summaryrefslogtreecommitdiffstats
path: root/chromium/v8/src/x87/macro-assembler-x87.h
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/v8/src/x87/macro-assembler-x87.h')
-rw-r--r--chromium/v8/src/x87/macro-assembler-x87.h1090
1 files changed, 1090 insertions, 0 deletions
diff --git a/chromium/v8/src/x87/macro-assembler-x87.h b/chromium/v8/src/x87/macro-assembler-x87.h
new file mode 100644
index 00000000000..84141e6bc36
--- /dev/null
+++ b/chromium/v8/src/x87/macro-assembler-x87.h
@@ -0,0 +1,1090 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
+#define V8_X87_MACRO_ASSEMBLER_X87_H_
+
+#include "src/assembler.h"
+#include "src/frames.h"
+#include "src/globals.h"
+
+namespace v8 {
+namespace internal {
+
+// Convenience for platform-independent signatures. We do not normally
+// distinguish memory operands from other operands on ia32.
+typedef Operand MemOperand;
+
+enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
+enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
+enum PointersToHereCheck {
+ kPointersToHereMaybeInteresting,
+ kPointersToHereAreAlwaysInteresting
+};
+
+
+enum RegisterValueType {
+ REGISTER_VALUE_IS_SMI,
+ REGISTER_VALUE_IS_INT32
+};
+
+
+bool AreAliased(Register r1, Register r2, Register r3, Register r4);
+
+
+// MacroAssembler implements a collection of frequently used macros.
+class MacroAssembler: public Assembler {
+ public:
+ // The isolate parameter can be NULL if the macro assembler should
+ // not use isolate-dependent functionality. In this case, it's the
+ // responsibility of the caller to never invoke such function on the
+ // macro assembler.
+ MacroAssembler(Isolate* isolate, void* buffer, int size);
+
+ void Load(Register dst, const Operand& src, Representation r);
+ void Store(Register src, const Operand& dst, Representation r);
+
+ // Operations on roots in the root-array.
+ void LoadRoot(Register destination, Heap::RootListIndex index);
+ void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
+ void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
+ // These methods can only be used with constant roots (i.e. non-writable
+ // and not in new space).
+ void CompareRoot(Register with, Heap::RootListIndex index);
+ void CompareRoot(const Operand& with, Heap::RootListIndex index);
+
+ // ---------------------------------------------------------------------------
+ // GC Support
+ enum RememberedSetFinalAction {
+ kReturnAtEnd,
+ kFallThroughAtEnd
+ };
+
+ // Record in the remembered set the fact that we have a pointer to new space
+ // at the address pointed to by the addr register. Only works if addr is not
+ // in new space.
+ void RememberedSetHelper(Register object, // Used for debug code.
+ Register addr,
+ Register scratch,
+ RememberedSetFinalAction and_then);
+
+ void CheckPageFlag(Register object,
+ Register scratch,
+ int mask,
+ Condition cc,
+ Label* condition_met,
+ Label::Distance condition_met_distance = Label::kFar);
+
+ void CheckPageFlagForMap(
+ Handle<Map> map,
+ int mask,
+ Condition cc,
+ Label* condition_met,
+ Label::Distance condition_met_distance = Label::kFar);
+
+ void CheckMapDeprecated(Handle<Map> map,
+ Register scratch,
+ Label* if_deprecated);
+
+ // Check if object is in new space. Jumps if the object is not in new space.
+ // The register scratch can be object itself, but scratch will be clobbered.
+ void JumpIfNotInNewSpace(Register object,
+ Register scratch,
+ Label* branch,
+ Label::Distance distance = Label::kFar) {
+ InNewSpace(object, scratch, zero, branch, distance);
+ }
+
+ // Check if object is in new space. Jumps if the object is in new space.
+ // The register scratch can be object itself, but it will be clobbered.
+ void JumpIfInNewSpace(Register object,
+ Register scratch,
+ Label* branch,
+ Label::Distance distance = Label::kFar) {
+ InNewSpace(object, scratch, not_zero, branch, distance);
+ }
+
+ // Check if an object has a given incremental marking color. Also uses ecx!
+ void HasColor(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* has_color,
+ Label::Distance has_color_distance,
+ int first_bit,
+ int second_bit);
+
+ void JumpIfBlack(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* on_black,
+ Label::Distance on_black_distance = Label::kFar);
+
+ // Checks the color of an object. If the object is already grey or black
+ // then we just fall through, since it is already live. If it is white and
+ // we can determine that it doesn't need to be scanned, then we just mark it
+ // black and fall through. For the rest we jump to the label so the
+ // incremental marker can fix its assumptions.
