask of the dictionary
+ //
+ // r2 - used for the index into the dictionary.
+ //
+ // result - holds the result on exit if the load succeeds and we fall through.
+
+ Label done;
+
+ GetNumberHash(r0, r1);
+
+ // Compute capacity mask.
+ mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset));
+ shr(r1, kSmiTagSize); // convert smi to int
+ dec(r1);
+
+ // Generate an unrolled loop that performs a few probes before giving up.
+ for (int i = 0; i < kNumberDictionaryProbes; i++) {
+ // Use r2 for index calculations and keep the hash intact in r0.
+ mov(r2, r0);
+ // Compute the masked index: (hash + i + i * i) & mask.
+ if (i > 0) {
+ add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
+ }
+ and_(r2, r1);
+
+ // Scale the index by multiplying by the entry size.
+ ASSERT(SeededNumberDictionary::kEntrySize == 3);
+ lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
+
+ // Check if the key matches.
+ cmp(key, FieldOperand(elements,
+ r2,
+ times_pointer_size,
+ SeededNumberDictionary::kElementsStartOffset));
+ if (i != (kNumberDictionaryProbes - 1)) {
+ j(equal, &done);
+ } else {
+ j(not_equal, miss);
+ }
+ }
+
+ bind(&done);
+ // Check that the value is a normal propety.
+ const int kDetailsOffset =
+ SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
+ ASSERT_EQ(NORMAL, 0);
+ test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
+ Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
+ j(not_zero, miss);
+
+ // Get the value at the masked, scaled index.
+ const int kValueOffset =
+ SeededNumberDictionary::kElementsStartOffset + kPointerSize;
+ mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
+}
+
+
+void MacroAssembler::LoadAllocationTopHelper(Register result,
+ Register scratch,
+ AllocationFlags flags) {
+ ExternalReference allocation_top =
+ AllocationUtils::GetAllocationTopReference(isolate(), flags);
+
+ // Just return if allocation top is already known.
+ if ((flags & RESULT_CONTAINS_TOP) != 0) {
+ // No use of scratch if allocation top is provided.
+ ASSERT(scratch.is(no_reg));
+#ifdef DEBUG
+ // Assert that result actually contains top on entry.
+ cmp(result, Operand::StaticVariable(allocation_top));
+ Check(equal, kUnexpectedAllocationTop);
+#endif
+ return;
+ }
+
+ // Move address of new object to result. Use scratch register if available.
+ if (scratch.is(no_reg)) {
+ mov(result, Operand::StaticVariable(allocation_top));
+ } else {
+ mov(scratch, Immediate(allocation_top));
+ mov(result, Operand(scratch, 0));
+ }
+}
+
+
+void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
+ Register scratch,
+ AllocationFlags flags) {
+ if (emit_debug_code()) {
+ test(result_end, Immediate(kObjectAlignmentMask));
+ Check(zero, kUnalignedAllocationInNewSpace);
+ }
+
+ ExternalReference allocation_top =
+ AllocationUtils::GetAllocationTopReference(isolate(), flags);
+
+ // Update new top. Use scratch if available.
+ if (scratch.is(no_reg)) {
+ mov(Operand::StaticVariable(allocation_top), result_end);
+ } else {
+ mov(Operand(scratch, 0), result_end);
+ }
+}
+
+
+void MacroAssembler::Allocate(int object_size,
+ Register result,
+ Register result_end,
+ Register scratch,
+ Label* gc_required,
+ AllocationFlags flags) {
+ ASSERT((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
+ ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ mov(result, Immediate(0x7091));
+ if (result_end.is_valid()) {
+ mov(result_end, Immediate(0x7191));
+ }
+ if (scratch.is_valid()) {
+ mov(scratch, Immediate(0x7291));
+ }
+ }
+ jmp(gc_required);
+ return;
+ }
+ ASSERT(!result.is(result_end));
+
+ // Load address of new object into result.
+ LoadAllocationTopHelper(result, scratch, flags);
+
+ ExternalReference allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+ // Align the next allocation. Storing the filler map without checking top is
+ // safe in new-space because the limit of the heap is aligned there.
+ if ((flags & DOUBLE_ALIGNMENT) != 0) {
+ ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
+ ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
+ Label aligned;
+ test(result, Immediate(kDoubleAlignmentMask));
+ j(zero, &aligned, Label::kNear);
+ if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
+ cmp(result, Operand::StaticVariable(allocation_limit));
+ j(above_equal, gc_required);
+ }
+ mov(Operand(result, 0),
+ Immediate(isolate()->factory()->one_pointer_filler_map()));
+ add(result, Immediate(kDoubleSize / 2));
+ bind(&aligned);
+ }
+
+ // Calculate new top and bail out if space is exhausted.
+ Register top_reg = result_end.is_valid() ? result_end : result;
+ if (!top_reg.is(result)) {
+ mov(top_reg, result);
+ }
+ add(top_reg, Immediate(object_size));
+ j(carry, gc_required);
+ cmp(top_reg, Operand::StaticVariable(allocation_limit));
+ j(above, gc_required);
+
+ // Update allocation top.
+ UpdateAllocationTopHelper(top_reg, scratch, flags);
+
+ // Tag result if requested.
+ bool tag_result = (flags & TAG_OBJECT) != 0;
+ if (top_reg.is(result)) {
+ if (tag_result) {
+ sub(result, Immediate(object_size - kHeapObjectTag));
+ } else {
+ sub(result, Immediate(object_size));
+ }
+ } else if (tag_result) {
+ ASSERT(kHeapObjectTag == 1);
+ inc(result);
+ }
+}
+
+
+void MacroAssembler::Allocate(int header_size,
+ ScaleFactor element_size,
+ Register element_count,
+ RegisterValueType element_count_type,
+ Register result,
+ Register result_end,
+ Register scratch,
+ Label* gc_required,
+ AllocationFlags flags) {
+ ASSERT((flags & SIZE_IN_WORDS) == 0);
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ mov(result, Immediate(0x7091));
+ mov(result_end, Immediate(0x7191));
+ if (scratch.is_valid()) {
+ mov(scratch, Immediate(0x7291));
+ }
+ // Register element_count is not modified by the function.
+ }
+ jmp(gc_required);
+ return;
+ }
+ ASSERT(!result.is(result_end));
+
+ // Load address of new object into result.
+ LoadAllocationTopHelper(result, scratch, flags);
+
+ ExternalReference allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+ // Align the next allocation. Storing the filler map without checking top is
+ // safe in new-space because the limit of the heap is aligned there.
+ if ((flags & DOUBLE_ALIGNMENT) != 0) {
+ ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
+ ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
+ Label aligned;
+ test(result, Immediate(kDoubleAlignmentMask));
+ j(zero, &aligned, Label::kNear);
+ if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
+ cmp(result, Operand::StaticVariable(allocation_limit));
+ j(above_equal, gc_required);
+ }
+ mov(Operand(result, 0),
+ Immediate(isolate()->factory()->one_pointer_filler_map()));
+ add(result, Immediate(kDoubleSize / 2));
+ bind(&aligned);
+ }
+
+ // Calculate new top and bail out if space is exhausted.
+ // We assume that element_count*element_size + header_size does not
+ // overflow.
+ if (element_count_type == REGISTER_VALUE_IS_SMI) {
+ STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
+ STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
+ STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
+ ASSERT(element_size >= times_2);
+ ASSERT(kSmiTagSize == 1);
+ element_size = static_cast<ScaleFactor>(element_size - 1);
+ } else {
+ ASSERT(element_count_type == REGISTER_VALUE_IS_INT32);
+ }
+ lea(result_end, Operand(element_count, element_size, header_size));
+ add(result_end, result);
+ j(carry, gc_required);
+ cmp(result_end, Operand::StaticVariable(allocation_limit));
+ j(above, gc_required);
+
+ if ((flags & TAG_OBJECT) != 0) {
+ ASSERT(kHeapObjectTag == 1);
+ inc(result);
+ }
+
+ // Update allocation top.
