// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "base/bind.h" #include "base/callback.h" #include "base/compiler_specific.h" #include "base/files/file_util.h" #include "base/files/scoped_temp_dir.h" #include "base/logging.h" #include "base/macros.h" #include "base/run_loop.h" #include "base/sanitizer_buildflags.h" #include "base/strings/string_piece.h" #include "base/test/scoped_feature_list.h" #include "base/test/task_environment.h" #include "build/build_config.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #if defined(OS_POSIX) #include #include #include "base/posix/eintr_wrapper.h" #endif // OS_POSIX #if defined(OS_LINUX) || defined(OS_ANDROID) #include #endif #if defined(OS_WIN) #include #include #endif // OS_WIN #if defined(OS_FUCHSIA) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "base/fuchsia/default_context.h" #include "base/fuchsia/fuchsia_logging.h" #endif // OS_FUCHSIA namespace logging { namespace { using ::testing::Return; using ::testing::_; // Needs to be global since log assert handlers can't maintain state. int g_log_sink_call_count = 0; #if !defined(OFFICIAL_BUILD) || defined(DCHECK_ALWAYS_ON) || !defined(NDEBUG) void LogSink(const char* file, int line, const base::StringPiece message, const base::StringPiece stack_trace) { ++g_log_sink_call_count; } #endif // Class to make sure any manipulations we do to the min log level are // contained (i.e., do not affect other unit tests). class LogStateSaver { public: LogStateSaver() : old_min_log_level_(GetMinLogLevel()) {} ~LogStateSaver() { SetMinLogLevel(old_min_log_level_); g_log_sink_call_count = 0; } private: int old_min_log_level_; DISALLOW_COPY_AND_ASSIGN(LogStateSaver); }; class LoggingTest : public testing::Test { private: base::test::SingleThreadTaskEnvironment task_environment_{ base::test::SingleThreadTaskEnvironment::MainThreadType::IO}; LogStateSaver log_state_saver_; }; class MockLogSource { public: MOCK_METHOD0(Log, const char*()); }; class MockLogAssertHandler { public: MOCK_METHOD4( HandleLogAssert, void(const char*, int, const base::StringPiece, const base::StringPiece)); }; TEST_F(LoggingTest, BasicLogging) { MockLogSource mock_log_source; EXPECT_CALL(mock_log_source, Log()) .Times(DCHECK_IS_ON() ? 16 : 8) .WillRepeatedly(Return("log message")); SetMinLogLevel(LOG_INFO); EXPECT_TRUE(LOG_IS_ON(INFO)); EXPECT_TRUE((DCHECK_IS_ON() != 0) == DLOG_IS_ON(INFO)); EXPECT_TRUE(VLOG_IS_ON(0)); LOG(INFO) << mock_log_source.Log(); LOG_IF(INFO, true) << mock_log_source.Log(); PLOG(INFO) << mock_log_source.Log(); PLOG_IF(INFO, true) << mock_log_source.Log(); VLOG(0) << mock_log_source.Log(); VLOG_IF(0, true) << mock_log_source.Log(); VPLOG(0) << mock_log_source.Log(); VPLOG_IF(0, true) << mock_log_source.Log(); DLOG(INFO) << mock_log_source.Log(); DLOG_IF(INFO, true) << mock_log_source.Log(); DPLOG(INFO) << mock_log_source.Log(); DPLOG_IF(INFO, true) << mock_log_source.Log(); DVLOG(0) << mock_log_source.Log(); DVLOG_IF(0, true) << mock_log_source.Log(); DVPLOG(0) << mock_log_source.Log(); DVPLOG_IF(0, true) << mock_log_source.Log(); } TEST_F(LoggingTest, LogIsOn) { #if defined(NDEBUG) const bool kDfatalIsFatal = false; #else // defined(NDEBUG) const bool kDfatalIsFatal = true; #endif // defined(NDEBUG) SetMinLogLevel(LOG_INFO); EXPECT_TRUE(LOG_IS_ON(INFO)); EXPECT_TRUE(LOG_IS_ON(WARNING)); EXPECT_TRUE(LOG_IS_ON(ERROR)); EXPECT_TRUE(LOG_IS_ON(FATAL)); EXPECT_TRUE(LOG_IS_ON(DFATAL)); SetMinLogLevel(LOG_WARNING); EXPECT_FALSE(LOG_IS_ON(INFO)); EXPECT_TRUE(LOG_IS_ON(WARNING)); EXPECT_TRUE(LOG_IS_ON(ERROR)); EXPECT_TRUE(LOG_IS_ON(FATAL)); EXPECT_TRUE(LOG_IS_ON(DFATAL)); SetMinLogLevel(LOG_ERROR); EXPECT_FALSE(LOG_IS_ON(INFO)); EXPECT_FALSE(LOG_IS_ON(WARNING)); EXPECT_TRUE(LOG_IS_ON(ERROR)); EXPECT_TRUE(LOG_IS_ON(FATAL)); EXPECT_TRUE(LOG_IS_ON(DFATAL)); // LOG_IS_ON(FATAL) should always be true. SetMinLogLevel(LOG_FATAL + 1); EXPECT_FALSE(LOG_IS_ON(INFO)); EXPECT_FALSE(LOG_IS_ON(WARNING)); EXPECT_FALSE(LOG_IS_ON(ERROR)); EXPECT_TRUE(LOG_IS_ON(FATAL)); EXPECT_EQ(kDfatalIsFatal, LOG_IS_ON(DFATAL)); } TEST_F(LoggingTest, LoggingIsLazyBySeverity) { MockLogSource