+ void EnsureNotWhite(Register object,
+ Register scratch1,
+ Register scratch2,
+ Label* object_is_white_and_not_data,
+ Label::Distance distance);
+
+ // Notify the garbage collector that we wrote a pointer into an object.
+ // |object| is the object being stored into, |value| is the object being
+ // stored. value and scratch registers are clobbered by the operation.
+ // The offset is the offset from the start of the object, not the offset from
+ // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
+ void RecordWriteField(
+ Register object,
+ int offset,
+ Register value,
+ Register scratch,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting);
+
+ // As above, but the offset has the tag presubtracted. For use with
+ // Operand(reg, off).
+ void RecordWriteContextSlot(
+ Register context,
+ int offset,
+ Register value,
+ Register scratch,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting) {
+ RecordWriteField(context,
+ offset + kHeapObjectTag,
+ value,
+ scratch,
+ remembered_set_action,
+ smi_check,
+ pointers_to_here_check_for_value);
+ }
+
+ // Notify the garbage collector that we wrote a pointer into a fixed array.
+ // |array| is the array being stored into, |value| is the
+ // object being stored. |index| is the array index represented as a
+ // Smi. All registers are clobbered by the operation RecordWriteArray
+ // filters out smis so it does not update the write barrier if the
+ // value is a smi.
+ void RecordWriteArray(
+ Register array,
+ Register value,
+ Register index,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting);
+
+ // For page containing |object| mark region covering |address|
+ // dirty. |object| is the object being stored into, |value| is the
+ // object being stored. The address and value registers are clobbered by the
+ // operation. RecordWrite filters out smis so it does not update the
+ // write barrier if the value is a smi.
+ void RecordWrite(
+ Register object,
+ Register address,
+ Register value,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting);
+
+ // For page containing |object| mark the region covering the object's map
+ // dirty. |object| is the object being stored into, |map| is the Map object
+ // that was stored.
+ void RecordWriteForMap(
+ Register object,
+ Handle<Map> map,
+ Register scratch1,
+ Register scratch2);
+
+ // ---------------------------------------------------------------------------
+ // Debugger Support
+
+ void DebugBreak();
+
+ // Generates function and stub prologue code.
+ void StubPrologue();
+ void Prologue(bool code_pre_aging);
+
+ // Enter specific kind of exit frame. Expects the number of
+ // arguments in register eax and sets up the number of arguments in
+ // register edi and the pointer to the first argument in register
+ // esi.
+ void EnterExitFrame();
+
+ void EnterApiExitFrame(int argc);
+
+ // Leave the current exit frame. Expects the return value in
+ // register eax:edx (untouched) and the pointer to the first
+ // argument in register esi.
+ void LeaveExitFrame();
+
+ // Leave the current exit frame. Expects the return value in
+ // register eax (untouched).
+ void LeaveApiExitFrame(bool restore_context);
+
+ // Find the function context up the context chain.
+ void LoadContext(Register dst, int context_chain_length);
+
+ // Conditionally load the cached Array transitioned map of type
+ // transitioned_kind from the native context if the map in register
+ // map_in_out is the cached Array map in the native context of
+ // expected_kind.
+ void LoadTransitionedArrayMapConditional(
+ ElementsKind expected_kind,
+ ElementsKind transitioned_kind,
+ Register map_in_out,
+ Register scratch,
+ Label* no_map_match);
+
+ // Load the global function with the given index.
+ void LoadGlobalFunction(int index, Register function);
+
+ // Load the initial map from the global function. The registers
+ // function and map can be the same.
+ void LoadGlobalFunctionInitialMap(Register function, Register map);
+
+ // Push and pop the registers that can hold pointers.
+ void PushSafepointRegisters() { pushad(); }
+ void PopSafepointRegisters() { popad(); }
+ // Store the value in register/immediate src in the safepoint
+ // register stack slot for register dst.