+ UpdateAllocationTopHelper(result_end, scratch, flags);
+}
+
+
+void MacroAssembler::Allocate(Register object_size,
+ Register result,
+ Register result_end,
+ Register scratch,
+ Label* gc_required,
+ AllocationFlags flags) {
+ ASSERT((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ mov(result, Immediate(0x7091));
+ mov(result_end, Immediate(0x7191));
+ if (scratch.is_valid()) {
+ mov(scratch, Immediate(0x7291));
+ }
+ // object_size is left unchanged by this function.
+ }
+ jmp(gc_required);
+ return;
+ }
+ ASSERT(!result.is(result_end));
+
+ // Load address of new object into result.
+ LoadAllocationTopHelper(result, scratch, flags);
+
+ ExternalReference allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+ // Align the next allocation. Storing the filler map without checking top is
+ // safe in new-space because the limit of the heap is aligned there.
+ if ((flags & DOUBLE_ALIGNMENT) != 0) {
+ ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
+ ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
+ Label aligned;
+ test(result, Immediate(kDoubleAlignmentMask));
+ j(zero, &aligned, Label::kNear);
+ if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
+ cmp(result, Operand::StaticVariable(allocation_limit));
+ j(above_equal, gc_required);
+ }
+ mov(Operand(result, 0),
+ Immediate(isolate()->factory()->one_pointer_filler_map()));
+ add(result, Immediate(kDoubleSize / 2));
+ bind(&aligned);
+ }
+
+ // Calculate new top and bail out if space is exhausted.
+ if (!object_size.is(result_end)) {
+ mov(result_end, object_size);
+ }
+ add(result_end, result);
+ j(carry, gc_required);
+ cmp(result_end, Operand::StaticVariable(allocation_limit));
+ j(above, gc_required);
+
+ // Tag result if requested.
+ if ((flags & TAG_OBJECT) != 0) {
+ ASSERT(kHeapObjectTag == 1);
+ inc(result);
+ }
+
+ // Update allocation top.
+ UpdateAllocationTopHelper(result_end, scratch, flags);
+}
+
+
+void MacroAssembler::UndoAllocationInNewSpace(Register object) {
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+
+ // Make sure the object has no tag before resetting top.
+ and_(object, Immediate(~kHeapObjectTagMask));
+#ifdef DEBUG
+ cmp(object, Operand::StaticVariable(new_space_allocation_top));
+ Check(below, kUndoAllocationOfNonAllocatedMemory);
+#endif
+ mov(Operand::StaticVariable(new_space_allocation_top), object);
+}
+
+
+void MacroAssembler::AllocateHeapNumber(Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ // Allocate heap number in new space.
+ Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ // Set the map.
+ mov(FieldOperand(result, HeapObject::kMapOffset),
+ Immediate(isolate()->factory()->heap_number_map()));
+}
+
+
+void MacroAssembler::AllocateTwoByteString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required) {
+ // Calculate the number of bytes needed for the characters in the string while
+ // observing object alignment.
+ ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ ASSERT(kShortSize == 2);
+ // scratch1 = length * 2 + kObjectAlignmentMask.
+ lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
+ and_(scratch1, Immediate(~kObjectAlignmentMask));
+
+ // Allocate two byte string in new space.
+ Allocate(SeqTwoByteString::kHeaderSize,
+ times_1,
+ scratch1,
+ REGISTER_VALUE_IS_INT32,
+ result,
+ scratch2,
+ scratch3,
+ gc_required,
+ TAG_OBJECT);
+
+ // Set the map, length and hash field.
+ mov(FieldOperand(result, HeapObject::kMapOffset),
+ Immediate(isolate()->factory()->string_map()));
+ mov(scratch1, length);
+ SmiTag(scratch1);
+ mov(FieldOperand(result, String::kLengthOffset), scratch1);
+ mov(FieldOperand(result, String::kHashFieldOffset),
+ Immediate(String::kEmptyHashField));
+}
+
+
+void MacroAssembler::AllocateAsciiString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required) {
+ // Calculate the number of bytes needed for the characters in the string while
+ // observing object alignment.
+ ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ mov(scratch1, length);
+ ASSERT(kCharSize == 1);
+ add(scratch1, Immediate(kObjectAlignmentMask));
+ and_(scratch1, Immediate(~kObjectAlignmentMask));
+
+ // Allocate ASCII string in new space.
+ Allocate(SeqOneByteString::kHeaderSize,
+ times_1,
+ scratch1,
+ REGISTER_VALUE_IS_INT32,
+ result,
+ scratch2,
+ scratch3,
+ gc_required,
+ TAG_OBJECT);
+
+ // Set the map, length and hash field.
+ mov(FieldOperand(result, HeapObject::kMapOffset),
+ Immediate(isolate()->factory()->ascii_string_map()));
+ mov(scratch1, length);
+ SmiTag(scratch1);
+ mov(FieldOperand(result, String::kLengthOffset), scratch1);
+ mov(FieldOperand(result, String::kHashFieldOffset),
+ Immediate(String::kEmptyHashField));
+}
+
+
+void MacroAssembler::AllocateAsciiString(Register result,
+ int length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ ASSERT(length > 0);
+
+ // Allocate ASCII string in new space.
+ Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2,
+ gc_required, TAG_OBJECT);
+
+ // Set the map, length and hash field.
+ mov(FieldOperand(result, HeapObject::kMapOffset),
+ Immediate(isolate()->factory()->ascii_string_map()));
+ mov(FieldOperand(result, String::kLengthOffset),
+ Immediate(Smi::FromInt(length)));
+ mov(FieldOperand(result, String::kHashFieldOffset),
+ Immediate(String::kEmptyHashField));
+}
+
+
+void MacroAssembler::AllocateTwoByteConsString(Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ // Allocate heap number in new space.
+ Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ // Set the map. The other fields are left uninitialized.
+ mov(FieldOperand(result, HeapObject::kMapOffset),
+ Immediate(isolate()->factory()->cons_string_map()));
+}
+
+
+void MacroAssembler::AllocateAsciiConsString(Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ Allocate(ConsString::kSize,
+ result,
+ scratch1,
+ scratch2,
+ gc_required,
+ TAG_OBJECT);
+
+ // Set the map. The other fields are left uninitialized.
+ mov(FieldOperand(result, HeapObject::kMapOffset),
+ Immediate(isolate()->factory()->cons_ascii_string_map()));
+}
+
+
+void MacroAssembler::AllocateTwoByteSlicedString(Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ // Allocate heap number in new space.
+ Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ // Set the map. The other fields are left uninitialized.
+ mov(FieldOperand(result, HeapObject::kMapOffset),
+ Immediate(isolate()->factory()->sliced_string_map()));
+}
+
+
+void MacroAssembler::AllocateAsciiSlicedString(Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ // Allocate heap number in new space.
+ Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ // Set the map. The other fields are left uninitialized.
+ mov(FieldOperand(result, HeapObject::kMapOffset),
+ Immediate(isolate()->factory()->sliced_ascii_string_map()));
+}
+
+
+// Copy memory, byte-by-byte, from source to destination. Not optimized for
+// long or aligned copies. The contents of scratch and length are destroyed.
+// Source and destination are incremented by length.
+// Many variants of movsb, loop unrolling, word moves, and indexed operands
+// have been tried here already, and this is fastest.
+// A simpler loop is faster on small copies, but 30% slower on large ones.