mock_log_source; EXPECT_CALL(mock_log_source, Log()).Times(0); SetMinLogLevel(LOG_WARNING); EXPECT_FALSE(LOG_IS_ON(INFO)); EXPECT_FALSE(DLOG_IS_ON(INFO)); EXPECT_FALSE(VLOG_IS_ON(1)); LOG(INFO) << mock_log_source.Log(); LOG_IF(INFO, false) << mock_log_source.Log(); PLOG(INFO) << mock_log_source.Log(); PLOG_IF(INFO, false) << mock_log_source.Log(); VLOG(1) << mock_log_source.Log(); VLOG_IF(1, true) << mock_log_source.Log(); VPLOG(1) << mock_log_source.Log(); VPLOG_IF(1, true) << mock_log_source.Log(); DLOG(INFO) << mock_log_source.Log(); DLOG_IF(INFO, true) << mock_log_source.Log(); DPLOG(INFO) << mock_log_source.Log(); DPLOG_IF(INFO, true) << mock_log_source.Log(); DVLOG(1) << mock_log_source.Log(); DVLOG_IF(1, true) << mock_log_source.Log(); DVPLOG(1) << mock_log_source.Log(); DVPLOG_IF(1, true) << mock_log_source.Log(); } TEST_F(LoggingTest, LoggingIsLazyByDestination) { MockLogSource mock_log_source; MockLogSource mock_log_source_error; EXPECT_CALL(mock_log_source, Log()).Times(0); // Severity >= ERROR is always printed to stderr. EXPECT_CALL(mock_log_source_error, Log()).Times(1). WillRepeatedly(Return("log message")); LoggingSettings settings; settings.logging_dest = LOG_NONE; InitLogging(settings); LOG(INFO) << mock_log_source.Log(); LOG(WARNING) << mock_log_source.Log(); LOG(ERROR) << mock_log_source_error.Log(); } // Check that logging to stderr is gated on LOG_TO_STDERR. TEST_F(LoggingTest, LogToStdErrFlag) { LoggingSettings settings; settings.logging_dest = LOG_NONE; InitLogging(settings); MockLogSource mock_log_source; EXPECT_CALL(mock_log_source, Log()).Times(0); LOG(INFO) << mock_log_source.Log(); settings.logging_dest = LOG_TO_STDERR; MockLogSource mock_log_source_stderr; InitLogging(settings); EXPECT_CALL(mock_log_source_stderr, Log()).Times(1).WillOnce(Return("foo")); LOG(INFO) << mock_log_source_stderr.Log(); } // Check that messages with severity ERROR or higher are always logged to // stderr if no log-destinations are set, other than LOG_TO_FILE. // This test is currently only POSIX-compatible. #if defined(OS_POSIX) || defined(OS_FUCHSIA) namespace { void TestForLogToStderr(int log_destinations, bool* did_log_info, bool* did_log_error) { const char kInfoLogMessage[] = "This is an INFO level message"; const char kErrorLogMessage[] = "Here we have a message of level ERROR"; base::ScopedTempDir temp_dir; ASSERT_TRUE(temp_dir.CreateUniqueTempDir()); // Set up logging. LoggingSettings settings; settings.logging_dest = log_destinations; base::FilePath file_logs_path; if (log_destinations & LOG_TO_FILE) { file_logs_path = temp_dir.GetPath().Append("file.log"); settings.log_file_path = file_logs_path.value().c_str(); } InitLogging(settings); // Create a file and change stderr to write to that file, to easily check // contents. base::FilePath stderr_logs_path = temp_dir.GetPath().Append("stderr.log"); base::File stderr_logs = base::File( stderr_logs_path, base::File::FLAG_CREATE | base::File::FLAG_WRITE | base::File::FLAG_READ); base::ScopedFD stderr_backup = base::ScopedFD(dup(STDERR_FILENO)); int dup_result = dup2(stderr_logs.GetPlatformFile(), STDERR_FILENO); ASSERT_EQ(dup_result, STDERR_FILENO); LOG(INFO) << kInfoLogMessage; LOG(ERROR) << kErrorLogMessage; // Restore the original stderr logging destination. dup_result = dup2(stderr_backup.get(), STDERR_FILENO); ASSERT_EQ(dup_result, STDERR_FILENO); // Check which of the messages were written to stderr. std::string written_logs; ASSERT_TRUE(base::ReadFileToString(stderr_logs_path, &written_logs)); *did_log_info = written_logs.find(kInfoLogMessage) != std::string::npos; *did_log_error = written_logs.find(kErrorLogMessage) != std::string::npos; } } // namespace TEST_F(LoggingTest, AlwaysLogErrorsToStderr) { bool did_log_info = false; bool did_log_error = false; // When no destinations are specified, ERRORs should still log to stderr. TestForLogToStderr(LOG_NONE, &did_log_info, &did_log_error); EXPECT_FALSE(did_log_info); EXPECT_TRUE(did_log_error); // Logging only to a file should also log ERRORs to stderr as well. TestForLogToStderr(LOG_TO_FILE, &did_log_info, &did_log_error); EXPECT_FALSE(did_log_info); EXPECT_TRUE(did_log_error); // ERRORs should not be logged to stderr if any destination besides FILE is // set. TestForLogToStderr(LOG_TO_SYSTEM_DEBUG_LOG, &did_log_info, &did_log_error); EXPECT_FALSE(did_log_info); EXPECT_FALSE(did_log_error); // Both ERRORs and INFO should be logged if LOG_TO_STDERR is set. TestForLogToStderr(LOG_TO_STDERR, &did_log_info, &did_log_error); EXPECT_TRUE(did_log_info); EXPECT_TRUE(did_log_error); } #endif #if defined(OS_CHROMEOS) TEST_F(LoggingTest, InitWithFileDescriptor) { const char