+ void StoreToSafepointRegisterSlot(Register dst, Register src);
+ void StoreToSafepointRegisterSlot(Register dst, Immediate src);
+ void LoadFromSafepointRegisterSlot(Register dst, Register src);
+
+ void LoadHeapObject(Register result, Handle<HeapObject> object);
+ void CmpHeapObject(Register reg, Handle<HeapObject> object);
+ void PushHeapObject(Handle<HeapObject> object);
+
+ void LoadObject(Register result, Handle<Object> object) {
+ AllowDeferredHandleDereference heap_object_check;
+ if (object->IsHeapObject()) {
+ LoadHeapObject(result, Handle<HeapObject>::cast(object));
+ } else {
+ Move(result, Immediate(object));
+ }
+ }
+
+ void CmpObject(Register reg, Handle<Object> object) {
+ AllowDeferredHandleDereference heap_object_check;
+ if (object->IsHeapObject()) {
+ CmpHeapObject(reg, Handle<HeapObject>::cast(object));
+ } else {
+ cmp(reg, Immediate(object));
+ }
+ }
+
+ // ---------------------------------------------------------------------------
+ // JavaScript invokes
+
+ // Invoke the JavaScript function code by either calling or jumping.
+ void InvokeCode(Register code,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ InvokeCode(Operand(code), expected, actual, flag, call_wrapper);
+ }
+
+ void InvokeCode(const Operand& code,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ // Invoke the JavaScript function in the given register. Changes the
+ // current context to the context in the function before invoking.
+ void InvokeFunction(Register function,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ void InvokeFunction(Register function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ void InvokeFunction(Handle<JSFunction> function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ // Invoke specified builtin JavaScript function. Adds an entry to
+ // the unresolved list if the name does not resolve.
+ void InvokeBuiltin(Builtins::JavaScript id,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper = NullCallWrapper());
+
+ // Store the function for the given builtin in the target register.
+ void GetBuiltinFunction(Register target, Builtins::JavaScript id);
+
+ // Store the code object for the given builtin in the target register.
+ void GetBuiltinEntry(Register target, Builtins::JavaScript id);
+
+ // Expression support
+ // Support for constant splitting.
+ bool IsUnsafeImmediate(const Immediate& x);
+ void SafeMove(Register dst, const Immediate& x);
+ void SafePush(const Immediate& x);
+
+ // Compare object type for heap object.
+ // Incoming register is heap_object and outgoing register is map.
+ void CmpObjectType(Register heap_object, InstanceType type, Register map);
+
+ // Compare instance type for map.
+ void CmpInstanceType(Register map, InstanceType type);
+
+ // Check if a map for a JSObject indicates that the object has fast elements.
+ // Jump to the specified label if it does not.
+ void CheckFastElements(Register map,
+ Label* fail,
+ Label::Distance distance = Label::kFar);
+
+ // Check if a map for a JSObject indicates that the object can have both smi
+ // and HeapObject elements. Jump to the specified label if it does not.
+ void CheckFastObjectElements(Register map,
+ Label* fail,
+ Label::Distance distance = Label::kFar);
+
+ // Check if a map for a JSObject indicates that the object has fast smi only
+ // elements. Jump to the specified label if it does not.
+ void CheckFastSmiElements(Register map,
+ Label* fail,
+ Label::Distance distance = Label::kFar);
+
+ // Check to see if maybe_number can be stored as a double in
+ // FastDoubleElements. If it can, store it at the index specified by key in
+ // the FastDoubleElements array elements, otherwise jump to fail.
+ void StoreNumberToDoubleElements(Register maybe_number,
+ Register elements,
+ Register key,
+ Register scratch,
+ Label* fail,
+ int offset = 0);
+
+ // Compare an object's map with the specified map.
+ void CompareMap(Register obj, Handle<Map> map);
+
+ // Check if the map of an object is equal to a specified map and branch to
+ // label if not. Skip the smi check if not required (object is known to be a
+ // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
+ // against maps that are ElementsKind transition maps of the specified map.
+ void CheckMap(Register obj,
+ Handle<Map> map,
+ Label* fail,
+ SmiCheckType smi_check_type);
+
+ // Check if the map of an object is equal to a specified map and branch to a
+ // specified target if equal. Skip the smi check if not required (object is
+ // known to be a heap object)
+ void DispatchMap(Register obj,
+ Register unused,
+ Handle<Map> map,
+ Handle<Code> success,
+ SmiCheckType smi_check_type);
+
+ // Check if the object in register heap_object is a string. Afterwards the
+ // register map contains the object map and the register instance_type
+ // contains the instance_type. The registers map and instance_type can be the
+ // same in which case it contains the instance type afterwards. Either of the
+ // registers map and instance_type can be the same as heap_object.
+ Condition IsObjectStringType(Register heap_object,
+ Register map,
+ Register instance_type);
+
+ // Check if the object in register heap_object is a name. Afterwards the
+ // register map contains the object map and the register instance_type
+ // contains the instance_type. The registers map and instance_type can be the
+ // same in which case it contains the instance type afterwards. Either of the
+ // registers map and instance_type can be the same as heap_object.