+// The cld() instruction must have been emitted, to set the direction flag(),
+// before calling this function.
+void MacroAssembler::CopyBytes(Register source,
+ Register destination,
+ Register length,
+ Register scratch) {
+ Label short_loop, len4, len8, len12, done, short_string;
+ ASSERT(source.is(esi));
+ ASSERT(destination.is(edi));
+ ASSERT(length.is(ecx));
+ cmp(length, Immediate(4));
+ j(below, &short_string, Label::kNear);
+
+ // Because source is 4-byte aligned in our uses of this function,
+ // we keep source aligned for the rep_movs call by copying the odd bytes
+ // at the end of the ranges.
+ mov(scratch, Operand(source, length, times_1, -4));
+ mov(Operand(destination, length, times_1, -4), scratch);
+
+ cmp(length, Immediate(8));
+ j(below_equal, &len4, Label::kNear);
+ cmp(length, Immediate(12));
+ j(below_equal, &len8, Label::kNear);
+ cmp(length, Immediate(16));
+ j(below_equal, &len12, Label::kNear);
+
+ mov(scratch, ecx);
+ shr(ecx, 2);
+ rep_movs();
+ and_(scratch, Immediate(0x3));
+ add(destination, scratch);
+ jmp(&done, Label::kNear);
+
+ bind(&len12);
+ mov(scratch, Operand(source, 8));
+ mov(Operand(destination, 8), scratch);
+ bind(&len8);
+ mov(scratch, Operand(source, 4));
+ mov(Operand(destination, 4), scratch);
+ bind(&len4);
+ mov(scratch, Operand(source, 0));
+ mov(Operand(destination, 0), scratch);
+ add(destination, length);
+ jmp(&done, Label::kNear);
+
+ bind(&short_string);
+ test(length, length);
+ j(zero, &done, Label::kNear);
+
+ bind(&short_loop);
+ mov_b(scratch, Operand(source, 0));
+ mov_b(Operand(destination, 0), scratch);
+ inc(source);
+ inc(destination);
+ dec(length);
+ j(not_zero, &short_loop);
+
+ bind(&done);
+}
+
+
+void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
+ Register end_offset,
+ Register filler) {
+ Label loop, entry;
+ jmp(&entry);
+ bind(&loop);
+ mov(Operand(start_offset, 0), filler);
+ add(start_offset, Immediate(kPointerSize));
+ bind(&entry);
+ cmp(start_offset, end_offset);
+ j(less, &loop);
+}
+
+
+void MacroAssembler::BooleanBitTest(Register object,
+ int field_offset,
+ int bit_index) {
+ bit_index += kSmiTagSize + kSmiShiftSize;
+ ASSERT(IsPowerOf2(kBitsPerByte));
+ int byte_index = bit_index / kBitsPerByte;
+ int byte_bit_index = bit_index & (kBitsPerByte - 1);
+ test_b(FieldOperand(object, field_offset + byte_index),
+ static_cast<byte>(1 << byte_bit_index));
+}
+
+
+
+void MacroAssembler::NegativeZeroTest(Register result,
+ Register op,
+ Label* then_label) {
+ Label ok;
+ test(result, result);
+ j(not_zero, &ok);
+ test(op, op);
+ j(sign, then_label);
+ bind(&ok);
+}
+
+
+void MacroAssembler::NegativeZeroTest(Register result,
+ Register op1,
+ Register op2,
+ Register scratch,
+ Label* then_label) {
+ Label ok;
+ test(result, result);
+ j(not_zero, &ok);
+ mov(scratch, op1);
+ or_(scratch, op2);
+ j(sign, then_label);
+ bind(&ok);
+}
+
+
+void MacroAssembler::TryGetFunctionPrototype(Register function,
+ Register result,
+ Register scratch,
+ Label* miss,
+ bool miss_on_bound_function) {
+ // Check that the receiver isn't a smi.
+ JumpIfSmi(function, miss);
+
+ // Check that the function really is a function.
+ CmpObjectType(function, JS_FUNCTION_TYPE, result);
+ j(not_equal, miss);
+
+ if (miss_on_bound_function) {
+ // If a bound function, go to miss label.
+ mov(scratch,
+ FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
+ BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset,
+ SharedFunctionInfo::kBoundFunction);
+ j(not_zero, miss);
+ }
+
+ // Make sure that the function has an instance prototype.
+ Label non_instance;
+ movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
+ test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
+ j(not_zero, &non_instance);
+
+ // Get the prototype or initial map from the function.
+ mov(result,
+ FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+ // If the prototype or initial map is the hole, don't return it and
+ // simply miss the cache instead. This will allow us to allocate a
+ // prototype object on-demand in the runtime system.
+ cmp(result, Immediate(isolate()->factory()->the_hole_value()));
+ j(equal, miss);
+
+ // If the function does not have an initial map, we're done.
+ Label done;
+ CmpObjectType(result, MAP_TYPE, scratch);
+ j(not_equal, &done);
+
+ // Get the prototype from the initial map.
+ mov(result, FieldOperand(result, Map::kPrototypeOffset));
+ jmp(&done);
+
+ // Non-instance prototype: Fetch prototype from constructor field
+ // in initial map.
+ bind(&non_instance);
+ mov(result, FieldOperand(result, Map::kConstructorOffset));
+
+ // All done.
+ bind(&done);
+}
+
+
+void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
+ ASSERT(AllowThisStubCall(stub)); // Calls are not allowed in some stubs.
+ call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
+}
+
+
+void MacroAssembler::TailCallStub(CodeStub* stub) {
+ jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+void MacroAssembler::StubReturn(int argc) {
+ ASSERT(argc >= 1 && generating_stub());
+ ret((argc - 1) * kPointerSize);
+}
+
+
+bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
+ return has_frame_ || !stub->SometimesSetsUpAFrame();
+}
+
+
+void MacroAssembler::IndexFromHash(Register hash, Register index) {
+ // The assert checks that the constants for the maximum number of digits
+ // for an array index cached in the hash field and the number of bits
+ // reserved for it does not conflict.
+ ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
+ (1 << String::kArrayIndexValueBits));
+ if (!index.is(hash)) {
+ mov(index, hash);
+ }
+ DecodeFieldToSmi<String::ArrayIndexValueBits>(index);
+}
+
+
+void MacroAssembler::CallRuntime(const Runtime::Function* f,
+ int num_arguments) {
+ // If the expected number of arguments of the runtime function is
+ // constant, we check that the actual number of arguments match the
+ // expectation.
+ CHECK(f->nargs < 0 || f->nargs == num_arguments);
+
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ Move(eax, Immediate(num_arguments));
+ mov(ebx, Immediate(ExternalReference(f, isolate())));
+ CEntryStub ces(isolate(), 1);
+ CallStub(&ces);
+}
+
+
+void MacroAssembler::CallExternalReference(ExternalReference ref,
+ int num_arguments) {
+ mov(eax, Immediate(num_arguments));
+ mov(ebx, Immediate(ref));
+
+ CEntryStub stub(isolate(), 1);
+ CallStub(&stub);
+}
+
+
+void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
+ int num_arguments,
+ int result_size) {
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ Move(eax, Immediate(num_arguments));
+ JumpToExternalReference(ext);
+}
+
+
+void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
+ int num_arguments,
+ int result_size) {
+ TailCallExternalReference(ExternalReference(fid, isolate()),
+ num_arguments,
+ result_size);
+}
+
+
+Operand ApiParameterOperand(int index) {
+ return Operand(esp, index * kPointerSize);
+}
+
+
+void MacroAssembler::PrepareCallApiFunction(int argc) {
+ EnterApiExitFrame(argc);
+ if (emit_debug_code()) {
+ mov(esi, Immediate(BitCast<int32_t>(kZapValue)));
+ }
+}
+
+
+void MacroAssembler::CallApiFunctionAndReturn(
+ Register function_address,
+ ExternalReference thunk_ref,
+ Operand thunk_last_arg,
+ int stack_space,
+ Operand return_value_operand,
+ Operand* context_restore_operand) {
+ ExternalReference next_address =
+ ExternalReference::handle_scope_next_address(isolate());
+ ExternalReference limit_address =
+ ExternalReference::handle_scope_limit_address(isolate());
+ ExternalReference level_address =
+ ExternalReference::handle_scope_level_address(isolate());
+
+ ASSERT(edx.is(function_address));
+ // Allocate HandleScope in callee-save registers.