kErrorLogMessage[] = "something bad happened"; // Open a file to pass to the InitLogging. base::ScopedTempDir temp_dir; ASSERT_TRUE(temp_dir.CreateUniqueTempDir()); base::FilePath file_log_path = temp_dir.GetPath().Append("file.log"); FILE* log_file = fopen(file_log_path.value().c_str(), "w"); CHECK(log_file); // Set up logging. LoggingSettings settings; settings.logging_dest = LOG_TO_FILE; settings.log_file = log_file; InitLogging(settings); LOG(ERROR) << kErrorLogMessage; // Check the message was written to the log file. std::string written_logs; ASSERT_TRUE(base::ReadFileToString(file_log_path, &written_logs)); ASSERT_NE(written_logs.find(kErrorLogMessage), std::string::npos); } TEST_F(LoggingTest, DuplicateLogFile) { const char kErrorLogMessage1[] = "something really bad happened"; const char kErrorLogMessage2[] = "some other bad thing happened"; base::ScopedTempDir temp_dir; ASSERT_TRUE(temp_dir.CreateUniqueTempDir()); base::FilePath file_log_path = temp_dir.GetPath().Append("file.log"); // Set up logging. LoggingSettings settings; settings.logging_dest = LOG_TO_FILE; settings.log_file_path = file_log_path.value().c_str(); InitLogging(settings); LOG(ERROR) << kErrorLogMessage1; // Duplicate the log FILE, close the original (to make sure we actually // duplicated it), and write to the duplicate. FILE* log_file_dup = DuplicateLogFILE(); CHECK(log_file_dup); CloseLogFile(); fprintf(log_file_dup, "%s\n", kErrorLogMessage2); fflush(log_file_dup); // Check the messages were written to the log file. std::string written_logs; ASSERT_TRUE(base::ReadFileToString(file_log_path, &written_logs)); ASSERT_NE(written_logs.find(kErrorLogMessage1), std::string::npos); ASSERT_NE(written_logs.find(kErrorLogMessage2), std::string::npos); fclose(log_file_dup); } #endif // defined(OS_CHROMEOS) // Official builds have CHECKs directly call BreakDebugger. #if !defined(OFFICIAL_BUILD) // https://crbug.com/709067 tracks test flakiness on iOS. #if defined(OS_IOS) #define MAYBE_CheckStreamsAreLazy DISABLED_CheckStreamsAreLazy #else #define MAYBE_CheckStreamsAreLazy CheckStreamsAreLazy #endif TEST_F(LoggingTest, MAYBE_CheckStreamsAreLazy) { MockLogSource mock_log_source, uncalled_mock_log_source; EXPECT_CALL(mock_log_source, Log()).Times(8). WillRepeatedly(Return("check message")); EXPECT_CALL(uncalled_mock_log_source, Log()).Times(0); ScopedLogAssertHandler scoped_assert_handler(base::BindRepeating(LogSink)); CHECK(mock_log_source.Log()) << uncalled_mock_log_source.Log(); PCHECK(!mock_log_source.Log()) << mock_log_source.Log(); CHECK_EQ(mock_log_source.Log(), mock_log_source.Log()) << uncalled_mock_log_source.Log(); CHECK_NE(mock_log_source.Log(), mock_log_source.Log()) << mock_log_source.Log(); } #endif #if defined(OFFICIAL_BUILD) && defined(OS_WIN) NOINLINE void CheckContainingFunc(int death_location) { CHECK(death_location != 1); CHECK(death_location != 2); CHECK(death_location != 3); } int GetCheckExceptionData(EXCEPTION_POINTERS* p, DWORD* code, void** addr) { *code = p->ExceptionRecord->ExceptionCode; *addr = p->ExceptionRecord->ExceptionAddress; return EXCEPTION_EXECUTE_HANDLER; } TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) { DWORD code1 = 0; DWORD code2 = 0; DWORD code3 = 0; void* addr1 = nullptr; void* addr2 = nullptr; void* addr3 = nullptr; // Record the exception code and addresses. __try { CheckContainingFunc(1); } __except ( GetCheckExceptionData(GetExceptionInformation(), &code1, &addr1)) { } __try { CheckContainingFunc(2); } __except ( GetCheckExceptionData(GetExceptionInformation(), &code2, &addr2)) { } __try { CheckContainingFunc(3); } __except ( GetCheckExceptionData(GetExceptionInformation(), &code3, &addr3)) { } // Ensure that the exception codes are correct (in particular, breakpoints, // not access violations). EXPECT_EQ(STATUS_BREAKPOINT, code1); EXPECT_EQ(STATUS_BREAKPOINT, code2); EXPECT_EQ(STATUS_BREAKPOINT, code3); // Ensure that none of the CHECKs are colocated. EXPECT_NE(addr1, addr2); EXPECT_NE(addr1, addr3); EXPECT_NE(addr2, addr3); } #elif defined(OS_FUCHSIA) // CHECK causes a direct crash (without jumping to another function) only in // official builds. Unfortunately, continuous test coverage on official builds // is lower. Furthermore, since the Fuchsia implementation uses threads, it is // not possible to rely on an implementation of CHECK that calls abort(), which // takes down the whole process, preventing the thread exception handler from // handling the exception. DO_CHECK here falls back on IMMEDIATE_CRASH() in // non-official builds, to catch regressions earlier in the CQ. #if defined(OFFICIAL_BUILD) #define DO_CHECK CHECK #else #define DO_CHECK(cond) \ if (!