From ab0a50979b9eb4dfa3320eff7e187e41efedf7a9 Mon Sep 17 00:00:00 2001 From: Jocelyn Turcotte Date: Fri, 8 Aug 2014 14:30:41 +0200 Subject: Update Chromium to beta version 37.0.2062.68 Change-Id: I188e3b5aff1bec75566014291b654eb19f5bc8ca Reviewed-by: Andras Becsi --- chromium/v8/src/arm64/code-stubs-arm64.cc | 5555 +++++++++++++++++++++++++++++ 1 file changed, 5555 insertions(+) create mode 100644 chromium/v8/src/arm64/code-stubs-arm64.cc (limited to 'chromium/v8/src/arm64/code-stubs-arm64.cc') diff --git a/chromium/v8/src/arm64/code-stubs-arm64.cc b/chromium/v8/src/arm64/code-stubs-arm64.cc new file mode 100644 index 00000000000..70ead443fd6 --- /dev/null +++ b/chromium/v8/src/arm64/code-stubs-arm64.cc @@ -0,0 +1,5555 @@ +// Copyright 2013 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "src/v8.h" + +#if V8_TARGET_ARCH_ARM64 + +#include "src/bootstrapper.h" +#include "src/code-stubs.h" +#include "src/regexp-macro-assembler.h" +#include "src/stub-cache.h" + +namespace v8 { +namespace internal { + + +void FastNewClosureStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x2: function info + static Register registers[] = { x2 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + Runtime::FunctionForId(Runtime::kHiddenNewClosureFromStubFailure)->entry; +} + + +void FastNewContextStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x1: function + static Register registers[] = { x1 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = NULL; +} + + +void ToNumberStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x0: value + static Register registers[] = { x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = NULL; +} + + +void NumberToStringStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x0: value + static Register registers[] = { x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + Runtime::FunctionForId(Runtime::kHiddenNumberToString)->entry; +} + + +void FastCloneShallowArrayStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x3: array literals array + // x2: array literal index + // x1: constant elements + static Register registers[] = { x3, x2, x1 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + static Representation representations[] = { + Representation::Tagged(), + Representation::Smi(), + Representation::Tagged() }; + descriptor->register_param_representations_ = representations; + descriptor->deoptimization_handler_ = + Runtime::FunctionForId( + Runtime::kHiddenCreateArrayLiteralStubBailout)->entry; +} + + +void FastCloneShallowObjectStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x3: object literals array + // x2: object literal index + // x1: constant properties + // x0: object literal flags + static Register registers[] = { x3, x2, x1, x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + Runtime::FunctionForId(Runtime::kHiddenCreateObjectLiteral)->entry; +} + + +void CreateAllocationSiteStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x2: feedback vector + // x3: call feedback slot + static Register registers[] = { x2, x3 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = NULL; +} + + +void KeyedLoadGenericElementStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + static Register registers[] = { x1, x0 }; + descriptor->register_param_count_ = 2; + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + Runtime::FunctionForId(Runtime::kKeyedGetProperty)->entry; +} + + +void KeyedLoadFastElementStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x1: receiver + // x0: key + static Register registers[] = { x1, x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); +} + + +void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x1: receiver + // x0: key + static Register registers[] = { x1, x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); +} + + +void RegExpConstructResultStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x2: length + // x1: index (of last match) + // x0: string + static Register registers[] = { x2, x1, x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + Runtime::FunctionForId(Runtime::kHiddenRegExpConstructResult)->entry; +} + + +void LoadFieldStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x0: receiver + static Register registers[] = { x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = NULL; +} + + +void KeyedLoadFieldStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x1: receiver + static Register registers[] = { x1 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = NULL; +} + + +void StringLengthStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + static Register registers[] = { x0, x2 }; + descriptor->register_param_count_ = 2; + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = NULL; +} + + +void KeyedStringLengthStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + static Register registers[] = { x1, x0 }; + descriptor->register_param_count_ = 2; + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = NULL; +} + + +void KeyedStoreFastElementStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x2: receiver + // x1: key + // x0: value + static Register registers[] = { x2, x1, x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure); +} + + +void TransitionElementsKindStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x0: value (js_array) + // x1: to_map + static Register registers[] = { x0, x1 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + Address entry = + Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry; + descriptor->deoptimization_handler_ = FUNCTION_ADDR(entry); +} + + +void CompareNilICStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x0: value to compare + static Register registers[] = { x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + FUNCTION_ADDR(CompareNilIC_Miss); + descriptor->SetMissHandler( + ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate())); +} + + +static void InitializeArrayConstructorDescriptor( + CodeStubInterfaceDescriptor* descriptor, + int constant_stack_parameter_count) { + // x1: function + // x2: allocation site with elements kind + // x0: number of arguments to the constructor function + static Register registers_variable_args[] = { x1, x2, x0 }; + static Register registers_no_args[] = { x1, x2 }; + + if (constant_stack_parameter_count == 0) { + descriptor->register_param_count_ = + sizeof(registers_no_args) / sizeof(registers_no_args[0]); + descriptor->register_params_ = registers_no_args; + } else { + // stack param count needs (constructor pointer, and single argument) + descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; + descriptor->stack_parameter_count_ = x0; + descriptor->register_param_count_ = + sizeof(registers_variable_args) / sizeof(registers_variable_args[0]); + descriptor->register_params_ = registers_variable_args; + static Representation representations[] = { + Representation::Tagged(), + Representation::Tagged(), + Representation::Integer32() }; + descriptor->register_param_representations_ = representations; + } + + descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; + descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; + descriptor->deoptimization_handler_ = + Runtime::FunctionForId(Runtime::kHiddenArrayConstructor)->entry; +} + + +void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + InitializeArrayConstructorDescriptor(descriptor, 0); +} + + +void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + InitializeArrayConstructorDescriptor(descriptor, 1); +} + + +void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + InitializeArrayConstructorDescriptor(descriptor, -1); +} + + +static void InitializeInternalArrayConstructorDescriptor( + CodeStubInterfaceDescriptor* descriptor, + int constant_stack_parameter_count) { + // x1: constructor function + // x0: number of arguments to the constructor function + static Register registers_variable_args[] = { x1, x0 }; + static Register registers_no_args[] = { x1 }; + + if (constant_stack_parameter_count == 0) { + descriptor->register_param_count_ = + sizeof(registers_no_args) / sizeof(registers_no_args[0]); + descriptor->register_params_ = registers_no_args; + } else { + // stack param count needs (constructor pointer, and single argument) + descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; + descriptor->stack_parameter_count_ = x0; + descriptor->register_param_count_ = + sizeof(registers_variable_args) / sizeof(registers_variable_args[0]); + descriptor->register_params_ = registers_variable_args; + static Representation representations[] = { + Representation::Tagged(), + Representation::Integer32() }; + descriptor->register_param_representations_ = representations; + } + + descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; + descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; + descriptor->deoptimization_handler_ = + Runtime::FunctionForId(Runtime::kHiddenInternalArrayConstructor)->entry; +} + + +void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + InitializeInternalArrayConstructorDescriptor(descriptor, 0); +} + + +void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + InitializeInternalArrayConstructorDescriptor(descriptor, 1); +} + + +void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + InitializeInternalArrayConstructorDescriptor(descriptor, -1); +} + + +void ToBooleanStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x0: value + static Register registers[] = { x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = FUNCTION_ADDR(ToBooleanIC_Miss); + descriptor->SetMissHandler( + ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate())); +} + + +void StoreGlobalStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x1: receiver + // x2: key (unused) + // x0: value + static Register registers[] = { x1, x2, x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + FUNCTION_ADDR(StoreIC_MissFromStubFailure); +} + + +void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x0: value + // x3: target map + // x1: key + // x2: receiver + static Register registers[] = { x0, x3, x1, x2 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss); +} + + +void BinaryOpICStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x1: left operand + // x0: right operand + static Register registers[] = { x1, x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss); + descriptor->SetMissHandler( + ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate())); +} + + +void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x2: allocation site + // x1: left operand + // x0: right operand + static Register registers[] = { x2, x1, x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite); +} + + +void StringAddStub::InitializeInterfaceDescriptor( + CodeStubInterfaceDescriptor* descriptor) { + // x1: left operand + // x0: right operand + static Register registers[] = { x1, x0 }; + descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); + descriptor->register_params_ = registers; + descriptor->deoptimization_handler_ = + Runtime::FunctionForId(Runtime::kHiddenStringAdd)->entry; +} + + +void CallDescriptors::InitializeForIsolate(Isolate* isolate) { + static PlatformCallInterfaceDescriptor default_descriptor = + PlatformCallInterfaceDescriptor(CAN_INLINE_TARGET_ADDRESS); + + static PlatformCallInterfaceDescriptor noInlineDescriptor = + PlatformCallInterfaceDescriptor(NEVER_INLINE_TARGET_ADDRESS); + + { + CallInterfaceDescriptor* descriptor = + isolate->call_descriptor(Isolate::ArgumentAdaptorCall); + static Register registers[] = { x1, // JSFunction + cp, // context + x0, // actual number of arguments + x2, // expected number of arguments + }; + static Representation representations[] = { + Representation::Tagged(), // JSFunction + Representation::Tagged(), // context + Representation::Integer32(), // actual number of arguments + Representation::Integer32(), // expected number of arguments + }; + descriptor->register_param_count_ = 4; + descriptor->register_params_ = registers; + descriptor->param_representations_ = representations; + descriptor->platform_specific_descriptor_ = &default_descriptor; + } + { + CallInterfaceDescriptor* descriptor = + isolate->call_descriptor(Isolate::KeyedCall); + static Register registers[] = { cp, // context + x2, // key + }; + static Representation representations[] = { + Representation::Tagged(), // context + Representation::Tagged(), // key + }; + descriptor->register_param_count_ = 2; + descriptor->register_params_ = registers; + descriptor->param_representations_ = representations; + descriptor->platform_specific_descriptor_ = &noInlineDescriptor; + } + { + CallInterfaceDescriptor* descriptor = + isolate->call_descriptor(Isolate::NamedCall); + static Register registers[] = { cp, // context + x2, // name + }; + static Representation representations[] = { + Representation::Tagged(), // context + Representation::Tagged(), // name + }; + descriptor->register_param_count_ = 2; + descriptor->register_params_ = registers; + descriptor->param_representations_ = representations; + descriptor->platform_specific_descriptor_ = &noInlineDescriptor; + } + { + CallInterfaceDescriptor* descriptor = + isolate->call_descriptor(Isolate::CallHandler); + static Register registers[] = { cp, // context + x0, // receiver + }; + static Representation representations[] = { + Representation::Tagged(), // context + Representation::Tagged(), // receiver + }; + descriptor->register_param_count_ = 2; + descriptor->register_params_ = registers; + descriptor->param_representations_ = representations; + descriptor->platform_specific_descriptor_ = &default_descriptor; + } + { + CallInterfaceDescriptor* descriptor = + isolate->call_descriptor(Isolate::ApiFunctionCall); + static Register registers[] = { x0, // callee + x4, // call_data + x2, // holder + x1, // api_function_address + cp, // context + }; + static Representation representations[] = { + Representation::Tagged(), // callee + Representation::Tagged(), // call_data + Representation::Tagged(), // holder + Representation::External(), // api_function_address + Representation::Tagged(), // context + }; + descriptor->register_param_count_ = 5; + descriptor->register_params_ = registers; + descriptor->param_representations_ = representations; + descriptor->platform_specific_descriptor_ = &default_descriptor; + } +} + + +#define __ ACCESS_MASM(masm) + + +void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) { + // Update the static counter each time a new code stub is generated. + isolate()->counters()->code_stubs()->Increment(); + + CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(); + int param_count = descriptor->register_param_count_; + { + // Call the runtime system in a fresh internal frame. + FrameScope scope(masm, StackFrame::INTERNAL); + ASSERT((descriptor->register_param_count_ == 0) || + x0.Is(descriptor->register_params_[param_count - 1])); + + // Push arguments + MacroAssembler::PushPopQueue queue(masm); + for (int i = 0; i < param_count; ++i) { + queue.Queue(descriptor->register_params_[i]); + } + queue.PushQueued(); + + ExternalReference miss = descriptor->miss_handler(); + __ CallExternalReference(miss, descriptor->register_param_count_); + } + + __ Ret(); +} + + +void DoubleToIStub::Generate(MacroAssembler* masm) { + Label done; + Register input = source(); + Register result = destination(); + ASSERT(is_truncating()); + + ASSERT(result.Is64Bits()); + ASSERT(jssp.Is(masm->StackPointer())); + + int double_offset = offset(); + + DoubleRegister double_scratch = d0; // only used if !skip_fastpath() + Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result); + Register scratch2 = + GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1); + + __ Push(scratch1, scratch2); + // Account for saved regs if input is jssp. + if (input.is(jssp)) double_offset += 2 * kPointerSize; + + if (!skip_fastpath()) { + __ Push(double_scratch); + if (input.is(jssp)) double_offset += 1 * kDoubleSize; + __ Ldr(double_scratch, MemOperand(input, double_offset)); + // Try to convert with a FPU convert instruction. This handles all + // non-saturating cases. + __ TryConvertDoubleToInt64(result, double_scratch, &done); + __ Fmov(result, double_scratch); + } else { + __ Ldr(result, MemOperand(input, double_offset)); + } + + // If we reach here we need to manually convert the input to an int32. + + // Extract the exponent. + Register exponent = scratch1; + __ Ubfx(exponent, result, HeapNumber::kMantissaBits, + HeapNumber::kExponentBits); + + // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since + // the mantissa gets shifted completely out of the int32_t result. + __ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32); + __ CzeroX(result, ge); + __ B(ge, &done); + + // The Fcvtzs sequence handles all cases except where the conversion causes + // signed overflow in the int64_t target. Since we've already handled + // exponents >= 84, we can guarantee that 63 <= exponent < 84. + + if (masm->emit_debug_code()) { + __ Cmp(exponent, HeapNumber::kExponentBias + 63); + // Exponents less than this should have been handled by the Fcvt case. + __ Check(ge, kUnexpectedValue); + } + + // Isolate the mantissa bits, and set the implicit '1'. + Register mantissa = scratch2; + __ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits); + __ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits); + + // Negate the mantissa if necessary. + __ Tst(result, kXSignMask); + __ Cneg(mantissa, mantissa, ne); + + // Shift the mantissa bits in the correct place. We know that we have to shift + // it left here, because exponent >= 63 >= kMantissaBits. + __ Sub(exponent, exponent, + HeapNumber::kExponentBias + HeapNumber::kMantissaBits); + __ Lsl(result, mantissa, exponent); + + __ Bind(&done); + if (!skip_fastpath()) { + __ Pop(double_scratch); + } + __ Pop(scratch2, scratch1); + __ Ret(); +} + + +// See call site for description. +static void EmitIdenticalObjectComparison(MacroAssembler* masm, + Register left, + Register right, + Register scratch, + FPRegister double_scratch, + Label* slow, + Condition cond) { + ASSERT(!AreAliased(left, right, scratch)); + Label not_identical, return_equal, heap_number; + Register result = x0; + + __ Cmp(right, left); + __ B(ne, ¬_identical); + + // Test for NaN. Sadly, we can't just compare to factory::nan_value(), + // so we do the second best thing - test it ourselves. + // They are both equal and they are not both Smis so both of them are not + // Smis. If it's not a heap number, then return equal. + if ((cond == lt) || (cond == gt)) { + __ JumpIfObjectType(right, scratch, scratch, FIRST_SPEC_OBJECT_TYPE, slow, + ge); + } else { + Register right_type = scratch; + __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE, + &heap_number); + // Comparing JS objects with <=, >= is complicated. + if (cond != eq) { + __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); + __ B(ge, slow); + // Normally here we fall through to return_equal, but undefined is + // special: (undefined == undefined) == true, but + // (undefined <= undefined) == false! See ECMAScript 11.8.5. + if ((cond == le) || (cond == ge)) { + __ Cmp(right_type, ODDBALL_TYPE); + __ B(ne, &return_equal); + __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal); + if (cond == le) { + // undefined <= undefined should fail. + __ Mov(result, GREATER); + } else { + // undefined >= undefined should fail. + __ Mov(result, LESS); + } + __ Ret(); + } + } + } + + __ Bind(&return_equal); + if (cond == lt) { + __ Mov(result, GREATER); // Things aren't less than themselves. + } else if (cond == gt) { + __ Mov(result, LESS); // Things aren't greater than themselves. + } else { + __ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves. + } + __ Ret(); + + // Cases lt and gt have been handled earlier, and case ne is never seen, as + // it is handled in the parser (see Parser::ParseBinaryExpression). We are + // only concerned with cases ge, le and eq here. + if ((cond != lt) && (cond != gt)) { + ASSERT((cond == ge) || (cond == le) || (cond == eq)); + __ Bind(&heap_number); + // Left and right are identical pointers to a heap number object. Return + // non-equal if the heap number is a NaN, and equal otherwise. Comparing + // the number to itself will set the overflow flag iff the number is NaN. + __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset)); + __ Fcmp(double_scratch, double_scratch); + __ B(vc, &return_equal); // Not NaN, so treat as normal heap number. + + if (cond == le) { + __ Mov(result, GREATER); + } else { + __ Mov(result, LESS); + } + __ Ret(); + } + + // No fall through here. + if (FLAG_debug_code) { + __ Unreachable(); + } + + __ Bind(¬_identical); +} + + +// See call site for description. +static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, + Register left, + Register right, + Register left_type, + Register right_type, + Register scratch) { + ASSERT(!AreAliased(left, right, left_type, right_type, scratch)); + + if (masm->emit_debug_code()) { + // We assume that the arguments are not identical. + __ Cmp(left, right); + __ Assert(ne, kExpectedNonIdenticalObjects); + } + + // If either operand is a JS object or an oddball value, then they are not + // equal since their pointers are different. + // There is no test for undetectability in strict equality. + STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); + Label right_non_object; + + __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); + __ B(lt, &right_non_object); + + // Return non-zero - x0 already contains a non-zero pointer. + ASSERT(left.is(x0) || right.is(x0)); + Label return_not_equal; + __ Bind(&return_not_equal); + __ Ret(); + + __ Bind(&right_non_object); + + // Check for oddballs: true, false, null, undefined. + __ Cmp(right_type, ODDBALL_TYPE); + + // If right is not ODDBALL, test left. Otherwise, set eq condition. + __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne); + + // If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE. + // Otherwise, right or left is ODDBALL, so set a ge condition. + __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne); + + __ B(ge, &return_not_equal); + + // Internalized strings are unique, so they can only be equal if they are the + // same object. We have already tested that case, so if left and right are + // both internalized strings, they cannot be equal. + STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); + __ Orr(scratch, left_type, right_type); + __ TestAndBranchIfAllClear( + scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal); +} + + +// See call site for description. +static void EmitSmiNonsmiComparison(MacroAssembler* masm, + Register left, + Register right, + FPRegister left_d, + FPRegister right_d, + Register scratch, + Label* slow, + bool strict) { + ASSERT(!AreAliased(left, right, scratch)); + ASSERT(!AreAliased(left_d, right_d)); + ASSERT((left.is(x0) && right.is(x1)) || + (right.is(x0) && left.is(x1))); + Register result = x0; + + Label