+ Condition IsObjectNameType(Register heap_object,
+ Register map,
+ Register instance_type);
+
+ // Check if a heap object's type is in the JSObject range, not including
+ // JSFunction. The object's map will be loaded in the map register.
+ // Any or all of the three registers may be the same.
+ // The contents of the scratch register will always be overwritten.
+ void IsObjectJSObjectType(Register heap_object,
+ Register map,
+ Register scratch,
+ Label* fail);
+
+ // The contents of the scratch register will be overwritten.
+ void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
+
+ // FCmp is similar to integer cmp, but requires unsigned
+ // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
+ void FCmp();
+
+ void ClampUint8(Register reg);
+
+ void SlowTruncateToI(Register result_reg, Register input_reg,
+ int offset = HeapNumber::kValueOffset - kHeapObjectTag);
+
+ void TruncateHeapNumberToI(Register result_reg, Register input_reg);
+ void TruncateX87TOSToI(Register result_reg);
+
+ void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
+ Label* conversion_failed, Label::Distance dst = Label::kFar);
+
+ void TaggedToI(Register result_reg, Register input_reg,
+ MinusZeroMode minus_zero_mode, Label* lost_precision);
+
+ // Smi tagging support.
+ void SmiTag(Register reg) {
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ add(reg, reg);
+ }
+ void SmiUntag(Register reg) {
+ sar(reg, kSmiTagSize);
+ }
+
+ // Modifies the register even if it does not contain a Smi!
+ void SmiUntag(Register reg, Label* is_smi) {
+ STATIC_ASSERT(kSmiTagSize == 1);
+ sar(reg, kSmiTagSize);
+ STATIC_ASSERT(kSmiTag == 0);
+ j(not_carry, is_smi);
+ }
+
+ void LoadUint32NoSSE2(Register src);
+
+ // Jump the register contains a smi.
+ inline void JumpIfSmi(Register value,
+ Label* smi_label,
+ Label::Distance distance = Label::kFar) {
+ test(value, Immediate(kSmiTagMask));
+ j(zero, smi_label, distance);
+ }
+ // Jump if the operand is a smi.
+ inline void JumpIfSmi(Operand value,
+ Label* smi_label,
+ Label::Distance distance = Label::kFar) {
+ test(value, Immediate(kSmiTagMask));
+ j(zero, smi_label, distance);
+ }
+ // Jump if register contain a non-smi.
+ inline void JumpIfNotSmi(Register value,
+ Label* not_smi_label,
+ Label::Distance distance = Label::kFar) {
+ test(value, Immediate(kSmiTagMask));
+ j(not_zero, not_smi_label, distance);
+ }
+
+ void LoadInstanceDescriptors(Register map, Register descriptors);
+ void EnumLength(Register dst, Register map);
+ void NumberOfOwnDescriptors(Register dst, Register map);
+
+ template<typename Field>
+ void DecodeField(Register reg) {
+ static const int shift = Field::kShift;
+ static const int mask = Field::kMask >> Field::kShift;
+ if (shift != 0) {
+ sar(reg, shift);
+ }
+ and_(reg, Immediate(mask));
+ }
+
+ template<typename Field>
+ void DecodeFieldToSmi(Register reg) {
+ static const int shift = Field::kShift;
+ static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
+ STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ if (shift < kSmiTagSize) {
+ shl(reg, kSmiTagSize - shift);
+ } else if (shift > kSmiTagSize) {
+ sar(reg, shift - kSmiTagSize);
+ }
+ and_(reg, Immediate(mask));
+ }
+
+ // Abort execution if argument is not a number, enabled via --debug-code.
+ void AssertNumber(Register object);
+
+ // Abort execution if argument is not a smi, enabled via --debug-code.
+ void AssertSmi(Register object);
+
+ // Abort execution if argument is a smi, enabled via --debug-code.
+ void AssertNotSmi(Register object);
+
+ // Abort execution if argument is not a string, enabled via --debug-code.
+ void AssertString(Register object);
+
+ // Abort execution if argument is not a name, enabled via --debug-code.
+ void AssertName(Register object);
+
+ // Abort execution if argument is not undefined or an AllocationSite, enabled
+ // via --debug-code.
+ void AssertUndefinedOrAllocationSite(Register object);
+
+ // ---------------------------------------------------------------------------
+ // Exception handling
+
+ // Push a new try handler and link it into try handler chain.
+ void PushTryHandler(StackHandler::Kind kind, int handler_index);
+
+ // Unlink the stack handler on top of the stack from the try handler chain.