(cond)) { \ IMMEDIATE_CRASH(); \ } #endif struct thread_data_t { // For signaling the thread ended properly. zx::event event; // For catching thread exceptions. Created by the crashing thread. zx::channel channel; // Location where the thread is expected to crash. int death_location; }; // Indicates the exception channel has been created successfully. constexpr zx_signals_t kChannelReadySignal = ZX_USER_SIGNAL_0; // Indicates an error setting up the crash thread. constexpr zx_signals_t kCrashThreadErrorSignal = ZX_USER_SIGNAL_1; void* CrashThread(void* arg) { thread_data_t* data = (thread_data_t*)arg; int death_location = data->death_location; // Register the exception handler. zx_status_t status = zx::thread::self()->create_exception_channel(0, &data->channel); if (status != ZX_OK) { data->event.signal(0, kCrashThreadErrorSignal); return nullptr; } data->event.signal(0, kChannelReadySignal); DO_CHECK(death_location != 1); DO_CHECK(death_location != 2); DO_CHECK(death_location != 3); // We should never reach this point, signal the thread incorrectly ended // properly. data->event.signal(0, kCrashThreadErrorSignal); return nullptr; } // Runs the CrashThread function in a separate thread. void SpawnCrashThread(int death_location, uintptr_t* child_crash_addr) { zx::event event; zx_status_t status = zx::event::create(0, &event); ASSERT_EQ(status, ZX_OK); // Run the thread. thread_data_t thread_data = {std::move(event), zx::channel(), death_location}; pthread_t thread; int ret = pthread_create(&thread, nullptr, CrashThread, &thread_data); ASSERT_EQ(ret, 0); // Wait for the thread to set up its exception channel. zx_signals_t signals = 0; status = thread_data.event.wait_one(kChannelReadySignal | kCrashThreadErrorSignal, zx::time::infinite(), &signals); ASSERT_EQ(status, ZX_OK); ASSERT_EQ(signals, kChannelReadySignal); // Wait for the exception and read it out of the channel. status = thread_data.channel.wait_one(ZX_CHANNEL_READABLE | ZX_CHANNEL_PEER_CLOSED, zx::time::infinite(), &signals); ASSERT_EQ(status, ZX_OK); // Check the thread did crash and not terminate. ASSERT_FALSE(signals & ZX_CHANNEL_PEER_CLOSED); zx_exception_info_t exception_info; zx::exception exception; status = thread_data.channel.read( 0, &exception_info, exception.reset_and_get_address(), sizeof(exception_info), 1, nullptr, nullptr); ASSERT_EQ(status, ZX_OK); // Get the crash address. zx::thread zircon_thread; status = exception.get_thread(&zircon_thread); ASSERT_EQ(status, ZX_OK); zx_thread_state_general_regs_t buffer; status = zircon_thread.read_state(ZX_THREAD_STATE_GENERAL_REGS, &buffer, sizeof(buffer)); ASSERT_EQ(status, ZX_OK); #if defined(ARCH_CPU_X86_64) *child_crash_addr = static_cast(buffer.rip); #elif defined(ARCH_CPU_ARM64) *child_crash_addr = static_cast(buffer.pc); #else #error Unsupported architecture #endif status = zircon_thread.kill(); ASSERT_EQ(status, ZX_OK); } TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) { uintptr_t child_crash_addr_1 = 0; uintptr_t child_crash_addr_2 = 0; uintptr_t child_crash_addr_3 = 0; SpawnCrashThread(1, &child_crash_addr_1); SpawnCrashThread(2, &child_crash_addr_2); SpawnCrashThread(3, &child_crash_addr_3); ASSERT_NE(0u, child_crash_addr_1); ASSERT_NE(0u, child_crash_addr_2); ASSERT_NE(0u, child_crash_addr_3); ASSERT_NE(child_crash_addr_1, child_crash_addr_2); ASSERT_NE(child_crash_addr_1, child_crash_addr_3); ASSERT_NE(child_crash_addr_2, child_crash_addr_3); } #elif defined(OS_POSIX) && !defined(OS_NACL) && !defined(OS_IOS) && \ (defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY)) int g_child_crash_pipe; void CheckCrashTestSighandler(int, siginfo_t* info, void* context_ptr) { // Conversely to what clearly stated in "man 2 sigaction", some Linux kernels // do NOT populate the |info->si_addr| in the case of a SIGTRAP. Hence we // need the arch-specific boilerplate below, which is inspired by breakpad. // At the same time, on OSX, ucontext.h is deprecated but si_addr works fine. uintptr_t crash_addr = 0; #if defined(OS_MACOSX) crash_addr = reinterpret_cast(info->si_addr); #else // OS_POSIX && !OS_MACOSX ucontext_t* context = reinterpret_cast(context_ptr); #if defined(ARCH_CPU_X86) crash_addr = static_cast(context->uc_mcontext.gregs[REG_EIP]); #elif defined(ARCH_CPU_X86_64) crash_addr = static_cast(context->uc_mcontext.gregs[REG_RIP]); #elif defined(ARCH_CPU_ARMEL) crash_addr = static_cast(context->uc_mcontext.arm_pc); #elif defined(ARCH_CPU_ARM64) crash_addr = static_cast(context->uc_mcontext.pc); #endif // ARCH_* #endif // OS_POSIX && !OS_MACOSX HANDLE_EINTR(write(g_child_crash_pipe, &crash_addr, sizeof(uintptr_t))); _exit(0); } // CHECK causes a direct crash (without jumping to another function) only in // official builds. Unfortunately, continuous test coverage on official builds // is lower. DO_CHECK here falls back on a home-brewed implementation in // non-official builds, to catch regressions earlier in the CQ. #if defined(OFFICIAL_BUILD) #define DO_CHECK CHECK #else #define DO_CHECK(cond) \ if (!(cond)) \ IMMEDIATE_CRASH() #endif void CrashChildMain(int death_location) { struct sigaction act = {}; act.sa_sigaction = CheckCrashTestSighandler; act.sa_flags = SA_SIGINFO; ASSERT_EQ(0, sigaction(SIGTRAP, &act, nullptr)); ASSERT_EQ(0, sigaction(SIGBUS, &act, nullptr)); ASSERT_EQ(0, sigaction(SIGILL, &act, nullptr)); DO_CHECK(death_location != 1); DO_CHECK(death_location != 2); printf("\n"); DO_CHECK(death_location != 3); // Should never reach this point. const uintptr_t failed = 0; HANDLE_EINTR(write(g_child_crash_pipe, &failed, sizeof(uintptr_t))); } void SpawnChildAndCrash(int death_location, uintptr_t* child_crash_addr) { int pipefd[2]; ASSERT_EQ(0, pipe(pipefd)); int pid = fork(); ASSERT_GE(pid, 0); if (pid == 0) { // child process. close(pipefd[0]); // Close reader (parent) end. g_child_crash_pipe = pipefd[1]; CrashChildMain(death_location); FAIL() << "The child process was supposed to crash. It didn't."; } close(pipefd[1]); // Close writer (child) end. DCHECK(child_crash_addr); int res = HANDLE_EINTR(read(pipefd[0], child_crash_addr, sizeof(uintptr_t))); ASSERT_EQ(static_cast(sizeof(uintptr_t)), res); } TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) { uintptr_t child_crash_addr_1 = 0; uintptr_t child_crash_addr_2 = 0; uintptr_t child_crash_addr_3 = 0; SpawnChildAndCrash(1, &child_crash_addr_1); SpawnChildAndCrash(2, &child_crash_addr_2); SpawnChildAndCrash(3, &child_crash_addr_3); ASSERT_NE(0u, child_crash_addr_1); ASSERT_NE(0u, child_crash_addr_2); ASSERT_NE(0u, child_crash_addr_3); ASSERT_NE(child_crash_addr_1, child_crash_addr_2); ASSERT_NE(child_crash_addr_1, child_crash_addr_3); ASSERT_NE(child_crash_addr_2, child_crash_addr_3); } #endif // OS_POSIX TEST_F(LoggingTest, DebugLoggingReleaseBehavior) { #if DCHECK_IS_ON() int debug_only_variable = 1; #endif // These should avoid emitting references to |debug_only_variable| // in release mode. DLOG_IF(INFO, debug_only_variable) << "test"; DLOG_ASSERT(debug_only_variable) << "test"; DPLOG_IF(INFO, debug_only_variable) << "test"; DVLOG_IF(1, debug_only_variable) << "test"; } TEST_F(LoggingTest, DcheckStreamsAreLazy) { MockLogSource mock_log_source; EXPECT_CALL(mock_log_source, Log()).Times(0); #if DCHECK_IS_ON() DCHECK(true) << mock_log_source.Log(); DCHECK_EQ(0, 0) << mock_log_source.Log(); #else DCHECK(mock_log_source.Log()) << mock_log_source.Log(); DPCHECK(mock_log_source.Log()) << mock_log_source.Log(); DCHECK_EQ(0, 0) << mock_log_source.Log(); DCHECK_EQ(mock_log_source.Log(), static_cast(nullptr)) << mock_log_source.Log(); #endif } void DcheckEmptyFunction1() { // Provide a body so that Release builds do not cause the compiler to // optimize DcheckEmptyFunction1 and DcheckEmptyFunction2 as a single // function, which breaks the Dcheck tests below. LOG(INFO) << "DcheckEmptyFunction1"; } void DcheckEmptyFunction2() {} #if defined(DCHECK_IS_CONFIGURABLE) class ScopedDcheckSeverity { public: ScopedDcheckSeverity(LogSeverity new_severity) : old_severity_(LOG_DCHECK) { LOG_DCHECK = new_severity; } ~ScopedDcheckSeverity() { LOG_DCHECK = old_severity_; } private: LogSeverity old_severity_; }; #endif // defined(DCHECK_IS_CONFIGURABLE) // https://crbug.com/709067 tracks test flakiness on iOS. #if defined(OS_IOS) #define MAYBE_Dcheck DISABLED_Dcheck #else #define MAYBE_Dcheck Dcheck #endif TEST_F(LoggingTest, MAYBE_Dcheck) { #if defined(DCHECK_IS_CONFIGURABLE) // DCHECKs are enabled, and LOG_DCHECK is mutable, but defaults to non-fatal. // Set it to LOG_FATAL to get the