right_is_smi, done; + __ JumpIfSmi(right, &right_is_smi); + + // Left is the smi. Check whether right is a heap number. + if (strict) { + // If right is not a number and left is a smi, then strict equality cannot + // succeed. Return non-equal. + Label is_heap_number; + __ JumpIfObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, + &is_heap_number); + // Register right is a non-zero pointer, which is a valid NOT_EQUAL result. + if (!right.is(result)) { + __ Mov(result, NOT_EQUAL); + } + __ Ret(); + __ Bind(&is_heap_number); + } else { + // Smi compared non-strictly with a non-smi, non-heap-number. Call the + // runtime. + __ JumpIfNotObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, slow); + } + + // Left is the smi. Right is a heap number. Load right value into right_d, and + // convert left smi into double in left_d. + __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset)); + __ SmiUntagToDouble(left_d, left); + __ B(&done); + + __ Bind(&right_is_smi); + // Right is a smi. Check whether the non-smi left is a heap number. + if (strict) { + // If left is not a number and right is a smi then strict equality cannot + // succeed. Return non-equal. + Label is_heap_number; + __ JumpIfObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, + &is_heap_number); + // Register left is a non-zero pointer, which is a valid NOT_EQUAL result. + if (!left.is(result)) { + __ Mov(result, NOT_EQUAL); + } + __ Ret(); + __ Bind(&is_heap_number); + } else { + // Smi compared non-strictly with a non-smi, non-heap-number. Call the + // runtime. + __ JumpIfNotObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, slow); + } + + // Right is the smi. Left is a heap number. Load left value into left_d, and + // convert right smi into double in right_d. + __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset)); + __ SmiUntagToDouble(right_d, right); + + // Fall through to both_loaded_as_doubles. + __ Bind(&done); +} + + +// Fast negative check for internalized-to-internalized equality. +// See call site for description. +static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, + Register left, + Register right, + Register left_map, + Register right_map, + Register left_type, + Register right_type, + Label* possible_strings, + Label* not_both_strings) { + ASSERT(!AreAliased(left, right, left_map, right_map, left_type, right_type)); + Register result = x0; + + Label object_test; + STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); + // TODO(all): reexamine this branch sequence for optimisation wrt branch + // prediction. + __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test); + __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings); + __ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings); + __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings); + + // Both are internalized. We already checked that they weren't the same + // pointer, so they are not equal. + __ Mov(result, NOT_EQUAL); + __ Ret(); + + __ Bind(&object_test); + + __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); + + // If right >= FIRST_SPEC_OBJECT_TYPE, test left. + // Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition. + __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge); + + __ B(lt, not_both_strings); + + // If both objects are undetectable, they are equal. Otherwise, they are not + // equal, since they are different objects and an object is not equal to + // undefined. + + // Returning here, so we can corrupt right_type and left_type. + Register right_bitfield = right_type; + Register left_bitfield = left_type; + __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset)); + __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset)); + __ And(result, right_bitfield, left_bitfield); + __ And(result, result, 1 << Map::kIsUndetectable); + __ Eor(result, result, 1 << Map::kIsUndetectable); + __ Ret(); +} + + +static void ICCompareStub_CheckInputType(MacroAssembler* masm, + Register input, + Register scratch, + CompareIC::State expected, + Label* fail) { + Label ok; + if (expected == CompareIC::SMI) { + __ JumpIfNotSmi(input, fail); + } else if (expected == CompareIC::NUMBER) { + __ JumpIfSmi(input, &ok); + __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, + DONT_DO_SMI_CHECK); + } + // We could be strict about internalized/non-internalized here, but as long as + // hydrogen doesn't care, the stub doesn't have to care either. + __ Bind(&ok); +} + + +void ICCompareStub::GenerateGeneric(MacroAssembler* masm) { + Register lhs = x1; + Register rhs = x0; + Register result = x0; + Condition cond = GetCondition(); + + Label miss; + ICCompareStub_CheckInputType(masm, lhs, x2, left_, &miss); + ICCompareStub_CheckInputType(masm, rhs, x3, right_, &miss); + + Label slow; // Call builtin. + Label not_smis, both_loaded_as_doubles; + Label not_two_smis, smi_done; + __ JumpIfEitherNotSmi(lhs, rhs, ¬_two_smis); + __ SmiUntag(lhs); + __ Sub(result, lhs, Operand::UntagSmi(rhs)); + __ Ret(); + + __ Bind(¬_two_smis); + + // NOTICE! This code is only reached after a smi-fast-case check, so it is + // certain that at least one operand isn't a smi. + + // Handle the case where the objects are identical. Either returns the answer + // or goes to slow. Only falls through if the objects were not identical. + EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond); + + // If either is a smi (we know that at least one is not a smi), then they can + // only be strictly equal if the other is a HeapNumber. + __ JumpIfBothNotSmi(lhs, rhs, ¬_smis); + + // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that + // can: + // 1) Return the answer. + // 2) Branch to the slow case. + // 3) Fall through to both_loaded_as_doubles. + // In case 3, we have found out that we were dealing with a number-number + // comparison. The double values of the numbers have been loaded, right into + // rhs_d, left into lhs_d. + FPRegister rhs_d = d0; + FPRegister lhs_d = d1; + EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, x10, &slow, strict()); + + __ Bind(&both_loaded_as_doubles); + // The arguments have been converted to doubles and stored in rhs_d and + // lhs_d. + Label nan; + __ Fcmp(lhs_d, rhs_d); + __ B(vs, &nan); // Overflow flag set if either is NaN. + STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); + __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL). + __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0. + __ Ret(); + + __ Bind(&nan); + // Left and/or right is a NaN. Load the result register with whatever makes + // the comparison fail, since comparisons with NaN always fail (except ne, + // which is filtered out at a higher level.) + ASSERT(cond != ne); + if ((cond == lt) || (cond == le)) { + __ Mov(result, GREATER); + } else { + __ Mov(result, LESS); + } + __ Ret(); + + __ Bind(¬_smis); + // At this point we know we are dealing with two different objects, and + // neither of them is a smi. The objects are in rhs_ and lhs_. + + // Load the maps and types of the objects. + Register rhs_map = x10; + Register rhs_type = x11; + Register lhs_map = x12; + Register lhs_type = x13; + __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); + __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); + __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); + __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); + + if (strict()) { + // This emits a non-equal return sequence for some object types, or falls + // through if it was not lucky. + EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14); + } + + Label check_for_internalized_strings; + Label flat_string_check; + // Check for heap number comparison. Branch to earlier double comparison code + // if they are heap numbers, otherwise, branch to internalized string check. + __ Cmp(rhs_type, HEAP_NUMBER_TYPE); + __ B(ne, &check_for_internalized_strings); + __ Cmp(lhs_map, rhs_map); + + // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat + // string check. + __ B(ne, &flat_string_check); + + // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double + // comparison code. + __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); + __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); + __ B(&both_loaded_as_doubles); + + __ Bind(&check_for_internalized_strings); + // In the strict case, the EmitStrictTwoHeapObjectCompare already took care + // of internalized strings. + if ((cond == eq) && !strict()) { + // Returns an answer for two internalized strings or two detectable objects. + // Otherwise branches to the string case or not both strings case. + EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map, + lhs_type, rhs_type, + &flat_string_check, &slow); + } + + // Check for both being sequential ASCII strings, and inline if that is the + // case. + __ Bind(&flat_string_check); + __ JumpIfBothInstanceTypesAreNotSequentialAscii(lhs_type, rhs_type, x14, + x15, &slow); + + __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x10, + x11); + if (cond == eq) { + StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs, rhs, + x10, x11, x12); + } else { + StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs, rhs, + x10, x11, x12, x13); + } + + // Never fall through to here. + if (FLAG_debug_code) { + __ Unreachable(); + } + + __ Bind(&slow); + + __ Push(lhs, rhs); + // Figure out which native to call and setup the arguments. + Builtins::JavaScript native; + if (cond == eq) { + native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; + } else { + native = Builtins::COMPARE; + int ncr; // NaN compare result + if ((cond == lt) || (cond == le)) { + ncr = GREATER; + } else { + ASSERT((cond == gt) || (cond == ge)); // remaining cases + ncr = LESS; + } + __ Mov(x10, Smi::FromInt(ncr)); + __ Push(x10); + } + + // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) + // tagged as a small integer. + __ InvokeBuiltin(native, JUMP_FUNCTION); + + __ Bind(&miss); + GenerateMiss(masm); +} + + +void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { + CPURegList saved_regs = kCallerSaved; + CPURegList saved_fp_regs = kCallerSavedFP; + + // We don't allow a GC during a store buffer overflow so there is no need to + // store the registers in any particular way, but we do have to store and + // restore them. + + // We don't care if MacroAssembler scratch registers are corrupted. + saved_regs.Remove(*(masm->TmpList())); + saved_fp_regs.Remove(*(masm->FPTmpList())); + + __ PushCPURegList(saved_regs); + if (save_doubles_ == kSaveFPRegs) { + __ PushCPURegList(saved_fp_regs); + } + + AllowExternalCallThatCantCauseGC scope(masm); + __ Mov(x0, ExternalReference::isolate_address(isolate())); + __ CallCFunction( + ExternalReference::store_buffer_overflow_function(isolate()), 1, 0); + + if (save_doubles_ == kSaveFPRegs) { + __ PopCPURegList(saved_fp_regs); + } + __ PopCPURegList(saved_regs); + __ Ret(); +} + + +void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( + Isolate* isolate) { + StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); + stub1.GetCode(); + StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); + stub2.GetCode(); +} + + +void StoreRegistersStateStub::Generate(MacroAssembler* masm) { + MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); + UseScratchRegisterScope temps(masm); + Register saved_lr = temps.UnsafeAcquire(to_be_pushed_lr()); + Register return_address = temps.AcquireX(); + __ Mov(return_address, lr); + // Restore lr with the value it had before the call to this stub (the value + // which must be pushed). + __ Mov(lr, saved_lr); + if (save_doubles_ == kSaveFPRegs) { + __ PushSafepointRegistersAndDoubles(); + } else { + __ PushSafepointRegisters(); + } + __ Ret(return_address); +} + + +void RestoreRegistersStateStub::Generate(MacroAssembler* masm) { + MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); + UseScratchRegisterScope temps(masm); + Register return_address = temps.AcquireX(); + // Preserve the return address (lr will be clobbered by the pop). + __ Mov(return_address, lr); + if (save_doubles_ == kSaveFPRegs) { + __ PopSafepointRegistersAndDoubles(); + } else { + __ PopSafepointRegisters(); + } + __ Ret(return_address); +} + + +void MathPowStub::Generate(MacroAssembler* masm) { + // Stack on entry: + // jssp[0]: Exponent (as a tagged value). + // jssp[1]: Base (as a tagged value). + // + // The (tagged) result will be returned in x0, as a heap number. + + Register result_tagged = x0; + Register base_tagged = x10; + Register exponent_tagged = x11; + Register exponent_integer = x12; + Register scratch1 = x14; + Register scratch0 = x15; + Register saved_lr = x19; + FPRegister result_double = d0; + FPRegister base_double = d0; + FPRegister exponent_double = d1; + FPRegister base_double_copy = d2; + FPRegister scratch1_double = d6; + FPRegister scratch0_double = d7; + + // A fast-path for integer exponents. + Label exponent_is_smi, exponent_is_integer; + // Bail out to runtime. + Label call_runtime; + // Allocate a heap number for the result, and return it. + Label done; + + // Unpack the inputs. + if (exponent_type_ == ON_STACK) { + Label base_is_smi; + Label unpack_exponent; + + __ Pop(exponent_tagged, base_tagged); + + __ JumpIfSmi(base_tagged, &base_is_smi); + __ JumpIfNotHeapNumber(base_tagged, &call_runtime); + // base_tagged is a heap number, so load its double value. + __ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset)); + __ B(&unpack_exponent); + __ Bind(&base_is_smi); + // base_tagged is a SMI, so untag it and convert it to a double. + __ SmiUntagToDouble(base_double, base_tagged); + + __ Bind(&unpack_exponent); + // x10 base_tagged The tagged base (input). + // x11 exponent_tagged The tagged exponent (input). + // d1 base_double The base as a double. + __ JumpIfSmi(exponent_tagged, &exponent_is_smi); + __ JumpIfNotHeapNumber(exponent_tagged, &call_runtime); + // exponent_tagged is a heap number, so load its double value. + __ Ldr(exponent_double, + FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); + } else if (exponent_type_ == TAGGED) { + __ JumpIfSmi(exponent_tagged, &exponent_is_smi); + __ Ldr(exponent_double, + FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); + } + + // Handle double (heap number) exponents. + if (exponent_type_ != INTEGER) { + // Detect integer exponents stored as doubles and handle those in the + // integer fast-path. + __ TryRepresentDoubleAsInt64(exponent_integer, exponent_double, + scratch0_double, &exponent_is_integer); + + if (exponent_type_ == ON_STACK) { + FPRegister half_double = d3; + FPRegister minus_half_double = d4; + // Detect square root case. Crankshaft detects constant +/-0.5 at compile + // time and uses DoMathPowHalf instead. We then skip this check for + // non-constant cases of +/-0.5 as these hardly occur. + + __ Fmov(minus_half_double, -0.5); + __ Fmov(half_double, 0.5); + __ Fcmp(minus_half_double, exponent_double); + __ Fccmp(half_double, exponent_double, NZFlag, ne); + // Condition flags at this point: + // 0.5; nZCv // Identified by eq && pl + // -0.5: NZcv // Identified by eq && mi + // other: ?z?? // Identified by ne + __ B(ne, &call_runtime); + + // The exponent is 0.5 or -0.5. + + // Given that exponent is known to be either 0.5 or -0.5, the following + // special cases could apply (according to ECMA-262 15.8.2.13): + // + // base.isNaN(): The result is NaN. + // (base == +INFINITY) || (base == -INFINITY) + // exponent == 0.5: The result is +INFINITY. + // exponent == -0.5: The result is +0. + // (base == +0) || (base == -0) + // exponent == 0.5: The result is +0. + // exponent == -0.5: The result is +INFINITY. + // (base < 0) && base.isFinite(): The result is NaN. + // + // Fsqrt (and Fdiv for the -0.5 case) can handle all of those except + // where base is -INFINITY or -0. + + // Add +0 to base. This has no effect other than turning -0 into +0. + __ Fadd(base_double, base_double, fp_zero); + // The operation -0+0 results in +0 in all cases except where the + // FPCR rounding mode is 'round towards minus infinity' (RM). The + // ARM64 simulator does not currently simulate FPCR (where the rounding + // mode is set), so test the operation with some debug code. + if (masm->emit_debug_code()) { + UseScratchRegisterScope temps(masm); + Register temp = temps.AcquireX(); + __ Fneg(scratch0_double, fp_zero); + // Verify that we correctly generated +0.0 and -0.0. + // bits(+0.0) = 0x0000000000000000 + // bits(-0.0) = 0x8000000000000000 + __ Fmov(temp, fp_zero); + __ CheckRegisterIsClear(temp, kCouldNotGenerateZero); + __ Fmov(temp, scratch0_double); + __ Eor(temp, temp, kDSignMask); + __ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero); + // Check that -0.0 + 0.0 == +0.0. + __ Fadd(scratch0_double, scratch0_double, fp_zero); + __ Fmov(temp, scratch0_double); + __ CheckRegisterIsClear(temp, kExpectedPositiveZero); + } + + // If base is -INFINITY, make it +INFINITY. + // * Calculate base - base: All infinities will become NaNs since both + // -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in ARM64. + // * If the result is NaN, calculate abs(base). + __ Fsub(scratch0_double, base_double, base_double); + __ Fcmp(scratch0_double, 0.0); + __ Fabs(scratch1_double, base_double); + __ Fcsel(base_double, scratch1_double, base_double, vs); + + // Calculate the square root of base. + __ Fsqrt(result_double, base_double); + __ Fcmp(exponent_double, 0.0); + __ B(ge, &done); // Finish now for exponents of 0.5. + // Find the inverse for exponents of -0.5. + __ Fmov(scratch0_double, 1.0); + __ Fdiv(result_double, scratch0_double, result_double); + __ B(&done); + } + + { + AllowExternalCallThatCantCauseGC scope(masm); + __ Mov(saved_lr, lr); + __ CallCFunction( + ExternalReference::power_double_double_function(isolate()), + 0, 2); + __ Mov(lr, saved_lr); + __ B(&done); + } + + // Handle SMI exponents. + __ Bind(&exponent_is_smi); + // x10 base_tagged The tagged base (input). + // x11 exponent_tagged The tagged exponent (input). + // d1 base_double The base as a double. + __ SmiUntag(exponent_integer, exponent_tagged); + } + + __ Bind(&exponent_is_integer); + // x10 base_tagged The tagged base (input). + // x11 exponent_tagged The tagged exponent (input). + // x12 exponent_integer The exponent as an integer. + // d1 base_double The base as a double. + + // Find abs(exponent). For negative exponents, we can find the inverse later. + Register exponent_abs = x13; + __ Cmp(exponent_integer, 0); + __ Cneg(exponent_abs, exponent_integer, mi); + // x13 exponent_abs The value of abs(exponent_integer). + + // Repeatedly multiply to calculate the power. + // result = 1.0; + // For each bit n (exponent_integer{n}) { + // if (exponent_integer{n}) { + // result *= base; + // } + // base *= base; + // if (remaining bits in exponent_integer are all zero) { + // break; + // } + // } + Label power_loop, power_loop_entry, power_loop_exit; + __ Fmov(scratch1_double, base_double); + __ Fmov(base_double_copy, base_double); + __ Fmov(result_double, 1.0); + __ B(&power_loop_entry); + + __ Bind(&power_loop); + __ Fmul(scratch1_double, scratch1_double, scratch1_double); + __ Lsr(exponent_abs, exponent_abs, 1); + __ Cbz(exponent_abs, &power_loop_exit); + + __ Bind(&power_loop_entry); + __ Tbz(exponent_abs, 0, &power_loop); + __ Fmul(result_double, result_double, scratch1_double); + __ B(&power_loop); + + __ Bind(&power_loop_exit); + + // If the exponent was positive, result_double holds the result. + __ Tbz(exponent_integer, kXSignBit, &done); + + // The exponent was negative, so find the inverse. + __ Fmov(scratch0_double, 1.0); + __ Fdiv(result_double, scratch0_double, result_double); + // ECMA-262 only requires Math.pow to return an 'implementation-dependent + // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow + // to calculate the subnormal value 2^-1074. This method of calculating + // negative powers doesn't work because 2^1074 overflows to infinity. To + // catch this corner-case, we bail out if the result was 0. (This can only + // occur if the divisor is infinity or the base is zero.) + __ Fcmp(result_double, 0.0); + __ B(&done, ne); + + if (exponent_type_ == ON_STACK) { + // Bail out to runtime code. + __ Bind(&call_runtime); + // Put the arguments back on the stack. + __ Push(base_tagged, exponent_tagged); + __ TailCallRuntime(Runtime::kHiddenMathPow, 2, 1); + + // Return. + __ Bind(&done); + __ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1, + result_double); + ASSERT(result_tagged.is(x0)); + __ IncrementCounter( + isolate()->counters()->math_pow(), 1, scratch0, scratch1); + __ Ret(); + } else { + AllowExternalCallThatCantCauseGC scope(masm); + __ Mov(saved_lr, lr); + __ Fmov(base_double, base_double_copy); + __ Scvtf(exponent_double, exponent_integer); + __ CallCFunction( + ExternalReference::power_double_double_function(isolate()), + 0, 2); + __ Mov(lr, saved_lr); + __ Bind(&done); + __ IncrementCounter( + isolate()->counters()->math_pow(), 1, scratch0, scratch1); + __ Ret(); + } +} + + +void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { + // It is important that the following stubs are generated in this order + // because pregenerated stubs can only call other pregenerated stubs. + // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses + // CEntryStub. + CEntryStub::GenerateAheadOfTime(isolate); + StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); + StubFailureTrampolineStub::GenerateAheadOfTime(isolate); + ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); + CreateAllocationSiteStub::GenerateAheadOfTime(isolate); + BinaryOpICStub::GenerateAheadOfTime(isolate); + StoreRegistersStateStub::GenerateAheadOfTime(isolate); + RestoreRegistersStateStub::GenerateAheadOfTime(isolate); + BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); +} + + +void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { + StoreRegistersStateStub stub1(isolate, kDontSaveFPRegs); + stub1.GetCode(); + StoreRegistersStateStub stub2(isolate, kSaveFPRegs); + stub2.GetCode(); +} + + +void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { + RestoreRegistersStateStub stub1(isolate, kDontSaveFPRegs); + stub1.GetCode(); + RestoreRegistersStateStub stub2(isolate, kSaveFPRegs); + stub2.GetCode(); +} + + +void CodeStub::GenerateFPStubs(Isolate* isolate) { + // Floating-point code doesn't get special handling in ARM64, so there's + // nothing to do here. + USE(isolate); +} + + +bool CEntryStub::NeedsImmovableCode() { + // CEntryStub stores the return address on the stack before calling into + // C++ code. In some cases, the VM accesses this address, but it is not used + // when the C++ code returns to the stub because LR holds the return address + // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up + // returning to dead code. + // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't + // find any comment to confirm this, and I don't hit any crashes whatever + // this function