+ void PopTryHandler();
+
+ // Throw to the top handler in the try hander chain.
+ void Throw(Register value);
+
+ // Throw past all JS frames to the top JS entry frame.
+ void ThrowUncatchable(Register value);
+
+ // ---------------------------------------------------------------------------
+ // Inline caching support
+
+ // Generate code for checking access rights - used for security checks
+ // on access to global objects across environments. The holder register
+ // is left untouched, but the scratch register is clobbered.
+ void CheckAccessGlobalProxy(Register holder_reg,
+ Register scratch1,
+ Register scratch2,
+ Label* miss);
+
+ void GetNumberHash(Register r0, Register scratch);
+
+ void LoadFromNumberDictionary(Label* miss,
+ Register elements,
+ Register key,
+ Register r0,
+ Register r1,
+ Register r2,
+ Register result);
+
+
+ // ---------------------------------------------------------------------------
+ // Allocation support
+
+ // Allocate an object in new space or old pointer space. If the given space
+ // is exhausted control continues at the gc_required label. The allocated
+ // object is returned in result and end of the new object is returned in
+ // result_end. The register scratch can be passed as no_reg in which case
+ // an additional object reference will be added to the reloc info. The
+ // returned pointers in result and result_end have not yet been tagged as
+ // heap objects. If result_contains_top_on_entry is true the content of
+ // result is known to be the allocation top on entry (could be result_end
+ // from a previous call). If result_contains_top_on_entry is true scratch
+ // should be no_reg as it is never used.
+ void Allocate(int object_size,
+ Register result,
+ Register result_end,
+ Register scratch,
+ Label* gc_required,
+ AllocationFlags flags);
+
+ void Allocate(int header_size,
+ ScaleFactor element_size,
+ Register element_count,
+ RegisterValueType element_count_type,
+ Register result,
+ Register result_end,
+ Register scratch,
+ Label* gc_required,
+ AllocationFlags flags);
+
+ void Allocate(Register object_size,
+ Register result,
+ Register result_end,
+ Register scratch,
+ Label* gc_required,
+ AllocationFlags flags);
+
+ // Undo allocation in new space. The object passed and objects allocated after
+ // it will no longer be allocated. Make sure that no pointers are left to the
+ // object(s) no longer allocated as they would be invalid when allocation is
+ // un-done.
+ void UndoAllocationInNewSpace(Register object);
+
+ // Allocate a heap number in new space with undefined value. The
+ // register scratch2 can be passed as no_reg; the others must be
+ // valid registers. Returns tagged pointer in result register, or
+ // jumps to gc_required if new space is full.
+ void AllocateHeapNumber(Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+
+ // Allocate a sequential string. All the header fields of the string object
+ // are initialized.
+ void AllocateTwoByteString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required);
+ void AllocateAsciiString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required);
+ void AllocateAsciiString(Register result,
+ int length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+
+ // Allocate a raw cons string object. Only the map field of the result is
+ // initialized.
+ void AllocateTwoByteConsString(Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+ void AllocateAsciiConsString(Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+
+ // Allocate a raw sliced string object. Only the map field of the result is
+ // initialized.
+ void AllocateTwoByteSlicedString(Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+ void AllocateAsciiSlicedString(Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+
+ // Copy memory, byte-by-byte, from source to destination. Not optimized for
+ // long or aligned copies.
+ // The contents of index and scratch are destroyed.
+ void CopyBytes(Register source,
+ Register destination,
+ Register length,
+ Register scratch);
+
+ // Initialize fields with filler values. Fields starting at |start_offset|
+ // not including end_offset are overwritten with the value in |filler|. At
+ // the end the loop, |start_offset| takes the value of |end_offset|.
+ void InitializeFieldsWithFiller(Register start_offset,
+ Register end_offset,
+ Register filler);
+
+ // ---------------------------------------------------------------------------
+ // Support functions.
+
+ // Check a boolean-bit of a Smi field.
+ void BooleanBitTest(Register object, int field_offset, int bit_index);
+
+ // Check if result is zero and op is negative.
+ void NegativeZeroTest(Register result, Register op, Label* then_label);
+
+ // Check if result is zero and any of op1 and op2 are negative.
+ // Register scratch is destroyed, and it must be different from op2.
+ void NegativeZeroTest(Register result, Register op1, Register op2,
+ Register scratch, Label* then_label);
+
+ // Try to get function prototype of a function and puts the value in
+ // the result register. Checks that the function really is a
+ // function and jumps to the miss label if the fast checks fail. The
+ // function register will be untouched; the other registers may be
+ // clobbered.