+ mov(ebx, Operand::StaticVariable(next_address));
+ mov(edi, Operand::StaticVariable(limit_address));
+ add(Operand::StaticVariable(level_address), Immediate(1));
+
+ if (FLAG_log_timer_events) {
+ FrameScope frame(this, StackFrame::MANUAL);
+ PushSafepointRegisters();
+ PrepareCallCFunction(1, eax);
+ mov(Operand(esp, 0),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
+ PopSafepointRegisters();
+ }
+
+
+ Label profiler_disabled;
+ Label end_profiler_check;
+ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate())));
+ cmpb(Operand(eax, 0), 0);
+ j(zero, &profiler_disabled);
+
+ // Additional parameter is the address of the actual getter function.
+ mov(thunk_last_arg, function_address);
+ // Call the api function.
+ mov(eax, Immediate(thunk_ref));
+ call(eax);
+ jmp(&end_profiler_check);
+
+ bind(&profiler_disabled);
+ // Call the api function.
+ call(function_address);
+ bind(&end_profiler_check);
+
+ if (FLAG_log_timer_events) {
+ FrameScope frame(this, StackFrame::MANUAL);
+ PushSafepointRegisters();
+ PrepareCallCFunction(1, eax);
+ mov(Operand(esp, 0),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
+ PopSafepointRegisters();
+ }
+
+ Label prologue;
+ // Load the value from ReturnValue
+ mov(eax, return_value_operand);
+
+ Label promote_scheduled_exception;
+ Label exception_handled;
+ Label delete_allocated_handles;
+ Label leave_exit_frame;
+
+ bind(&prologue);
+ // No more valid handles (the result handle was the last one). Restore
+ // previous handle scope.
+ mov(Operand::StaticVariable(next_address), ebx);
+ sub(Operand::StaticVariable(level_address), Immediate(1));
+ Assert(above_equal, kInvalidHandleScopeLevel);
+ cmp(edi, Operand::StaticVariable(limit_address));
+ j(not_equal, &delete_allocated_handles);
+ bind(&leave_exit_frame);
+
+ // Check if the function scheduled an exception.
+ ExternalReference scheduled_exception_address =
+ ExternalReference::scheduled_exception_address(isolate());
+ cmp(Operand::StaticVariable(scheduled_exception_address),
+ Immediate(isolate()->factory()->the_hole_value()));
+ j(not_equal, &promote_scheduled_exception);
+ bind(&exception_handled);
+
+#if ENABLE_EXTRA_CHECKS
+ // Check if the function returned a valid JavaScript value.
+ Label ok;
+ Register return_value = eax;
+ Register map = ecx;
+
+ JumpIfSmi(return_value, &ok, Label::kNear);
+ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
+
+ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
+ j(below, &ok, Label::kNear);
+
+ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
+ j(above_equal, &ok, Label::kNear);
+
+ cmp(map, isolate()->factory()->heap_number_map());
+ j(equal, &ok, Label::kNear);
+
+ cmp(return_value, isolate()->factory()->undefined_value());
+ j(equal, &ok, Label::kNear);
+
+ cmp(return_value, isolate()->factory()->true_value());
+ j(equal, &ok, Label::kNear);
+
+ cmp(return_value, isolate()->factory()->false_value());
+ j(equal, &ok, Label::kNear);
+
+ cmp(return_value, isolate()->factory()->null_value());
+ j(equal, &ok, Label::kNear);
+
+ Abort(kAPICallReturnedInvalidObject);
+
+ bind(&ok);
+#endif
+
+ bool restore_context = context_restore_operand != NULL;
+ if (restore_context) {
+ mov(esi, *context_restore_operand);
+ }
+ LeaveApiExitFrame(!restore_context);
+ ret(stack_space * kPointerSize);
+
+ bind(&promote_scheduled_exception);
+ {
+ FrameScope frame(this, StackFrame::INTERNAL);
+ CallRuntime(Runtime::kHiddenPromoteScheduledException, 0);
+ }
+ jmp(&exception_handled);
+
+ // HandleScope limit has changed. Delete allocated extensions.
+ ExternalReference delete_extensions =
+ ExternalReference::delete_handle_scope_extensions(isolate());
+ bind(&delete_allocated_handles);
+ mov(Operand::StaticVariable(limit_address), edi);
+ mov(edi, eax);
+ mov(Operand(esp, 0),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ mov(eax, Immediate(delete_extensions));
+ call(eax);
+ mov(eax, edi);
+ jmp(&leave_exit_frame);
+}
+
+
+void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
+ // Set the entry point and jump to the C entry runtime stub.
+ mov(ebx, Immediate(ext));
+ CEntryStub ces(isolate(), 1);
+ jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+void MacroAssembler::InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual,
+ Handle<Code> code_constant,
+ const Operand& code_operand,
+ Label* done,
+ bool* definitely_mismatches,
+ InvokeFlag flag,
+ Label::Distance done_near,
+ const CallWrapper& call_wrapper) {
+ bool definitely_matches = false;
+ *definitely_mismatches = false;
+ Label invoke;
+ if (expected.is_immediate()) {
+ ASSERT(actual.is_immediate());
+ if (expected.immediate() == actual.immediate()) {
+ definitely_matches = true;
+ } else {
+ mov(eax, actual.immediate());
+ const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+ if (expected.immediate() == sentinel) {
+ // Don't worry about adapting arguments for builtins that
+ // don't want that done. Skip adaption code by making it look
+ // like we have a match between expected and actual number of
+ // arguments.
+ definitely_matches = true;
+ } else {
+ *definitely_mismatches = true;
+ mov(ebx, expected.immediate());
+ }
+ }
+ } else {
+ if (actual.is_immediate()) {
+ // Expected is in register, actual is immediate. This is the
+ // case when we invoke function values without going through the
+ // IC mechanism.
+ cmp(expected.reg(), actual.immediate());
+ j(equal, &invoke);
+ ASSERT(expected.reg().is(ebx));
+ mov(eax, actual.immediate());
+ } else if (!expected.reg().is(actual.reg())) {
+ // Both expected and actual are in (different) registers. This
+ // is the case when we invoke functions using call and apply.