returns. The anaylsis should be properly confirmed. + return true; +} + + +void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { + CEntryStub stub(isolate, 1, kDontSaveFPRegs); + stub.GetCode(); + CEntryStub stub_fp(isolate, 1, kSaveFPRegs); + stub_fp.GetCode(); +} + + +void CEntryStub::Generate(MacroAssembler* masm) { + // The Abort mechanism relies on CallRuntime, which in turn relies on + // CEntryStub, so until this stub has been generated, we have to use a + // fall-back Abort mechanism. + // + // Note that this stub must be generated before any use of Abort. + MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); + + ASM_LOCATION("CEntryStub::Generate entry"); + ProfileEntryHookStub::MaybeCallEntryHook(masm); + + // Register parameters: + // x0: argc (including receiver, untagged) + // x1: target + // + // The stack on entry holds the arguments and the receiver, with the receiver + // at the highest address: + // + // jssp]argc-1]: receiver + // jssp[argc-2]: arg[argc-2] + // ... ... + // jssp[1]: arg[1] + // jssp[0]: arg[0] + // + // The arguments are in reverse order, so that arg[argc-2] is actually the + // first argument to the target function and arg[0] is the last. + ASSERT(jssp.Is(__ StackPointer())); + const Register& argc_input = x0; + const Register& target_input = x1; + + // Calculate argv, argc and the target address, and store them in + // callee-saved registers so we can retry the call without having to reload + // these arguments. + // TODO(jbramley): If the first call attempt succeeds in the common case (as + // it should), then we might be better off putting these parameters directly + // into their argument registers, rather than using callee-saved registers and + // preserving them on the stack. + const Register& argv = x21; + const Register& argc = x22; + const Register& target = x23; + + // Derive argv from the stack pointer so that it points to the first argument + // (arg[argc-2]), or just below the receiver in case there are no arguments. + // - Adjust for the arg[] array. + Register temp_argv = x11; + __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2)); + // - Adjust for the receiver. + __ Sub(temp_argv, temp_argv, 1 * kPointerSize); + + // Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved + // registers. + FrameScope scope(masm, StackFrame::MANUAL); + __ EnterExitFrame(save_doubles_, x10, 3); + ASSERT(csp.Is(__ StackPointer())); + + // Poke callee-saved registers into reserved space. + __ Poke(argv, 1 * kPointerSize); + __ Poke(argc, 2 * kPointerSize); + __ Poke(target, 3 * kPointerSize); + + // We normally only keep tagged values in callee-saved registers, as they + // could be pushed onto the stack by called stubs and functions, and on the + // stack they can confuse the GC. However, we're only calling C functions + // which can push arbitrary data onto the stack anyway, and so the GC won't + // examine that part of the stack. + __ Mov(argc, argc_input); + __ Mov(target, target_input); + __ Mov(argv, temp_argv); + + // x21 : argv + // x22 : argc + // x23 : call target + // + // The stack (on entry) holds the arguments and the receiver, with the + // receiver at the highest address: + // + // argv[8]: receiver + // argv -> argv[0]: arg[argc-2] + // ... ... + // argv[...]: arg[1] + // argv[...]: arg[0] + // + // Immediately below (after) this is the exit frame, as constructed by + // EnterExitFrame: + // fp[8]: CallerPC (lr) + // fp -> fp[0]: CallerFP (old fp) + // fp[-8]: Space reserved for SPOffset. + // fp[-16]: CodeObject() + // csp[...]: Saved doubles, if saved_doubles is true. + // csp[32]: Alignment padding, if necessary. + // csp[24]: Preserved x23 (used for target). + // csp[16]: Preserved x22 (used for argc). + // csp[8]: Preserved x21 (used for argv). + // csp -> csp[0]: Space reserved for the return address. + // + // After a successful call, the exit frame, preserved registers (x21-x23) and + // the arguments (including the receiver) are dropped or popped as + // appropriate. The stub then returns. + // + // After an unsuccessful call, the exit frame and suchlike are left + // untouched, and the stub either throws an exception by jumping to one of + // the exception_returned label. + + ASSERT(csp.Is(__ StackPointer())); + + // Prepare AAPCS64 arguments to pass to the builtin. + __ Mov(x0, argc); + __ Mov(x1, argv); + __ Mov(x2, ExternalReference::isolate_address(isolate())); + + Label return_location; + __ Adr(x12, &return_location); + __ Poke(x12, 0); + + if (__ emit_debug_code()) { + // Verify that the slot below fp[kSPOffset]-8 points to the return location + // (currently in x12). + UseScratchRegisterScope temps(masm); + Register temp = temps.AcquireX(); + __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset)); + __ Ldr(temp, MemOperand(temp, -static_cast(kXRegSize))); + __ Cmp(temp, x12); + __ Check(eq, kReturnAddressNotFoundInFrame); + } + + // Call the builtin. + __ Blr(target); + __ Bind(&return_location); + + // x0 result The return code from the call. + // x21 argv + // x22 argc + // x23 target + const Register& result = x0; + + // Check result for exception sentinel. + Label exception_returned; + __ CompareRoot(result, Heap::kExceptionRootIndex); + __ B(eq, &exception_returned); + + // The call succeeded, so unwind the stack and return. + + // Restore callee-saved registers x21-x23. + __ Mov(x11, argc); + + __ Peek(argv, 1 * kPointerSize); + __ Peek(argc, 2 * kPointerSize); + __ Peek(target, 3 * kPointerSize); + + __ LeaveExitFrame(save_doubles_, x10, true); + ASSERT(jssp.Is(__ StackPointer())); + // Pop or drop the remaining stack slots and return from the stub. + // jssp[24]: Arguments array (of size argc), including receiver. + // jssp[16]: Preserved x23 (used for target). + // jssp[8]: Preserved x22 (used for argc). + // jssp[0]: Preserved x21 (used for argv). + __ Drop(x11); + __ AssertFPCRState(); + __ Ret(); + + // The stack pointer is still csp if we aren't returning, and the frame + // hasn't changed (except for the return address). + __ SetStackPointer(csp); + + // Handling of exception. + __ Bind(&exception_returned); + + // Retrieve the pending exception. + ExternalReference pending_exception_address( + Isolate::kPendingExceptionAddress, isolate()); + const Register& exception = result; + const Register& exception_address = x11; + __ Mov(exception_address, Operand(pending_exception_address)); + __ Ldr(exception, MemOperand(exception_address)); + + // Clear the pending exception. + __ Mov(x10, Operand(isolate()->factory()->the_hole_value())); + __ Str(x10, MemOperand(exception_address)); + + // x0 exception The exception descriptor. + // x21 argv + // x22 argc + // x23 target + + // Special handling of termination exceptions, which are uncatchable by + // JavaScript code. + Label throw_termination_exception; + __ Cmp(exception, Operand(isolate()->factory()->termination_exception())); + __ B(eq, &throw_termination_exception); + + // We didn't execute a return case, so the stack frame hasn't been updated + // (except for the return address slot). However, we don't need to initialize + // jssp because the throw method will immediately overwrite it when it + // unwinds the stack. + __ SetStackPointer(jssp); + + ASM_LOCATION("Throw normal"); + __ Mov(argv, 0); + __ Mov(argc, 0); + __ Mov(target, 0); + __ Throw(x0, x10, x11, x12, x13); + + __ Bind(&throw_termination_exception); + ASM_LOCATION("Throw termination"); + __ Mov(argv, 0); + __ Mov(argc, 0); + __ Mov(target, 0); + __ ThrowUncatchable(x0, x10, x11, x12, x13); +} + + +// This is the entry point from C++. 5 arguments are provided in x0-x4. +// See use of the CALL_GENERATED_CODE macro for example in src/execution.cc. +// Input: +// x0: code entry. +// x1: function. +// x2: receiver. +// x3: argc. +// x4: argv. +// Output: +// x0: result. +void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { + ASSERT(jssp.Is(__ StackPointer())); + Register code_entry = x0; + + // Enable instruction instrumentation. This only works on the simulator, and + // will have no effect on the model or real hardware. + __ EnableInstrumentation(); + + Label invoke, handler_entry, exit; + + // Push callee-saved registers and synchronize the system stack pointer (csp) + // and the JavaScript stack pointer (jssp). + // + // We must not write to jssp until after the PushCalleeSavedRegisters() + // call, since jssp is itself a callee-saved register. + __ SetStackPointer(csp); + __ PushCalleeSavedRegisters(); + __ Mov(jssp, csp); + __ SetStackPointer(jssp); + + // Configure the FPCR. We don't restore it, so this is technically not allowed + // according to AAPCS64. However, we only set default-NaN mode and this will + // be harmless for most C code. Also, it works for ARM. + __ ConfigureFPCR(); + + ProfileEntryHookStub::MaybeCallEntryHook(masm); + + // Set up the reserved register for 0.0. + __ Fmov(fp_zero, 0.0); + + // Build an entry frame (see layout below). + int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; + int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used. + __ Mov(x13, bad_frame_pointer); + __ Mov(x12, Smi::FromInt(marker)); + __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate())); + __ Ldr(x10, MemOperand(x11)); + + __ Push(x13, xzr, x12, x10); + // Set up fp. + __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset); + + // Push the JS entry frame marker. Also set js_entry_sp if this is the + // outermost JS call. + Label non_outermost_js, done; + ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); + __ Mov(x10, ExternalReference(js_entry_sp)); + __ Ldr(x11, MemOperand(x10)); + __ Cbnz(x11, &non_outermost_js); + __ Str(fp, MemOperand(x10)); + __ Mov(x12, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); + __ Push(x12); + __ B(&done); + __ Bind(&non_outermost_js); + // We spare one instruction by pushing xzr since the marker is 0. + ASSERT(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL); + __ Push(xzr); + __ Bind(&done); + + // The frame set up looks like this: + // jssp[0] : JS entry frame marker. + // jssp[1] : C entry FP. + // jssp[2] : stack frame marker. + // jssp[3] : stack frmae marker. + // jssp[4] : bad frame pointer 0xfff...ff <- fp points here. + + + // Jump to a faked try block that does the invoke, with a faked catch + // block that sets the pending exception. + __ B(&invoke); + + // Prevent the constant pool from being emitted between the record of the + // handler_entry position and the first instruction of the sequence here. + // There is no risk because Assembler::Emit() emits the instruction before + // checking for constant pool emission, but we do not want to depend on + // that. + { + Assembler::BlockPoolsScope block_pools(masm); + __ bind(&handler_entry); + handler_offset_ = handler_entry.pos(); + // Caught exception: Store result (exception) in the pending exception + // field in the JSEnv and return a failure sentinel. Coming in here the + // fp will be invalid because the PushTryHandler below sets it to 0 to + // signal the existence of the JSEntry frame. + __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress, + isolate()))); + } + __ Str(code_entry, MemOperand(x10)); + __ LoadRoot(x0, Heap::kExceptionRootIndex); + __ B(&exit); + + // Invoke: Link this frame into the handler chain. There's only one + // handler block in this code object, so its index is 0. + __ Bind(&invoke); + __ PushTryHandler(StackHandler::JS_ENTRY, 0); + // If an exception not caught by another handler occurs, this handler + // returns control to the code after the B(&invoke) above, which + // restores all callee-saved registers (including cp and fp) to their + // saved values before returning a failure to C. + + // Clear any pending exceptions. + __ Mov(x10, Operand(isolate()->factory()->the_hole_value())); + __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress, + isolate()))); + __ Str(x10, MemOperand(x11)); + + // Invoke the function by calling through the JS entry trampoline builtin. + // Notice that we cannot store a reference to the trampoline code directly in + // this stub, because runtime stubs are not traversed when doing GC. + + // Expected registers by Builtins::JSEntryTrampoline + // x0: code entry. + // x1: function. + // x2: receiver. + // x3: argc. + // x4: argv. + ExternalReference entry(is_construct ? Builtins::kJSConstructEntryTrampoline + : Builtins::kJSEntryTrampoline, + isolate()); + __ Mov(x10, entry); + + // Call the JSEntryTrampoline. + __ Ldr(x11, MemOperand(x10)); // Dereference the address. + __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag); + __ Blr(x12); + + // Unlink this frame from the handler chain. + __ PopTryHandler(); + + + __ Bind(&exit); + // x0 holds the result. + // The stack pointer points to the top of the entry frame pushed on entry from + // C++ (at the beginning of this stub): + // jssp[0] : JS entry frame marker. + // jssp[1] : C entry FP. + // jssp[2] : stack frame marker. + // jssp[3] : stack frmae marker. + // jssp[4] : bad frame pointer 0xfff...ff <- fp points here. + + // Check if the current stack frame is marked as the outermost JS frame. + Label non_outermost_js_2; + __ Pop(x10); + __ Cmp(x10, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); + __ B(ne, &non_outermost_js_2); + __ Mov(x11, ExternalReference(js_entry_sp)); + __ Str(xzr, MemOperand(x11)); + __ Bind(&non_outermost_js_2); + + // Restore the top frame descriptors from the stack. + __ Pop(x10); + __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate())); + __ Str(x10, MemOperand(x11)); + + // Reset the stack to the callee saved registers. + __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes); + // Restore the callee-saved registers and return. + ASSERT(jssp.Is(__ StackPointer())); + __ Mov(csp, jssp); + __ SetStackPointer(csp); + __ PopCalleeSavedRegisters(); + // After this point, we must not modify jssp because it is a callee-saved + // register which we have just restored. + __ Ret(); +} + + +void FunctionPrototypeStub::Generate(MacroAssembler* masm) { + Label miss; + Register receiver; + if (kind() == Code::KEYED_LOAD_IC) { + // ----------- S t a t e ------------- + // -- lr : return address + // -- x1 : receiver + // -- x0 : key + // ----------------------------------- + Register key = x0; + receiver = x1; + __ Cmp(key, Operand(isolate()->factory()->prototype_string())); + __ B(ne, &miss); + } else { + ASSERT(kind() == Code::LOAD_IC); + // ----------- S t a t e ------------- + // -- lr : return address + // -- x2 : name + // -- x0 : receiver + // -- sp[0] : receiver + // ----------------------------------- + receiver = x0; + } + + StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10, x11, &miss); + + __ Bind(&miss); + StubCompiler::TailCallBuiltin(masm, + BaseLoadStoreStubCompiler::MissBuiltin(kind())); +} + + +void InstanceofStub::Generate(MacroAssembler* masm) { + // Stack on entry: + // jssp[0]: function. + // jssp[8]: object. + // + // Returns result in x0. Zero indicates instanceof, smi 1 indicates not + // instanceof. + + Register result = x0; + Register function = right(); + Register object = left(); + Register scratch1 = x6; + Register scratch2 = x7; + Register res_true = x8; + Register res_false = x9; + // Only used if there was an inline map check site. (See + // LCodeGen::DoInstanceOfKnownGlobal().) + Register map_check_site = x4; + // Delta for the instructions generated between the inline map check and the + // instruction setting the result. + const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize; + + Label not_js_object, slow; + + if (!HasArgsInRegisters()) { + __ Pop(function, object); + } + + if (ReturnTrueFalseObject()) { + __ LoadTrueFalseRoots(res_true, res_false); + } else { + // This is counter-intuitive, but correct. + __ Mov(res_true, Smi::FromInt(0)); + __ Mov(res_false, Smi::FromInt(1)); + } + + // Check that the left hand side is a JS object and load its map as a side + // effect. + Register map = x12; + __ JumpIfSmi(object, ¬_js_object); + __ IsObjectJSObjectType(object, map, scratch2, ¬_js_object); + + // If there is a call site cache, don't look in the global cache, but do the + // real lookup and update the call site cache. + if (!HasCallSiteInlineCheck()) { + Label miss; + __ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss); + __ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss); + __ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex); + __ Ret(); + __ Bind(&miss); + } + + // Get the prototype of the function. + Register prototype = x13; + __ TryGetFunctionPrototype(function, prototype, scratch2, &slow, + MacroAssembler::kMissOnBoundFunction); + + // Check that the function prototype is a JS object. + __ JumpIfSmi(prototype, &slow); + __ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow); + + // Update the global instanceof or call site inlined cache with the current + // map and function. The cached answer will be set when it is known below. + if (HasCallSiteInlineCheck()) { + // Patch the (relocated) inlined map check. + __ GetRelocatedValueLocation(map_check_site, scratch1); + // We have a cell, so need another level of dereferencing. + __ Ldr(scratch1, MemOperand(scratch1)); + __ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset)); + } else { + __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); + __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); + } + + Label return_true, return_result; + { + // Loop through the prototype chain looking for the function prototype. + Register chain_map = x1; + Register chain_prototype = x14; + Register null_value = x15; + Label loop; + __ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset)); + __ LoadRoot(null_value, Heap::kNullValueRootIndex); + // Speculatively set a result. + __ Mov(result, res_false); + + __ Bind(&loop); + + // If the chain prototype is the object prototype, return true. + __ Cmp(chain_prototype, prototype); + __ B(eq, &return_true); + + // If the chain prototype is null, we've reached the end of the chain, so + // return false. + __ Cmp(chain_prototype, null_value); + __ B(eq, &return_result); + + // Otherwise, load the next prototype in the chain, and loop. + __ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset)); + __ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset)); + __ B(&loop); + } + + // Return sequence when no arguments are on the stack. + // We cannot fall through to here. + __ Bind(&return_true); + __ Mov(result, res_true); + __ Bind(&return_result); + if (HasCallSiteInlineCheck()) { + ASSERT(ReturnTrueFalseObject()); + __ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult); + __ GetRelocatedValueLocation(map_check_site, scratch2); + __ Str(result, MemOperand(scratch2)); + } else { + __ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex); + } + __ Ret(); + + Label object_not_null, object_not_null_or_smi; + + __ Bind(¬_js_object); + Register object_type = x14; + // x0 result result return register (uninit) + // x10 function pointer to function + // x11 object pointer to object + // x14 object_type type of object (uninit) + + // Before null, smi and string checks, check that the rhs is a function. + // For a non-function rhs, an exception must be thrown. + __ JumpIfSmi(function, &slow); + __ JumpIfNotObjectType( + function, scratch1, object_type, JS_FUNCTION_TYPE, &slow); + + __ Mov(result, res_false); + + // Null is not instance of anything. + __ Cmp(object_type, Operand(isolate()->factory()->null_value())); + __ B(ne, &object_not_null); + __ Ret(); + + __ Bind(&object_not_null); + // Smi values are not instances of anything. + __ JumpIfNotSmi(object, &object_not_null_or_smi); + __ Ret(); + + __ Bind(&object_not_null_or_smi); + // String values are not instances of anything. + __ IsObjectJSStringType(object, scratch2, &slow); + __ Ret(); + + // Slow-case. Tail call builtin. + __ Bind(&slow); + { + FrameScope scope(masm, StackFrame::INTERNAL); + // Arguments have either been passed into registers or have been previously + // popped. We need to push them before calling builtin. + __ Push(object, function); + __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); + } + if (ReturnTrueFalseObject()) { + // Reload true/false because they were clobbered in the builtin call. + __ LoadTrueFalseRoots(res_true, res_false); + __ Cmp(result, 0); + __ Csel(result, res_true, res_false, eq); + } + __ Ret(); +} + + +Register InstanceofStub::left() { + // Object to check (instanceof lhs). + return x11; +} + + +Register InstanceofStub::right() { + // Constructor function (instanceof rhs). + return x10; +} + + +void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { + Register arg_count = x0; + Register key = x1; + + // The displacement is the offset of the last parameter (if any) relative + // to the frame pointer. + static const int kDisplacement = + StandardFrameConstants::kCallerSPOffset - kPointerSize; + + // Check that the key is a smi. + Label slow; + __ JumpIfNotSmi(key, &slow); + + // Check if the calling frame is an arguments adaptor frame. + Register local_fp = x11; + Register caller_fp = x11; + Register caller_ctx = x12; + Label skip_adaptor; + __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); + __ Ldr(caller_ctx, MemOperand(caller_fp, + StandardFrameConstants::kContextOffset)); + __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); + __ Csel(local_fp, fp, caller_fp, ne); + __ B(ne, &skip_adaptor); + + // Load the actual arguments limit found in the arguments adaptor frame. + __ Ldr(arg_count, MemOperand(caller_fp, + ArgumentsAdaptorFrameConstants::kLengthOffset)); + __ Bind(&skip_adaptor); + + // Check index against formal parameters count limit. Use unsigned comparison + // to get negative check for free: branch if key < 0 or key >= arg_count. + __ Cmp(key, arg_count); + __ B(hs, &slow); + + // Read the argument from the stack and return it. + __ Sub(x10, arg_count, key); + __ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2)); + __ Ldr(x0, MemOperand(x10, kDisplacement)); + __ Ret(); + + // Slow case: handle non-smi or out-of-bounds access to arguments by calling + // the runtime system. + __ Bind(&slow); + __ Push(key); + __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); +} + + +void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { + // Stack layout on entry. + // jssp[0]: number of parameters (tagged) + // jssp[8]: address of receiver argument + // jssp[16]: function + + // Check if the calling frame is an arguments adaptor frame. + Label runtime; + Register caller_fp = x10; + __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); + // Load and untag the context. + STATIC_ASSERT((kSmiShift / kBitsPerByte) == 4); + __ Ldr(w11, MemOperand(caller_fp, StandardFrameConstants::kContextOffset + + (kSmiShift / kBitsPerByte))); + __ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR); + __ B(ne, &runtime); + + // Patch the arguments.length