expected behavior from the rest of this // test. ScopedDcheckSeverity dcheck_severity(LOG_FATAL); #endif // defined(DCHECK_IS_CONFIGURABLE) #if defined(NDEBUG) && !defined(DCHECK_ALWAYS_ON) // Release build. EXPECT_FALSE(DCHECK_IS_ON()); EXPECT_FALSE(DLOG_IS_ON(DCHECK)); #elif defined(NDEBUG) && defined(DCHECK_ALWAYS_ON) // Release build with real DCHECKS. ScopedLogAssertHandler scoped_assert_handler(base::BindRepeating(LogSink)); EXPECT_TRUE(DCHECK_IS_ON()); EXPECT_TRUE(DLOG_IS_ON(DCHECK)); #else // Debug build. ScopedLogAssertHandler scoped_assert_handler(base::BindRepeating(LogSink)); EXPECT_TRUE(DCHECK_IS_ON()); EXPECT_TRUE(DLOG_IS_ON(DCHECK)); #endif // DCHECKs are fatal iff they're compiled in DCHECK_IS_ON() and the DCHECK // log level is set to fatal. const bool dchecks_are_fatal = DCHECK_IS_ON() && LOG_DCHECK == LOG_FATAL; EXPECT_EQ(0, g_log_sink_call_count); DCHECK(false); EXPECT_EQ(dchecks_are_fatal ? 1 : 0, g_log_sink_call_count); DPCHECK(false); EXPECT_EQ(dchecks_are_fatal ? 2 : 0, g_log_sink_call_count); DCHECK_EQ(0, 1); EXPECT_EQ(dchecks_are_fatal ? 3 : 0, g_log_sink_call_count); // Test DCHECK on std::nullptr_t g_log_sink_call_count = 0; const void* p_null = nullptr; const void* p_not_null = &p_null; DCHECK_EQ(p_null, nullptr); DCHECK_EQ(nullptr, p_null); DCHECK_NE(p_not_null, nullptr); DCHECK_NE(nullptr, p_not_null); EXPECT_EQ(0, g_log_sink_call_count); // Test DCHECK on a scoped enum. enum class Animal { DOG, CAT }; DCHECK_EQ(Animal::DOG, Animal::DOG); EXPECT_EQ(0, g_log_sink_call_count); DCHECK_EQ(Animal::DOG, Animal::CAT); EXPECT_EQ(dchecks_are_fatal ? 1 : 0, g_log_sink_call_count); // Test DCHECK on functions and function pointers. g_log_sink_call_count = 0; struct MemberFunctions { void MemberFunction1() { // See the comment in DcheckEmptyFunction1(). LOG(INFO) << "Do not merge with MemberFunction2."; } void MemberFunction2() {} }; void (MemberFunctions::*mp1)() = &MemberFunctions::MemberFunction1; void (MemberFunctions::*mp2)() = &MemberFunctions::MemberFunction2; void (*fp1)() = DcheckEmptyFunction1; void (*fp2)() = DcheckEmptyFunction2; void (*fp3)() = DcheckEmptyFunction1; DCHECK_EQ(fp1, fp3); EXPECT_EQ(0, g_log_sink_call_count); DCHECK_EQ(mp1, &MemberFunctions::MemberFunction1); EXPECT_EQ(0, g_log_sink_call_count); DCHECK_EQ(mp2, &MemberFunctions::MemberFunction2); EXPECT_EQ(0, g_log_sink_call_count); DCHECK_EQ(fp1, fp2); EXPECT_EQ(dchecks_are_fatal ? 1 : 0, g_log_sink_call_count); DCHECK_EQ(mp2, &MemberFunctions::MemberFunction1); EXPECT_EQ(dchecks_are_fatal ? 2 : 0, g_log_sink_call_count); } TEST_F(LoggingTest, DcheckReleaseBehavior) { int some_variable = 1; // These should still reference |some_variable| so we don't get // unused variable warnings. DCHECK(some_variable) << "test"; DPCHECK(some_variable) << "test"; DCHECK_EQ(some_variable, 1) << "test"; } TEST_F(LoggingTest, DCheckEqStatements) { bool reached = false; if (false) DCHECK_EQ(false, true); // Unreached. else DCHECK_EQ(true, reached = true); // Reached, passed. ASSERT_EQ(DCHECK_IS_ON() ? true : false, reached); if (false) DCHECK_EQ(false, true); // Unreached. } TEST_F(LoggingTest, CheckEqStatements) { bool reached = false; if (false) CHECK_EQ(false, true); // Unreached. else CHECK_EQ(true, reached = true); // Reached, passed. ASSERT_TRUE(reached); if (false) CHECK_EQ(false, true); // Unreached. } TEST_F(LoggingTest, NestedLogAssertHandlers) { ::testing::InSequence dummy; ::testing::StrictMock handler_a, handler_b; EXPECT_CALL( handler_a, HandleLogAssert( _, _, base::StringPiece("First assert must be caught by handler_a"), _)); EXPECT_CALL( handler_b, HandleLogAssert( _, _, base::StringPiece("Second assert must be caught by handler_b"), _)); EXPECT_CALL( handler_a, HandleLogAssert( _, _, base::StringPiece("Last assert must be caught by handler_a again"), _)); logging::ScopedLogAssertHandler scoped_handler_a(base::BindRepeating( &MockLogAssertHandler::HandleLogAssert, base::Unretained(&handler_a))); // Using LOG(FATAL) rather than CHECK(false) here since log messages aren't // preserved for CHECKs in official builds. LOG(FATAL) << "First assert must be caught by handler_a"; { logging::ScopedLogAssertHandler scoped_handler_b(base::BindRepeating( &MockLogAssertHandler::HandleLogAssert, base::Unretained(&handler_b))); LOG(FATAL) << "Second assert must be caught by handler_b"; } LOG(FATAL) << "Last assert must be caught by