+ cmp(expected.reg(), actual.reg());
+ j(equal, &invoke);
+ ASSERT(actual.reg().is(eax));
+ ASSERT(expected.reg().is(ebx));
+ }
+ }
+
+ if (!definitely_matches) {
+ Handle<Code> adaptor =
+ isolate()->builtins()->ArgumentsAdaptorTrampoline();
+ if (!code_constant.is_null()) {
+ mov(edx, Immediate(code_constant));
+ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
+ } else if (!code_operand.is_reg(edx)) {
+ mov(edx, code_operand);
+ }
+
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
+ call(adaptor, RelocInfo::CODE_TARGET);
+ call_wrapper.AfterCall();
+ if (!*definitely_mismatches) {
+ jmp(done, done_near);
+ }
+ } else {
+ jmp(adaptor, RelocInfo::CODE_TARGET);
+ }
+ bind(&invoke);
+ }
+}
+
+
+void MacroAssembler::InvokeCode(const Operand& code,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ ASSERT(flag == JUMP_FUNCTION || has_frame());
+
+ Label done;
+ bool definitely_mismatches = false;
+ InvokePrologue(expected, actual, Handle<Code>::null(), code,
+ &done, &definitely_mismatches, flag, Label::kNear,
+ call_wrapper);
+ if (!definitely_mismatches) {
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(code));
+ call(code);
+ call_wrapper.AfterCall();
+ } else {
+ ASSERT(flag == JUMP_FUNCTION);
+ jmp(code);
+ }
+ bind(&done);
+ }
+}
+
+
+void MacroAssembler::InvokeFunction(Register fun,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ ASSERT(flag == JUMP_FUNCTION || has_frame());
+
+ ASSERT(fun.is(edi));
+ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+ mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
+ SmiUntag(ebx);
+
+ ParameterCount expected(ebx);
+ InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
+ expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Register fun,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ ASSERT(flag == JUMP_FUNCTION || has_frame());
+
+ ASSERT(fun.is(edi));
+ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+
+ InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
+ expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ LoadHeapObject(edi, function);
+ InvokeFunction(edi, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a builtin without a valid frame.
+ ASSERT(flag == JUMP_FUNCTION || has_frame());
+
+ // Rely on the assertion to check that the number of provided
+ // arguments match the expected number of arguments. Fake a
+ // parameter count to avoid emitting code to do the check.
+ ParameterCount expected(0);
+ GetBuiltinFunction(edi, id);
+ InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
+ expected, expected, flag, call_wrapper);
+}
+
+
+void MacroAssembler::GetBuiltinFunction(Register target,
+ Builtins::JavaScript id) {
+ // Load the JavaScript builtin function from the builtins object.
+ mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
+ mov(target, FieldOperand(target,
+ JSBuiltinsObject::OffsetOfFunctionWithId(id)));
+}
+
+
+void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
+ ASSERT(!target.is(edi));
+ // Load the JavaScript builtin function from the builtins object.
+ GetBuiltinFunction(edi, id);
+ // Load the code entry point from the function into the target register.
+ mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
+}
+
+
+void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
+ if (context_chain_length > 0) {
+ // Move up the chain of contexts to the context containing the slot.
+ mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ for (int i = 1; i < context_chain_length; i++) {
+ mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ }
+ } else {
+ // Slot is in the current function context. Move it into the
+ // destination register in case we store into it (the write barrier
+ // cannot be allowed to destroy the context in esi).
+ mov(dst, esi);
+ }
+
+ // We should not have found a with context by walking the context chain
+ // (i.e., the static scope chain and runtime context chain do not agree).
+ // A variable occurring in such a scope should have slot type LOOKUP and
+ // not CONTEXT.
+ if (emit_debug_code()) {
+ cmp(FieldOperand(dst, HeapObject::kMapOffset),
+ isolate()->factory()->with_context_map());
+ Check(not_equal, kVariableResolvedToWithContext);
+ }
+}
+
+
+void MacroAssembler::LoadTransitionedArrayMapConditional(
+ ElementsKind expected_kind,
+ ElementsKind transitioned_kind,
+ Register map_in_out,
+ Register scratch,
+ Label* no_map_match) {
+ // Load the global or builtins object from the current context.
+ mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
+
+ // Check that the function's map is the same as the expected cached map.
+ mov(scratch, Operand(scratch,
+ Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
+
+ size_t offset = expected_kind * kPointerSize +
+ FixedArrayBase::kHeaderSize;
+ cmp(map_in_out, FieldOperand(scratch, offset));
+ j(not_equal, no_map_match);
+
+ // Use the transitioned cached map.
+ offset = transitioned_kind * kPointerSize +
+ FixedArrayBase::kHeaderSize;
+ mov(map_in_out, FieldOperand(scratch, offset));
+}
+
+
+void MacroAssembler::LoadGlobalFunction(int index, Register function) {
+ // Load the global or builtins object from the current context.
+ mov(function,
+ Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ // Load the native context from the global or builtins object.
+ mov(function,
+ FieldOperand(function, GlobalObject::kNativeContextOffset));
+ // Load the function from the native context.
+ mov(function, Operand(function, Context::SlotOffset(index)));
+}
+
+
+void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
+ Register map) {
+ // Load the initial map. The global functions all have initial maps.
+ mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+ if (emit_debug_code()) {
+ Label ok, fail;
+ CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
+ jmp(&ok);
+ bind(&fail);
+ Abort(kGlobalFunctionsMustHaveInitialMap);
+ bind(&ok);
+ }
+}
+
+
+// Store the value in register src in the safepoint register stack
+// slot for register dst.
+void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
+ mov(SafepointRegisterSlot(dst), src);
+}
+
+
+void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
+ mov(SafepointRegisterSlot(dst), src);
+}
+
+
+void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
+ mov(dst, SafepointRegisterSlot(src));
+}
+
+
+Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
+ return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
+}
+
+
+int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
+ // The registers are pushed starting with the lowest encoding,
+ // which means that lowest encodings are furthest away from
+ // the stack pointer.
+ ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
+ return kNumSafepointRegisters - reg_code - 1;
+}
+
+
+void MacroAssembler::LoadHeapObject(Register result,
+ Handle<HeapObject> object) {
+ AllowDeferredHandleDereference embedding_raw_address;
+ if (isolate()->heap()->InNewSpace(*object)) {
+ Handle<Cell> cell = isolate()->factory()->NewCell(object);
+ mov(result, Operand::ForCell(cell));
+ } else {
+ mov(result, object);
+ }
+}
+
+
+void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
+ AllowDeferredHandleDereference using_raw_address;
+ if (isolate()->heap()->InNewSpace(*object)) {
+ Handle<Cell> cell = isolate()->factory()->NewCell(object);
+ cmp(reg, Operand::ForCell(cell));
+ } else {
+ cmp(reg, object);
+ }
+}
+
+
+void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
+ AllowDeferredHandleDereference using_raw_address;
+ if (isolate()->heap()->InNewSpace(*object)) {
+ Handle<Cell> cell = isolate()->factory()->NewCell(object);
+ push(Operand::ForCell(cell));
+ } else {
+ Push(object);
+ }
+}
+
+
+void MacroAssembler::Ret() {
+ ret(0);
+}
+
+
+void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
+ if (is_uint16(bytes_dropped)) {
+ ret(bytes_dropped);
+ } else {
+ pop(scratch);
+ add(esp, Immediate(bytes_dropped));
+ push(scratch);
+ ret(0);
+ }
+}
+
+
+void MacroAssembler::VerifyX87StackDepth(uint32_t depth) {
+ // Make sure the floating point stack is either empty or has depth items.
+ ASSERT(depth <= 7);
+ // This is very expensive.
+ ASSERT(FLAG_debug_code && FLAG_enable_slow_asserts);
+
+ // The top-of-stack (tos) is 7 if there is one item pushed.
+ int tos = (8 - depth) % 8;
+ const int kTopMask = 0x3800;
+ push(eax);
+ fwait();
+ fnstsw_ax();
+ and_(eax, kTopMask);
+ shr(eax, 11);
+ cmp(eax, Immediate(tos));
+ Check(equal, kUnexpectedFPUStackDepthAfterInstruction);
+ fnclex();
+ pop(eax);
+}
+
+
+void MacroAssembler::Drop(int stack_elements) {
+ if (stack_elements > 0) {
+ add(esp, Immediate(stack_elements * kPointerSize));
+ }
+}
+
+
+void MacroAssembler::Move(Register dst, Register src) {
+ if (!dst.is(src)) {
+ mov(dst, src);
+ }
+}
+
+
+void MacroAssembler::Move(Register dst, const Immediate& x) {
+ if (x.is_zero()) {
+ xor_(dst, dst); // Shorter than mov of 32-bit immediate 0.