and parameters pointer in the current frame. + __ Ldr(x11, MemOperand(caller_fp, + ArgumentsAdaptorFrameConstants::kLengthOffset)); + __ Poke(x11, 0 * kXRegSize); + __ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2)); + __ Add(x10, x10, StandardFrameConstants::kCallerSPOffset); + __ Poke(x10, 1 * kXRegSize); + + __ Bind(&runtime); + __ TailCallRuntime(Runtime::kHiddenNewSloppyArguments, 3, 1); +} + + +void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { + // Stack layout on entry. + // jssp[0]: number of parameters (tagged) + // jssp[8]: address of receiver argument + // jssp[16]: function + // + // Returns pointer to result object in x0. + + // Note: arg_count_smi is an alias of param_count_smi. + Register arg_count_smi = x3; + Register param_count_smi = x3; + Register param_count = x7; + Register recv_arg = x14; + Register function = x4; + __ Pop(param_count_smi, recv_arg, function); + __ SmiUntag(param_count, param_count_smi); + + // Check if the calling frame is an arguments adaptor frame. + Register caller_fp = x11; + Register caller_ctx = x12; + Label runtime; + Label adaptor_frame, try_allocate; + __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); + __ Ldr(caller_ctx, MemOperand(caller_fp, + StandardFrameConstants::kContextOffset)); + __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); + __ B(eq, &adaptor_frame); + + // No adaptor, parameter count = argument count. + + // x1 mapped_params number of mapped params, min(params, args) (uninit) + // x2 arg_count number of function arguments (uninit) + // x3 arg_count_smi number of function arguments (smi) + // x4 function function pointer + // x7 param_count number of function parameters + // x11 caller_fp caller's frame pointer + // x14 recv_arg pointer to receiver arguments + + Register arg_count = x2; + __ Mov(arg_count, param_count); + __ B(&try_allocate); + + // We have an adaptor frame. Patch the parameters pointer. + __ Bind(&adaptor_frame); + __ Ldr(arg_count_smi, + MemOperand(caller_fp, + ArgumentsAdaptorFrameConstants::kLengthOffset)); + __ SmiUntag(arg_count, arg_count_smi); + __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2)); + __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset); + + // Compute the mapped parameter count = min(param_count, arg_count) + Register mapped_params = x1; + __ Cmp(param_count, arg_count); + __ Csel(mapped_params, param_count, arg_count, lt); + + __ Bind(&try_allocate); + + // x0 alloc_obj pointer to allocated objects: param map, backing + // store, arguments (uninit) + // x1 mapped_params number of mapped parameters, min(params, args) + // x2 arg_count number of function arguments + // x3 arg_count_smi number of function arguments (smi) + // x4 function function pointer + // x7 param_count number of function parameters + // x10 size size of objects to allocate (uninit) + // x14 recv_arg pointer to receiver arguments + + // Compute the size of backing store, parameter map, and arguments object. + // 1. Parameter map, has two extra words containing context and backing + // store. + const int kParameterMapHeaderSize = + FixedArray::kHeaderSize + 2 * kPointerSize; + + // Calculate the parameter map size, assuming it exists. + Register size = x10; + __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2)); + __ Add(size, size, kParameterMapHeaderSize); + + // If there are no mapped parameters, set the running size total to zero. + // Otherwise, use the parameter map size calculated earlier. + __ Cmp(mapped_params, 0); + __ CzeroX(size, eq); + + // 2. Add the size of the backing store and arguments object. + __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2)); + __ Add(size, size, + FixedArray::kHeaderSize + Heap::kSloppyArgumentsObjectSize); + + // Do the allocation of all three objects in one go. Assign this to x0, as it + // will be returned to the caller. + Register alloc_obj = x0; + __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT); + + // Get the arguments boilerplate from the current (global) context. + + // x0 alloc_obj pointer to allocated objects (param map, backing + // store, arguments) + // x1 mapped_params number of mapped parameters, min(params, args) + // x2 arg_count number of function arguments + // x3 arg_count_smi number of function arguments (smi) + // x4 function function pointer + // x7 param_count number of function parameters + // x11 args_offset offset to args (or aliased args) boilerplate (uninit) + // x14 recv_arg pointer to receiver arguments + + Register global_object = x10; + Register global_ctx = x10; + Register args_offset = x11; + Register aliased_args_offset = x10; + __ Ldr(global_object, GlobalObjectMemOperand()); + __ Ldr(global_ctx, FieldMemOperand(global_object, + GlobalObject::kNativeContextOffset)); + + __ Ldr(args_offset, + ContextMemOperand(global_ctx, + Context::SLOPPY_ARGUMENTS_BOILERPLATE_INDEX)); + __ Ldr(aliased_args_offset, + ContextMemOperand(global_ctx, + Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX)); + __ Cmp(mapped_params, 0); + __ CmovX(args_offset, aliased_args_offset, ne); + + // Copy the JS object part. + __ CopyFields(alloc_obj, args_offset, CPURegList(x10, x12, x13), + JSObject::kHeaderSize / kPointerSize); + + // Set up the callee in-object property. + STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); + const int kCalleeOffset = JSObject::kHeaderSize + + Heap::kArgumentsCalleeIndex * kPointerSize; + __ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset)); + + // Use the length and set that as an in-object property. + STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); + const int kLengthOffset = JSObject::kHeaderSize + + Heap::kArgumentsLengthIndex * kPointerSize; + __ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset)); + + // Set up the elements pointer in the allocated arguments object. + // If we allocated a parameter map, "elements" will point there, otherwise + // it will point to the backing store. + + // x0 alloc_obj pointer to allocated objects (param map, backing + // store, arguments) + // x1 mapped_params number of mapped parameters, min(params, args) + // x2 arg_count number of function arguments + // x3 arg_count_smi number of function arguments (smi) + // x4 function function pointer + // x5 elements pointer to parameter map or backing store (uninit) + // x6 backing_store pointer to backing store (uninit) + // x7 param_count number of function parameters + // x14 recv_arg pointer to receiver arguments + + Register elements = x5; + __ Add(elements, alloc_obj, Heap::kSloppyArgumentsObjectSize); + __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset)); + + // Initialize parameter map. If there are no mapped arguments, we're done. + Label skip_parameter_map; + __ Cmp(mapped_params, 0); + // Set up backing store address, because it is needed later for filling in + // the unmapped arguments. + Register backing_store = x6; + __ CmovX(backing_store, elements, eq); + __ B(eq, &skip_parameter_map); + + __ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex); + __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset)); + __ Add(x10, mapped_params, 2); + __ SmiTag(x10); + __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset)); + __ Str(cp, FieldMemOperand(elements, + FixedArray::kHeaderSize + 0 * kPointerSize)); + __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2)); + __ Add(x10, x10, kParameterMapHeaderSize); + __ Str(x10, FieldMemOperand(elements, + FixedArray::kHeaderSize + 1 * kPointerSize)); + + // Copy the parameter slots and the holes in the arguments. + // We need to fill in mapped_parameter_count slots. Then index the context, + // where parameters are stored in reverse order, at: + // + // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1 + // + // The mapped parameter thus needs to get indices: + // + // MIN_CONTEXT_SLOTS + parameter_count - 1 .. + // MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count + // + // We loop from right to left. + + // x0 alloc_obj pointer to allocated objects (param map, backing + // store, arguments) + // x1 mapped_params number of mapped parameters, min(params, args) + // x2 arg_count number of function arguments + // x3 arg_count_smi number of function arguments (smi) + // x4 function function pointer + // x5 elements pointer to parameter map or backing store (uninit) + // x6 backing_store pointer to backing store (uninit) + // x7 param_count number of function parameters + // x11 loop_count parameter loop counter (uninit) + // x12 index parameter index (smi, uninit) + // x13 the_hole hole value (uninit) + // x14 recv_arg pointer to receiver arguments + + Register loop_count = x11; + Register index = x12; + Register the_hole = x13; + Label parameters_loop, parameters_test; + __ Mov(loop_count, mapped_params); + __ Add(index, param_count, static_cast(Context::MIN_CONTEXT_SLOTS)); + __ Sub(index, index, mapped_params); + __ SmiTag(index); + __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex); + __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2)); + __ Add(backing_store, backing_store, kParameterMapHeaderSize); + + __ B(¶meters_test); + + __ Bind(¶meters_loop); + __ Sub(loop_count, loop_count, 1); + __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2)); + __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag); + __ Str(index, MemOperand(elements, x10)); + __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize); + __ Str(the_hole, MemOperand(backing_store, x10)); + __ Add(index, index, Smi::FromInt(1)); + __ Bind(¶meters_test); + __ Cbnz(loop_count, ¶meters_loop); + + __ Bind(&skip_parameter_map); + // Copy arguments header and remaining slots (if there are any.) + __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex); + __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset)); + __ Str(arg_count_smi, FieldMemOperand(backing_store, + FixedArray::kLengthOffset)); + + // x0 alloc_obj pointer to allocated objects (param map, backing + // store, arguments) + // x1 mapped_params number of mapped parameters, min(params, args) + // x2 arg_count number of function arguments + // x4 function function pointer + // x3 arg_count_smi number of function arguments (smi) + // x6 backing_store pointer to backing store (uninit) + // x14 recv_arg pointer to receiver arguments + + Label arguments_loop, arguments_test; + __ Mov(x10, mapped_params); + __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2)); + __ B(&arguments_test); + + __ Bind(&arguments_loop); + __ Sub(recv_arg, recv_arg, kPointerSize); + __ Ldr(x11, MemOperand(recv_arg)); + __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2)); + __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize)); + __ Add(x10, x10, 1); + + __ Bind(&arguments_test); + __ Cmp(x10, arg_count); + __ B(lt, &arguments_loop); + + __ Ret(); + + // Do the runtime call to allocate the arguments object. + __ Bind(&runtime); + __ Push(function, recv_arg, arg_count_smi); + __ TailCallRuntime(Runtime::kHiddenNewSloppyArguments, 3, 1); +} + + +void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { + // Stack layout on entry. + // jssp[0]: number of parameters (tagged) + // jssp[8]: address of receiver argument + // jssp[16]: function + // + // Returns pointer to result object in x0. + + // Get the stub arguments from the frame, and make an untagged copy of the + // parameter count. + Register param_count_smi = x1; + Register params = x2; + Register function = x3; + Register param_count = x13; + __ Pop(param_count_smi, params, function); + __ SmiUntag(param_count, param_count_smi); + + // Test if arguments adaptor needed. + Register caller_fp = x11; + Register caller_ctx = x12; + Label try_allocate, runtime; + __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); + __ Ldr(caller_ctx, MemOperand(caller_fp, + StandardFrameConstants::kContextOffset)); + __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); + __ B(ne, &try_allocate); + + // x1 param_count_smi number of parameters passed to function (smi) + // x2 params pointer to parameters + // x3 function function pointer + // x11 caller_fp caller's frame pointer + // x13 param_count number of parameters passed to function + + // Patch the argument length and parameters pointer. + __ Ldr(param_count_smi, + MemOperand(caller_fp, + ArgumentsAdaptorFrameConstants::kLengthOffset)); + __ SmiUntag(param_count, param_count_smi); + __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2)); + __ Add(params, x10, StandardFrameConstants::kCallerSPOffset); + + // Try the new space allocation. Start out with computing the size of the + // arguments object and the elements array in words. + Register size = x10; + __ Bind(&try_allocate); + __ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize); + __ Cmp(param_count, 0); + __ CzeroX(size, eq); + __ Add(size, size, Heap::kStrictArgumentsObjectSize / kPointerSize); + + // Do the allocation of both objects in one go. Assign this to x0, as it will + // be returned to the caller. + Register alloc_obj = x0; + __ Allocate(size, alloc_obj, x11, x12, &runtime, + static_cast(TAG_OBJECT | SIZE_IN_WORDS)); + + // Get the arguments boilerplate from the current (native) context. + Register global_object = x10; + Register global_ctx = x10; + Register args_offset = x4; + __ Ldr(global_object, GlobalObjectMemOperand()); + __ Ldr(global_ctx, FieldMemOperand(global_object, + GlobalObject::kNativeContextOffset)); + __ Ldr(args_offset, + ContextMemOperand(global_ctx, + Context::STRICT_ARGUMENTS_BOILERPLATE_INDEX)); + + // x0 alloc_obj pointer to allocated objects: parameter array and + // arguments object + // x1 param_count_smi number of parameters passed to function (smi) + // x2 params pointer to parameters + // x3 function function pointer + // x4 args_offset offset to arguments boilerplate + // x13 param_count number of parameters passed to function + + // Copy the JS object part. + __ CopyFields(alloc_obj, args_offset, CPURegList(x5, x6, x7), + JSObject::kHeaderSize / kPointerSize); + + // Set the smi-tagged length as an in-object property. + STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); + const int kLengthOffset = JSObject::kHeaderSize + + Heap::kArgumentsLengthIndex * kPointerSize; + __ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset)); + + // If there are no actual arguments, we're done. + Label done; + __ Cbz(param_count, &done); + + // Set up the elements pointer in the allocated arguments object and + // initialize the header in the elements fixed array. + Register elements = x5; + __ Add(elements, alloc_obj, Heap::kStrictArgumentsObjectSize); + __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset)); + __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex); + __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset)); + __ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset)); + + // x0 alloc_obj pointer to allocated objects: parameter array and + // arguments object + // x1 param_count_smi number of parameters passed to function (smi) + // x2 params pointer to parameters + // x3 function function pointer + // x4 array pointer to array slot (uninit) + // x5 elements pointer to elements array of alloc_obj + // x13 param_count number of parameters passed to function + + // Copy the fixed array slots. + Label loop; + Register array = x4; + // Set up pointer to first array slot. + __ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag); + + __ Bind(&loop); + // Pre-decrement the parameters pointer by kPointerSize on each iteration. + // Pre-decrement in order to skip receiver. + __ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex)); + // Post-increment elements by kPointerSize on each iteration. + __ Str(x10, MemOperand(array, kPointerSize, PostIndex)); + __ Sub(param_count, param_count, 1); + __ Cbnz(param_count, &loop); + + // Return from stub. + __ Bind(&done); + __ Ret(); + + // Do the runtime call to allocate the arguments object. + __ Bind(&runtime); + __ Push(function, params, param_count_smi); + __ TailCallRuntime(Runtime::kHiddenNewStrictArguments, 3, 1); +} + + +void RegExpExecStub::Generate(MacroAssembler* masm) { +#ifdef V8_INTERPRETED_REGEXP + __ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1); +#else // V8_INTERPRETED_REGEXP + + // Stack frame on entry. + // jssp[0]: last_match_info (expected JSArray) + // jssp[8]: previous index + // jssp[16]: subject string + // jssp[24]: JSRegExp object + Label runtime; + + // Use of registers for this function. + + // Variable registers: + // x10-x13 used as scratch registers + // w0 string_type type of subject string + // x2 jsstring_length subject string length + // x3 jsregexp_object JSRegExp object + // w4 string_encoding ASCII or UC16 + // w5 sliced_string_offset if the string is a SlicedString + // offset to the underlying string + // w6 string_representation groups attributes of the string: + // - is a string + // - type of the string + // - is a short external string + Register string_type = w0; + Register jsstring_length = x2; + Register jsregexp_object = x3; + Register string_encoding = w4; + Register sliced_string_offset = w5; + Register string_representation = w6; + + // These are in callee save registers and will be preserved by the call + // to the native RegExp code, as this code is called using the normal + // C calling convention. When calling directly from generated code the + // native RegExp code will not do a GC and therefore the content of + // these registers are safe to use after the call. + + // x19 subject subject string + // x20 regexp_data RegExp data (FixedArray) + // x21 last_match_info_elements info relative to the last match + // (FixedArray) + // x22 code_object generated regexp code + Register subject = x19; + Register regexp_data = x20; + Register last_match_info_elements = x21; + Register code_object = x22; + + // TODO(jbramley): Is it necessary to preserve these? I don't think ARM does. + CPURegList used_callee_saved_registers(subject, + regexp_data, + last_match_info_elements, + code_object); + __ PushCPURegList(used_callee_saved_registers); + + // Stack frame. + // jssp[0] : x19 + // jssp[8] : x20 + // jssp[16]: x21 + // jssp[24]: x22 + // jssp[32]: last_match_info (JSArray) + // jssp[40]: previous index + // jssp[48]: subject string + // jssp[56]: JSRegExp object + + const int kLastMatchInfoOffset = 4 * kPointerSize; + const int kPreviousIndexOffset = 5 * kPointerSize; + const int kSubjectOffset = 6 * kPointerSize; + const int kJSRegExpOffset = 7 * kPointerSize; + + // Ensure that a RegExp stack is allocated. + ExternalReference address_of_regexp_stack_memory_address = + ExternalReference::address_of_regexp_stack_memory_address(isolate()); + ExternalReference address_of_regexp_stack_memory_size = + ExternalReference::address_of_regexp_stack_memory_size(isolate()); + __ Mov(x10, address_of_regexp_stack_memory_size); + __ Ldr(x10, MemOperand(x10)); + __ Cbz(x10, &runtime); + + // Check that the first argument is a JSRegExp object. + ASSERT(jssp.Is(__ StackPointer())); + __ Peek(jsregexp_object, kJSRegExpOffset); + __ JumpIfSmi(jsregexp_object, &runtime); + __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime); + + // Check that the RegExp has been compiled (data contains a fixed array). + __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset)); + if (FLAG_debug_code) { + STATIC_ASSERT(kSmiTag == 0); + __ Tst(regexp_data, kSmiTagMask); + __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected); + __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE); + __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); + } + + // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. + __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); + __ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP)); + __ B(ne, &runtime); + + // Check that the number of captures fit in the static offsets vector buffer. + // We have always at least one capture for the whole match, plus additional + // ones due to capturing parentheses. A capture takes 2 registers. + // The number of capture registers then is (number_of_captures + 1) * 2. + __ Ldrsw(x10, + UntagSmiFieldMemOperand(regexp_data, + JSRegExp::kIrregexpCaptureCountOffset)); + // Check (number_of_captures + 1) * 2 <= offsets vector size + // number_of_captures * 2 <= offsets vector size - 2 + STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); + __ Add(x10, x10, x10); + __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2); + __ B(hi, &runtime); + + // Initialize offset for possibly sliced string. + __ Mov(sliced_string_offset, 0); + + ASSERT(jssp.Is(__ StackPointer())); + __ Peek(subject, kSubjectOffset); + __ JumpIfSmi(subject, &runtime); + + __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); + __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); + + __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset)); + + // Handle subject string according to its encoding and representation: + // (1) Sequential string? If yes, go to (5). + // (2) Anything but sequential or cons? If yes, go to (6). + // (3) Cons string. If the string is flat, replace subject with first string. + // Otherwise bailout. + // (4) Is subject external? If yes, go to (7). + // (5) Sequential string. Load regexp code according to encoding. + // (E) Carry on. + /// [...] + + // Deferred code at the end of the stub: + // (6) Not a long external string? If yes, go to (8). + // (7) External string. Make it, offset-wise, look like a sequential string. + // Go to (5). + // (8) Short external string or not a string? If yes, bail out to runtime. + // (9) Sliced string. Replace subject with parent. Go to (4). + + Label check_underlying; // (4) + Label seq_string; // (5) + Label not_seq_nor_cons; // (6) + Label external_string; // (7) + Label not_long_external; // (8) + + // (1) Sequential string? If yes, go to (5). + __ And(string_representation, + string_type, + kIsNotStringMask | + kStringRepresentationMask | + kShortExternalStringMask); + // We depend on the fact that Strings of type + // SeqString and not ShortExternalString are defined + // by the following pattern: + // string_type: 0XX0 XX00 + // ^ ^ ^^ + // | | || + // | | is a SeqString + // | is not a short external String + // is a String + STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); + STATIC_ASSERT(kShortExternalStringTag != 0); + __ Cbz(string_representation, &seq_string); // Go to (5). + + // (2) Anything but sequential or cons? If yes, go to (6). + STATIC_ASSERT(kConsStringTag < kExternalStringTag); + STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); + STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); + STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); + __ Cmp(string_representation, kExternalStringTag); + __ B(ge, ¬_seq_nor_cons); // Go to (6). + + // (3) Cons string. Check that it's