handler_a again"; } // Test that defining an operator<< for a type in a namespace doesn't prevent // other code in that namespace from calling the operator<<(ostream, wstring) // defined by logging.h. This can fail if operator<<(ostream, wstring) can't be // found by ADL, since defining another operator<< prevents name lookup from // looking in the global namespace. namespace nested_test { class Streamable {}; ALLOW_UNUSED_TYPE std::ostream& operator<<(std::ostream& out, const Streamable&) { return out << "Streamable"; } TEST_F(LoggingTest, StreamingWstringFindsCorrectOperator) { std::wstring wstr = L"Hello World"; std::ostringstream ostr; ostr << wstr; EXPECT_EQ("Hello World", ostr.str()); } } // namespace nested_test #if defined(DCHECK_IS_CONFIGURABLE) TEST_F(LoggingTest, ConfigurableDCheck) { // Verify that DCHECKs default to non-fatal in configurable-DCHECK builds. // Note that we require only that DCHECK is non-fatal by default, rather // than requiring that it be exactly INFO, ERROR, etc level. EXPECT_LT(LOG_DCHECK, LOG_FATAL); DCHECK(false); // Verify that DCHECK* aren't hard-wired to crash on failure. LOG_DCHECK = LOG_INFO; DCHECK(false); DCHECK_EQ(1, 2); // Verify that DCHECK does crash if LOG_DCHECK is set to LOG_FATAL. LOG_DCHECK = LOG_FATAL; ::testing::StrictMock handler; EXPECT_CALL(handler, HandleLogAssert(_, _, _, _)).Times(2); { logging::ScopedLogAssertHandler scoped_handler_b(base::BindRepeating( &MockLogAssertHandler::HandleLogAssert, base::Unretained(&handler))); DCHECK(false); DCHECK_EQ(1, 2); } } TEST_F(LoggingTest, ConfigurableDCheckFeature) { // Initialize FeatureList with and without DcheckIsFatal, and verify the // value of LOG_DCHECK. Note that we don't require that DCHECK take a // specific value when the feature is off, only that it is non-fatal. { base::test::ScopedFeatureList feature_list; feature_list.InitFromCommandLine("DcheckIsFatal", ""); EXPECT_EQ(LOG_DCHECK, LOG_FATAL); } { base::test::ScopedFeatureList feature_list; feature_list.InitFromCommandLine("", "DcheckIsFatal"); EXPECT_LT(LOG_DCHECK, LOG_FATAL); } // The default case is last, so we leave LOG_DCHECK in the default state. { base::test::ScopedFeatureList feature_list; feature_list.InitFromCommandLine("", ""); EXPECT_LT(LOG_DCHECK, LOG_FATAL); } } #endif // defined(DCHECK_IS_CONFIGURABLE) #if defined(OS_FUCHSIA) class TestLogListener : public fuchsia::logger::testing::LogListener_TestBase { public: TestLogListener() = default; ~TestLogListener() override = default; void RunUntilDone() { base::RunLoop loop; dump_logs_done_quit_closure_ = loop.QuitClosure(); loop.Run(); } bool DidReceiveString(base::StringPiece message, fuchsia::logger::LogMessage* logged_message) { for (const auto& log_message : log_messages_) { if (log_message.msg.find(message.as_string()) != std::string::npos) { *logged_message = log_message; return true; } } return false; } // LogListener implementation. void LogMany(std::vector messages) override { log_messages_.insert(log_messages_.end(), std::make_move_iterator(messages.begin()), std::make_move_iterator(messages.end())); } void Done() override { std::move(dump_logs_done_quit_closure_).Run(); } void NotImplemented_(const std::string& name) override { NOTIMPLEMENTED() << name; } private: fuchsia::logger::LogListenerPtr log_listener_; std::vector log_messages_; base::OnceClosure dump_logs_done_quit_closure_; DISALLOW_COPY_AND_ASSIGN(TestLogListener); }; // Verifies that calling the log macro goes to the Fuchsia system logs. TEST_F(LoggingTest, FuchsiaSystemLogging) { const char kLogMessage[] = "system log!"; LOG(ERROR) << kLogMessage; TestLogListener listener; fidl::Binding binding(&listener); fuchsia::logger::LogMessage logged_message; do { std::unique_ptr options = std::make_unique(); options->tags = {"base_unittests__exec"}; fuchsia::logger::LogPtr logger = base::fuchsia::ComponentContextForCurrentProcess() ->svc() ->Connect(); logger->DumpLogs(binding.NewBinding(), std::move(options)); listener.RunUntilDone(); } while (!listener.DidReceiveString(kLogMessage, &logged_message)); EXPECT_EQ(logged_message.severity, static_cast(fuchsia::logger::LogLevelFilter::ERROR)); ASSERT_EQ(logged_message.tags.size(), 1u); EXPECT_EQ(logged_message.tags[0], base::CommandLine::ForCurrentProcess() ->GetProgram() .BaseName() .AsUTF8Unsafe()); } TEST_F(LoggingTest, FuchsiaLogging) { MockLogSource mock_log_source; EXPECT_CALL(mock_log_source, Log()) .Times(DCHECK_IS_ON() ? 