+ } else {
+ mov(dst, x);
+ }
+}
+
+
+void MacroAssembler::Move(const Operand& dst, const Immediate& x) {
+ mov(dst, x);
+}
+
+
+void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
+ }
+}
+
+
+void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
+ ASSERT(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ Operand operand = Operand::StaticVariable(ExternalReference(counter));
+ if (value == 1) {
+ inc(operand);
+ } else {
+ add(operand, Immediate(value));
+ }
+ }
+}
+
+
+void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
+ ASSERT(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ Operand operand = Operand::StaticVariable(ExternalReference(counter));
+ if (value == 1) {
+ dec(operand);
+ } else {
+ sub(operand, Immediate(value));
+ }
+ }
+}
+
+
+void MacroAssembler::IncrementCounter(Condition cc,
+ StatsCounter* counter,
+ int value) {
+ ASSERT(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ Label skip;
+ j(NegateCondition(cc), &skip);
+ pushfd();
+ IncrementCounter(counter, value);
+ popfd();
+ bind(&skip);
+ }
+}
+
+
+void MacroAssembler::DecrementCounter(Condition cc,
+ StatsCounter* counter,
+ int value) {
+ ASSERT(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ Label skip;
+ j(NegateCondition(cc), &skip);
+ pushfd();
+ DecrementCounter(counter, value);
+ popfd();
+ bind(&skip);
+ }
+}
+
+
+void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
+ if (emit_debug_code()) Check(cc, reason);
+}
+
+
+void MacroAssembler::AssertFastElements(Register elements) {
+ if (emit_debug_code()) {
+ Factory* factory = isolate()->factory();
+ Label ok;
+ cmp(FieldOperand(elements, HeapObject::kMapOffset),
+ Immediate(factory->fixed_array_map()));
+ j(equal, &ok);
+ cmp(FieldOperand(elements, HeapObject::kMapOffset),
+ Immediate(factory->fixed_double_array_map()));
+ j(equal, &ok);
+ cmp(FieldOperand(elements, HeapObject::kMapOffset),
+ Immediate(factory->fixed_cow_array_map()));
+ j(equal, &ok);
+ Abort(kJSObjectWithFastElementsMapHasSlowElements);
+ bind(&ok);
+ }
+}
+
+
+void MacroAssembler::Check(Condition cc, BailoutReason reason) {
+ Label L;
+ j(cc, &L);
+ Abort(reason);
+ // will not return here
+ bind(&L);
+}
+
+
+void MacroAssembler::CheckStackAlignment() {
+ int frame_alignment = OS::ActivationFrameAlignment();
+ int frame_alignment_mask = frame_alignment - 1;
+ if (frame_alignment > kPointerSize) {
+ ASSERT(IsPowerOf2(frame_alignment));
+ Label alignment_as_expected;
+ test(esp, Immediate(frame_alignment_mask));
+ j(zero, &alignment_as_expected);
+ // Abort if stack is not aligned.
+ int3();
+ bind(&alignment_as_expected);
+ }
+}
+
+
+void MacroAssembler::Abort(BailoutReason reason) {
+#ifdef DEBUG
+ const char* msg = GetBailoutReason(reason);
+ if (msg != NULL) {
+ RecordComment("Abort message: ");
+ RecordComment(msg);
+ }
+
+ if (FLAG_trap_on_abort) {
+ int3();
+ return;
+ }
+#endif
+
+ push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(reason))));
+ // Disable stub call restrictions to always allow calls to abort.
+ if (!has_frame_) {
+ // We don't actually want to generate a pile of code for this, so just
+ // claim there is a stack frame, without generating one.
+ FrameScope scope(this, StackFrame::NONE);
+ CallRuntime(Runtime::kAbort, 1);
+ } else {
+ CallRuntime(Runtime::kAbort, 1);
+ }
+ // will not return here
+ int3();
+}
+
+
+void MacroAssembler::LoadInstanceDescriptors(Register map,
+ Register descriptors) {
+ mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
+}
+
+
+void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
+ mov(dst, FieldOperand(map, Map::kBitField3Offset));
+ DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
+}
+
+
+void MacroAssembler::LookupNumberStringCache(Register object,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* not_found) {
+ // Use of registers. Register result is used as a temporary.
+ Register number_string_cache = result;
+ Register mask = scratch1;
+ Register scratch = scratch2;
+
+ // Load the number string cache.
+ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
+ // Make the hash mask from the length of the number string cache. It
+ // contains two elements (number and string) for each cache entry.
+ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
+ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two.
+ sub(mask, Immediate(1)); // Make mask.
+
+ // Calculate the entry in the number string cache. The hash value in the
+ // number string cache for smis is just the smi value, and the hash for
+ // doubles is the xor of the upper and lower words. See
+ // Heap::GetNumberStringCache.
+ Label smi_hash_calculated;
+ Label load_result_from_cache;
+ Label not_smi;
+ STATIC_ASSERT(kSmiTag == 0);
+ JumpIfNotSmi(object, &not_smi, Label::kNear);
+ mov(scratch, object);
+ SmiUntag(scratch);
+ jmp(&smi_hash_calculated, Label::kNear);
+ bind(&not_smi);
+ cmp(FieldOperand(object, HeapObject::kMapOffset),
+ isolate()->factory()->heap_number_map());
+ j(not_equal, not_found);
+ STATIC_ASSERT(8 == kDoubleSize);
+ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
+ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
+ // Object is heap number and hash is now in scratch. Calculate cache index.
+ and_(scratch, mask);
+ Register index = scratch;
+ Register probe = mask;
+ mov(probe,
+ FieldOperand(number_string_cache,
+ index,
+ times_twice_pointer_size,
+ FixedArray::kHeaderSize));
+ JumpIfSmi(probe, not_found);
+ fld_d(FieldOperand(object, HeapNumber::kValueOffset));
+ fld_d(FieldOperand(probe, HeapNumber::kValueOffset));
+ FCmp();
+ j(parity_even, not_found); // Bail out if NaN is involved.
+ j(not_equal, not_found); // The cache did not contain this value.
+ jmp(&load_result_from_cache, Label::kNear);
+
+ bind(&smi_hash_calculated);
+ // Object is smi and hash is now in scratch. Calculate cache index.
+ and_(scratch, mask);
+ // Check if the entry is the smi we are looking for.
+ cmp(object,
+ FieldOperand(number_string_cache,
+ index,
+ times_twice_pointer_size,
+ FixedArray::kHeaderSize));
+ j(not_equal, not_found);
+
+ // Get the result from the cache.
+ bind(&load_result_from_cache);
+ mov(result,
+ FieldOperand(number_string_cache,
+ index,
+ times_twice_pointer_size,
+ FixedArray::kHeaderSize + kPointerSize));
+ IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
+}
+
+
+void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
+ Register instance_type,
+ Register scratch,
+ Label* failure) {
+ if (!scratch.is(instance_type)) {
+ mov(scratch, instance_type);
+ }
+ and_(scratch,
+ kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
+ cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag);
+ j(not_equal, failure);
+}
+
+
+void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1,
+ Register object2,
+ Register scratch1,
+ Register scratch2,
+ Label* failure) {
+ // Check that both objects are not smis.
+ STATIC_ASSERT(kSmiTag == 0);
+ mov(scratch1, object1);
+ and_(scratch1, object2);
+ JumpIfSmi(scratch1, failure);
+
+ // Load instance type for both strings.
+ mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
+ mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
+ movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
+ movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
+
+ // Check that both are flat ASCII strings.
+ const int kFlatAsciiStringMask =
+ kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
+ const int kFlatAsciiStringTag =
+ kStringTag | kOneByteStringTag | kSeqStringTag;
+ // Interleave bits from both instance types and compare them in one check.
+ ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
+ and_(scratch1, kFlatAsciiStringMask);
+ and_(scratch2, kFlatAsciiStringMask);
+ lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
+ cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3));
+ j(not_equal, failure);
+}
+
+
+void MacroAssembler::JumpIfNotUniqueName(Operand operand,
+ Label* not_unique_name,
+ Label::Distance distance) {
+ STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+ Label succeed;
+ test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
+ j(zero, &succeed);
+ cmpb(operand, static_cast<uint8_t>(SYMBOL_TYPE));
+ j(not_equal, not_unique_name, distance);
+
+ bind(&succeed);
+}
+
+
+void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
+ Register index,
+ Register value,
+ uint32_t encoding_mask) {
+ Label is_object;
+ JumpIfNotSmi(string, &is_object, Label::kNear);
+ Abort(kNonObject);
+ bind(&is_object);
+
+ push(value);
+ mov(value, FieldOperand(string, HeapObject::kMapOffset));
+ movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset));
+
+ and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
+ cmp(value, Immediate(encoding_mask));
+ pop(value);
+ Check(equal, kUnexpectedStringType);
+
+ // The index is assumed to be untagged coming in, tag it to compare with the
+ // string length without using a temp register, it is restored at the end of
+ // this function.
+ SmiTag(index);
+ Check(no_overflow, kIndexIsTooLarge);
+
+ cmp(index, FieldOperand(string, String::kLengthOffset));
+ Check(less, kIndexIsTooLarge);
+
+ cmp(index, Immediate(Smi::FromInt(0)));
+ Check(greater_equal, kIndexIsNegative);
+
+ // Restore the index
+ SmiUntag(index);
+}
+
+
+void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
+ int frame_alignment = OS::ActivationFrameAlignment();
+ if (frame_alignment != 0) {
+ // Make stack end at alignment and make room for num_arguments words
+ // and the original value of esp.
+ mov(scratch, esp);
+ sub(esp, Immediate((num_arguments + 1) * kPointerSize));
+ ASSERT(IsPowerOf2(frame_alignment));
+ and_(esp, -frame_alignment);
+ mov(Operand(esp, num_arguments * kPointerSize), scratch);
+ } else {
+ sub(esp, Immediate(num_arguments * kPointerSize));
+ }
+}
+
+
+void MacroAssembler::CallCFunction(ExternalReference function,
+ int num_arguments) {
+ // Trashing eax is ok as it will be the return value.
+ mov(eax, Immediate(function));
+ CallCFunction(eax, num_arguments);
+}
+
+
+void MacroAssembler::CallCFunction(Register function,
+ int num_arguments) {
+ ASSERT(has_frame());
+ // Check stack alignment.
+ if (emit_debug_code()) {
+ CheckStackAlignment();
+ }
+
+ call(function);
+ if (OS::ActivationFrameAlignment() != 0) {
+ mov(esp, Operand(esp, num_arguments * kPointerSize));
+ } else {
+ add(esp, Immediate(num_arguments * kPointerSize));
+ }
+}
+
+
+bool AreAliased(Register r1, Register r2, Register r3, Register r4) {
+ if (r1.is(r2)) return true;
+ if (r1.is(r3)) return true;
+ if (r1.is(r4)) return true;
+ if (r2.is(r3)) return true;
+ if (r2.is(r4)) return true;
+ if (r3.is(r4)) return true;
+ return false;
+}
+
+
+CodePatcher::CodePatcher(byte* address, int size)
+ : address_(address),
+ size_(size),
+ masm_(NULL, address, size + Assembler::kGap) {
+ // Create a new macro assembler pointing to the address of the code to patch.
+ // The size is adjusted with kGap on order for the assembler to generate size
+ // bytes of instructions without failing with buffer size constraints.
+ ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+CodePatcher::~CodePatcher() {
+ // Indicate that code has changed.
+ CPU::FlushICache(address_, size_);
+
+ // Check that the code was patched as expected.
+ ASSERT(masm_.pc_ == address_ + size_);
+ ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+void MacroAssembler::CheckPageFlag(
+ Register object,
+ Register scratch,
+ int mask,
+ Condition cc,
+ Label* condition_met,
+ Label::Distance condition_met_distance) {
+ ASSERT(cc == zero || cc == not_zero);
+ if (scratch.is(object)) {
+ and_(scratch, Immediate(~Page::kPageAlignmentMask));
+ } else {
+ mov(scratch, Immediate(~Page::kPageAlignmentMask));
+ and_(scratch, object);
+ }
+ if (mask < (1 << kBitsPerByte)) {
+ test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
+ static_cast<uint8_t>(mask));
+ } else {
+ test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
+ }
+ j(cc, condition_met, condition_met_distance);
+}
+
+
+void MacroAssembler::CheckPageFlagForMap(
+ Handle<Map> map,
+ int mask,
+ Condition cc,
+ Label* condition_met,
+ Label::Distance condition_met_distance) {
+ ASSERT(cc == zero || cc == not_zero);
+ Page* page = Page::FromAddress(map->address());
+ ExternalReference reference(ExternalReference::page_flags(page));
+ // The inlined static address check of the page's flags relies
+ // on maps never being compacted.
+ ASSERT(!isolate()->heap()->mark_compact_collector()->
+ IsOnEvacuationCandidate(*map));
+ if (mask < (1 << kBitsPerByte)) {
+ test_b(Operand::StaticVariable(reference), static_cast<uint8_t>(mask));
+ } else {
+ test(Operand::StaticVariable(reference), Immediate(mask));
+ }
+ j(cc, condition_met, condition_met_distance);
+}
+
+
+void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
+ Register scratch,
+ Label* if_deprecated) {
+ if (map->CanBeDeprecated()) {
+ mov(scratch, map);
+ mov(scratch, FieldOperand(scratch, Map::kBitField3Offset));
+ and_(scratch, Immediate(Map::Deprecated::kMask));
+ j(not_zero, if_deprecated);
+ }
+}
+
+
+void MacroAssembler::JumpIfBlack(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* on_black,
+ Label::Distance on_black_near) {
+ HasColor(object, scratch0, scratch1,
+ on_black, on_black_near,
+ 1, 0); // kBlackBitPattern.
+ ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
+}
+
+
+void MacroAssembler::HasColor(Register object,
+ Register bitmap_scratch,
+ Register mask_scratch,
+ Label* has_color,
+ Label::Distance has_color_distance,
+ int first_bit,
+ int second_bit) {
+ ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
+
+ GetMarkBits(object, bitmap_scratch, mask_scratch);
+
+ Label other_color, word_boundary;
+ test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
+ add(mask_scratch, mask_scratch); // Shift left 1 by adding.