flat. + __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset)); + __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime); + // Replace subject with first string. + __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); + + // (4) Is subject external? If yes, go to (7). + __ Bind(&check_underlying); + // Reload the string type. + __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); + __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); + STATIC_ASSERT(kSeqStringTag == 0); + // The underlying external string is never a short external string. + STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength); + STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength); + __ TestAndBranchIfAnySet(string_type.X(), + kStringRepresentationMask, + &external_string); // Go to (7). + + // (5) Sequential string. Load regexp code according to encoding. + __ Bind(&seq_string); + + // Check that the third argument is a positive smi less than the subject + // string length. A negative value will be greater (unsigned comparison). + ASSERT(jssp.Is(__ StackPointer())); + __ Peek(x10, kPreviousIndexOffset); + __ JumpIfNotSmi(x10, &runtime); + __ Cmp(jsstring_length, x10); + __ B(ls, &runtime); + + // Argument 2 (x1): We need to load argument 2 (the previous index) into x1 + // before entering the exit frame. + __ SmiUntag(x1, x10); + + // The third bit determines the string encoding in string_type. + STATIC_ASSERT(kOneByteStringTag == 0x04); + STATIC_ASSERT(kTwoByteStringTag == 0x00); + STATIC_ASSERT(kStringEncodingMask == 0x04); + + // Find the code object based on the assumptions above. + // kDataAsciiCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset + // of kPointerSize to reach the latter. + ASSERT_EQ(JSRegExp::kDataAsciiCodeOffset + kPointerSize, + JSRegExp::kDataUC16CodeOffset); + __ Mov(x10, kPointerSize); + // We will need the encoding later: ASCII = 0x04 + // UC16 = 0x00 + __ Ands(string_encoding, string_type, kStringEncodingMask); + __ CzeroX(x10, ne); + __ Add(x10, regexp_data, x10); + __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataAsciiCodeOffset)); + + // (E) Carry on. String handling is done. + + // Check that the irregexp code has been generated for the actual string + // encoding. If it has, the field contains a code object otherwise it contains + // a smi (code flushing support). + __ JumpIfSmi(code_object, &runtime); + + // All checks done. Now push arguments for native regexp code. + __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, + x10, + x11); + + // Isolates: note we add an additional parameter here (isolate pointer). + __ EnterExitFrame(false, x10, 1); + ASSERT(csp.Is(__ StackPointer())); + + // We have 9 arguments to pass to the regexp code, therefore we have to pass + // one on the stack and the rest as registers. + + // Note that the placement of the argument on the stack isn't standard + // AAPCS64: + // csp[0]: Space for the return address placed by DirectCEntryStub. + // csp[8]: Argument 9, the current isolate address. + + __ Mov(x10, ExternalReference::isolate_address(isolate())); + __ Poke(x10, kPointerSize); + + Register length = w11; + Register previous_index_in_bytes = w12; + Register start = x13; + + // Load start of the subject string. + __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag); + // Load the length from the original subject string from the previous stack + // frame. Therefore we have to use fp, which points exactly to two pointer + // sizes below the previous sp. (Because creating a new stack frame pushes + // the previous fp onto the stack and decrements sp by 2 * kPointerSize.) + __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); + __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset)); + + // Handle UC16 encoding, two bytes make one character. + // string_encoding: if ASCII: 0x04 + // if UC16: 0x00 + STATIC_ASSERT(kStringEncodingMask == 0x04); + __ Ubfx(string_encoding, string_encoding, 2, 1); + __ Eor(string_encoding, string_encoding, 1); + // string_encoding: if ASCII: 0 + // if UC16: 1 + + // Convert string positions from characters to bytes. + // Previous index is in x1. + __ Lsl(previous_index_in_bytes, w1, string_encoding); + __ Lsl(length, length, string_encoding); + __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding); + + // Argument 1 (x0): Subject string. + __ Mov(x0, subject); + + // Argument 2 (x1): Previous index, already there. + + // Argument 3 (x2): Get the start of input. + // Start of input = start of string + previous index + substring offset + // (0 if the string + // is not sliced). + __ Add(w10, previous_index_in_bytes, sliced_string_offset); + __ Add(x2, start, Operand(w10, UXTW)); + + // Argument 4 (x3): + // End of input = start of input + (length of input - previous index) + __ Sub(w10, length, previous_index_in_bytes); + __ Add(x3, x2, Operand(w10, UXTW)); + + // Argument 5 (x4): static offsets vector buffer. + __ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate())); + + // Argument 6 (x5): Set the number of capture registers to zero to force + // global regexps to behave as non-global. This stub is not used for global + // regexps. + __ Mov(x5, 0); + + // Argument 7 (x6): Start (high end) of backtracking stack memory area. + __ Mov(x10, address_of_regexp_stack_memory_address); + __ Ldr(x10, MemOperand(x10)); + __ Mov(x11, address_of_regexp_stack_memory_size); + __ Ldr(x11, MemOperand(x11)); + __ Add(x6, x10, x11); + + // Argument 8 (x7): Indicate that this is a direct call from JavaScript. + __ Mov(x7, 1); + + // Locate the code entry and call it. + __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag); + DirectCEntryStub stub(isolate()); + stub.GenerateCall(masm, code_object); + + __ LeaveExitFrame(false, x10, true); + + // The generated regexp code returns an int32 in w0. + Label failure, exception; + __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure); + __ CompareAndBranch(w0, + NativeRegExpMacroAssembler::EXCEPTION, + eq, + &exception); + __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime); + + // Success: process the result from the native regexp code. + Register number_of_capture_registers = x12; + + // Calculate number of capture registers (number_of_captures + 1) * 2 + // and store it in the last match info. + __ Ldrsw(x10, + UntagSmiFieldMemOperand(regexp_data, + JSRegExp::kIrregexpCaptureCountOffset)); + __ Add(x10, x10, x10); + __ Add(number_of_capture_registers, x10, 2); + + // Check that the fourth object is a JSArray object. + ASSERT(jssp.Is(__ StackPointer())); + __ Peek(x10, kLastMatchInfoOffset); + __ JumpIfSmi(x10, &runtime); + __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime); + + // Check that the JSArray is the fast case. + __ Ldr(last_match_info_elements, + FieldMemOperand(x10, JSArray::kElementsOffset)); + __ Ldr(x10, + FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); + __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime); + + // Check that the last match info has space for the capture registers and the + // additional information (overhead). + // (number_of_captures + 1) * 2 + overhead <= last match info size + // (number_of_captures * 2) + 2 + overhead <= last match info size + // number_of_capture_registers + overhead <= last match info size + __ Ldrsw(x10, + UntagSmiFieldMemOperand(last_match_info_elements, + FixedArray::kLengthOffset)); + __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead); + __ Cmp(x11, x10); + __ B(gt, &runtime); + + // Store the capture count. + __ SmiTag(x10, number_of_capture_registers); + __ Str(x10, + FieldMemOperand(last_match_info_elements, + RegExpImpl::kLastCaptureCountOffset)); + // Store last subject and last input. + __ Str(subject, + FieldMemOperand(last_match_info_elements, + RegExpImpl::kLastSubjectOffset)); + // Use x10 as the subject string in order to only need + // one RecordWriteStub. + __ Mov(x10, subject); + __ RecordWriteField(last_match_info_elements, + RegExpImpl::kLastSubjectOffset, + x10, + x11, + kLRHasNotBeenSaved, + kDontSaveFPRegs); + __ Str(subject, + FieldMemOperand(last_match_info_elements, + RegExpImpl::kLastInputOffset)); + __ Mov(x10, subject); + __ RecordWriteField(last_match_info_elements, + RegExpImpl::kLastInputOffset, + x10, + x11, + kLRHasNotBeenSaved, + kDontSaveFPRegs); + + Register last_match_offsets = x13; + Register offsets_vector_index = x14; + Register current_offset = x15; + + // Get the static offsets vector filled by the native regexp code + // and fill the last match info. + ExternalReference address_of_static_offsets_vector = + ExternalReference::address_of_static_offsets_vector(isolate()); + __ Mov(offsets_vector_index, address_of_static_offsets_vector); + + Label next_capture, done; + // Capture register counter starts from number of capture registers and + // iterates down to zero (inclusive). + __ Add(last_match_offsets, + last_match_info_elements, + RegExpImpl::kFirstCaptureOffset - kHeapObjectTag); + __ Bind(&next_capture); + __ Subs(number_of_capture_registers, number_of_capture_registers, 2); + __ B(mi, &done); + // Read two 32 bit values from the static offsets vector buffer into + // an X register + __ Ldr(current_offset, + MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex)); + // Store the smi values in the last match info. + __ SmiTag(x10, current_offset); + // Clearing the 32 bottom bits gives us a Smi. + STATIC_ASSERT(kSmiShift == 32); + __ And(x11, current_offset, ~kWRegMask); + __ Stp(x10, + x11, + MemOperand(last_match_offsets, kXRegSize * 2, PostIndex)); + __ B(&next_capture); + __ Bind(&done); + + // Return last match info. + __ Peek(x0, kLastMatchInfoOffset); + __ PopCPURegList(used_callee_saved_registers); + // Drop the 4 arguments of the stub from the stack. + __ Drop(4); + __ Ret(); + + __ Bind(&exception); + Register exception_value = x0; + // A stack overflow (on the backtrack stack) may have occured + // in the RegExp code but no exception has been created yet. + // If there is no pending exception, handle that in the runtime system. + __ Mov(x10, Operand(isolate()->factory()->the_hole_value())); + __ Mov(x11, + Operand(ExternalReference(Isolate::kPendingExceptionAddress, + isolate()))); + __ Ldr(exception_value, MemOperand(x11)); + __ Cmp(x10, exception_value); + __ B(eq, &runtime); + + __ Str(x10, MemOperand(x11)); // Clear pending exception. + + // Check if the exception is a termination. If so, throw as uncatchable. + Label termination_exception; + __ JumpIfRoot(exception_value, + Heap::kTerminationExceptionRootIndex, + &termination_exception); + + __ Throw(exception_value, x10, x11, x12, x13); + + __ Bind(&termination_exception); + __ ThrowUncatchable(exception_value, x10, x11, x12, x13); + + __ Bind(&failure); + __ Mov(x0, Operand(isolate()->factory()->null_value())); + __ PopCPURegList(used_callee_saved_registers); + // Drop the 4 arguments of the stub from the stack. + __ Drop(4); + __ Ret(); + + __ Bind(&runtime); + __ PopCPURegList(used_callee_saved_registers); + __ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1); + + // Deferred code for string handling. + // (6) Not a long external string? If yes, go to (8). + __ Bind(¬_seq_nor_cons); + // Compare flags are still set. + __ B(ne, ¬_long_external); // Go to (8). + + // (7) External string. Make it, offset-wise, look like a sequential string. + __ Bind(&external_string); + if (masm->emit_debug_code()) { + // Assert that we do not have a cons or slice (indirect strings) here. + // Sequential strings have already been ruled out. + __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); + __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset)); + __ Tst(x10, kIsIndirectStringMask); + __ Check(eq, kExternalStringExpectedButNotFound); + __ And(x10, x10, kStringRepresentationMask); + __ Cmp(x10, 0); + __ Check(ne, kExternalStringExpectedButNotFound); + } + __ Ldr(subject, + FieldMemOperand(subject, ExternalString::kResourceDataOffset)); + // Move the pointer so that offset-wise, it looks like a sequential string. + STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); + __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag); + __ B(&seq_string); // Go to (5). + + // (8) If this is a short external string or not a string, bail out to + // runtime. + __ Bind(¬_long_external); + STATIC_ASSERT(kShortExternalStringTag != 0); + __ TestAndBranchIfAnySet(string_representation, + kShortExternalStringMask | kIsNotStringMask, + &runtime); + + // (9) Sliced string. Replace subject with parent. + __ Ldr(sliced_string_offset, + UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset)); + __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); + __ B(&check_underlying); // Go to (4). +#endif +} + + +static void GenerateRecordCallTarget(MacroAssembler* masm, + Register argc, + Register function, + Register feedback_vector, + Register index, + Register scratch1, + Register scratch2) { + ASM_LOCATION("GenerateRecordCallTarget"); + ASSERT(!AreAliased(scratch1, scratch2, + argc, function, feedback_vector, index)); + // Cache the called function in a feedback vector slot. Cache states are + // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic. + // argc : number of arguments to the construct function + // function : the function to call + // feedback_vector : the feedback vector + // index : slot in feedback vector (smi) + Label initialize, done, miss, megamorphic, not_array_function; + + ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), + masm->isolate()->heap()->megamorphic_symbol()); + ASSERT_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()), + masm->isolate()->heap()->uninitialized_symbol()); + + // Load the cache state. + __ Add(scratch1, feedback_vector, + Operand::UntagSmiAndScale(index, kPointerSizeLog2)); + __ Ldr(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); + + // A monomorphic cache hit or an already megamorphic state: invoke the + // function without changing the state. + __ Cmp(scratch1, function); + __ B(eq, &done); + + if (!FLAG_pretenuring_call_new) { + // If we came here, we need to see if we are the array function. + // If we didn't have a matching function, and we didn't find the megamorph + // sentinel, then we have in the slot either some other function or an + // AllocationSite. Do a map check on the object in scratch1 register. + __ Ldr(scratch2, FieldMemOperand(scratch1, AllocationSite::kMapOffset)); + __ JumpIfNotRoot(scratch2, Heap::kAllocationSiteMapRootIndex, &miss); + + // Make sure the function is the Array() function + __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1); + __ Cmp(function, scratch1); + __ B(ne, &megamorphic); + __ B(&done); + } + + __ Bind(&miss); + + // A monomorphic miss (i.e, here the cache is not uninitialized) goes + // megamorphic. + __ JumpIfRoot(scratch1, Heap::kUninitializedSymbolRootIndex, &initialize); + // MegamorphicSentinel is an immortal immovable object (undefined) so no + // write-barrier is needed. + __ Bind(&megamorphic); + __ Add(scratch1, feedback_vector, + Operand::UntagSmiAndScale(index, kPointerSizeLog2)); + __ LoadRoot(scratch2, Heap::kMegamorphicSymbolRootIndex); + __ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); + __ B(&done); + + // An uninitialized cache is patched with the function or sentinel to + // indicate the ElementsKind if function is the Array constructor. + __ Bind(&initialize); + + if (!FLAG_pretenuring_call_new) { + // Make sure the function is the Array() function + __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1); + __ Cmp(function, scratch1); + __ B(ne, ¬_array_function); + + // The target function is the Array constructor, + // Create an AllocationSite if we don't already have it, store it in the + // slot. + { + FrameScope scope(masm, StackFrame::INTERNAL); + CreateAllocationSiteStub create_stub(masm->isolate()); + + // Arguments register must be smi-tagged to call out. + __ SmiTag(argc); + __ Push(argc, function, feedback_vector, index); + + // CreateAllocationSiteStub expect the feedback vector in x2 and the slot + // index in x3. + ASSERT(feedback_vector.Is(x2) && index.Is(x3)); + __ CallStub(&create_stub); + + __ Pop(index, feedback_vector, function, argc); + __ SmiUntag(argc); + } + __ B(&done); + + __ Bind(¬_array_function); + } + + // An uninitialized cache is patched with the function. + + __ Add(scratch1, feedback_vector, + Operand::UntagSmiAndScale(index, kPointerSizeLog2)); + __ Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag); + __ Str(function, MemOperand(scratch1, 0)); + + __ Push(function); + __ RecordWrite(feedback_vector, scratch1, function, kLRHasNotBeenSaved, + kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); + __ Pop(function); + + __ Bind(&done); +} + + +static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) { + // Do not transform the receiver for strict mode functions. + __ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); + __ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset)); + __ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, cont); + + // Do not transform the receiver for native (Compilerhints already in x3). + __ Tbnz(w4, SharedFunctionInfo::kNative, cont); +} + + +static void EmitSlowCase(MacroAssembler* masm, + int argc, + Register function, + Register type, + Label* non_function) { + // Check for function proxy. + // x10 : function type. + __ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, non_function); + __ Push(function); // put proxy as additional argument + __ Mov(x0, argc + 1); + __ Mov(x2, 0); + __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY); + { + Handle adaptor = + masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); + __ Jump(adaptor, RelocInfo::CODE_TARGET); + } + + // CALL_NON_FUNCTION expects the non-function callee as receiver (instead + // of the original receiver from the call site). + __ Bind(non_function); + __ Poke(function, argc * kXRegSize); + __ Mov(x0, argc); // Set up the number of arguments. + __ Mov(x2, 0); + __ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION); + __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), + RelocInfo::CODE_TARGET); +} + + +static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) { + // Wrap the receiver and patch it back onto the stack. + { FrameScope frame_scope(masm, StackFrame::INTERNAL); + __ Push(x1, x3); + __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); + __ Pop(x1); + } + __ Poke(x0, argc * kPointerSize); + __ B(cont); +} + + +static void CallFunctionNoFeedback(MacroAssembler* masm, + int argc, bool needs_checks, + bool call_as_method) { + // x1 function the function to call + Register function = x1; + Register type = x4; + Label slow, non_function, wrap, cont; + + // TODO(jbramley): This function has a lot of unnamed registers. Name them, + // and tidy things up a bit. + + if (needs_checks) { + // Check that the function is really a JavaScript function. + __ JumpIfSmi(function, &non_function); + + // Goto slow case if we do not have a function. + __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow); + } + + // Fast-case: Invoke the function now. + // x1 function pushed function + ParameterCount actual(argc); + + if (call_as_method) { + if (needs_checks) { + EmitContinueIfStrictOrNative(masm, &cont); + } + + // Compute the receiver in sloppy mode. + __ Peek(x3, argc * kPointerSize); + + if (needs_checks) { + __ JumpIfSmi(x3, &wrap); + __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt); + } else { + __ B(&wrap); + } + + __ Bind(&cont); + } + + __ InvokeFunction(function, + actual, + JUMP_FUNCTION, + NullCallWrapper()); + if (needs_checks) { + // Slow-case: Non-function called. + __ Bind(&slow); + EmitSlowCase(masm, argc, function, type, &non_function); + } + + if (call_as_method) { + __ Bind(&wrap); + EmitWrapCase(masm, argc, &cont); + } +} + + +void CallFunctionStub::Generate(MacroAssembler* masm) { + ASM_LOCATION("CallFunctionStub::Generate"); + CallFunctionNoFeedback(masm, argc_, NeedsChecks(), CallAsMethod()); +} + + +void CallConstructStub::Generate(MacroAssembler* masm) { + ASM_LOCATION("CallConstructStub::Generate"); + // x0 : number of arguments + // x1 : the function to call + // x2 : feedback vector + // x3 : slot in feedback vector (smi) (if r2 is not the megamorphic symbol) + Register function = x1; + Label slow, non_function_call; + + // Check that the function is not a smi. + __ JumpIfSmi(function, &non_function_call); + // Check that the function is a JSFunction. + Register object_type = x10; + __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE, + &slow); + + if (RecordCallTarget()) { + GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5); + + __ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); + if (FLAG_pretenuring_call_new) { + // Put the AllocationSite from the feedback vector into x2. + // By adding kPointerSize we encode that we know the AllocationSite + // entry is at the feedback vector slot given by x3 + 1. + __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize + kPointerSize)); + } else { + Label feedback_register_initialized; + // Put the AllocationSite from the feedback vector into x2, or undefined. + __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize)); + __ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset)); + __ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex, + &feedback_register_initialized); + __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); + __ bind(&feedback_register_initialized); + } + + __ AssertUndefinedOrAllocationSite(x2, x5); + } + + // Jump to the function-specific construct stub. + Register jump_reg = x4; + Register shared_func_info = jump_reg; + Register cons_stub = jump_reg; + Register cons_stub_code = jump_reg; + __ Ldr(shared_func_info, + FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); + __ Ldr(cons_stub, + FieldMemOperand(shared_func_info, + SharedFunctionInfo::kConstructStubOffset)); + __ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag); + __ Br(cons_stub_code); + + Label do_call; + __ Bind(&slow); + __ Cmp(object_type, JS_FUNCTION_PROXY_TYPE); + __ B(ne, &non_function_call); + __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); + __ B(&do_call); + + __ Bind(&non_function_call); + __ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); + + __ Bind(&do_call); + // Set expected number of arguments to zero (not changing x0). + __ Mov(x2, 0); + __ Jump(isolate()->builtins()->ArgumentsAdaptorTrampoline(), + RelocInfo::CODE_TARGET); +} + + +static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) { + __ Ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + __ Ldr(vector, FieldMemOperand(vector, + JSFunction::kSharedFunctionInfoOffset)); + __ Ldr(vector, FieldMemOperand(vector, + SharedFunctionInfo::kFeedbackVectorOffset)); +} + + +void CallIC_ArrayStub::Generate(MacroAssembler* masm) { + // x1 - function + // x3 - slot id + Label miss; + Register function = x1; + Register