2 : 1) .WillRepeatedly(Return("log message")); SetMinLogLevel(LOG_INFO); EXPECT_TRUE(LOG_IS_ON(INFO)); EXPECT_TRUE((DCHECK_IS_ON() != 0) == DLOG_IS_ON(INFO)); ZX_LOG(INFO, ZX_ERR_INTERNAL) << mock_log_source.Log(); ZX_DLOG(INFO, ZX_ERR_INTERNAL) << mock_log_source.Log(); ZX_CHECK(true, ZX_ERR_INTERNAL); ZX_DCHECK(true, ZX_ERR_INTERNAL); } #endif // defined(OS_FUCHSIA) TEST_F(LoggingTest, LogPrefix) { // Set up a callback function to capture the log output string. auto old_log_message_handler = GetLogMessageHandler(); // Use a static because only captureless lambdas can be converted to a // function pointer for SetLogMessageHandler(). static std::string* log_string_ptr = nullptr; std::string log_string; log_string_ptr = &log_string; SetLogMessageHandler([](int severity, const char* file, int line, size_t start, const std::string& str) -> bool { *log_string_ptr = str; return true; }); // Logging with a prefix includes the prefix string after the opening '['. const char kPrefix[] = "prefix"; SetLogPrefix(kPrefix); LOG(ERROR) << "test"; // Writes into |log_string|. EXPECT_EQ(1u, log_string.find(kPrefix)); // Logging without a prefix does not include the prefix string. SetLogPrefix(nullptr); LOG(ERROR) << "test"; // Writes into |log_string|. EXPECT_EQ(std::string::npos, log_string.find(kPrefix)); // Clean up. SetLogMessageHandler(old_log_message_handler); log_string_ptr = nullptr; } #if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER) && \ !BUILDFLAG(IS_HWASAN) // Since we scan potentially uninitialized portions of the stack, we can't run // this test under any sanitizer that checks for uninitialized reads. TEST_F(LoggingTest, LogMessageMarkersOnStack) { const uint32_t kLogStartMarker = 0xbedead01; const uint32_t kLogEndMarker = 0x5050dead; const char kTestMessage[] = "Oh noes! I have crashed! 💩"; uint32_t stack_start = 0; // Install a LogAssertHandler which will scan between |stack_start| and its // local-scope stack for the start & end markers, and verify the message. ScopedLogAssertHandler assert_handler(base::BindRepeating( [](uint32_t* stack_start_ptr, const char* file, int line, const base::StringPiece message, const base::StringPiece stack_trace) { uint32_t stack_end; uint32_t* stack_end_ptr = &stack_end; // Scan the stack for the expected markers. uint32_t* start_marker = nullptr; uint32_t* end_marker = nullptr; for (uint32_t* ptr = stack_end_ptr; ptr <= stack_start_ptr; ++ptr) { if (*ptr == kLogStartMarker) start_marker = ptr; else if (*ptr == kLogEndMarker) end_marker = ptr; } // Verify that start & end markers were found, somewhere, in-between // this and the LogAssertHandler scope, in the LogMessage destructor's // stack frame. ASSERT_TRUE(start_marker); ASSERT_TRUE(end_marker); // Verify that the |message| is found in-between the markers. const char* start_char_marker = reinterpret_cast(start_marker + 1); const char* end_char_marker = reinterpret_cast(end_marker); const base::StringPiece stack_view(start_char_marker, end_char_marker - start_char_marker); ASSERT_FALSE(stack_view.find(message) == base::StringPiece::npos); }, &stack_start)); // Trigger a log assertion, with a test message we can check for. LOG(FATAL) << kTestMessage; } #endif // !defined(ADDRESS_SANITIZER) const char* kToStringResult = "to_string"; const char* kOstreamResult = "ostream"; struct StructWithOstream {}; std::ostream& operator<<(std::ostream& out, const StructWithOstream&) { return out << kOstreamResult; } TEST(MakeCheckOpValueStringTest, HasOnlyOstream) { std::ostringstream oss; logging::MakeCheckOpValueString(&oss, StructWithOstream()); EXPECT_EQ(kOstreamResult, oss.str()); } struct StructWithToString { std::string ToString() const { return kToStringResult; } }; TEST(MakeCheckOpValueStringTest, HasOnlyToString) { std::ostringstream oss; logging::MakeCheckOpValueString(&oss, StructWithToString()); EXPECT_EQ(kToStringResult, oss.str()); } struct StructWithToStringAndOstream { std::string ToString() const { return kToStringResult; } }; std::ostream& operator<<(std::ostream& out, const StructWithToStringAndOstream&) { return out << kOstreamResult; } TEST(MakeCheckOpValueStringTest, HasOstreamAndToString) { std::ostringstream oss; logging::MakeCheckOpValueString(&oss, StructWithToStringAndOstream()); EXPECT_EQ(kOstreamResult, oss.str()); } } // namespace } // namespace logging