+ void TryGetFunctionPrototype(Register function,
+ Register result,
+ Register scratch,
+ Label* miss,
+ bool miss_on_bound_function = false);
+
+ // Picks out an array index from the hash field.
+ // Register use:
+ // hash - holds the index's hash. Clobbered.
+ // index - holds the overwritten index on exit.
+ void IndexFromHash(Register hash, Register index);
+
+ // ---------------------------------------------------------------------------
+ // Runtime calls
+
+ // Call a code stub. Generate the code if necessary.
+ void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
+
+ // Tail call a code stub (jump). Generate the code if necessary.
+ void TailCallStub(CodeStub* stub);
+
+ // Return from a code stub after popping its arguments.
+ void StubReturn(int argc);
+
+ // Call a runtime routine.
+ void CallRuntime(const Runtime::Function* f, int num_arguments);
+ // Convenience function: Same as above, but takes the fid instead.
+ void CallRuntime(Runtime::FunctionId id) {
+ const Runtime::Function* function = Runtime::FunctionForId(id);
+ CallRuntime(function, function->nargs);
+ }
+ void CallRuntime(Runtime::FunctionId id, int num_arguments) {
+ CallRuntime(Runtime::FunctionForId(id), num_arguments);
+ }
+
+ // Convenience function: call an external reference.
+ void CallExternalReference(ExternalReference ref, int num_arguments);
+
+ // Tail call of a runtime routine (jump).
+ // Like JumpToExternalReference, but also takes care of passing the number
+ // of parameters.
+ void TailCallExternalReference(const ExternalReference& ext,
+ int num_arguments,
+ int result_size);
+
+ // Convenience function: tail call a runtime routine (jump).
+ void TailCallRuntime(Runtime::FunctionId fid,
+ int num_arguments,
+ int result_size);
+
+ // Before calling a C-function from generated code, align arguments on stack.
+ // After aligning the frame, arguments must be stored in esp[0], esp[4],
+ // etc., not pushed. The argument count assumes all arguments are word sized.
+ // Some compilers/platforms require the stack to be aligned when calling
+ // C++ code.
+ // Needs a scratch register to do some arithmetic. This register will be
+ // trashed.
+ void PrepareCallCFunction(int num_arguments, Register scratch);
+
+ // Calls a C function and cleans up the space for arguments allocated
+ // by PrepareCallCFunction. The called function is not allowed to trigger a
+ // garbage collection, since that might move the code and invalidate the
+ // return address (unless this is somehow accounted for by the called
+ // function).
+ void CallCFunction(ExternalReference function, int num_arguments);
+ void CallCFunction(Register function, int num_arguments);
+
+ // Prepares stack to put arguments (aligns and so on). Reserves
+ // space for return value if needed (assumes the return value is a handle).
+ // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
+ // etc. Saves context (esi). If space was reserved for return value then
+ // stores the pointer to the reserved slot into esi.
+ void PrepareCallApiFunction(int argc);
+
+ // Calls an API function. Allocates HandleScope, extracts returned value
+ // from handle and propagates exceptions. Clobbers ebx, edi and
+ // caller-save registers. Restores context. On return removes
+ // stack_space * kPointerSize (GCed).
+ void CallApiFunctionAndReturn(Register function_address,
+ ExternalReference thunk_ref,
+ Operand thunk_last_arg,
+ int stack_space,
+ Operand return_value_operand,
+ Operand* context_restore_operand);
+
+ // Jump to a runtime routine.
+ void JumpToExternalReference(const ExternalReference& ext);
+
+ // ---------------------------------------------------------------------------
+ // Utilities
+
+ void Ret();
+
+ // Return and drop arguments from stack, where the number of arguments
+ // may be bigger than 2^16 - 1. Requires a scratch register.
+ void Ret(int bytes_dropped, Register scratch);
+
+ // Emit code to discard a non-negative number of pointer-sized elements
+ // from the stack, clobbering only the esp register.
+ void Drop(int element_count);
+
+ void Call(Label* target) { call(target); }
+ void Push(Register src) { push(src); }
+ void Pop(Register dst) { pop(dst); }
+
+ // Emit call to the code we are currently generating.
+ void CallSelf() {
+ Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
+ call(self, RelocInfo::CODE_TARGET);
+ }
+
+ // Move if the registers are not identical.
+ void Move(Register target, Register source);
+
+ // Move a constant into a destination using the most efficient encoding.
+ void Move(Register dst, const Immediate& x);
+ void Move(const Operand& dst, const Immediate& x);
+
+ // Push a handle value.