feedback_vector = x2; + Register index = x3; + Register scratch = x4; + + EmitLoadTypeFeedbackVector(masm, feedback_vector); + + __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch); + __ Cmp(function, scratch); + __ B(ne, &miss); + + Register allocation_site = feedback_vector; + __ Mov(x0, Operand(arg_count())); + + __ Add(scratch, feedback_vector, + Operand::UntagSmiAndScale(index, kPointerSizeLog2)); + __ Ldr(allocation_site, FieldMemOperand(scratch, FixedArray::kHeaderSize)); + + // Verify that x2 contains an AllocationSite + __ AssertUndefinedOrAllocationSite(allocation_site, scratch); + ArrayConstructorStub stub(masm->isolate(), arg_count()); + __ TailCallStub(&stub); + + __ bind(&miss); + GenerateMiss(masm, IC::kCallIC_Customization_Miss); + + // The slow case, we need this no matter what to complete a call after a miss. + CallFunctionNoFeedback(masm, + arg_count(), + true, + CallAsMethod()); + + __ Unreachable(); +} + + +void CallICStub::Generate(MacroAssembler* masm) { + ASM_LOCATION("CallICStub"); + + // x1 - function + // x3 - slot id (Smi) + Label extra_checks_or_miss, slow_start; + Label slow, non_function, wrap, cont; + Label have_js_function; + int argc = state_.arg_count(); + ParameterCount actual(argc); + + Register function = x1; + Register feedback_vector = x2; + Register index = x3; + Register type = x4; + + EmitLoadTypeFeedbackVector(masm, feedback_vector); + + // The checks. First, does x1 match the recorded monomorphic target? + __ Add(x4, feedback_vector, + Operand::UntagSmiAndScale(index, kPointerSizeLog2)); + __ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize)); + + __ Cmp(x4, function); + __ B(ne, &extra_checks_or_miss); + + __ bind(&have_js_function); + if (state_.CallAsMethod()) { + EmitContinueIfStrictOrNative(masm, &cont); + + // Compute the receiver in sloppy mode. + __ Peek(x3, argc * kPointerSize); + + __ JumpIfSmi(x3, &wrap); + __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt); + + __ Bind(&cont); + } + + __ InvokeFunction(function, + actual, + JUMP_FUNCTION, + NullCallWrapper()); + + __ bind(&slow); + EmitSlowCase(masm, argc, function, type, &non_function); + + if (state_.CallAsMethod()) { + __ bind(&wrap); + EmitWrapCase(masm, argc, &cont); + } + + __ bind(&extra_checks_or_miss); + Label miss; + + __ JumpIfRoot(x4, Heap::kMegamorphicSymbolRootIndex, &slow_start); + __ JumpIfRoot(x4, Heap::kUninitializedSymbolRootIndex, &miss); + + if (!FLAG_trace_ic) { + // We are going megamorphic, and we don't want to visit the runtime. + __ Add(x4, feedback_vector, + Operand::UntagSmiAndScale(index, kPointerSizeLog2)); + __ LoadRoot(x5, Heap::kMegamorphicSymbolRootIndex); + __ Str(x5, FieldMemOperand(x4, FixedArray::kHeaderSize)); + __ B(&slow_start); + } + + // We are here because tracing is on or we are going monomorphic. + __ bind(&miss); + GenerateMiss(masm, IC::kCallIC_Miss); + + // the slow case + __ bind(&slow_start); + + // Check that the function is really a JavaScript function. + __ JumpIfSmi(function, &non_function); + + // Goto slow case if we do not have a function. + __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow); + __ B(&have_js_function); +} + + +void CallICStub::GenerateMiss(MacroAssembler* masm, IC::UtilityId id) { + ASM_LOCATION("CallICStub[Miss]"); + + // Get the receiver of the function from the stack; 1 ~ return address. + __ Peek(x4, (state_.arg_count() + 1) * kPointerSize); + + { + FrameScope scope(masm, StackFrame::INTERNAL); + + // Push the receiver and the function and feedback info. + __ Push(x4, x1, x2, x3); + + // Call the entry. + ExternalReference miss = ExternalReference(IC_Utility(id), + masm->isolate()); + __ CallExternalReference(miss, 4); + + // Move result to edi and exit the internal frame. + __ Mov(x1, x0); + } +} + + +void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { + // If the receiver is a smi trigger the non-string case. + __ JumpIfSmi(object_, receiver_not_string_); + + // Fetch the instance type of the receiver into result register. + __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); + __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); + + // If the receiver is not a string trigger the non-string case. + __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_); + + // If the index is non-smi trigger the non-smi case. + __ JumpIfNotSmi(index_, &index_not_smi_); + + __ Bind(&got_smi_index_); + // Check for index out of range. + __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset)); + __ Cmp(result_, Operand::UntagSmi(index_)); + __ B(ls, index_out_of_range_); + + __ SmiUntag(index_); + + StringCharLoadGenerator::Generate(masm, + object_, + index_.W(), + result_, + &call_runtime_); + __ SmiTag(result_); + __ Bind(&exit_); +} + + +void StringCharCodeAtGenerator::GenerateSlow( + MacroAssembler* masm, + const RuntimeCallHelper& call_helper) { + __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); + + __ Bind(&index_not_smi_); + // If index is a heap number, try converting it to an integer. + __ CheckMap(index_, + result_, + Heap::kHeapNumberMapRootIndex, + index_not_number_, + DONT_DO_SMI_CHECK); + call_helper.BeforeCall(masm); + // Save object_ on the stack and pass index_ as argument for runtime call. + __ Push(object_, index_); + if (index_flags_ == STRING_INDEX_IS_NUMBER) { + __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); + } else { + ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); + // NumberToSmi discards numbers that are not exact integers. + __ CallRuntime(Runtime::kHiddenNumberToSmi, 1); + } + // Save the conversion result before the pop instructions below + // have a chance to overwrite it. + __ Mov(index_, x0); + __ Pop(object_); + // Reload the instance type. + __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); + __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); + call_helper.AfterCall(masm); + + // If index is still not a smi, it must be out of range. + __ JumpIfNotSmi(index_, index_out_of_range_); + // Otherwise, return to the fast path. + __ B(&got_smi_index_); + + // Call runtime. We get here when the receiver is a string and the + // index is a number, but the code of getting the actual character + // is too complex (e.g., when the string needs to be flattened). + __ Bind(&call_runtime_); + call_helper.BeforeCall(masm); + __ SmiTag(index_); + __ Push(object_, index_); + __ CallRuntime(Runtime::kHiddenStringCharCodeAt, 2); + __ Mov(result_, x0); + call_helper.AfterCall(masm); + __ B(&exit_); + + __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); +} + + +void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { + __ JumpIfNotSmi(code_, &slow_case_); + __ Cmp(code_, Smi::FromInt(String::kMaxOneByteCharCode)); + __ B(hi, &slow_case_); + + __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); + // At this point code register contains smi tagged ASCII char code. + STATIC_ASSERT(kSmiShift > kPointerSizeLog2); + __ Add(result_, result_, Operand(code_, LSR, kSmiShift - kPointerSizeLog2)); + __ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); + __ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_); + __ Bind(&exit_); +} + + +void StringCharFromCodeGenerator::GenerateSlow( + MacroAssembler* masm, + const RuntimeCallHelper& call_helper) { + __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); + + __ Bind(&slow_case_); + call_helper.BeforeCall(masm); + __ Push(code_); + __ CallRuntime(Runtime::kCharFromCode, 1); + __ Mov(result_, x0); + call_helper.AfterCall(masm); + __ B(&exit_); + + __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); +} + + +void ICCompareStub::GenerateSmis(MacroAssembler* masm) { + // Inputs are in x0 (lhs) and x1 (rhs). + ASSERT(state_ == CompareIC::SMI); + ASM_LOCATION("ICCompareStub[Smis]"); + Label miss; + // Bail out (to 'miss') unless both x0 and x1 are smis. + __ JumpIfEitherNotSmi(x0, x1, &miss); + + if (GetCondition() == eq) { + // For equality we do not care about the sign of the result. + __ Sub(x0, x0, x1); + } else { + // Untag before subtracting to avoid handling overflow. + __ SmiUntag(x1); + __ Sub(x0, x1, Operand::UntagSmi(x0)); + } + __ Ret(); + + __ Bind(&miss); + GenerateMiss(masm); +} + + +void ICCompareStub::GenerateNumbers(MacroAssembler* masm) { + ASSERT(state_ == CompareIC::NUMBER); + ASM_LOCATION("ICCompareStub[HeapNumbers]"); + + Label unordered, maybe_undefined1, maybe_undefined2; + Label miss, handle_lhs, values_in_d_regs; + Label untag_rhs, untag_lhs; + + Register result = x0; + Register rhs = x0; + Register lhs = x1; + FPRegister rhs_d = d0; + FPRegister lhs_d = d1; + + if (left_ == CompareIC::SMI) { + __ JumpIfNotSmi(lhs, &miss); + } + if (right_ == CompareIC::SMI) { + __ JumpIfNotSmi(rhs, &miss); + } + + __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag); + __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag); + + // Load rhs if it's a heap number. + __ JumpIfSmi(rhs, &handle_lhs); + __ CheckMap(rhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, + DONT_DO_SMI_CHECK); + __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); + + // Load lhs if it's a heap number. + __ Bind(&handle_lhs); + __ JumpIfSmi(lhs, &values_in_d_regs); + __ CheckMap(lhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, + DONT_DO_SMI_CHECK); + __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); + + __ Bind(&values_in_d_regs); + __ Fcmp(lhs_d, rhs_d); + __ B(vs, &unordered); // Overflow flag set if either is NaN. + STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); + __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL). + __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0. + __ Ret(); + + __ Bind(&unordered); + ICCompareStub stub(isolate(), op_, CompareIC::GENERIC, CompareIC::GENERIC, + CompareIC::GENERIC); + __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); + + __ Bind(&maybe_undefined1); + if (Token::IsOrderedRelationalCompareOp(op_)) { + __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss); + __ JumpIfSmi(lhs, &unordered); + __ JumpIfNotObjectType(lhs, x10, x10, HEAP_NUMBER_TYPE, &maybe_undefined2); + __ B(&unordered); + } + + __ Bind(&maybe_undefined2); + if (Token::IsOrderedRelationalCompareOp(op_)) { + __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered); + } + + __ Bind(&miss); + GenerateMiss(masm); +} + + +void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) { + ASSERT(state_ == CompareIC::INTERNALIZED_STRING); + ASM_LOCATION("ICCompareStub[InternalizedStrings]"); + Label miss; + + Register result = x0; + Register rhs = x0; + Register lhs = x1; + + // Check that both operands are heap objects. + __ JumpIfEitherSmi(lhs, rhs, &miss); + + // Check that both operands are internalized strings. + Register rhs_map = x10; + Register lhs_map = x11; + Register rhs_type = x10; + Register lhs_type = x11; + __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); + __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); + __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); + __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); + + STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); + __ Orr(x12, lhs_type, rhs_type); + __ TestAndBranchIfAnySet( + x12, kIsNotStringMask | kIsNotInternalizedMask, &miss); + + // Internalized strings are compared by identity. + STATIC_ASSERT(EQUAL == 0); + __ Cmp(lhs, rhs); + __ Cset(result, ne); + __ Ret(); + + __ Bind(&miss); + GenerateMiss(masm); +} + + +void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) { + ASSERT(state_ == CompareIC::UNIQUE_NAME); + ASM_LOCATION("ICCompareStub[UniqueNames]"); + ASSERT(GetCondition() == eq); + Label miss; + + Register result = x0; + Register rhs = x0; + Register lhs = x1; + + Register lhs_instance_type = w2; + Register rhs_instance_type = w3; + + // Check that both operands are heap objects. + __ JumpIfEitherSmi(lhs, rhs, &miss); + + // Check that both operands are unique names. This leaves the instance + // types loaded in tmp1 and tmp2. + __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset)); + __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset)); + __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); + __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset)); + + // To avoid a miss, each instance type should be either SYMBOL_TYPE or it + // should have kInternalizedTag set. + __ JumpIfNotUniqueName(lhs_instance_type, &miss); + __ JumpIfNotUniqueName(rhs_instance_type, &miss); + + // Unique names are compared by identity. + STATIC_ASSERT(EQUAL == 0); + __ Cmp(lhs, rhs); + __ Cset(result, ne); + __ Ret(); + + __ Bind(&miss); + GenerateMiss(masm); +} + + +void ICCompareStub::GenerateStrings(MacroAssembler* masm) { + ASSERT(state_ == CompareIC::STRING); + ASM_LOCATION("ICCompareStub[Strings]"); + + Label miss; + + bool equality = Token::IsEqualityOp(op_); + + Register result = x0; + Register rhs = x0; + Register lhs = x1; + + // Check that both operands are heap objects. + __ JumpIfEitherSmi(rhs, lhs, &miss); + + // Check that both operands are strings. + Register rhs_map = x10; + Register lhs_map = x11; + Register rhs_type = x10; + Register lhs_type = x11; + __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); + __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); + __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); + __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); + STATIC_ASSERT(kNotStringTag != 0); + __ Orr(x12, lhs_type, rhs_type); + __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss); + + // Fast check for identical strings. + Label not_equal; + __ Cmp(lhs, rhs); + __ B(ne, ¬_equal); + __ Mov(result, EQUAL); + __ Ret(); + + __ Bind(¬_equal); + // Handle not identical strings + + // Check that both strings are internalized strings. If they are, we're done + // because we already know they are not identical. We know they are both + // strings. + if (equality) { + ASSERT(GetCondition() == eq); + STATIC_ASSERT(kInternalizedTag == 0); + Label not_internalized_strings; + __ Orr(x12, lhs_type, rhs_type); + __ TestAndBranchIfAnySet( + x12, kIsNotInternalizedMask, ¬_internalized_strings); + // Result is in rhs (x0), and not EQUAL, as rhs is not a smi. + __ Ret(); + __ Bind(¬_internalized_strings); + } + + // Check that both strings are sequential ASCII. + Label runtime; + __ JumpIfBothInstanceTypesAreNotSequentialAscii( + lhs_type, rhs_type, x12, x13, &runtime); + + // Compare flat ASCII strings. Returns when done. + if (equality) { + StringCompareStub::GenerateFlatAsciiStringEquals( + masm, lhs, rhs, x10, x11, x12); + } else { + StringCompareStub::GenerateCompareFlatAsciiStrings( + masm, lhs, rhs, x10, x11, x12, x13); + } + + // Handle more complex cases in runtime. + __ Bind(&runtime); + __ Push(lhs, rhs); + if (equality) { + __ TailCallRuntime(Runtime::kStringEquals, 2, 1); + } else { + __ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1); + } + + __ Bind(&miss); + GenerateMiss(masm); +} + + +void ICCompareStub::GenerateObjects(MacroAssembler* masm) { + ASSERT(state_ == CompareIC::OBJECT); + ASM_LOCATION("ICCompareStub[Objects]"); + + Label miss; + + Register result = x0; + Register rhs = x0; + Register lhs = x1; + + __ JumpIfEitherSmi(rhs, lhs, &miss); + + __ JumpIfNotObjectType(rhs, x10, x10, JS_OBJECT_TYPE, &miss); + __ JumpIfNotObjectType(lhs, x10, x10, JS_OBJECT_TYPE, &miss); + + ASSERT(GetCondition() == eq); + __ Sub(result, rhs, lhs); + __ Ret(); + + __ Bind(&miss); + GenerateMiss(masm); +} + + +void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { + ASM_LOCATION("ICCompareStub[KnownObjects]"); + + Label miss; + + Register result = x0; + Register rhs = x0; + Register lhs = x1; + + __ JumpIfEitherSmi(rhs, lhs, &miss); + + Register rhs_map = x10; + Register lhs_map = x11; + __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); + __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); + __ Cmp(rhs_map, Operand(known_map_)); + __ B(ne, &miss); + __ Cmp(lhs_map, Operand(known_map_)); + __ B(ne, &miss); + + __ Sub(result, rhs, lhs); + __ Ret(); + + __ Bind(&miss); + GenerateMiss(masm); +} + + +// This method handles the case where a compare stub had the wrong +// implementation. It calls a miss handler, which re-writes the stub. All other +// ICCompareStub::Generate* methods should fall back into this one if their +// operands were not the expected types. +void ICCompareStub::GenerateMiss(MacroAssembler* masm) { + ASM_LOCATION("ICCompareStub[Miss]"); + + Register stub_entry = x11; + { + ExternalReference miss = + ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate()); + + FrameScope scope(masm, StackFrame::INTERNAL); + Register op = x10; + Register left = x1; + Register right = x0; + // Preserve some caller-saved registers. + __ Push(x1, x0, lr); + // Push the arguments. + __ Mov(op, Smi::FromInt(op_)); + __ Push(left, right, op); + + // Call the miss handler. This also pops the arguments. + __ CallExternalReference(miss, 3); + + // Compute the entry point of the rewritten stub. + __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag); + // Restore caller-saved registers. + __ Pop(lr, x0, x1); + } + + // Tail-call to the new stub. + __ Jump(stub_entry); +} + + +void StringHelper::GenerateHashInit(MacroAssembler* masm, + Register hash, + Register character) { + ASSERT(!AreAliased(hash, character)); + + // hash = character + (character << 10); + __ LoadRoot(hash, Heap::kHashSeedRootIndex); + // Untag smi seed and add the character. + __ Add(hash, character, Operand(hash, LSR, kSmiShift)); + + // Compute hashes modulo 2^32 using a 32-bit W register. + Register hash_w = hash.W(); + + // hash += hash << 10; + __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10)); + // hash ^= hash >> 6; + __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6)); +} + + +void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, + Register hash, + Register character) { + ASSERT(!AreAliased(hash, character)); + + // hash += character; + __ Add(hash, hash, character); + + // Compute hashes modulo 2^32 using a 32-bit W register. + Register hash_w = hash.W(); + + // hash += hash << 10; + __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10)); + // hash ^= hash >> 6; + __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6)); +} + + +void StringHelper::GenerateHashGetHash(MacroAssembler* masm, + Register hash, + Register scratch) { + // Compute hashes modulo 2^32 using a 32-bit W register. + Register hash_w = hash.W(); + Register scratch_w = scratch.W(); + ASSERT(!AreAliased(hash_w, scratch_w)); + + // hash += hash << 3; + __ Add(hash_w, hash_w, Operand(hash_w, LSL, 3)); + // hash ^= hash >> 11; + __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 11)); + // hash += hash << 15; + __ Add(hash_w, hash_w, Operand(hash_w, LSL, 15)); + + __ Ands(hash_w, hash_w, String::kHashBitMask); + + // if (hash == 0) hash = 27; + __ Mov(scratch_w, StringHasher::kZeroHash); + __ Csel(hash_w, scratch_w, hash_w, eq); +} + + +void SubStringStub::Generate(MacroAssembler* masm) { + ASM_LOCATION("SubStringStub::Generate"); + Label runtime; + + // Stack frame on entry. + // lr: return address + // jssp[0]: substring "to" offset + // jssp[8]: substring "from" offset + // jssp[16]: pointer to string object + + // This stub is called from the native-call %_SubString(...), so + // nothing can be assumed about the arguments. It is tested that: + // "string" is a sequential string, + // both "from" and "to" are smis, and + // 0 <= from <= to <= string.length (in debug mode.) + // If any of these assumptions fail, we call the runtime system. + + static const int kToOffset = 0 * kPointerSize; + static const int kFromOffset = 1 * kPointerSize; + static const int kStringOffset = 2 * kPointerSize; + + Register to = x0; + Register from = x15; + Register input_string = x10; + Register input_length = x11; + Register input_type = x12; + Register result_string = x0; + Register result_length = x1; + Register temp = x3; + + __ Peek(to, kToOffset); + __ Peek(from, kFromOffset); + + // Check that both from and to are smis. If not, jump to runtime. + __ JumpIfEitherNotSmi(from, to, &runtime); + __ SmiUntag(from); + __ SmiUntag(to); + + // Calculate difference between from and to. If to < from, branch to runtime. + __ Subs(result_length, to, from); + __ B(mi, &runtime); + + // Check from is positive. + __ Tbnz(from, kWSignBit, &runtime); + + // Make sure first argument is a string. + __ Peek(input_string, kStringOffset); + __ JumpIfSmi(input_string, &runtime); + __ IsObjectJSStringType(input_string, input_type, &runtime); + + Label single_char; + __ Cmp(result_length, 1); + __ B(eq, &single_char); + + // Short-cut for the case of trivial substring. + Label return_x0; + __ Ldrsw(input_length, + UntagSmiFieldMemOperand(input_string, String::kLengthOffset)); + + __ Cmp(result_length, input_length); + __ CmovX(x0, input_string, eq); + // Return original string. + __ B(eq, &return_x0); + + // Longer than original string's length or negative: unsafe arguments. + __ B(hi, &runtime); + + // Shorter than original string's length: an actual substring. + + // x0 to substring end character offset + // x1 result_length length of substring result + // x10 input_string pointer to input string object + // x10 unpacked_string pointer to unpacked string object + // x11 input_length length of input string + // x12 input_type instance type of input string + // x15 from substring start character offset + + // Deal with different string types: update the index if necessary and put + // the underlying string into register unpacked_string. + Label underlying_unpacked, sliced_string, seq_or_external_string; + Label update_instance_type; + // If the string is not indirect, it can only be sequential or external. + STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); + STATIC_ASSERT(kIsIndirectStringMask != 0); + + // Test for string types, and branch/fall through to appropriate unpacking + // code. + __ Tst(input_type, kIsIndirectStringMask); + __ B(eq, &seq_or_external_string); + __ Tst(input_type, kSlicedNotConsMask); + __ B(ne, &sliced_string); + + Register unpacked_string = input_string; + + // Cons string. Check whether it is flat, then fetch first part. + __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset)); + __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime); + __ Ldr(unpacked_string, + FieldMemOperand(input_string, ConsString::kFirstOffset)); + __ B(&update_instance_type); + + __ Bind(&sliced_string); + // Sliced string. Fetch parent and correct start index by offset. + __ Ldrsw(temp, + UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset)); + __ Add(from, from, temp); + __ Ldr(unpacked_string, + FieldMemOperand(input_string, SlicedString::kParentOffset)); + + __ Bind(&update_instance_type); + __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset)); + __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset)); + // Now control must go to &underlying_unpacked. Since the no code is generated + // before then we fall through instead of generating a useless branch. + + __ Bind(&seq_or_external_string); + // Sequential or external string. Registers unpacked_string and input_string + // alias, so there's nothing to do here. + // Note that if code is added here, the above code must be updated. + + // x0 result_string pointer to result string object (uninit) + // x1 result_length length of substring result + // x10 unpacked_string pointer to unpacked string object + // x11 input_length length of input string + // x12 input_type instance type of input string + // x15 from substring start character offset + __ Bind(&underlying_unpacked); + + if (FLAG_string_slices) { + Label copy_routine; + __ Cmp(result_length, SlicedString::kMinLength); + // Short slice. Copy instead of slicing. + __ B(lt, ©_routine); + // Allocate new sliced string. At this point we do not reload the instance + // type including the string encoding because we simply rely on the info + // provided by the original string. It does not matter if the original + // string's encoding is wrong because we always have to recheck encoding of + // the newly created string's parent anyway due to externalized strings. + Label two_byte_slice, set_slice_header; + STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); + STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); + __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice); + __ AllocateAsciiSlicedString(result_string, result_length, x3, x4, + &runtime); + __ B(&set_slice_header); + + __ Bind(&two_byte_slice); + __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4, + &runtime); + + __ Bind(&set_slice_header); + __ SmiTag(from); + __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset)); + __ Str(unpacked_string, + FieldMemOperand(result_string, SlicedString::kParentOffset)); + __ B(&return_x0); + + __ Bind(©_routine); + } + + // x0 result_string pointer to result string object (uninit) + // x1 result_length length of substring result + // x10 unpacked_string pointer to unpacked string object + // x11 input_length length of input string + // x12 input_type instance type of input string + // x13 unpacked_char0 pointer to first char of unpacked string (uninit) + // x13 substring_char0 pointer to first char of substring (uninit) + // x14 result_char0 pointer to first char of result (uninit) + // x15 from substring start character offset + Register unpacked_char0 = x13; + Register substring_char0 = x13; + Register result_char0 = x14; + Label two_byte_sequential, sequential_string, allocate_result; + STATIC_ASSERT(kExternalStringTag != 0); + STATIC_ASSERT(kSeqStringTag == 0); + + __ Tst(input_type, kExternalStringTag); + __ B(eq, &sequential_string); + + __ Tst(input_type, kShortExternalStringTag); + __ B(ne, &runtime); + __ Ldr(unpacked_char0, + FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset)); + // unpacked_char0 points to the first character of the underlying string. + __ B(&allocate_result); + + __ Bind(&sequential_string); + // Locate first character of underlying subject string. + STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); + __ Add(unpacked_char0, unpacked_string, + SeqOneByteString::kHeaderSize - kHeapObjectTag); + + __ Bind(&allocate_result); + // Sequential ASCII string. Allocate the result. + STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); + __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential); + + // Allocate and copy the resulting ASCII string. + __ AllocateAsciiString(result_string, result_length, x3, x4, x5, &runtime); + + // Locate first character of substring to copy. + __ Add(substring_char0, unpacked_char0, from); + + // Locate first character of result. + __ Add(result_char0, result_string, + SeqOneByteString::kHeaderSize - kHeapObjectTag); + + STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); + __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); + __ B(&return_x0); + + // Allocate and copy the resulting two-byte string. + __ Bind(&two_byte_sequential); + __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime); + + // Locate first character of substring to copy. + __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1)); + + // Locate first character of result. + __ Add(result_char0, result_string, + SeqTwoByteString::kHeaderSize - kHeapObjectTag); + + STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); + __ Add(result_length, result_length, result_length); + __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); + + __ Bind(&return_x0); + Counters* counters = isolate()->counters(); + __ IncrementCounter(counters->sub_string_native(), 1, x3, x4); + __ Drop(3); + __ Ret(); + + __ Bind(&runtime); + __ TailCallRuntime(Runtime::kHiddenSubString, 3, 1); + + __ bind(&single_char); + // x1: result_length + // x10: input_string + // x12: input_type + // x15: from (untagged) + __ SmiTag(from); + StringCharAtGenerator generator( + input_string, from, result_length, x0, + &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); + generator.GenerateFast(masm); + __ Drop(3); + __ Ret(); + generator.SkipSlow(masm, &runtime); +} + + +void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, + Register left, + Register right, + Register scratch1, + Register scratch2, + Register scratch3) { + ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3)); + Register result = x0; + Register left_length = scratch1; + Register right_length = scratch2; + + // Compare lengths. If lengths differ, strings can't be equal. Lengths are + // smis, and don't need to be untagged. + Label strings_not_equal, check_zero_length; + __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset)); + __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset)); + __ Cmp(left_length, right_length); + __ B(eq, &check_zero_length); + + __ Bind(&strings_not_equal); + __ Mov(result, Smi::FromInt(NOT_EQUAL)); + __ Ret(); + + // Check if the length is zero. If so, the strings must be equal (and empty.) + Label compare_chars; + __ Bind(&check_zero_length); + STATIC_ASSERT(kSmiTag == 0); + __ Cbnz(left_length, &compare_chars); + __ Mov(result, Smi::FromInt(EQUAL)); + __ Ret(); + + // Compare characters. Falls through if all characters are equal. + __ Bind(&compare_chars); + GenerateAsciiCharsCompareLoop(masm, left, right, left_length, scratch2, + scratch3, &strings_not_equal); + + // Characters in strings are equal. + __ Mov(result, Smi::FromInt(EQUAL)); + __ Ret(); +} + + +void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, + Register left, + Register right, + Register scratch1, + Register scratch2, + Register scratch3, + Register scratch4) { + ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4)); + Label result_not_equal, compare_lengths; + + // Find minimum length and length difference. + Register length_delta = scratch3; + __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); + __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); + __ Subs(length_delta, scratch1, scratch2); + + Register min_length = scratch1; + __ Csel(min_length, scratch2, scratch1, gt); + __ Cbz(min_length, &compare_lengths); + + // Compare loop. + GenerateAsciiCharsCompareLoop(masm, + left, right, min_length, scratch2, scratch4, + &result_not_equal); + + // Compare lengths - strings up to min-length are equal. + __ Bind(&compare_lengths); + + ASSERT(Smi::FromInt(EQUAL) == static_cast(0)); + + // Use length_delta as result if it's zero. + Register result = x0; + __ Subs(result, length_delta, 0); + + __ Bind(&result_not_equal); + Register greater = x10; + Register less = x11; + __ Mov(greater, Smi::FromInt(GREATER)); + __ Mov(less, Smi::FromInt(LESS)); + __ CmovX(result, greater, gt); + __ CmovX(result, less, lt); + __ Ret(); +} + + +void StringCompareStub::GenerateAsciiCharsCompareLoop( + MacroAssembler* masm, + Register left, + Register right, + Register length, + Register scratch1, + Register scratch2, + Label* chars_not_equal) { + ASSERT(!AreAliased(left, right, length, scratch1, scratch2)); + + // Change index to run from -length to -1 by adding length to string + // start. This means that loop ends when index reaches zero, which + // doesn't need an additional compare. + __ SmiUntag(length); + __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag); + __ Add(left, left, scratch1); + __ Add(right, right, scratch1); + + Register index = length; + __ Neg(index, length); // index = -length; + + // Compare loop + Label loop; + __ Bind(&loop); + __ Ldrb(scratch1, MemOperand(left, index)); + __ Ldrb(scratch2, MemOperand(right, index)); + __ Cmp(scratch1, scratch2); + __ B(ne, chars_not_equal); + __ Add(index, index, 1); + __ Cbnz(index, &loop); +} + + +void StringCompareStub::Generate(MacroAssembler* masm) { + Label runtime; + + Counters* counters = isolate()->counters(); + + // Stack frame on entry. + // sp[0]: right string + // sp[8]: left string + Register right = x10; + Register left = x11; + Register result = x0; + __ Pop(right, left); + + Label not_same; + __ Subs(result, right, left); + __ B(ne, ¬_same); + STATIC_ASSERT(EQUAL == 0); + __ IncrementCounter(counters->string_compare_native(), 1, x3, x4); + __ Ret(); + + __ Bind(¬_same); + + // Check that both objects are sequential ASCII strings. + __ JumpIfEitherIsNotSequentialAsciiStrings(left, right, x12, x13, &runtime); + + // Compare flat ASCII strings natively. Remove arguments from stack first, + // as this function will generate a return. + __ IncrementCounter(counters->string_compare_native(), 1, x3, x4); + GenerateCompareFlatAsciiStrings(masm, left, right, x12, x13, x14, x15); + + __ Bind(&runtime); + + // Push arguments back on to the stack. + // sp[0] = right string + // sp[8] = left string. + __ Push(left, right); + + // Call the runtime. + // Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer. + __ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1); +} + + +void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { + // ----------- S t a t e ------------- + // -- x1 : left + // -- x0 : right + // -- lr : return address + // ----------------------------------- + + // Load x2 with the allocation site. We stick an undefined dummy value here + // and replace it with the real allocation site later when we instantiate this + // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). + __ LoadObject(x2, handle(isolate()->heap()->undefined_value())); + + // Make sure that we actually patched the allocation site. + if (FLAG_debug_code) { + __ AssertNotSmi(x2, kExpectedAllocationSite); + __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset)); + __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex, + kExpectedAllocationSite); + } + + // Tail call into the stub that handles binary operations with allocation + // sites. + BinaryOpWithAllocationSiteStub stub(isolate(), state_); + __ TailCallStub(&stub); +} + + +void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { + // We need some extra registers for this stub, they have been allocated + // but we need to save them before using them. + regs_.Save(masm); + + if (remembered_set_action_ == EMIT_REMEMBERED_SET) { + Label dont_need_remembered_set; + + Register value = regs_.scratch0(); + __ Ldr(value, MemOperand(regs_.address())); + __ JumpIfNotInNewSpace(value, &dont_need_remembered_set); + + __ CheckPageFlagSet(regs_.object(), + value, + 1 << MemoryChunk::SCAN_ON_SCAVENGE, + &dont_need_remembered_set); + + // First notify the incremental marker if necessary, then update the + // remembered set. + CheckNeedsToInformIncrementalMarker( + masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); + InformIncrementalMarker(masm); + regs_.Restore(masm); // Restore the extra scratch registers we used. + + __ RememberedSetHelper(object_, + address_, + value_, // scratch1 + save_fp_regs_mode_, + MacroAssembler::kReturnAtEnd); + + __ Bind(&dont_need_remembered_set); + } + + CheckNeedsToInformIncrementalMarker( + masm, kReturnOnNoNeedToInformIncrementalMarker, mode); + InformIncrementalMarker(masm); + regs_.Restore(masm); // Restore the extra scratch registers we used. + __ Ret(); +} + + +void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { + regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); + Register address = + x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address(); + ASSERT(!address.Is(regs_.object())); + ASSERT(!address.Is(x0)); + __ Mov(address, regs_.address()); + __ Mov(x0, regs_.object()); + __ Mov(x1, address); + __ Mov(x2, ExternalReference::isolate_address(isolate())); + + AllowExternalCallThatCantCauseGC scope(masm); + ExternalReference function = + ExternalReference::incremental_marking_record_write_function( + isolate()); + __ CallCFunction(function, 3, 0); + + regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); +} + + +void RecordWriteStub::CheckNeedsToInformIncrementalMarker( + MacroAssembler* masm, + OnNoNeedToInformIncrementalMarker on_no_need, + Mode mode) { + Label on_black; + Label need_incremental; + Label need_incremental_pop_scratch; + + Register mem_chunk = regs_.scratch0(); + Register counter = regs_.scratch1(); + __ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask); + __ Ldr(counter, + MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset)); + __ Subs(counter, counter, 1); + __ Str(counter, + MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset)); + __ B(mi, &need_incremental); + + // If the object is not black we don't have to inform the incremental marker. + __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); + + regs_.Restore(masm); // Restore the extra scratch registers we used. + if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { + __ RememberedSetHelper(object_, + address_, + value_, // scratch1 + save_fp_regs_mode_, + MacroAssembler::kReturnAtEnd); + } else { + __ Ret(); + } + + __ Bind(&on_black); + // Get the value from the slot. + Register value = regs_.scratch0(); + __ Ldr(value, MemOperand(regs_.address())); + + if (mode == INCREMENTAL_COMPACTION) { + Label ensure_not_white; + + __ CheckPageFlagClear(value, + regs_.scratch1(), + MemoryChunk::kEvacuationCandidateMask, + &ensure_not_white); + + __ CheckPageFlagClear(regs_.object(), + regs_.scratch1(), + MemoryChunk::kSkipEvacuationSlotsRecordingMask, + &need_incremental); + + __ Bind(&ensure_not_white); + } + + // We need extra registers for this, so we push the object and the address + // register temporarily. + __ Push(regs_.address(), regs_.object()); + __ EnsureNotWhite(value, + regs_.scratch1(), // Scratch. + regs_.object(), // Scratch. + regs_.address(), // Scratch. + regs_.scratch2(), // Scratch. + &need_incremental_pop_scratch); + __ Pop(regs_.object(), regs_.address()); + + regs_.Restore(masm); // Restore the extra scratch registers we used. + if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { + __ RememberedSetHelper(object_, + address_, + value_, // scratch1 + save_fp_regs_mode_, + MacroAssembler::kReturnAtEnd); + } else { + __ Ret(); + } + + __ Bind(&need_incremental_pop_scratch); + __ Pop(regs_.object(), regs_.address()); + + __ Bind(&need_incremental); + // Fall through when we need to inform the incremental marker. +} + + +void RecordWriteStub::Generate(MacroAssembler* masm) { + Label skip_to_incremental_noncompacting; + Label skip_to_incremental_compacting; + + // We patch these two first instructions back and forth between a nop and + // real branch when we start and stop incremental heap marking. + // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops + // are generated. + // See RecordWriteStub::Patch for details. + { + InstructionAccurateScope scope(masm, 2); + __ adr(xzr, &skip_to_incremental_noncompacting); + __ adr(xzr, &skip_to_incremental_compacting); + } + + if (remembered_set_action_ == EMIT_REMEMBERED_SET) { + __ RememberedSetHelper(object_, + address_, + value_, // scratch1 + save_fp_regs_mode_, + MacroAssembler::kReturnAtEnd); + } + __ Ret(); + + __ Bind(&skip_to_incremental_noncompacting); + GenerateIncremental(masm, INCREMENTAL); + + __ Bind(&skip_to_incremental_compacting); + GenerateIncremental(masm, INCREMENTAL_COMPACTION); +} + + +void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { + // x0 value element value to store + // x3 index_smi element index as smi + // sp[0] array_index_smi array literal index in function as smi + // sp[1] array array literal + + Register value = x0; + Register index_smi = x3; + + Register array = x1; + Register array_map = x2; + Register array_index_smi = x4; + __ PeekPair(array_index_smi, array, 0); + __ Ldr(array_map, FieldMemOperand(array, JSObject::kMapOffset)); + + Label double_elements, smi_element, fast_elements, slow_elements; + Register bitfield2 = x10; + __ Ldrb(bitfield2, FieldMemOperand(array_map, Map::kBitField2Offset)); + + // Jump if array's ElementsKind is not FAST*_SMI_ELEMENTS, FAST_ELEMENTS or + // FAST_HOLEY_ELEMENTS. + STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); + STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); + STATIC_ASSERT(FAST_ELEMENTS == 2); + STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); + __ Cmp(bitfield2, Map::kMaximumBitField2FastHoleyElementValue); + __ B(hi, &double_elements); + + __ JumpIfSmi(value, &smi_element); + + // Jump if array's ElementsKind is not FAST_ELEMENTS or FAST_HOLEY_ELEMENTS. + __ Tbnz(bitfield2, MaskToBit(FAST_ELEMENTS << Map::ElementsKindBits::kShift), + &fast_elements); + + // Store into the array literal requires an elements transition. Call into + // the runtime. + __ Bind(&slow_elements); + __ Push(array, index_smi, value); + __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + __ Ldr(x11, FieldMemOperand(x10, JSFunction::kLiteralsOffset)); + __ Push(x11, array_index_smi); + __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); + + // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. + __ Bind(&fast_elements); + __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); + __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2)); + __ Add(x11, x11, FixedArray::kHeaderSize - kHeapObjectTag); + __ Str(value, MemOperand(x11)); + // Update the write barrier for the array store. + __ RecordWrite(x10, x11, value, kLRHasNotBeenSaved, kDontSaveFPRegs, + EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); + __ Ret(); + + // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, + // and value is Smi. + __ Bind(&smi_element); + __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); + __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2)); + __ Str(value, FieldMemOperand(x11, FixedArray::kHeaderSize)); + __ Ret(); + + __ Bind(&double_elements); + __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); + __ StoreNumberToDoubleElements(value, index_smi, x10, x11, d0, + &slow_elements); + __ Ret(); +} + + +void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { + CEntryStub ces(isolate(), 1, kSaveFPRegs); + __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); + int parameter_count_offset = + StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; + __ Ldr(x1, MemOperand(fp, parameter_count_offset)); + if (function_mode_ == JS_FUNCTION_STUB_MODE) { + __ Add(x1, x1, 1); + } + masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); + __ Drop(x1); + // Return to IC Miss stub, continuation still on stack. + __ Ret(); +} + + +static unsigned int GetProfileEntryHookCallSize(MacroAssembler* masm) { + // The entry hook is a "BumpSystemStackPointer" instruction (sub), + // followed by a "Push lr" instruction, followed by a call. + unsigned int size = + Assembler::kCallSizeWithRelocation + (2 * kInstructionSize); + if (CpuFeatures::IsSupported(ALWAYS_ALIGN_CSP)) { + // If ALWAYS_ALIGN_CSP then there will be an extra bic instruction in + // "BumpSystemStackPointer". + size += kInstructionSize; + } + return size; +} + + +void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { + if (masm->isolate()->function_entry_hook() != NULL) { + ProfileEntryHookStub stub(masm->isolate()); + Assembler::BlockConstPoolScope no_const_pools(masm); + DontEmitDebugCodeScope no_debug_code(masm); + Label entry_hook_call_start; + __ Bind(&entry_hook_call_start); + __ Push(lr); + __ CallStub(&stub); + ASSERT(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start) == + GetProfileEntryHookCallSize(masm)); + + __ Pop(lr); + } +} + + +void ProfileEntryHookStub::Generate(MacroAssembler* masm) { + MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); + + // Save all kCallerSaved registers (including lr), since this can be called + // from anywhere. + // TODO(jbramley): What about FP registers? + __ PushCPURegList(kCallerSaved); + ASSERT(kCallerSaved.IncludesAliasOf(lr)); + const int kNumSavedRegs = kCallerSaved.Count(); + + // Compute the function's address as the first argument. + __ Sub(x0, lr, GetProfileEntryHookCallSize(masm)); + +#if V8_HOST_ARCH_ARM64 + uintptr_t entry_hook = + reinterpret_cast(isolate()->function_entry_hook()); + __ Mov(x10, entry_hook); +#else + // Under the simulator we need to indirect the entry hook through a trampoline + // function at a known address. + ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); + __ Mov(x10, Operand(ExternalReference(&dispatcher, + ExternalReference::BUILTIN_CALL, + isolate()))); + // It additionally takes an isolate as a third parameter + __ Mov(x2, ExternalReference::isolate_address(isolate())); +#endif + + // The caller's return address is above the saved temporaries. + // Grab its location for the second argument to the hook. + __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize); + + { + // Create a dummy frame, as CallCFunction requires this. + FrameScope frame(masm, StackFrame::MANUAL); + __ CallCFunction(x10, 2, 0); + } + + __ PopCPURegList(kCallerSaved); + __ Ret(); +} + + +void DirectCEntryStub::Generate(MacroAssembler* masm) { + // When calling into C++ code the stack pointer must be csp. + // Therefore this code must use csp for peek/poke operations when the + // stub is generated. When the stub is called + // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame + // and configure the stack pointer *before* doing the call. + const Register old_stack_pointer = __ StackPointer(); + __ SetStackPointer(csp); + + // Put return address on the stack (accessible to GC through exit frame pc). + __ Poke(lr, 0); + // Call the C++ function. + __ Blr(x10); + // Return to calling code. + __ Peek(lr, 0); + __ AssertFPCRState(); + __ Ret(); + + __ SetStackPointer(old_stack_pointer); +} + +void DirectCEntryStub::GenerateCall(MacroAssembler* masm, + Register target) { + // Make sure the caller configured the stack pointer (see comment in + // DirectCEntryStub::Generate). + ASSERT(csp.Is(__ StackPointer())); + + intptr_t code = + reinterpret_cast(GetCode().location()); + __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET)); + __ Mov(x10, target); + // Branch to the