+ j(zero, &word_boundary, Label::kNear);
+ test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
+ jmp(&other_color, Label::kNear);
+
+ bind(&word_boundary);
+ test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1);
+
+ j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
+ bind(&other_color);
+}
+
+
+void MacroAssembler::GetMarkBits(Register addr_reg,
+ Register bitmap_reg,
+ Register mask_reg) {
+ ASSERT(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
+ mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
+ and_(bitmap_reg, addr_reg);
+ mov(ecx, addr_reg);
+ int shift =
+ Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
+ shr(ecx, shift);
+ and_(ecx,
+ (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));
+
+ add(bitmap_reg, ecx);
+ mov(ecx, addr_reg);
+ shr(ecx, kPointerSizeLog2);
+ and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
+ mov(mask_reg, Immediate(1));
+ shl_cl(mask_reg);
+}
+
+
+void MacroAssembler::EnsureNotWhite(
+ Register value,
+ Register bitmap_scratch,
+ Register mask_scratch,
+ Label* value_is_white_and_not_data,
+ Label::Distance distance) {
+ ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
+ GetMarkBits(value, bitmap_scratch, mask_scratch);
+
+ // If the value is black or grey we don't need to do anything.
+ ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
+ ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
+ ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
+ ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
+
+ Label done;
+
+ // Since both black and grey have a 1 in the first position and white does
+ // not have a 1 there we only need to check one bit.
+ test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ j(not_zero, &done, Label::kNear);
+
+ if (emit_debug_code()) {
+ // Check for impossible bit pattern.
+ Label ok;
+ push(mask_scratch);
+ // shl. May overflow making the check conservative.
+ add(mask_scratch, mask_scratch);
+ test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ j(zero, &ok, Label::kNear);
+ int3();
+ bind(&ok);
+ pop(mask_scratch);
+ }
+
+ // Value is white. We check whether it is data that doesn't need scanning.
+ // Currently only checks for HeapNumber and non-cons strings.
+ Register map = ecx; // Holds map while checking type.
+ Register length = ecx; // Holds length of object after checking type.
+ Label not_heap_number;
+ Label is_data_object;
+
+ // Check for heap-number
+ mov(map, FieldOperand(value, HeapObject::kMapOffset));
+ cmp(map, isolate()->factory()->heap_number_map());
+ j(not_equal, &not_heap_number, Label::kNear);
+ mov(length, Immediate(HeapNumber::kSize));
+ jmp(&is_data_object, Label::kNear);
+
+ bind(&not_heap_number);
+ // Check for strings.
+ ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
+ ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
+ // If it's a string and it's not a cons string then it's an object containing
+ // no GC pointers.
+ Register instance_type = ecx;
+ movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
+ test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask);
+ j(not_zero, value_is_white_and_not_data);
+ // It's a non-indirect (non-cons and non-slice) string.
+ // If it's external, the length is just ExternalString::kSize.
+ // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
+ Label not_external;
+ // External strings are the only ones with the kExternalStringTag bit
+ // set.
+ ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
+ ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
+ test_b(instance_type, kExternalStringTag);
+ j(zero, &not_external, Label::kNear);
+ mov(length, Immediate(ExternalString::kSize));
+ jmp(&is_data_object, Label::kNear);
+
+ bind(&not_external);
+ // Sequential string, either ASCII or UC16.
+ ASSERT(kOneByteStringTag == 0x04);
+ and_(length, Immediate(kStringEncodingMask));
+ xor_(length, Immediate(kStringEncodingMask));
+ add(length, Immediate(0x04));
+ // Value now either 4 (if ASCII) or 8 (if UC16), i.e., char-size shifted
+ // by 2. If we multiply the string length as smi by this, it still
+ // won't overflow a 32-bit value.
+ ASSERT_EQ(SeqOneByteString::kMaxSize, SeqTwoByteString::kMaxSize);
+ ASSERT(SeqOneByteString::kMaxSize <=
+ static_cast<int>(0xffffffffu >> (2 + kSmiTagSize)));
+ imul(length, FieldOperand(value, String::kLengthOffset));
+ shr(length, 2 + kSmiTagSize + kSmiShiftSize);
+ add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
+ and_(length, Immediate(~kObjectAlignmentMask));
+
+ bind(&is_data_object);
+ // Value is a data object, and it is white. Mark it black. Since we know
+ // that the object is white we can make it black by flipping one bit.
+ or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
+
+ and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
+ add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset),
+ length);
+ if (emit_debug_code()) {
+ mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+ cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset));
+ Check(less_equal, kLiveBytesCountOverflowChunkSize);
+ }
+
+ bind(&done);
+}
+
+
+void MacroAssembler::EnumLength(Register dst, Register map) {
+ STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
+ mov(dst, FieldOperand(map, Map::kBitField3Offset));
+ and_(dst, Immediate(Map::EnumLengthBits::kMask));
+ SmiTag(dst);
+}
+
+
+void MacroAssembler::CheckEnumCache(Label* call_runtime) {
+ Label next, start;
+ mov(ecx, eax);
+
+ // Check if the enum length field is properly initialized, indicating that
+ // there is an enum cache.
+ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
+
+ EnumLength(edx, ebx);
+ cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel)));
+ j(equal, call_runtime);
+
+ jmp(&start);
+
+ bind(&next);
+ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
+
+ // For all objects but the receiver, check that the cache is empty.
+ EnumLength(edx, ebx);
+ cmp(edx, Immediate(Smi::FromInt(0)));
+ j(not_equal, call_runtime);
+
+ bind(&start);
+
+ // Check that there are no elements. Register rcx contains the current JS
+ // object we've reached through the prototype chain.
+ Label no_elements;
+ mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset));
+ cmp(ecx, isolate()->factory()->empty_fixed_array());
+ j(equal, &no_elements);
+
+ // Second chance, the object may be using the empty slow element dictionary.
+ cmp(ecx, isolate()->factory()->empty_slow_element_dictionary());
+ j(not_equal, call_runtime);
+
+ bind(&no_elements);
+ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
+ cmp(ecx, isolate()->factory()->null_value());
+ j(not_equal, &next);
+}
+
+
+void MacroAssembler::TestJSArrayForAllocationMemento(
+ Register receiver_reg,
+ Register scratch_reg,
+ Label* no_memento_found) {
+ ExternalReference new_space_start =
+ ExternalReference::new_space_start(isolate());
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+
+ lea(scratch_reg, Operand(receiver_reg,
+ JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
+ cmp(scratch_reg, Immediate(new_space_start));
+ j(less, no_memento_found);
+ cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
+ j(greater, no_memento_found);
+ cmp(MemOperand(scratch_reg, -AllocationMemento::kSize),
+ Immediate(isolate()->factory()->allocation_memento_map()));
+}
+
+
+void MacroAssembler::JumpIfDictionaryInPrototypeChain(
+ Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* found) {
+ ASSERT(!scratch1.is(scratch0));
+ Factory* factory = isolate()->factory();
+ Register current = scratch0;
+ Label loop_again;
+
+ // scratch contained elements pointer.
+ mov(current, object);
+
+ // Loop based on the map going up the prototype chain.
+ bind(&loop_again);
+ mov(current, FieldOperand(current, HeapObject::kMapOffset));
+ mov(scratch1, FieldOperand(current, Map::kBitField2Offset));
+ DecodeField<Map::ElementsKindBits>(scratch1);
+ cmp(scratch1, Immediate(DICTIONARY_ELEMENTS));
+ j(equal, found);
+ mov(current, FieldOperand(current, Map::kPrototypeOffset));
+ cmp(current, Immediate(factory->null_value()));
+ j(not_equal, &loop_again);
+}
+
+
+void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
+ ASSERT(!dividend.is(eax));
+ ASSERT(!dividend.is(edx));
+ MultiplierAndShift ms(divisor);
+ mov(eax, Immediate(ms.multiplier()));
+ imul(dividend);
+ if (divisor > 0 && ms.multiplier() < 0) add(edx, dividend);
+ if (divisor < 0 && ms.multiplier() > 0) sub(edx, dividend);
+ if (ms.shift() > 0) sar(edx, ms.shift());
+ mov(eax, dividend);
+ shr(eax, 31);
+ add(edx, eax);
+}
+
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_X87