+ void Push(Handle<Object> handle) { push(Immediate(handle)); }
+ void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
+
+ Handle<Object> CodeObject() {
+ ASSERT(!code_object_.is_null());
+ return code_object_;
+ }
+
+ // Insert code to verify that the x87 stack has the specified depth (0-7)
+ void VerifyX87StackDepth(uint32_t depth);
+
+ // Emit code for a truncating division by a constant. The dividend register is
+ // unchanged, the result is in edx, and eax gets clobbered.
+ void TruncatingDiv(Register dividend, int32_t divisor);
+
+ // ---------------------------------------------------------------------------
+ // StatsCounter support
+
+ void SetCounter(StatsCounter* counter, int value);
+ void IncrementCounter(StatsCounter* counter, int value);
+ void DecrementCounter(StatsCounter* counter, int value);
+ void IncrementCounter(Condition cc, StatsCounter* counter, int value);
+ void DecrementCounter(Condition cc, StatsCounter* counter, int value);
+
+
+ // ---------------------------------------------------------------------------
+ // Debugging
+
+ // Calls Abort(msg) if the condition cc is not satisfied.
+ // Use --debug_code to enable.
+ void Assert(Condition cc, BailoutReason reason);
+
+ void AssertFastElements(Register elements);
+
+ // Like Assert(), but always enabled.
+ void Check(Condition cc, BailoutReason reason);
+
+ // Print a message to stdout and abort execution.
+ void Abort(BailoutReason reason);
+
+ // Check that the stack is aligned.
+ void CheckStackAlignment();
+
+ // Verify restrictions about code generated in stubs.
+ void set_generating_stub(bool value) { generating_stub_ = value; }
+ bool generating_stub() { return generating_stub_; }
+ void set_has_frame(bool value) { has_frame_ = value; }
+ bool has_frame() { return has_frame_; }
+ inline bool AllowThisStubCall(CodeStub* stub);
+
+ // ---------------------------------------------------------------------------
+ // String utilities.
+
+ // Generate code to do a lookup in the number string cache. If the number in
+ // the register object is found in the cache the generated code falls through
+ // with the result in the result register. The object and the result register
+ // can be the same. If the number is not found in the cache the code jumps to
+ // the label not_found with only the content of register object unchanged.
+ void LookupNumberStringCache(Register object,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* not_found);
+
+ // Check whether the instance type represents a flat ASCII string. Jump to the
+ // label if not. If the instance type can be scratched specify same register
+ // for both instance type and scratch.
+ void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,
+ Register scratch,
+ Label* on_not_flat_ascii_string);
+
+ // Checks if both objects are sequential ASCII strings, and jumps to label
+ // if either is not.
+ void JumpIfNotBothSequentialAsciiStrings(Register object1,
+ Register object2,
+ Register scratch1,
+ Register scratch2,
+ Label* on_not_flat_ascii_strings);
+
+ // Checks if the given register or operand is a unique name
+ void JumpIfNotUniqueName(Register reg, Label* not_unique_name,
+ Label::Distance distance = Label::kFar) {
+ JumpIfNotUniqueName(Operand(reg), not_unique_name, distance);
+ }
+
+ void JumpIfNotUniqueName(Operand operand, Label* not_unique_name,
+ Label::Distance distance = Label::kFar);
+
+ void EmitSeqStringSetCharCheck(Register string,
+ Register index,
+ Register value,
+ uint32_t encoding_mask);
+
+ static int SafepointRegisterStackIndex(Register reg) {
+ return SafepointRegisterStackIndex(reg.code());
+ }
+
+ // Activation support.
+ void EnterFrame(StackFrame::Type type);
+ void LeaveFrame(StackFrame::Type type);
+
+ // Expects object in eax and returns map with validated enum cache
+ // in eax. Assumes that any other register can be used as a scratch.
+ void CheckEnumCache(Label* call_runtime);
+
+ // AllocationMemento support. Arrays may have an associated
+ // AllocationMemento object that can be checked for in order to pretransition
+ // to another type.
+ // On entry, receiver_reg should point to the array object.
+ // scratch_reg gets clobbered.
+ // If allocation info is present, conditional code is set to equal.
+ void TestJSArrayForAllocationMemento(Register receiver_reg,
+ Register scratch_reg,
+ Label* no_memento_found);
+
+ void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
+ Register scratch_reg,
+ Label* memento_found) {
+ Label no_memento_found;
+ TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
+ &no_memento_found);
+ j(equal, memento_found);
+ bind(&no_memento_found);
+ }
+
+ // Jumps to found label if a prototype map has dictionary elements.