stub. + __ Blr(lr); +} + + +// Probe the name dictionary in the 'elements' register. +// Jump to the 'done' label if a property with the given name is found. +// Jump to the 'miss' label otherwise. +// +// If lookup was successful 'scratch2' will be equal to elements + 4 * index. +// 'elements' and 'name' registers are preserved on miss. +void NameDictionaryLookupStub::GeneratePositiveLookup( + MacroAssembler* masm, + Label* miss, + Label* done, + Register elements, + Register name, + Register scratch1, + Register scratch2) { + ASSERT(!AreAliased(elements, name, scratch1, scratch2)); + + // Assert that name contains a string. + __ AssertName(name); + + // Compute the capacity mask. + __ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset)); + __ Sub(scratch1, scratch1, 1); + + // Generate an unrolled loop that performs a few probes before giving up. + for (int i = 0; i < kInlinedProbes; i++) { + // Compute the masked index: (hash + i + i * i) & mask. + __ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); + if (i > 0) { + // Add the probe offset (i + i * i) left shifted to avoid right shifting + // the hash in a separate instruction. The value hash + i + i * i is right + // shifted in the following and instruction. + ASSERT(NameDictionary::GetProbeOffset(i) < + 1 << (32 - Name::kHashFieldOffset)); + __ Add(scratch2, scratch2, Operand( + NameDictionary::GetProbeOffset(i) << Name::kHashShift)); + } + __ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift)); + + // Scale the index by multiplying by the element size. + ASSERT(NameDictionary::kEntrySize == 3); + __ Add(scratch2, scratch2, Operand(scratch2, LSL, 1)); + + // Check if the key is identical to the name. + UseScratchRegisterScope temps(masm); + Register scratch3 = temps.AcquireX(); + __ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2)); + __ Ldr(scratch3, FieldMemOperand(scratch2, kElementsStartOffset)); + __ Cmp(name, scratch3); + __ B(eq, done); + } + + // The inlined probes didn't find the entry. + // Call the complete stub to scan the whole dictionary. + + CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6); + spill_list.Combine(lr); + spill_list.Remove(scratch1); + spill_list.Remove(scratch2); + + __ PushCPURegList(spill_list); + + if (name.is(x0)) { + ASSERT(!elements.is(x1)); + __ Mov(x1, name); + __ Mov(x0, elements); + } else { + __ Mov(x0, elements); + __ Mov(x1, name); + } + + Label not_found; + NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP); + __ CallStub(&stub); + __ Cbz(x0, ¬_found); + __ Mov(scratch2, x2); // Move entry index into scratch2. + __ PopCPURegList(spill_list); + __ B(done); + + __ Bind(¬_found); + __ PopCPURegList(spill_list); + __ B(miss); +} + + +void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, + Label* miss, + Label* done, + Register receiver, + Register properties, + Handle name, + Register scratch0) { + ASSERT(!AreAliased(receiver, properties, scratch0)); + ASSERT(name->IsUniqueName()); + // If names of slots in range from 1 to kProbes - 1 for the hash value are + // not equal to the name and kProbes-th slot is not used (its name is the + // undefined value), it guarantees the hash table doesn't contain the + // property. It's true even if some slots represent deleted properties + // (their names are the hole value). + for (int i = 0; i < kInlinedProbes; i++) { + // scratch0 points to properties hash. + // Compute the masked index: (hash + i + i * i) & mask. + Register index = scratch0; + // Capacity is smi 2^n. + __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset)); + __ Sub(index, index, 1); + __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i)); + + // Scale the index by multiplying by the entry size. + ASSERT(NameDictionary::kEntrySize == 3); + __ Add(index, index, Operand(index, LSL, 1)); // index *= 3. + + Register entity_name = scratch0; + // Having undefined at this place means the name is not contained. + Register tmp = index; + __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2)); + __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); + + __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done); + + // Stop if found the property. + __ Cmp(entity_name, Operand(name)); + __ B(eq, miss); + + Label good; + __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good); + + // Check if the entry name is not a unique name. + __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); + __ Ldrb(entity_name, + FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); + __ JumpIfNotUniqueName(entity_name, miss); + __ Bind(&good); + } + + CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6); + spill_list.Combine(lr); + spill_list.Remove(scratch0); // Scratch registers don't need to be preserved. + + __ PushCPURegList(spill_list); + + __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); + __ Mov(x1, Operand(name)); + NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); + __ CallStub(&stub); + // Move stub return value to scratch0. Note that scratch0 is not included in + // spill_list and won't be clobbered by PopCPURegList. + __ Mov(scratch0, x0); + __ PopCPURegList(spill_list); + + __ Cbz(scratch0, done); + __ B(miss); +} + + +void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { + // This stub overrides SometimesSetsUpAFrame() to return false. That means + // we cannot call anything that could cause a GC from this stub. + // + // Arguments are in x0 and x1: + // x0: property dictionary. + // x1: the name of the property we are looking for. + // + // Return value is in x0 and is zero if lookup failed, non zero otherwise. + // If the lookup is successful, x2 will contains the index of the entry. + + Register result = x0; + Register dictionary = x0; + Register key = x1; + Register index = x2; + Register mask = x3; + Register hash = x4; + Register undefined = x5; + Register entry_key = x6; + + Label in_dictionary, maybe_in_dictionary, not_in_dictionary; + + __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset)); + __ Sub(mask, mask, 1); + + __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); + __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); + + for (int i = kInlinedProbes; i < kTotalProbes; i++) { + // Compute the masked index: (hash + i + i * i) & mask. + // Capacity is smi 2^n. + if (i > 0) { + // Add the probe offset (i + i * i) left shifted to avoid right shifting + // the hash in a separate instruction. The value hash + i + i * i is right + // shifted in the following and instruction. + ASSERT(NameDictionary::GetProbeOffset(i) < + 1 << (32 - Name::kHashFieldOffset)); + __ Add(index, hash, + NameDictionary::GetProbeOffset(i) << Name::kHashShift); + } else { + __ Mov(index, hash); + } + __ And(index, mask, Operand(index, LSR, Name::kHashShift)); + + // Scale the index by multiplying by the entry size. + ASSERT(NameDictionary::kEntrySize == 3); + __ Add(index, index, Operand(index, LSL, 1)); // index *= 3. + + __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2)); + __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); + + // Having undefined at this place means the name is not contained. + __ Cmp(entry_key, undefined); + __ B(eq, ¬_in_dictionary); + + // Stop if found the property. + __ Cmp(entry_key, key); + __ B(eq, &in_dictionary); + + if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { + // Check if the entry name is not a unique name. + __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); + __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); + __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary); + } + } + + __ Bind(&maybe_in_dictionary); + // If we are doing negative lookup then probing failure should be + // treated as a lookup success. For positive lookup, probing failure + // should be treated as lookup failure. + if (mode_ == POSITIVE_LOOKUP) { + __ Mov(result, 0); + __ Ret(); + } + + __ Bind(&in_dictionary); + __ Mov(result, 1); + __ Ret(); + + __ Bind(¬_in_dictionary); + __ Mov(result, 0); + __ Ret(); +} + + +template +static void CreateArrayDispatch(MacroAssembler* masm, + AllocationSiteOverrideMode mode) { + ASM_LOCATION("CreateArrayDispatch"); + if (mode == DISABLE_ALLOCATION_SITES) { + T stub(masm->isolate(), GetInitialFastElementsKind(), mode); + __ TailCallStub(&stub); + + } else if (mode == DONT_OVERRIDE) { + Register kind = x3; + int last_index = + GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); + for (int i = 0; i <= last_index; ++i) { + Label next; + ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); + // TODO(jbramley): Is this the best way to handle this? Can we make the + // tail calls conditional, rather than hopping over each one? + __ CompareAndBranch(kind, candidate_kind, ne, &next); + T stub(masm->isolate(), candidate_kind); + __ TailCallStub(&stub); + __ Bind(&next); + } + + // If we reached this point there is a problem. + __ Abort(kUnexpectedElementsKindInArrayConstructor); + + } else { + UNREACHABLE(); + } +} + + +// TODO(jbramley): If this needs to be a special case, make it a proper template +// specialization, and not a separate function. +static void CreateArrayDispatchOneArgument(MacroAssembler* masm, + AllocationSiteOverrideMode mode) { + ASM_LOCATION("CreateArrayDispatchOneArgument"); + // x0 - argc + // x1 - constructor? + // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) + // x3 - kind (if mode != DISABLE_ALLOCATION_SITES) + // sp[0] - last argument + + Register allocation_site = x2; + Register kind = x3; + + Label normal_sequence; + if (mode == DONT_OVERRIDE) { + STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); + STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); + STATIC_ASSERT(FAST_ELEMENTS == 2); + STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); + STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); + STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); + + // Is the low bit set? If so, the array is holey. + __ Tbnz(kind, 0, &normal_sequence); + } + + // Look at the last argument. + // TODO(jbramley): What does a 0 argument represent? + __ Peek(x10, 0); + __ Cbz(x10, &normal_sequence); + + if (mode == DISABLE_ALLOCATION_SITES) { + ElementsKind initial = GetInitialFastElementsKind(); + ElementsKind holey_initial = GetHoleyElementsKind(initial); + + ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), + holey_initial, + DISABLE_ALLOCATION_SITES); + __ TailCallStub(&stub_holey); + + __ Bind(&normal_sequence); + ArraySingleArgumentConstructorStub stub(masm->isolate(), + initial, + DISABLE_ALLOCATION_SITES); + __ TailCallStub(&stub); + } else if (mode == DONT_OVERRIDE) { + // We are going to create a holey array, but our kind is non-holey. + // Fix kind and retry (only if we have an allocation site in the slot). + __ Orr(kind, kind, 1); + + if (FLAG_debug_code) { + __ Ldr(x10, FieldMemOperand(allocation_site, 0)); + __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex, + &normal_sequence); + __ Assert(eq, kExpectedAllocationSite); + } + + // Save the resulting elements kind in type info. We can't just store 'kind' + // in the AllocationSite::transition_info field because elements kind is + // restricted to a portion of the field; upper bits need to be left alone. + STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); + __ Ldr(x11, FieldMemOperand(allocation_site, + AllocationSite::kTransitionInfoOffset)); + __ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley)); + __ Str(x11, FieldMemOperand(allocation_site, + AllocationSite::kTransitionInfoOffset)); + + __ Bind(&normal_sequence); + int last_index = + GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); + for (int i = 0; i <= last_index; ++i) { + Label next; + ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); + __ CompareAndBranch(kind, candidate_kind, ne, &next); + ArraySingleArgumentConstructorStub stub(masm->isolate(), candidate_kind); + __ TailCallStub(&stub); + __ Bind(&next); + } + + // If we reached this point there is a problem. + __ Abort(kUnexpectedElementsKindInArrayConstructor); + } else { + UNREACHABLE(); + } +} + + +template +static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { + int to_index = GetSequenceIndexFromFastElementsKind( + TERMINAL_FAST_ELEMENTS_KIND); + for (int i = 0; i <= to_index; ++i) { + ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); + T stub(isolate, kind); + stub.GetCode(); + if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { + T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); + stub1.GetCode(); + } + } +} + + +void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { + ArrayConstructorStubAheadOfTimeHelper( + isolate); + ArrayConstructorStubAheadOfTimeHelper( + isolate); + ArrayConstructorStubAheadOfTimeHelper( + isolate); +} + + +void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( + Isolate* isolate) { + ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; + for (int i = 0; i < 2; i++) { + // For internal arrays we only need a few things + InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); + stubh1.GetCode(); + InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); + stubh2.GetCode(); + InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]); + stubh3.GetCode(); + } +} + + +void ArrayConstructorStub::GenerateDispatchToArrayStub( + MacroAssembler* masm, + AllocationSiteOverrideMode mode) { + Register argc = x0; + if (argument_count_ == ANY) { + Label zero_case, n_case; + __ Cbz(argc, &zero_case); + __ Cmp(argc, 1); + __ B(ne, &n_case); + + // One argument. + CreateArrayDispatchOneArgument(masm, mode); + + __ Bind(&zero_case); + // No arguments. + CreateArrayDispatch(masm, mode); + + __ Bind(&n_case); + // N arguments. + CreateArrayDispatch(masm, mode); + + } else if (argument_count_ == NONE) { + CreateArrayDispatch(masm, mode); + } else if (argument_count_ == ONE) { + CreateArrayDispatchOneArgument(masm, mode); + } else if (argument_count_ == MORE_THAN_ONE) { + CreateArrayDispatch(masm, mode); + } else { + UNREACHABLE(); + } +} + + +void ArrayConstructorStub::Generate(MacroAssembler* masm) { + ASM_LOCATION("ArrayConstructorStub::Generate"); + // ----------- S t a t e ------------- + // -- x0 : argc (only if argument_count_ == ANY) + // -- x1 : constructor + // -- x2 : AllocationSite or undefined + // -- sp[0] : return address + // -- sp[4] : last argument + // ----------------------------------- + Register constructor = x1; + Register allocation_site = x2; + + if (FLAG_debug_code) { + // The array construct code is only set for the global and natives + // builtin Array functions which always have maps. + + Label unexpected_map, map_ok; + // Initial map for the builtin Array function should be a map. + __ Ldr(x10, FieldMemOperand(constructor, + JSFunction::kPrototypeOrInitialMapOffset)); + // Will both indicate a NULL and a Smi. + __ JumpIfSmi(x10, &unexpected_map); + __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); + __ Bind(&unexpected_map); + __ Abort(kUnexpectedInitialMapForArrayFunction); + __ Bind(&map_ok); + + // We should either have undefined in the allocation_site register or a + // valid AllocationSite. + __ AssertUndefinedOrAllocationSite(allocation_site, x10); + } + + Register kind = x3; + Label no_info; + // Get the elements kind and case on that. + __ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info); + + __ Ldrsw(kind, + UntagSmiFieldMemOperand(allocation_site, + AllocationSite::kTransitionInfoOffset)); + __ And(kind, kind, AllocationSite::ElementsKindBits::kMask); + GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); + + __ Bind(&no_info); + GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); +} + + +void InternalArrayConstructorStub::GenerateCase( + MacroAssembler* masm, ElementsKind kind) { + Label zero_case, n_case; + Register argc = x0; + + __ Cbz(argc, &zero_case); + __ CompareAndBranch(argc, 1, ne, &n_case); + + // One argument. + if (IsFastPackedElementsKind(kind)) { + Label packed_case; + + // We might need to create a holey array; look at the first argument. + __ Peek(x10, 0); + __ Cbz(x10, &packed_case); + + InternalArraySingleArgumentConstructorStub + stub1_holey(isolate(), GetHoleyElementsKind(kind)); + __ TailCallStub(&stub1_holey); + + __ Bind(&packed_case); + } + InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); + __ TailCallStub(&stub1); + + __ Bind(&zero_case); + // No arguments. + InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); + __ TailCallStub(&stub0); + + __ Bind(&n_case); + // N arguments. + InternalArrayNArgumentsConstructorStub stubN(isolate(), kind); + __ TailCallStub(&stubN); +} + + +void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { + // ----------- S t a t e ------------- + // -- x0 : argc + // -- x1 : constructor + // -- sp[0] : return address + // -- sp[4] : last argument + // ----------------------------------- + + Register constructor = x1; + + if (FLAG_debug_code) { + // The array construct code is only set for the global and natives + // builtin Array functions which always have maps. + + Label unexpected_map, map_ok; + // Initial map for the builtin Array function should be a map. + __ Ldr(x10, FieldMemOperand(constructor, + JSFunction::kPrototypeOrInitialMapOffset)); + // Will both indicate a NULL and a Smi. + __ JumpIfSmi(x10, &unexpected_map); + __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); + __ Bind(&unexpected_map); + __ Abort(kUnexpectedInitialMapForArrayFunction); + __ Bind(&map_ok); + } + + Register kind = w3; + // Figure out the right elements kind + __ Ldr(x10, FieldMemOperand(constructor, + JSFunction::kPrototypeOrInitialMapOffset)); + + // Retrieve elements_kind from map. + __ LoadElementsKindFromMap(kind, x10); + + if (FLAG_debug_code) { + Label done; + __ Cmp(x3, FAST_ELEMENTS); + __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne); + __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray); + } + + Label fast_elements_case; + __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case); + GenerateCase(masm, FAST_HOLEY_ELEMENTS); + + __ Bind(&fast_elements_case); + GenerateCase(masm, FAST_ELEMENTS); +} + + +void CallApiFunctionStub::Generate(MacroAssembler* masm) { + // ----------- S t a t e ------------- + // -- x0 : callee + // -- x4 : call_data + // -- x2 : holder + // -- x1 : api_function_address + // -- cp : context + // -- + // -- sp[0] : last argument + // -- ... + // -- sp[(argc - 1) * 8] : first argument + // -- sp[argc * 8] : receiver + // ----------------------------------- + + Register callee = x0; + Register call_data = x4; + Register holder = x2; + Register api_function_address = x1; + Register context = cp; + + int argc = ArgumentBits::decode(bit_field_); + bool is_store = IsStoreBits::decode(bit_field_); + bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_); + + typedef FunctionCallbackArguments FCA; + + STATIC_ASSERT(FCA::kContextSaveIndex == 6); + STATIC_ASSERT(FCA::kCalleeIndex == 5); + STATIC_ASSERT(FCA::kDataIndex == 4); + STATIC_ASSERT(FCA::kReturnValueOffset == 3); + STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); + STATIC_ASSERT(FCA::kIsolateIndex == 1); + STATIC_ASSERT(FCA::kHolderIndex == 0); + STATIC_ASSERT(FCA::kArgsLength == 7); + + // FunctionCallbackArguments: context, callee and call data. + __ Push(context, callee, call_data); + + // Load context from callee + __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset)); + + if (!call_data_undefined) { + __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex); + } + Register isolate_reg = x5; + __ Mov(isolate_reg, ExternalReference::isolate_address(isolate())); + + // FunctionCallbackArguments: + // return value, return value default, isolate, holder. + __ Push(call_data, call_data, isolate_reg, holder); + + // Prepare arguments. + Register args = x6; + __ Mov(args, masm->StackPointer()); + + // Allocate the v8::Arguments structure in the arguments' space, since it's + // not controlled by GC. + const int kApiStackSpace = 4; + + // Allocate space for CallApiFunctionAndReturn can store some scratch + // registeres on the stack. + const int kCallApiFunctionSpillSpace = 4; + + FrameScope frame_scope(masm, StackFrame::MANUAL); + __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); + + ASSERT(!AreAliased(x0, api_function_address)); + // x0 = FunctionCallbackInfo& + // Arguments is after the return address. + __ Add(x0, masm->StackPointer(), 1 * kPointerSize); + // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_ + __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); + __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize)); + // FunctionCallbackInfo::length_ = argc and + // FunctionCallbackInfo::is_construct_call = 0 + __ Mov(x10, argc); + __ Stp(x10, xzr, MemOperand(x0, 2 * kPointerSize)); + + const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; + ExternalReference thunk_ref = + ExternalReference::invoke_function_callback(isolate()); + + AllowExternalCallThatCantCauseGC scope(masm); + MemOperand context_restore_operand( + fp, (2 + FCA::kContextSaveIndex) * kPointerSize); + // Stores return the first js argument + int return_value_offset = 0; + if (is_store) { + return_value_offset = 2 + FCA::kArgsLength; + } else { + return_value_offset = 2 + FCA::kReturnValueOffset; + } + MemOperand return_value_operand(fp, return_value_offset * kPointerSize); + + const int spill_offset = 1 + kApiStackSpace; + __ CallApiFunctionAndReturn(api_function_address, + thunk_ref, + kStackUnwindSpace, + spill_offset, + return_value_operand, + &context_restore_operand); +} + + +void CallApiGetterStub::Generate(MacroAssembler* masm) { + // ----------- S t a t e ------------- + // -- sp[0] : name + // -- sp[8 - kArgsLength*8] : PropertyCallbackArguments object + // -- ... + // -- x2 : api_function_address + // ----------------------------------- + + Register api_function_address = x2; + + __ Mov(x0, masm->StackPointer()); // x0 = Handle + __ Add(x1, x0, 1 * kPointerSize); // x1 = PCA + + const int kApiStackSpace = 1; + + // Allocate space for CallApiFunctionAndReturn can store some scratch + // registeres on the stack. + const int kCallApiFunctionSpillSpace = 4; + + FrameScope frame_scope(masm, StackFrame::MANUAL); + __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); + + // Create PropertyAccessorInfo instance on the stack above the exit frame with + // x1 (internal::Object** args_) as the data. + __ Poke(x1, 1 * kPointerSize); + __ Add(x1, masm->StackPointer(), 1 * kPointerSize); // x1 = AccessorInfo& + + const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; + + ExternalReference thunk_ref = + ExternalReference::invoke_accessor_getter_callback(isolate()); + + const int spill_offset = 1 + kApiStackSpace; + __ CallApiFunctionAndReturn(api_function_address, + thunk_ref, + kStackUnwindSpace, + spill_offset, + MemOperand(fp, 6 * kPointerSize), + NULL); +} + + +#undef __ + +} } // namespace v8::internal + +#endif // V8_TARGET_ARCH_ARM64 -- cgit v1.2.3