+ void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
+ Register scratch1, Label* found);
+
+ private:
+ bool generating_stub_;
+ bool has_frame_;
+ // This handle will be patched with the code object on installation.
+ Handle<Object> code_object_;
+
+ // Helper functions for generating invokes.
+ void InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual,
+ Handle<Code> code_constant,
+ const Operand& code_operand,
+ Label* done,
+ bool* definitely_mismatches,
+ InvokeFlag flag,
+ Label::Distance done_distance,
+ const CallWrapper& call_wrapper = NullCallWrapper());
+
+ void EnterExitFramePrologue();
+ void EnterExitFrameEpilogue(int argc);
+
+ void LeaveExitFrameEpilogue(bool restore_context);
+
+ // Allocation support helpers.
+ void LoadAllocationTopHelper(Register result,
+ Register scratch,
+ AllocationFlags flags);
+
+ void UpdateAllocationTopHelper(Register result_end,
+ Register scratch,
+ AllocationFlags flags);
+
+ // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
+ void InNewSpace(Register object,
+ Register scratch,
+ Condition cc,
+ Label* condition_met,
+ Label::Distance condition_met_distance = Label::kFar);
+
+ // Helper for finding the mark bits for an address. Afterwards, the
+ // bitmap register points at the word with the mark bits and the mask
+ // the position of the first bit. Uses ecx as scratch and leaves addr_reg
+ // unchanged.
+ inline void GetMarkBits(Register addr_reg,
+ Register bitmap_reg,
+ Register mask_reg);
+
+ // Helper for throwing exceptions. Compute a handler address and jump to
+ // it. See the implementation for register usage.
+ void JumpToHandlerEntry();
+
+ // Compute memory operands for safepoint stack slots.
+ Operand SafepointRegisterSlot(Register reg);
+ static int SafepointRegisterStackIndex(int reg_code);
+
+ // Needs access to SafepointRegisterStackIndex for compiled frame
+ // traversal.
+ friend class StandardFrame;
+};
+
+
+// The code patcher is used to patch (typically) small parts of code e.g. for
+// debugging and other types of instrumentation. When using the code patcher
+// the exact number of bytes specified must be emitted. Is not legal to emit
+// relocation information. If any of these constraints are violated it causes
+// an assertion.
+class CodePatcher {
+ public:
+ CodePatcher(byte* address, int size);
+ virtual ~CodePatcher();
+
+ // Macro assembler to emit code.
+ MacroAssembler* masm() { return &masm_; }
+
+ private:
+ byte* address_; // The address of the code being patched.
+ int size_; // Number of bytes of the expected patch size.
+ MacroAssembler masm_; // Macro assembler used to generate the code.
+};
+
+
+// -----------------------------------------------------------------------------
+// Static helper functions.
+
+// Generate an Operand for loading a field from an object.
+inline Operand FieldOperand(Register object, int offset) {
+ return Operand(object, offset - kHeapObjectTag);
+}
+
+
+// Generate an Operand for loading an indexed field from an object.
+inline Operand FieldOperand(Register object,
+ Register index,
+ ScaleFactor scale,
+ int offset) {
+ return Operand(object, index, scale, offset - kHeapObjectTag);
+}
+
+
+inline Operand FixedArrayElementOperand(Register array,
+ Register index_as_smi,
+ int additional_offset = 0) {
+ int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
+ return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
+}
+
+
+inline Operand ContextOperand(Register context, int index) {
+ return Operand(context, Context::SlotOffset(index));
+}
+
+
+inline Operand GlobalObjectOperand() {
+ return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
+}
+
+
+// Generates an Operand for saving parameters after PrepareCallApiFunction.
+Operand ApiParameterOperand(int index);
+
+
+#ifdef GENERATED_CODE_COVERAGE
+extern void LogGeneratedCodeCoverage(const char* file_line);
+#define CODE_COVERAGE_STRINGIFY(x) #x
+#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
+#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
+#define ACCESS_MASM(masm) { \
+ byte* ia32_coverage_function = \
+ reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
+ masm->pushfd(); \
+ masm->pushad(); \
+ masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
+ masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
+ masm->pop(eax); \
+ masm->popad(); \
+ masm->popfd(); \
+ } \
+ masm->
+#else
+#define ACCESS_MASM(masm) masm->
+#endif
+
+
+} } // namespace v8::internal
+
+#endif // V8_X87_MACRO_ASSEMBLER_X87_H_